1 /*
2  * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3  *
4  * Derived from Intel e1000 driver
5  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License as published by the Free
9  * Software Foundation; either version 2 of the License, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59
19  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
20  */
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/mii.h>
24 #include <linux/crc32.h>
25 
26 #include "atl1c.h"
27 
28 /*
29  * check_eeprom_exist
30  * return 1 if eeprom exist
31  */
32 int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
33 {
34 	u32 data;
35 
36 	AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
37 	if (data & TWSI_DEBUG_DEV_EXIST)
38 		return 1;
39 
40 	AT_READ_REG(hw, REG_MASTER_CTRL, &data);
41 	if (data & MASTER_CTRL_OTP_SEL)
42 		return 1;
43 	return 0;
44 }
45 
46 void atl1c_hw_set_mac_addr(struct atl1c_hw *hw, u8 *mac_addr)
47 {
48 	u32 value;
49 	/*
50 	 * 00-0B-6A-F6-00-DC
51 	 * 0:  6AF600DC 1: 000B
52 	 * low dword
53 	 */
54 	value = mac_addr[2] << 24 |
55 		mac_addr[3] << 16 |
56 		mac_addr[4] << 8  |
57 		mac_addr[5];
58 	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
59 	/* hight dword */
60 	value = mac_addr[0] << 8 |
61 		mac_addr[1];
62 	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
63 }
64 
65 /* read mac address from hardware register */
66 static bool atl1c_read_current_addr(struct atl1c_hw *hw, u8 *eth_addr)
67 {
68 	u32 addr[2];
69 
70 	AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
71 	AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
72 
73 	*(u32 *) &eth_addr[2] = htonl(addr[0]);
74 	*(u16 *) &eth_addr[0] = htons((u16)addr[1]);
75 
76 	return is_valid_ether_addr(eth_addr);
77 }
78 
79 /*
80  * atl1c_get_permanent_address
81  * return 0 if get valid mac address,
82  */
83 static int atl1c_get_permanent_address(struct atl1c_hw *hw)
84 {
85 	u32 i;
86 	u32 otp_ctrl_data;
87 	u32 twsi_ctrl_data;
88 	u16 phy_data;
89 	bool raise_vol = false;
90 
91 	/* MAC-address from BIOS is the 1st priority */
92 	if (atl1c_read_current_addr(hw, hw->perm_mac_addr))
93 		return 0;
94 
95 	/* init */
96 	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
97 	if (atl1c_check_eeprom_exist(hw)) {
98 		if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) {
99 			/* Enable OTP CLK */
100 			if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
101 				otp_ctrl_data |= OTP_CTRL_CLK_EN;
102 				AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
103 				AT_WRITE_FLUSH(hw);
104 				msleep(1);
105 			}
106 		}
107 		/* raise voltage temporally for l2cb */
108 		if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
109 			atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data);
110 			phy_data &= ~ANACTRL_HB_EN;
111 			atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
112 			atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
113 			phy_data |= VOLT_CTRL_SWLOWEST;
114 			atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
115 			udelay(20);
116 			raise_vol = true;
117 		}
118 
119 		AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
120 		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
121 		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
122 		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
123 			msleep(10);
124 			AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
125 			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
126 				break;
127 		}
128 		if (i >= AT_TWSI_EEPROM_TIMEOUT)
129 			return -1;
130 	}
131 	/* Disable OTP_CLK */
132 	if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
133 		otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
134 		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
135 		msleep(1);
136 	}
137 	if (raise_vol) {
138 		atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data);
139 		phy_data |= ANACTRL_HB_EN;
140 		atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
141 		atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
142 		phy_data &= ~VOLT_CTRL_SWLOWEST;
143 		atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
144 		udelay(20);
145 	}
146 
147 	if (atl1c_read_current_addr(hw, hw->perm_mac_addr))
148 		return 0;
149 
150 	return -1;
151 }
152 
153 bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
154 {
155 	int i;
156 	bool ret = false;
157 	u32 otp_ctrl_data;
158 	u32 control;
159 	u32 data;
160 
161 	if (offset & 3)
162 		return ret; /* address do not align */
163 
164 	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
165 	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
166 		AT_WRITE_REG(hw, REG_OTP_CTRL,
167 				(otp_ctrl_data | OTP_CTRL_CLK_EN));
168 
169 	AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
170 	control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
171 	AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
172 
173 	for (i = 0; i < 10; i++) {
174 		udelay(100);
175 		AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
176 		if (control & EEPROM_CTRL_RW)
177 			break;
178 	}
179 	if (control & EEPROM_CTRL_RW) {
180 		AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
181 		AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
182 		data = data & 0xFFFF;
183 		*p_value = swab32((data << 16) | (*p_value >> 16));
184 		ret = true;
185 	}
186 	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
187 		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
188 
189 	return ret;
190 }
191 /*
192  * Reads the adapter's MAC address from the EEPROM
193  *
194  * hw - Struct containing variables accessed by shared code
195  */
196 int atl1c_read_mac_addr(struct atl1c_hw *hw)
197 {
198 	int err = 0;
199 
200 	err = atl1c_get_permanent_address(hw);
201 	if (err)
202 		eth_random_addr(hw->perm_mac_addr);
203 
204 	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
205 	return err;
206 }
207 
208 /*
209  * atl1c_hash_mc_addr
210  *  purpose
211  *      set hash value for a multicast address
212  *      hash calcu processing :
213  *          1. calcu 32bit CRC for multicast address
214  *          2. reverse crc with MSB to LSB
215  */
216 u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
217 {
218 	u32 crc32;
219 	u32 value = 0;
220 	int i;
221 
222 	crc32 = ether_crc_le(6, mc_addr);
223 	for (i = 0; i < 32; i++)
224 		value |= (((crc32 >> i) & 1) << (31 - i));
225 
226 	return value;
227 }
228 
229 /*
230  * Sets the bit in the multicast table corresponding to the hash value.
231  * hw - Struct containing variables accessed by shared code
232  * hash_value - Multicast address hash value
233  */
234 void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
235 {
236 	u32 hash_bit, hash_reg;
237 	u32 mta;
238 
239 	/*
240 	 * The HASH Table  is a register array of 2 32-bit registers.
241 	 * It is treated like an array of 64 bits.  We want to set
242 	 * bit BitArray[hash_value]. So we figure out what register
243 	 * the bit is in, read it, OR in the new bit, then write
244 	 * back the new value.  The register is determined by the
245 	 * upper bit of the hash value and the bit within that
246 	 * register are determined by the lower 5 bits of the value.
247 	 */
248 	hash_reg = (hash_value >> 31) & 0x1;
249 	hash_bit = (hash_value >> 26) & 0x1F;
250 
251 	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
252 
253 	mta |= (1 << hash_bit);
254 
255 	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
256 }
257 
258 /*
259  * wait mdio module be idle
260  * return true: idle
261  *        false: still busy
262  */
263 bool atl1c_wait_mdio_idle(struct atl1c_hw *hw)
264 {
265 	u32 val;
266 	int i;
267 
268 	for (i = 0; i < MDIO_MAX_AC_TO; i++) {
269 		AT_READ_REG(hw, REG_MDIO_CTRL, &val);
270 		if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START)))
271 			break;
272 		udelay(10);
273 	}
274 
275 	return i != MDIO_MAX_AC_TO;
276 }
277 
278 void atl1c_stop_phy_polling(struct atl1c_hw *hw)
279 {
280 	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
281 		return;
282 
283 	AT_WRITE_REG(hw, REG_MDIO_CTRL, 0);
284 	atl1c_wait_mdio_idle(hw);
285 }
286 
287 void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel)
288 {
289 	u32 val;
290 
291 	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
292 		return;
293 
294 	val = MDIO_CTRL_SPRES_PRMBL |
295 		FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
296 		FIELDX(MDIO_CTRL_REG, 1) |
297 		MDIO_CTRL_START |
298 		MDIO_CTRL_OP_READ;
299 	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
300 	atl1c_wait_mdio_idle(hw);
301 	val |= MDIO_CTRL_AP_EN;
302 	val &= ~MDIO_CTRL_START;
303 	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
304 	udelay(30);
305 }
306 
307 
308 /*
309  * atl1c_read_phy_core
310  * core function to read register in PHY via MDIO control regsiter.
311  * ext: extension register (see IEEE 802.3)
312  * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
313  * reg: reg to read
314  */
315 int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
316 			u16 reg, u16 *phy_data)
317 {
318 	u32 val;
319 	u16 clk_sel = MDIO_CTRL_CLK_25_4;
320 
321 	atl1c_stop_phy_polling(hw);
322 
323 	*phy_data = 0;
324 
325 	/* only l2c_b2 & l1d_2 could use slow clock */
326 	if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
327 		hw->hibernate)
328 		clk_sel = MDIO_CTRL_CLK_25_128;
329 	if (ext) {
330 		val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
331 		AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
332 		val = MDIO_CTRL_SPRES_PRMBL |
333 			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
334 			MDIO_CTRL_START |
335 			MDIO_CTRL_MODE_EXT |
336 			MDIO_CTRL_OP_READ;
337 	} else {
338 		val = MDIO_CTRL_SPRES_PRMBL |
339 			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
340 			FIELDX(MDIO_CTRL_REG, reg) |
341 			MDIO_CTRL_START |
342 			MDIO_CTRL_OP_READ;
343 	}
344 	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
345 
346 	if (!atl1c_wait_mdio_idle(hw))
347 		return -1;
348 
349 	AT_READ_REG(hw, REG_MDIO_CTRL, &val);
350 	*phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA);
351 
352 	atl1c_start_phy_polling(hw, clk_sel);
353 
354 	return 0;
355 }
356 
357 /*
358  * atl1c_write_phy_core
359  * core function to write to register in PHY via MDIO control register.
360  * ext: extension register (see IEEE 802.3)
361  * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
362  * reg: reg to write
363  */
364 int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
365 			u16 reg, u16 phy_data)
366 {
367 	u32 val;
368 	u16 clk_sel = MDIO_CTRL_CLK_25_4;
369 
370 	atl1c_stop_phy_polling(hw);
371 
372 
373 	/* only l2c_b2 & l1d_2 could use slow clock */
374 	if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
375 		hw->hibernate)
376 		clk_sel = MDIO_CTRL_CLK_25_128;
377 
378 	if (ext) {
379 		val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
380 		AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
381 		val = MDIO_CTRL_SPRES_PRMBL |
382 			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
383 			FIELDX(MDIO_CTRL_DATA, phy_data) |
384 			MDIO_CTRL_START |
385 			MDIO_CTRL_MODE_EXT;
386 	} else {
387 		val = MDIO_CTRL_SPRES_PRMBL |
388 			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
389 			FIELDX(MDIO_CTRL_DATA, phy_data) |
390 			FIELDX(MDIO_CTRL_REG, reg) |
391 			MDIO_CTRL_START;
392 	}
393 	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
394 
395 	if (!atl1c_wait_mdio_idle(hw))
396 		return -1;
397 
398 	atl1c_start_phy_polling(hw, clk_sel);
399 
400 	return 0;
401 }
402 
403 /*
404  * Reads the value from a PHY register
405  * hw - Struct containing variables accessed by shared code
406  * reg_addr - address of the PHY register to read
407  */
408 int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
409 {
410 	return atl1c_read_phy_core(hw, false, 0, reg_addr, phy_data);
411 }
412 
413 /*
414  * Writes a value to a PHY register
415  * hw - Struct containing variables accessed by shared code
416  * reg_addr - address of the PHY register to write
417  * data - data to write to the PHY
418  */
419 int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
420 {
421 	return atl1c_write_phy_core(hw, false, 0, reg_addr, phy_data);
422 }
423 
424 /* read from PHY extension register */
425 int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
426 			u16 reg_addr, u16 *phy_data)
427 {
428 	return atl1c_read_phy_core(hw, true, dev_addr, reg_addr, phy_data);
429 }
430 
431 /* write to PHY extension register */
432 int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
433 			u16 reg_addr, u16 phy_data)
434 {
435 	return atl1c_write_phy_core(hw, true, dev_addr, reg_addr, phy_data);
436 }
437 
438 int atl1c_read_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
439 {
440 	int err;
441 
442 	err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
443 	if (unlikely(err))
444 		return err;
445 	else
446 		err = atl1c_read_phy_reg(hw, MII_DBG_DATA, phy_data);
447 
448 	return err;
449 }
450 
451 int atl1c_write_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 phy_data)
452 {
453 	int err;
454 
455 	err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
456 	if (unlikely(err))
457 		return err;
458 	else
459 		err = atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
460 
461 	return err;
462 }
463 
464 /*
465  * Configures PHY autoneg and flow control advertisement settings
466  *
467  * hw - Struct containing variables accessed by shared code
468  */
469 static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
470 {
471 	u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL;
472 	u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
473 				~GIGA_CR_1000T_SPEED_MASK;
474 
475 	if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
476 		mii_adv_data |= ADVERTISE_10HALF;
477 	if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
478 		mii_adv_data |= ADVERTISE_10FULL;
479 	if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
480 		mii_adv_data |= ADVERTISE_100HALF;
481 	if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
482 		mii_adv_data |= ADVERTISE_100FULL;
483 
484 	if (hw->autoneg_advertised & ADVERTISED_Autoneg)
485 		mii_adv_data |= ADVERTISE_10HALF  | ADVERTISE_10FULL |
486 				ADVERTISE_100HALF | ADVERTISE_100FULL;
487 
488 	if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
489 		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
490 			mii_giga_ctrl_data |= ADVERTISE_1000HALF;
491 		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
492 			mii_giga_ctrl_data |= ADVERTISE_1000FULL;
493 		if (hw->autoneg_advertised & ADVERTISED_Autoneg)
494 			mii_giga_ctrl_data |= ADVERTISE_1000HALF |
495 					ADVERTISE_1000FULL;
496 	}
497 
498 	if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
499 	    atl1c_write_phy_reg(hw, MII_CTRL1000, mii_giga_ctrl_data) != 0)
500 		return -1;
501 	return 0;
502 }
503 
504 void atl1c_phy_disable(struct atl1c_hw *hw)
505 {
506 	atl1c_power_saving(hw, 0);
507 }
508 
509 
510 int atl1c_phy_reset(struct atl1c_hw *hw)
511 {
512 	struct atl1c_adapter *adapter = hw->adapter;
513 	struct pci_dev *pdev = adapter->pdev;
514 	u16 phy_data;
515 	u32 phy_ctrl_data, lpi_ctrl;
516 	int err;
517 
518 	/* reset PHY core */
519 	AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data);
520 	phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_PHY_IDDQ |
521 		GPHY_CTRL_GATE_25M_EN | GPHY_CTRL_PWDOWN_HW | GPHY_CTRL_CLS);
522 	phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST;
523 	if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE))
524 		phy_ctrl_data |= (GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
525 	else
526 		phy_ctrl_data &= ~(GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
527 	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
528 	AT_WRITE_FLUSH(hw);
529 	udelay(10);
530 	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data | GPHY_CTRL_EXT_RESET);
531 	AT_WRITE_FLUSH(hw);
532 	udelay(10 * GPHY_CTRL_EXT_RST_TO);	/* delay 800us */
533 
534 	/* switch clock */
535 	if (hw->nic_type == athr_l2c_b) {
536 		atl1c_read_phy_dbg(hw, MIIDBG_CFGLPSPD, &phy_data);
537 		atl1c_write_phy_dbg(hw, MIIDBG_CFGLPSPD,
538 			phy_data & ~CFGLPSPD_RSTCNT_CLK125SW);
539 	}
540 
541 	/* tx-half amplitude issue fix */
542 	if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
543 		atl1c_read_phy_dbg(hw, MIIDBG_CABLE1TH_DET, &phy_data);
544 		phy_data |= CABLE1TH_DET_EN;
545 		atl1c_write_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data);
546 	}
547 
548 	/* clear bit3 of dbgport 3B to lower voltage */
549 	if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) {
550 		if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
551 			atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
552 			phy_data &= ~VOLT_CTRL_SWLOWEST;
553 			atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
554 		}
555 		/* power saving config */
556 		phy_data =
557 			hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ?
558 			L1D_LEGCYPS_DEF : L1C_LEGCYPS_DEF;
559 		atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data);
560 		/* hib */
561 		atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
562 			SYSMODCTRL_IECHOADJ_DEF);
563 	} else {
564 		/* disable pws */
565 		atl1c_read_phy_dbg(hw, MIIDBG_LEGCYPS, &phy_data);
566 		atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS,
567 			phy_data & ~LEGCYPS_EN);
568 		/* disable hibernate */
569 		atl1c_read_phy_dbg(hw, MIIDBG_HIBNEG, &phy_data);
570 		atl1c_write_phy_dbg(hw, MIIDBG_HIBNEG,
571 			phy_data & HIBNEG_PSHIB_EN);
572 	}
573 	/* disable AZ(EEE) by default */
574 	if (hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ||
575 	    hw->nic_type == athr_l2c_b2) {
576 		AT_READ_REG(hw, REG_LPI_CTRL, &lpi_ctrl);
577 		AT_WRITE_REG(hw, REG_LPI_CTRL, lpi_ctrl & ~LPI_CTRL_EN);
578 		atl1c_write_phy_ext(hw, MIIEXT_ANEG, MIIEXT_LOCAL_EEEADV, 0);
579 		atl1c_write_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL3,
580 			L2CB_CLDCTRL3);
581 	}
582 
583 	/* other debug port to set */
584 	atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, ANACTRL_DEF);
585 	atl1c_write_phy_dbg(hw, MIIDBG_SRDSYSMOD, SRDSYSMOD_DEF);
586 	atl1c_write_phy_dbg(hw, MIIDBG_TST10BTCFG, TST10BTCFG_DEF);
587 	/* UNH-IOL test issue, set bit7 */
588 	atl1c_write_phy_dbg(hw, MIIDBG_TST100BTCFG,
589 		TST100BTCFG_DEF | TST100BTCFG_LITCH_EN);
590 
591 	/* set phy interrupt mask */
592 	phy_data = IER_LINK_UP | IER_LINK_DOWN;
593 	err = atl1c_write_phy_reg(hw, MII_IER, phy_data);
594 	if (err) {
595 		if (netif_msg_hw(adapter))
596 			dev_err(&pdev->dev,
597 				"Error enable PHY linkChange Interrupt\n");
598 		return err;
599 	}
600 	return 0;
601 }
602 
603 int atl1c_phy_init(struct atl1c_hw *hw)
604 {
605 	struct atl1c_adapter *adapter = hw->adapter;
606 	struct pci_dev *pdev = adapter->pdev;
607 	int ret_val;
608 	u16 mii_bmcr_data = BMCR_RESET;
609 
610 	if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) ||
611 		(atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) {
612 		dev_err(&pdev->dev, "Error get phy ID\n");
613 		return -1;
614 	}
615 	switch (hw->media_type) {
616 	case MEDIA_TYPE_AUTO_SENSOR:
617 		ret_val = atl1c_phy_setup_adv(hw);
618 		if (ret_val) {
619 			if (netif_msg_link(adapter))
620 				dev_err(&pdev->dev,
621 					"Error Setting up Auto-Negotiation\n");
622 			return ret_val;
623 		}
624 		mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
625 		break;
626 	case MEDIA_TYPE_100M_FULL:
627 		mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX;
628 		break;
629 	case MEDIA_TYPE_100M_HALF:
630 		mii_bmcr_data |= BMCR_SPEED100;
631 		break;
632 	case MEDIA_TYPE_10M_FULL:
633 		mii_bmcr_data |= BMCR_FULLDPLX;
634 		break;
635 	case MEDIA_TYPE_10M_HALF:
636 		break;
637 	default:
638 		if (netif_msg_link(adapter))
639 			dev_err(&pdev->dev, "Wrong Media type %d\n",
640 				hw->media_type);
641 		return -1;
642 	}
643 
644 	ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
645 	if (ret_val)
646 		return ret_val;
647 	hw->phy_configured = true;
648 
649 	return 0;
650 }
651 
652 /*
653  * Detects the current speed and duplex settings of the hardware.
654  *
655  * hw - Struct containing variables accessed by shared code
656  * speed - Speed of the connection
657  * duplex - Duplex setting of the connection
658  */
659 int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
660 {
661 	int err;
662 	u16 phy_data;
663 
664 	/* Read   PHY Specific Status Register (17) */
665 	err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
666 	if (err)
667 		return err;
668 
669 	if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
670 		return -1;
671 
672 	switch (phy_data & GIGA_PSSR_SPEED) {
673 	case GIGA_PSSR_1000MBS:
674 		*speed = SPEED_1000;
675 		break;
676 	case GIGA_PSSR_100MBS:
677 		*speed = SPEED_100;
678 		break;
679 	case  GIGA_PSSR_10MBS:
680 		*speed = SPEED_10;
681 		break;
682 	default:
683 		return -1;
684 	}
685 
686 	if (phy_data & GIGA_PSSR_DPLX)
687 		*duplex = FULL_DUPLEX;
688 	else
689 		*duplex = HALF_DUPLEX;
690 
691 	return 0;
692 }
693 
694 /* select one link mode to get lower power consumption */
695 int atl1c_phy_to_ps_link(struct atl1c_hw *hw)
696 {
697 	struct atl1c_adapter *adapter = hw->adapter;
698 	struct pci_dev *pdev = adapter->pdev;
699 	int ret = 0;
700 	u16 autoneg_advertised = ADVERTISED_10baseT_Half;
701 	u16 save_autoneg_advertised;
702 	u16 phy_data;
703 	u16 mii_lpa_data;
704 	u16 speed = SPEED_0;
705 	u16 duplex = FULL_DUPLEX;
706 	int i;
707 
708 	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
709 	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
710 	if (phy_data & BMSR_LSTATUS) {
711 		atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data);
712 		if (mii_lpa_data & LPA_10FULL)
713 			autoneg_advertised = ADVERTISED_10baseT_Full;
714 		else if (mii_lpa_data & LPA_10HALF)
715 			autoneg_advertised = ADVERTISED_10baseT_Half;
716 		else if (mii_lpa_data & LPA_100HALF)
717 			autoneg_advertised = ADVERTISED_100baseT_Half;
718 		else if (mii_lpa_data & LPA_100FULL)
719 			autoneg_advertised = ADVERTISED_100baseT_Full;
720 
721 		save_autoneg_advertised = hw->autoneg_advertised;
722 		hw->phy_configured = false;
723 		hw->autoneg_advertised = autoneg_advertised;
724 		if (atl1c_restart_autoneg(hw) != 0) {
725 			dev_dbg(&pdev->dev, "phy autoneg failed\n");
726 			ret = -1;
727 		}
728 		hw->autoneg_advertised = save_autoneg_advertised;
729 
730 		if (mii_lpa_data) {
731 			for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
732 				mdelay(100);
733 				atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
734 				atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
735 				if (phy_data & BMSR_LSTATUS) {
736 					if (atl1c_get_speed_and_duplex(hw, &speed,
737 									&duplex) != 0)
738 						dev_dbg(&pdev->dev,
739 							"get speed and duplex failed\n");
740 					break;
741 				}
742 			}
743 		}
744 	} else {
745 		speed = SPEED_10;
746 		duplex = HALF_DUPLEX;
747 	}
748 	adapter->link_speed = speed;
749 	adapter->link_duplex = duplex;
750 
751 	return ret;
752 }
753 
754 int atl1c_restart_autoneg(struct atl1c_hw *hw)
755 {
756 	int err = 0;
757 	u16 mii_bmcr_data = BMCR_RESET;
758 
759 	err = atl1c_phy_setup_adv(hw);
760 	if (err)
761 		return err;
762 	mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
763 
764 	return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
765 }
766 
767 int atl1c_power_saving(struct atl1c_hw *hw, u32 wufc)
768 {
769 	struct atl1c_adapter *adapter = hw->adapter;
770 	struct pci_dev *pdev = adapter->pdev;
771 	u32 master_ctrl, mac_ctrl, phy_ctrl;
772 	u32 wol_ctrl, speed;
773 	u16 phy_data;
774 
775 	wol_ctrl = 0;
776 	speed = adapter->link_speed == SPEED_1000 ?
777 		MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100;
778 
779 	AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl);
780 	AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl);
781 	AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl);
782 
783 	master_ctrl &= ~MASTER_CTRL_CLK_SEL_DIS;
784 	mac_ctrl = FIELD_SETX(mac_ctrl, MAC_CTRL_SPEED, speed);
785 	mac_ctrl &= ~(MAC_CTRL_DUPLX | MAC_CTRL_RX_EN | MAC_CTRL_TX_EN);
786 	if (adapter->link_duplex == FULL_DUPLEX)
787 		mac_ctrl |= MAC_CTRL_DUPLX;
788 	phy_ctrl &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_CLS);
789 	phy_ctrl |= GPHY_CTRL_SEL_ANA_RST | GPHY_CTRL_HIB_PULSE |
790 		GPHY_CTRL_HIB_EN;
791 	if (!wufc) { /* without WoL */
792 		master_ctrl |= MASTER_CTRL_CLK_SEL_DIS;
793 		phy_ctrl |= GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PWDOWN_HW;
794 		AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
795 		AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
796 		AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
797 		AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
798 		hw->phy_configured = false; /* re-init PHY when resume */
799 		return 0;
800 	}
801 	phy_ctrl |= GPHY_CTRL_EXT_RESET;
802 	if (wufc & AT_WUFC_MAG) {
803 		mac_ctrl |= MAC_CTRL_RX_EN | MAC_CTRL_BC_EN;
804 		wol_ctrl |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
805 		if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V11)
806 			wol_ctrl |= WOL_PATTERN_EN | WOL_PATTERN_PME_EN;
807 	}
808 	if (wufc & AT_WUFC_LNKC) {
809 		wol_ctrl |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
810 		if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) {
811 			dev_dbg(&pdev->dev, "%s: write phy MII_IER failed.\n",
812 				atl1c_driver_name);
813 		}
814 	}
815 	/* clear PHY interrupt */
816 	atl1c_read_phy_reg(hw, MII_ISR, &phy_data);
817 
818 	dev_dbg(&pdev->dev, "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n",
819 		atl1c_driver_name, mac_ctrl, master_ctrl, phy_ctrl, wol_ctrl);
820 	AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
821 	AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
822 	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
823 	AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl);
824 
825 	return 0;
826 }
827 
828 
829 /* configure phy after Link change Event */
830 void atl1c_post_phy_linkchg(struct atl1c_hw *hw, u16 link_speed)
831 {
832 	u16 phy_val;
833 	bool adj_thresh = false;
834 
835 	if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2 ||
836 	    hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2)
837 		adj_thresh = true;
838 
839 	if (link_speed != SPEED_0) { /* link up */
840 		/* az with brcm, half-amp */
841 		if (hw->nic_type == athr_l1d_2) {
842 			atl1c_read_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL6,
843 				&phy_val);
844 			phy_val = FIELD_GETX(phy_val, CLDCTRL6_CAB_LEN);
845 			phy_val = phy_val > CLDCTRL6_CAB_LEN_SHORT ?
846 				AZ_ANADECT_LONG : AZ_ANADECT_DEF;
847 			atl1c_write_phy_dbg(hw, MIIDBG_AZ_ANADECT, phy_val);
848 		}
849 		/* threshold adjust */
850 		if (adj_thresh && link_speed == SPEED_100 && hw->msi_lnkpatch) {
851 			atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, L1D_MSE16DB_UP);
852 			atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
853 				L1D_SYSMODCTRL_IECHOADJ_DEF);
854 		}
855 	} else { /* link down */
856 		if (adj_thresh && hw->msi_lnkpatch) {
857 			atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
858 				SYSMODCTRL_IECHOADJ_DEF);
859 			atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB,
860 				L1D_MSE16DB_DOWN);
861 		}
862 	}
863 }
864