xref: /openbmc/linux/drivers/net/ethernet/atheros/alx/main.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 /*
2  * Copyright (c) 2013, 2021 Johannes Berg <johannes@sipsolutions.net>
3  *
4  *  This file is free software: you may copy, redistribute and/or modify it
5  *  under the terms of the GNU General Public License as published by the
6  *  Free Software Foundation, either version 2 of the License, or (at your
7  *  option) any later version.
8  *
9  *  This file is distributed in the hope that it will be useful, but
10  *  WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  *  General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * This file incorporates work covered by the following copyright and
18  * permission notice:
19  *
20  * Copyright (c) 2012 Qualcomm Atheros, Inc.
21  *
22  * Permission to use, copy, modify, and/or distribute this software for any
23  * purpose with or without fee is hereby granted, provided that the above
24  * copyright notice and this permission notice appear in all copies.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/bitops.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <net/ip6_checksum.h>
46 #include <linux/crc32.h>
47 #include "alx.h"
48 #include "hw.h"
49 #include "reg.h"
50 
51 static const char alx_drv_name[] = "alx";
52 
53 static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
54 {
55 	struct alx_buffer *txb = &txq->bufs[entry];
56 
57 	if (dma_unmap_len(txb, size)) {
58 		dma_unmap_single(txq->dev,
59 				 dma_unmap_addr(txb, dma),
60 				 dma_unmap_len(txb, size),
61 				 DMA_TO_DEVICE);
62 		dma_unmap_len_set(txb, size, 0);
63 	}
64 
65 	if (txb->skb) {
66 		dev_kfree_skb_any(txb->skb);
67 		txb->skb = NULL;
68 	}
69 }
70 
71 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
72 {
73 	struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
74 	struct sk_buff *skb;
75 	struct alx_buffer *cur_buf;
76 	dma_addr_t dma;
77 	u16 cur, next, count = 0;
78 
79 	next = cur = rxq->write_idx;
80 	if (++next == alx->rx_ringsz)
81 		next = 0;
82 	cur_buf = &rxq->bufs[cur];
83 
84 	while (!cur_buf->skb && next != rxq->read_idx) {
85 		struct alx_rfd *rfd = &rxq->rfd[cur];
86 
87 		/*
88 		 * When DMA RX address is set to something like
89 		 * 0x....fc0, it will be very likely to cause DMA
90 		 * RFD overflow issue.
91 		 *
92 		 * To work around it, we apply rx skb with 64 bytes
93 		 * longer space, and offset the address whenever
94 		 * 0x....fc0 is detected.
95 		 */
96 		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
97 		if (!skb)
98 			break;
99 
100 		if (((unsigned long)skb->data & 0xfff) == 0xfc0)
101 			skb_reserve(skb, 64);
102 
103 		dma = dma_map_single(&alx->hw.pdev->dev,
104 				     skb->data, alx->rxbuf_size,
105 				     DMA_FROM_DEVICE);
106 		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
107 			dev_kfree_skb(skb);
108 			break;
109 		}
110 
111 		/* Unfortunately, RX descriptor buffers must be 4-byte
112 		 * aligned, so we can't use IP alignment.
113 		 */
114 		if (WARN_ON(dma & 3)) {
115 			dev_kfree_skb(skb);
116 			break;
117 		}
118 
119 		cur_buf->skb = skb;
120 		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
121 		dma_unmap_addr_set(cur_buf, dma, dma);
122 		rfd->addr = cpu_to_le64(dma);
123 
124 		cur = next;
125 		if (++next == alx->rx_ringsz)
126 			next = 0;
127 		cur_buf = &rxq->bufs[cur];
128 		count++;
129 	}
130 
131 	if (count) {
132 		/* flush all updates before updating hardware */
133 		wmb();
134 		rxq->write_idx = cur;
135 		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
136 	}
137 
138 	return count;
139 }
140 
141 static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
142 						 struct sk_buff *skb)
143 {
144 	unsigned int r_idx = skb->queue_mapping;
145 
146 	if (r_idx >= alx->num_txq)
147 		r_idx = r_idx % alx->num_txq;
148 
149 	return alx->qnapi[r_idx]->txq;
150 }
151 
152 static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
153 {
154 	return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
155 }
156 
157 static inline int alx_tpd_avail(struct alx_tx_queue *txq)
158 {
159 	if (txq->write_idx >= txq->read_idx)
160 		return txq->count + txq->read_idx - txq->write_idx - 1;
161 	return txq->read_idx - txq->write_idx - 1;
162 }
163 
164 static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
165 {
166 	struct alx_priv *alx;
167 	struct netdev_queue *tx_queue;
168 	u16 hw_read_idx, sw_read_idx;
169 	unsigned int total_bytes = 0, total_packets = 0;
170 	int budget = ALX_DEFAULT_TX_WORK;
171 
172 	alx = netdev_priv(txq->netdev);
173 	tx_queue = alx_get_tx_queue(txq);
174 
175 	sw_read_idx = txq->read_idx;
176 	hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
177 
178 	if (sw_read_idx != hw_read_idx) {
179 		while (sw_read_idx != hw_read_idx && budget > 0) {
180 			struct sk_buff *skb;
181 
182 			skb = txq->bufs[sw_read_idx].skb;
183 			if (skb) {
184 				total_bytes += skb->len;
185 				total_packets++;
186 				budget--;
187 			}
188 
189 			alx_free_txbuf(txq, sw_read_idx);
190 
191 			if (++sw_read_idx == txq->count)
192 				sw_read_idx = 0;
193 		}
194 		txq->read_idx = sw_read_idx;
195 
196 		netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
197 	}
198 
199 	if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
200 	    alx_tpd_avail(txq) > txq->count / 4)
201 		netif_tx_wake_queue(tx_queue);
202 
203 	return sw_read_idx == hw_read_idx;
204 }
205 
206 static void alx_schedule_link_check(struct alx_priv *alx)
207 {
208 	schedule_work(&alx->link_check_wk);
209 }
210 
211 static void alx_schedule_reset(struct alx_priv *alx)
212 {
213 	schedule_work(&alx->reset_wk);
214 }
215 
216 static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
217 {
218 	struct alx_priv *alx;
219 	struct alx_rrd *rrd;
220 	struct alx_buffer *rxb;
221 	struct sk_buff *skb;
222 	u16 length, rfd_cleaned = 0;
223 	int work = 0;
224 
225 	alx = netdev_priv(rxq->netdev);
226 
227 	while (work < budget) {
228 		rrd = &rxq->rrd[rxq->rrd_read_idx];
229 		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
230 			break;
231 		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
232 
233 		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
234 				  RRD_SI) != rxq->read_idx ||
235 		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
236 				  RRD_NOR) != 1) {
237 			alx_schedule_reset(alx);
238 			return work;
239 		}
240 
241 		rxb = &rxq->bufs[rxq->read_idx];
242 		dma_unmap_single(rxq->dev,
243 				 dma_unmap_addr(rxb, dma),
244 				 dma_unmap_len(rxb, size),
245 				 DMA_FROM_DEVICE);
246 		dma_unmap_len_set(rxb, size, 0);
247 		skb = rxb->skb;
248 		rxb->skb = NULL;
249 
250 		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
251 		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
252 			rrd->word3 = 0;
253 			dev_kfree_skb_any(skb);
254 			goto next_pkt;
255 		}
256 
257 		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
258 				       RRD_PKTLEN) - ETH_FCS_LEN;
259 		skb_put(skb, length);
260 		skb->protocol = eth_type_trans(skb, rxq->netdev);
261 
262 		skb_checksum_none_assert(skb);
263 		if (alx->dev->features & NETIF_F_RXCSUM &&
264 		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
265 				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
266 			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
267 					      RRD_PID)) {
268 			case RRD_PID_IPV6UDP:
269 			case RRD_PID_IPV4UDP:
270 			case RRD_PID_IPV4TCP:
271 			case RRD_PID_IPV6TCP:
272 				skb->ip_summed = CHECKSUM_UNNECESSARY;
273 				break;
274 			}
275 		}
276 
277 		napi_gro_receive(&rxq->np->napi, skb);
278 		work++;
279 
280 next_pkt:
281 		if (++rxq->read_idx == rxq->count)
282 			rxq->read_idx = 0;
283 		if (++rxq->rrd_read_idx == rxq->count)
284 			rxq->rrd_read_idx = 0;
285 
286 		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
287 			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
288 	}
289 
290 	if (rfd_cleaned)
291 		alx_refill_rx_ring(alx, GFP_ATOMIC);
292 
293 	return work;
294 }
295 
296 static int alx_poll(struct napi_struct *napi, int budget)
297 {
298 	struct alx_napi *np = container_of(napi, struct alx_napi, napi);
299 	struct alx_priv *alx = np->alx;
300 	struct alx_hw *hw = &alx->hw;
301 	unsigned long flags;
302 	bool tx_complete = true;
303 	int work = 0;
304 
305 	if (np->txq)
306 		tx_complete = alx_clean_tx_irq(np->txq);
307 	if (np->rxq)
308 		work = alx_clean_rx_irq(np->rxq, budget);
309 
310 	if (!tx_complete || work == budget)
311 		return budget;
312 
313 	napi_complete_done(&np->napi, work);
314 
315 	/* enable interrupt */
316 	if (alx->hw.pdev->msix_enabled) {
317 		alx_mask_msix(hw, np->vec_idx, false);
318 	} else {
319 		spin_lock_irqsave(&alx->irq_lock, flags);
320 		alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
321 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
322 		spin_unlock_irqrestore(&alx->irq_lock, flags);
323 	}
324 
325 	alx_post_write(hw);
326 
327 	return work;
328 }
329 
330 static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
331 {
332 	struct alx_hw *hw = &alx->hw;
333 
334 	if (intr & ALX_ISR_FATAL) {
335 		netif_warn(alx, hw, alx->dev,
336 			   "fatal interrupt 0x%x, resetting\n", intr);
337 		alx_schedule_reset(alx);
338 		return true;
339 	}
340 
341 	if (intr & ALX_ISR_ALERT)
342 		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
343 
344 	if (intr & ALX_ISR_PHY) {
345 		/* suppress PHY interrupt, because the source
346 		 * is from PHY internal. only the internal status
347 		 * is cleared, the interrupt status could be cleared.
348 		 */
349 		alx->int_mask &= ~ALX_ISR_PHY;
350 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
351 		alx_schedule_link_check(alx);
352 	}
353 
354 	return false;
355 }
356 
357 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
358 {
359 	struct alx_hw *hw = &alx->hw;
360 
361 	spin_lock(&alx->irq_lock);
362 
363 	/* ACK interrupt */
364 	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
365 	intr &= alx->int_mask;
366 
367 	if (alx_intr_handle_misc(alx, intr))
368 		goto out;
369 
370 	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
371 		napi_schedule(&alx->qnapi[0]->napi);
372 		/* mask rx/tx interrupt, enable them when napi complete */
373 		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
374 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
375 	}
376 
377 	alx_write_mem32(hw, ALX_ISR, 0);
378 
379  out:
380 	spin_unlock(&alx->irq_lock);
381 	return IRQ_HANDLED;
382 }
383 
384 static irqreturn_t alx_intr_msix_ring(int irq, void *data)
385 {
386 	struct alx_napi *np = data;
387 	struct alx_hw *hw = &np->alx->hw;
388 
389 	/* mask interrupt to ACK chip */
390 	alx_mask_msix(hw, np->vec_idx, true);
391 	/* clear interrupt status */
392 	alx_write_mem32(hw, ALX_ISR, np->vec_mask);
393 
394 	napi_schedule(&np->napi);
395 
396 	return IRQ_HANDLED;
397 }
398 
399 static irqreturn_t alx_intr_msix_misc(int irq, void *data)
400 {
401 	struct alx_priv *alx = data;
402 	struct alx_hw *hw = &alx->hw;
403 	u32 intr;
404 
405 	/* mask interrupt to ACK chip */
406 	alx_mask_msix(hw, 0, true);
407 
408 	/* read interrupt status */
409 	intr = alx_read_mem32(hw, ALX_ISR);
410 	intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
411 
412 	if (alx_intr_handle_misc(alx, intr))
413 		return IRQ_HANDLED;
414 
415 	/* clear interrupt status */
416 	alx_write_mem32(hw, ALX_ISR, intr);
417 
418 	/* enable interrupt again */
419 	alx_mask_msix(hw, 0, false);
420 
421 	return IRQ_HANDLED;
422 }
423 
424 static irqreturn_t alx_intr_msi(int irq, void *data)
425 {
426 	struct alx_priv *alx = data;
427 
428 	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
429 }
430 
431 static irqreturn_t alx_intr_legacy(int irq, void *data)
432 {
433 	struct alx_priv *alx = data;
434 	struct alx_hw *hw = &alx->hw;
435 	u32 intr;
436 
437 	intr = alx_read_mem32(hw, ALX_ISR);
438 
439 	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
440 		return IRQ_NONE;
441 
442 	return alx_intr_handle(alx, intr);
443 }
444 
445 static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
446 					ALX_TPD_PRI1_ADDR_LO,
447 					ALX_TPD_PRI2_ADDR_LO,
448 					ALX_TPD_PRI3_ADDR_LO};
449 
450 static void alx_init_ring_ptrs(struct alx_priv *alx)
451 {
452 	struct alx_hw *hw = &alx->hw;
453 	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
454 	struct alx_napi *np;
455 	int i;
456 
457 	for (i = 0; i < alx->num_napi; i++) {
458 		np = alx->qnapi[i];
459 		if (np->txq) {
460 			np->txq->read_idx = 0;
461 			np->txq->write_idx = 0;
462 			alx_write_mem32(hw,
463 					txring_header_reg[np->txq->queue_idx],
464 					np->txq->tpd_dma);
465 		}
466 
467 		if (np->rxq) {
468 			np->rxq->read_idx = 0;
469 			np->rxq->write_idx = 0;
470 			np->rxq->rrd_read_idx = 0;
471 			alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
472 			alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
473 		}
474 	}
475 
476 	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
477 	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
478 
479 	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
480 	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
481 	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
482 	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
483 
484 	/* load these pointers into the chip */
485 	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
486 }
487 
488 static void alx_free_txring_buf(struct alx_tx_queue *txq)
489 {
490 	int i;
491 
492 	if (!txq->bufs)
493 		return;
494 
495 	for (i = 0; i < txq->count; i++)
496 		alx_free_txbuf(txq, i);
497 
498 	memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
499 	memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
500 	txq->write_idx = 0;
501 	txq->read_idx = 0;
502 
503 	netdev_tx_reset_queue(alx_get_tx_queue(txq));
504 }
505 
506 static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
507 {
508 	struct alx_buffer *cur_buf;
509 	u16 i;
510 
511 	if (!rxq->bufs)
512 		return;
513 
514 	for (i = 0; i < rxq->count; i++) {
515 		cur_buf = rxq->bufs + i;
516 		if (cur_buf->skb) {
517 			dma_unmap_single(rxq->dev,
518 					 dma_unmap_addr(cur_buf, dma),
519 					 dma_unmap_len(cur_buf, size),
520 					 DMA_FROM_DEVICE);
521 			dev_kfree_skb(cur_buf->skb);
522 			cur_buf->skb = NULL;
523 			dma_unmap_len_set(cur_buf, size, 0);
524 			dma_unmap_addr_set(cur_buf, dma, 0);
525 		}
526 	}
527 
528 	rxq->write_idx = 0;
529 	rxq->read_idx = 0;
530 	rxq->rrd_read_idx = 0;
531 }
532 
533 static void alx_free_buffers(struct alx_priv *alx)
534 {
535 	int i;
536 
537 	for (i = 0; i < alx->num_txq; i++)
538 		if (alx->qnapi[i] && alx->qnapi[i]->txq)
539 			alx_free_txring_buf(alx->qnapi[i]->txq);
540 
541 	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
542 		alx_free_rxring_buf(alx->qnapi[0]->rxq);
543 }
544 
545 static int alx_reinit_rings(struct alx_priv *alx)
546 {
547 	alx_free_buffers(alx);
548 
549 	alx_init_ring_ptrs(alx);
550 
551 	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
552 		return -ENOMEM;
553 
554 	return 0;
555 }
556 
557 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
558 {
559 	u32 crc32, bit, reg;
560 
561 	crc32 = ether_crc(ETH_ALEN, addr);
562 	reg = (crc32 >> 31) & 0x1;
563 	bit = (crc32 >> 26) & 0x1F;
564 
565 	mc_hash[reg] |= BIT(bit);
566 }
567 
568 static void __alx_set_rx_mode(struct net_device *netdev)
569 {
570 	struct alx_priv *alx = netdev_priv(netdev);
571 	struct alx_hw *hw = &alx->hw;
572 	struct netdev_hw_addr *ha;
573 	u32 mc_hash[2] = {};
574 
575 	if (!(netdev->flags & IFF_ALLMULTI)) {
576 		netdev_for_each_mc_addr(ha, netdev)
577 			alx_add_mc_addr(hw, ha->addr, mc_hash);
578 
579 		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
580 		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
581 	}
582 
583 	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
584 	if (netdev->flags & IFF_PROMISC)
585 		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
586 	if (netdev->flags & IFF_ALLMULTI)
587 		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
588 
589 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
590 }
591 
592 static void alx_set_rx_mode(struct net_device *netdev)
593 {
594 	__alx_set_rx_mode(netdev);
595 }
596 
597 static int alx_set_mac_address(struct net_device *netdev, void *data)
598 {
599 	struct alx_priv *alx = netdev_priv(netdev);
600 	struct alx_hw *hw = &alx->hw;
601 	struct sockaddr *addr = data;
602 
603 	if (!is_valid_ether_addr(addr->sa_data))
604 		return -EADDRNOTAVAIL;
605 
606 	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
607 		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
608 
609 	eth_hw_addr_set(netdev, addr->sa_data);
610 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
611 	alx_set_macaddr(hw, hw->mac_addr);
612 
613 	return 0;
614 }
615 
616 static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
617 			     int offset)
618 {
619 	txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
620 	if (!txq->bufs)
621 		return -ENOMEM;
622 
623 	txq->tpd = alx->descmem.virt + offset;
624 	txq->tpd_dma = alx->descmem.dma + offset;
625 	offset += sizeof(struct alx_txd) * txq->count;
626 
627 	return offset;
628 }
629 
630 static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
631 			     int offset)
632 {
633 	rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
634 	if (!rxq->bufs)
635 		return -ENOMEM;
636 
637 	rxq->rrd = alx->descmem.virt + offset;
638 	rxq->rrd_dma = alx->descmem.dma + offset;
639 	offset += sizeof(struct alx_rrd) * rxq->count;
640 
641 	rxq->rfd = alx->descmem.virt + offset;
642 	rxq->rfd_dma = alx->descmem.dma + offset;
643 	offset += sizeof(struct alx_rfd) * rxq->count;
644 
645 	return offset;
646 }
647 
648 static int alx_alloc_rings(struct alx_priv *alx)
649 {
650 	int i, offset = 0;
651 
652 	/* physical tx/rx ring descriptors
653 	 *
654 	 * Allocate them as a single chunk because they must not cross a
655 	 * 4G boundary (hardware has a single register for high 32 bits
656 	 * of addresses only)
657 	 */
658 	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
659 			    alx->num_txq +
660 			    sizeof(struct alx_rrd) * alx->rx_ringsz +
661 			    sizeof(struct alx_rfd) * alx->rx_ringsz;
662 	alx->descmem.virt = dma_alloc_coherent(&alx->hw.pdev->dev,
663 					       alx->descmem.size,
664 					       &alx->descmem.dma, GFP_KERNEL);
665 	if (!alx->descmem.virt)
666 		return -ENOMEM;
667 
668 	/* alignment requirements */
669 	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
670 	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
671 
672 	for (i = 0; i < alx->num_txq; i++) {
673 		offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
674 		if (offset < 0) {
675 			netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
676 			return -ENOMEM;
677 		}
678 	}
679 
680 	offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
681 	if (offset < 0) {
682 		netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
683 		return -ENOMEM;
684 	}
685 
686 	return 0;
687 }
688 
689 static void alx_free_rings(struct alx_priv *alx)
690 {
691 	int i;
692 
693 	alx_free_buffers(alx);
694 
695 	for (i = 0; i < alx->num_txq; i++)
696 		if (alx->qnapi[i] && alx->qnapi[i]->txq)
697 			kfree(alx->qnapi[i]->txq->bufs);
698 
699 	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
700 		kfree(alx->qnapi[0]->rxq->bufs);
701 
702 	if (alx->descmem.virt)
703 		dma_free_coherent(&alx->hw.pdev->dev,
704 				  alx->descmem.size,
705 				  alx->descmem.virt,
706 				  alx->descmem.dma);
707 }
708 
709 static void alx_free_napis(struct alx_priv *alx)
710 {
711 	struct alx_napi *np;
712 	int i;
713 
714 	for (i = 0; i < alx->num_napi; i++) {
715 		np = alx->qnapi[i];
716 		if (!np)
717 			continue;
718 
719 		netif_napi_del(&np->napi);
720 		kfree(np->txq);
721 		kfree(np->rxq);
722 		kfree(np);
723 		alx->qnapi[i] = NULL;
724 	}
725 }
726 
727 static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
728 				  ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
729 static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
730 				  ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
731 static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
732 				   ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
733 static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
734 				   ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
735 				   ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
736 				   ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
737 
738 static int alx_alloc_napis(struct alx_priv *alx)
739 {
740 	struct alx_napi *np;
741 	struct alx_rx_queue *rxq;
742 	struct alx_tx_queue *txq;
743 	int i;
744 
745 	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
746 
747 	/* allocate alx_napi structures */
748 	for (i = 0; i < alx->num_napi; i++) {
749 		np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
750 		if (!np)
751 			goto err_out;
752 
753 		np->alx = alx;
754 		netif_napi_add(alx->dev, &np->napi, alx_poll);
755 		alx->qnapi[i] = np;
756 	}
757 
758 	/* allocate tx queues */
759 	for (i = 0; i < alx->num_txq; i++) {
760 		np = alx->qnapi[i];
761 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
762 		if (!txq)
763 			goto err_out;
764 
765 		np->txq = txq;
766 		txq->p_reg = tx_pidx_reg[i];
767 		txq->c_reg = tx_cidx_reg[i];
768 		txq->queue_idx = i;
769 		txq->count = alx->tx_ringsz;
770 		txq->netdev = alx->dev;
771 		txq->dev = &alx->hw.pdev->dev;
772 		np->vec_mask |= tx_vect_mask[i];
773 		alx->int_mask |= tx_vect_mask[i];
774 	}
775 
776 	/* allocate rx queues */
777 	np = alx->qnapi[0];
778 	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
779 	if (!rxq)
780 		goto err_out;
781 
782 	np->rxq = rxq;
783 	rxq->np = alx->qnapi[0];
784 	rxq->queue_idx = 0;
785 	rxq->count = alx->rx_ringsz;
786 	rxq->netdev = alx->dev;
787 	rxq->dev = &alx->hw.pdev->dev;
788 	np->vec_mask |= rx_vect_mask[0];
789 	alx->int_mask |= rx_vect_mask[0];
790 
791 	return 0;
792 
793 err_out:
794 	netdev_err(alx->dev, "error allocating internal structures\n");
795 	alx_free_napis(alx);
796 	return -ENOMEM;
797 }
798 
799 static const int txq_vec_mapping_shift[] = {
800 	0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
801 	0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
802 	1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
803 	1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
804 };
805 
806 static void alx_config_vector_mapping(struct alx_priv *alx)
807 {
808 	struct alx_hw *hw = &alx->hw;
809 	u32 tbl[2] = {0, 0};
810 	int i, vector, idx, shift;
811 
812 	if (alx->hw.pdev->msix_enabled) {
813 		/* tx mappings */
814 		for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
815 			idx = txq_vec_mapping_shift[i * 2];
816 			shift = txq_vec_mapping_shift[i * 2 + 1];
817 			tbl[idx] |= vector << shift;
818 		}
819 
820 		/* rx mapping */
821 		tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
822 	}
823 
824 	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
825 	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
826 	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
827 }
828 
829 static int alx_enable_msix(struct alx_priv *alx)
830 {
831 	int err, num_vec, num_txq, num_rxq;
832 
833 	num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
834 	num_rxq = 1;
835 	num_vec = max_t(int, num_txq, num_rxq) + 1;
836 
837 	err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
838 			PCI_IRQ_MSIX);
839 	if (err < 0) {
840 		netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
841 		return err;
842 	}
843 
844 	alx->num_vec = num_vec;
845 	alx->num_napi = num_vec - 1;
846 	alx->num_txq = num_txq;
847 	alx->num_rxq = num_rxq;
848 
849 	return err;
850 }
851 
852 static int alx_request_msix(struct alx_priv *alx)
853 {
854 	struct net_device *netdev = alx->dev;
855 	int i, err, vector = 0, free_vector = 0;
856 
857 	err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
858 			  0, netdev->name, alx);
859 	if (err)
860 		goto out_err;
861 
862 	for (i = 0; i < alx->num_napi; i++) {
863 		struct alx_napi *np = alx->qnapi[i];
864 
865 		vector++;
866 
867 		if (np->txq && np->rxq)
868 			sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
869 				np->txq->queue_idx);
870 		else if (np->txq)
871 			sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
872 				np->txq->queue_idx);
873 		else if (np->rxq)
874 			sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
875 				np->rxq->queue_idx);
876 		else
877 			sprintf(np->irq_lbl, "%s-unused", netdev->name);
878 
879 		np->vec_idx = vector;
880 		err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
881 				  alx_intr_msix_ring, 0, np->irq_lbl, np);
882 		if (err)
883 			goto out_free;
884 	}
885 	return 0;
886 
887 out_free:
888 	free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
889 
890 	vector--;
891 	for (i = 0; i < vector; i++)
892 		free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
893 			 alx->qnapi[i]);
894 
895 out_err:
896 	return err;
897 }
898 
899 static int alx_init_intr(struct alx_priv *alx)
900 {
901 	int ret;
902 
903 	ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
904 			PCI_IRQ_MSI | PCI_IRQ_LEGACY);
905 	if (ret < 0)
906 		return ret;
907 
908 	alx->num_vec = 1;
909 	alx->num_napi = 1;
910 	alx->num_txq = 1;
911 	alx->num_rxq = 1;
912 	return 0;
913 }
914 
915 static void alx_irq_enable(struct alx_priv *alx)
916 {
917 	struct alx_hw *hw = &alx->hw;
918 	int i;
919 
920 	/* level-1 interrupt switch */
921 	alx_write_mem32(hw, ALX_ISR, 0);
922 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
923 	alx_post_write(hw);
924 
925 	if (alx->hw.pdev->msix_enabled) {
926 		/* enable all msix irqs */
927 		for (i = 0; i < alx->num_vec; i++)
928 			alx_mask_msix(hw, i, false);
929 	}
930 }
931 
932 static void alx_irq_disable(struct alx_priv *alx)
933 {
934 	struct alx_hw *hw = &alx->hw;
935 	int i;
936 
937 	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
938 	alx_write_mem32(hw, ALX_IMR, 0);
939 	alx_post_write(hw);
940 
941 	if (alx->hw.pdev->msix_enabled) {
942 		for (i = 0; i < alx->num_vec; i++) {
943 			alx_mask_msix(hw, i, true);
944 			synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
945 		}
946 	} else {
947 		synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
948 	}
949 }
950 
951 static int alx_realloc_resources(struct alx_priv *alx)
952 {
953 	int err;
954 
955 	alx_free_rings(alx);
956 	alx_free_napis(alx);
957 	pci_free_irq_vectors(alx->hw.pdev);
958 
959 	err = alx_init_intr(alx);
960 	if (err)
961 		return err;
962 
963 	err = alx_alloc_napis(alx);
964 	if (err)
965 		return err;
966 
967 	err = alx_alloc_rings(alx);
968 	if (err)
969 		return err;
970 
971 	return 0;
972 }
973 
974 static int alx_request_irq(struct alx_priv *alx)
975 {
976 	struct pci_dev *pdev = alx->hw.pdev;
977 	struct alx_hw *hw = &alx->hw;
978 	int err;
979 	u32 msi_ctrl;
980 
981 	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
982 
983 	if (alx->hw.pdev->msix_enabled) {
984 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
985 		err = alx_request_msix(alx);
986 		if (!err)
987 			goto out;
988 
989 		/* msix request failed, realloc resources */
990 		err = alx_realloc_resources(alx);
991 		if (err)
992 			goto out;
993 	}
994 
995 	if (alx->hw.pdev->msi_enabled) {
996 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
997 				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
998 		err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
999 				  alx->dev->name, alx);
1000 		if (!err)
1001 			goto out;
1002 
1003 		/* fall back to legacy interrupt */
1004 		pci_free_irq_vectors(alx->hw.pdev);
1005 	}
1006 
1007 	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1008 	err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
1009 			  alx->dev->name, alx);
1010 out:
1011 	if (!err)
1012 		alx_config_vector_mapping(alx);
1013 	else
1014 		netdev_err(alx->dev, "IRQ registration failed!\n");
1015 	return err;
1016 }
1017 
1018 static void alx_free_irq(struct alx_priv *alx)
1019 {
1020 	struct pci_dev *pdev = alx->hw.pdev;
1021 	int i;
1022 
1023 	free_irq(pci_irq_vector(pdev, 0), alx);
1024 	if (alx->hw.pdev->msix_enabled) {
1025 		for (i = 0; i < alx->num_napi; i++)
1026 			free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
1027 	}
1028 
1029 	pci_free_irq_vectors(pdev);
1030 }
1031 
1032 static int alx_identify_hw(struct alx_priv *alx)
1033 {
1034 	struct alx_hw *hw = &alx->hw;
1035 	int rev = alx_hw_revision(hw);
1036 
1037 	if (rev > ALX_REV_C0)
1038 		return -EINVAL;
1039 
1040 	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1041 
1042 	return 0;
1043 }
1044 
1045 static int alx_init_sw(struct alx_priv *alx)
1046 {
1047 	struct pci_dev *pdev = alx->hw.pdev;
1048 	struct alx_hw *hw = &alx->hw;
1049 	int err;
1050 
1051 	err = alx_identify_hw(alx);
1052 	if (err) {
1053 		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1054 		return err;
1055 	}
1056 
1057 	alx->hw.lnk_patch =
1058 		pdev->device == ALX_DEV_ID_AR8161 &&
1059 		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1060 		pdev->subsystem_device == 0x0091 &&
1061 		pdev->revision == 0;
1062 
1063 	hw->smb_timer = 400;
1064 	hw->mtu = alx->dev->mtu;
1065 	alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1066 	/* MTU range: 34 - 9256 */
1067 	alx->dev->min_mtu = 34;
1068 	alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1069 	alx->tx_ringsz = 256;
1070 	alx->rx_ringsz = 512;
1071 	hw->imt = 200;
1072 	alx->int_mask = ALX_ISR_MISC;
1073 	hw->dma_chnl = hw->max_dma_chnl;
1074 	hw->ith_tpd = alx->tx_ringsz / 3;
1075 	hw->link_speed = SPEED_UNKNOWN;
1076 	hw->duplex = DUPLEX_UNKNOWN;
1077 	hw->adv_cfg = ADVERTISED_Autoneg |
1078 		      ADVERTISED_10baseT_Half |
1079 		      ADVERTISED_10baseT_Full |
1080 		      ADVERTISED_100baseT_Full |
1081 		      ADVERTISED_100baseT_Half |
1082 		      ADVERTISED_1000baseT_Full;
1083 	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1084 
1085 	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1086 		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
1087 		      ALX_MAC_CTRL_BRD_EN |
1088 		      ALX_MAC_CTRL_PCRCE |
1089 		      ALX_MAC_CTRL_CRCE |
1090 		      ALX_MAC_CTRL_RXFC_EN |
1091 		      ALX_MAC_CTRL_TXFC_EN |
1092 		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1093 	mutex_init(&alx->mtx);
1094 
1095 	return 0;
1096 }
1097 
1098 
1099 static netdev_features_t alx_fix_features(struct net_device *netdev,
1100 					  netdev_features_t features)
1101 {
1102 	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1103 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1104 
1105 	return features;
1106 }
1107 
1108 static void alx_netif_stop(struct alx_priv *alx)
1109 {
1110 	int i;
1111 
1112 	netif_trans_update(alx->dev);
1113 	if (netif_carrier_ok(alx->dev)) {
1114 		netif_carrier_off(alx->dev);
1115 		netif_tx_disable(alx->dev);
1116 		for (i = 0; i < alx->num_napi; i++)
1117 			napi_disable(&alx->qnapi[i]->napi);
1118 	}
1119 }
1120 
1121 static void alx_halt(struct alx_priv *alx)
1122 {
1123 	struct alx_hw *hw = &alx->hw;
1124 
1125 	lockdep_assert_held(&alx->mtx);
1126 
1127 	alx_netif_stop(alx);
1128 	hw->link_speed = SPEED_UNKNOWN;
1129 	hw->duplex = DUPLEX_UNKNOWN;
1130 
1131 	alx_reset_mac(hw);
1132 
1133 	/* disable l0s/l1 */
1134 	alx_enable_aspm(hw, false, false);
1135 	alx_irq_disable(alx);
1136 	alx_free_buffers(alx);
1137 }
1138 
1139 static void alx_configure(struct alx_priv *alx)
1140 {
1141 	struct alx_hw *hw = &alx->hw;
1142 
1143 	alx_configure_basic(hw);
1144 	alx_disable_rss(hw);
1145 	__alx_set_rx_mode(alx->dev);
1146 
1147 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1148 }
1149 
1150 static void alx_activate(struct alx_priv *alx)
1151 {
1152 	lockdep_assert_held(&alx->mtx);
1153 
1154 	/* hardware setting lost, restore it */
1155 	alx_reinit_rings(alx);
1156 	alx_configure(alx);
1157 
1158 	/* clear old interrupts */
1159 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1160 
1161 	alx_irq_enable(alx);
1162 
1163 	alx_schedule_link_check(alx);
1164 }
1165 
1166 static void alx_reinit(struct alx_priv *alx)
1167 {
1168 	lockdep_assert_held(&alx->mtx);
1169 
1170 	alx_halt(alx);
1171 	alx_activate(alx);
1172 }
1173 
1174 static int alx_change_mtu(struct net_device *netdev, int mtu)
1175 {
1176 	struct alx_priv *alx = netdev_priv(netdev);
1177 	int max_frame = ALX_MAX_FRAME_LEN(mtu);
1178 
1179 	netdev->mtu = mtu;
1180 	alx->hw.mtu = mtu;
1181 	alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1182 	netdev_update_features(netdev);
1183 	if (netif_running(netdev)) {
1184 		mutex_lock(&alx->mtx);
1185 		alx_reinit(alx);
1186 		mutex_unlock(&alx->mtx);
1187 	}
1188 	return 0;
1189 }
1190 
1191 static void alx_netif_start(struct alx_priv *alx)
1192 {
1193 	int i;
1194 
1195 	netif_tx_wake_all_queues(alx->dev);
1196 	for (i = 0; i < alx->num_napi; i++)
1197 		napi_enable(&alx->qnapi[i]->napi);
1198 	netif_carrier_on(alx->dev);
1199 }
1200 
1201 static int __alx_open(struct alx_priv *alx, bool resume)
1202 {
1203 	int err;
1204 
1205 	err = alx_enable_msix(alx);
1206 	if (err < 0) {
1207 		err = alx_init_intr(alx);
1208 		if (err)
1209 			return err;
1210 	}
1211 
1212 	if (!resume)
1213 		netif_carrier_off(alx->dev);
1214 
1215 	err = alx_alloc_napis(alx);
1216 	if (err)
1217 		goto out_disable_adv_intr;
1218 
1219 	err = alx_alloc_rings(alx);
1220 	if (err)
1221 		goto out_free_rings;
1222 
1223 	alx_configure(alx);
1224 
1225 	err = alx_request_irq(alx);
1226 	if (err)
1227 		goto out_free_rings;
1228 
1229 	/* must be called after alx_request_irq because the chip stops working
1230 	 * if we copy the dma addresses in alx_init_ring_ptrs twice when
1231 	 * requesting msi-x interrupts failed
1232 	 */
1233 	alx_reinit_rings(alx);
1234 
1235 	netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1236 	netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1237 
1238 	/* clear old interrupts */
1239 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1240 
1241 	alx_irq_enable(alx);
1242 
1243 	if (!resume)
1244 		netif_tx_start_all_queues(alx->dev);
1245 
1246 	alx_schedule_link_check(alx);
1247 	return 0;
1248 
1249 out_free_rings:
1250 	alx_free_rings(alx);
1251 	alx_free_napis(alx);
1252 out_disable_adv_intr:
1253 	pci_free_irq_vectors(alx->hw.pdev);
1254 	return err;
1255 }
1256 
1257 static void __alx_stop(struct alx_priv *alx)
1258 {
1259 	lockdep_assert_held(&alx->mtx);
1260 
1261 	alx_free_irq(alx);
1262 
1263 	cancel_work_sync(&alx->link_check_wk);
1264 	cancel_work_sync(&alx->reset_wk);
1265 
1266 	alx_halt(alx);
1267 	alx_free_rings(alx);
1268 	alx_free_napis(alx);
1269 }
1270 
1271 static const char *alx_speed_desc(struct alx_hw *hw)
1272 {
1273 	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1274 	case ADVERTISED_1000baseT_Full:
1275 		return "1 Gbps Full";
1276 	case ADVERTISED_100baseT_Full:
1277 		return "100 Mbps Full";
1278 	case ADVERTISED_100baseT_Half:
1279 		return "100 Mbps Half";
1280 	case ADVERTISED_10baseT_Full:
1281 		return "10 Mbps Full";
1282 	case ADVERTISED_10baseT_Half:
1283 		return "10 Mbps Half";
1284 	default:
1285 		return "Unknown speed";
1286 	}
1287 }
1288 
1289 static void alx_check_link(struct alx_priv *alx)
1290 {
1291 	struct alx_hw *hw = &alx->hw;
1292 	unsigned long flags;
1293 	int old_speed;
1294 	int err;
1295 
1296 	lockdep_assert_held(&alx->mtx);
1297 
1298 	/* clear PHY internal interrupt status, otherwise the main
1299 	 * interrupt status will be asserted forever
1300 	 */
1301 	alx_clear_phy_intr(hw);
1302 
1303 	old_speed = hw->link_speed;
1304 	err = alx_read_phy_link(hw);
1305 	if (err < 0)
1306 		goto reset;
1307 
1308 	spin_lock_irqsave(&alx->irq_lock, flags);
1309 	alx->int_mask |= ALX_ISR_PHY;
1310 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1311 	spin_unlock_irqrestore(&alx->irq_lock, flags);
1312 
1313 	if (old_speed == hw->link_speed)
1314 		return;
1315 
1316 	if (hw->link_speed != SPEED_UNKNOWN) {
1317 		netif_info(alx, link, alx->dev,
1318 			   "NIC Up: %s\n", alx_speed_desc(hw));
1319 		alx_post_phy_link(hw);
1320 		alx_enable_aspm(hw, true, true);
1321 		alx_start_mac(hw);
1322 
1323 		if (old_speed == SPEED_UNKNOWN)
1324 			alx_netif_start(alx);
1325 	} else {
1326 		/* link is now down */
1327 		alx_netif_stop(alx);
1328 		netif_info(alx, link, alx->dev, "Link Down\n");
1329 		err = alx_reset_mac(hw);
1330 		if (err)
1331 			goto reset;
1332 		alx_irq_disable(alx);
1333 
1334 		/* MAC reset causes all HW settings to be lost, restore all */
1335 		err = alx_reinit_rings(alx);
1336 		if (err)
1337 			goto reset;
1338 		alx_configure(alx);
1339 		alx_enable_aspm(hw, false, true);
1340 		alx_post_phy_link(hw);
1341 		alx_irq_enable(alx);
1342 	}
1343 
1344 	return;
1345 
1346 reset:
1347 	alx_schedule_reset(alx);
1348 }
1349 
1350 static int alx_open(struct net_device *netdev)
1351 {
1352 	struct alx_priv *alx = netdev_priv(netdev);
1353 	int ret;
1354 
1355 	mutex_lock(&alx->mtx);
1356 	ret = __alx_open(alx, false);
1357 	mutex_unlock(&alx->mtx);
1358 
1359 	return ret;
1360 }
1361 
1362 static int alx_stop(struct net_device *netdev)
1363 {
1364 	struct alx_priv *alx = netdev_priv(netdev);
1365 
1366 	mutex_lock(&alx->mtx);
1367 	__alx_stop(alx);
1368 	mutex_unlock(&alx->mtx);
1369 
1370 	return 0;
1371 }
1372 
1373 static void alx_link_check(struct work_struct *work)
1374 {
1375 	struct alx_priv *alx;
1376 
1377 	alx = container_of(work, struct alx_priv, link_check_wk);
1378 
1379 	mutex_lock(&alx->mtx);
1380 	alx_check_link(alx);
1381 	mutex_unlock(&alx->mtx);
1382 }
1383 
1384 static void alx_reset(struct work_struct *work)
1385 {
1386 	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1387 
1388 	mutex_lock(&alx->mtx);
1389 	alx_reinit(alx);
1390 	mutex_unlock(&alx->mtx);
1391 }
1392 
1393 static int alx_tpd_req(struct sk_buff *skb)
1394 {
1395 	int num;
1396 
1397 	num = skb_shinfo(skb)->nr_frags + 1;
1398 	/* we need one extra descriptor for LSOv2 */
1399 	if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1400 		num++;
1401 
1402 	return num;
1403 }
1404 
1405 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1406 {
1407 	u8 cso, css;
1408 
1409 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1410 		return 0;
1411 
1412 	cso = skb_checksum_start_offset(skb);
1413 	if (cso & 1)
1414 		return -EINVAL;
1415 
1416 	css = cso + skb->csum_offset;
1417 	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1418 	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1419 	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1420 
1421 	return 0;
1422 }
1423 
1424 static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1425 {
1426 	int err;
1427 
1428 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1429 		return 0;
1430 
1431 	if (!skb_is_gso(skb))
1432 		return 0;
1433 
1434 	err = skb_cow_head(skb, 0);
1435 	if (err < 0)
1436 		return err;
1437 
1438 	if (skb->protocol == htons(ETH_P_IP)) {
1439 		struct iphdr *iph = ip_hdr(skb);
1440 
1441 		iph->check = 0;
1442 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1443 							 0, IPPROTO_TCP, 0);
1444 		first->word1 |= 1 << TPD_IPV4_SHIFT;
1445 	} else if (skb_is_gso_v6(skb)) {
1446 		tcp_v6_gso_csum_prep(skb);
1447 		/* LSOv2: the first TPD only provides the packet length */
1448 		first->adrl.l.pkt_len = skb->len;
1449 		first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1450 	}
1451 
1452 	first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1453 	first->word1 |= (skb_transport_offset(skb) &
1454 			 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1455 	first->word1 |= (skb_shinfo(skb)->gso_size &
1456 			 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1457 	return 1;
1458 }
1459 
1460 static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1461 {
1462 	struct alx_txd *tpd, *first_tpd;
1463 	dma_addr_t dma;
1464 	int maplen, f, first_idx = txq->write_idx;
1465 
1466 	first_tpd = &txq->tpd[txq->write_idx];
1467 	tpd = first_tpd;
1468 
1469 	if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1470 		if (++txq->write_idx == txq->count)
1471 			txq->write_idx = 0;
1472 
1473 		tpd = &txq->tpd[txq->write_idx];
1474 		tpd->len = first_tpd->len;
1475 		tpd->vlan_tag = first_tpd->vlan_tag;
1476 		tpd->word1 = first_tpd->word1;
1477 	}
1478 
1479 	maplen = skb_headlen(skb);
1480 	dma = dma_map_single(txq->dev, skb->data, maplen,
1481 			     DMA_TO_DEVICE);
1482 	if (dma_mapping_error(txq->dev, dma))
1483 		goto err_dma;
1484 
1485 	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1486 	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1487 
1488 	tpd->adrl.addr = cpu_to_le64(dma);
1489 	tpd->len = cpu_to_le16(maplen);
1490 
1491 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1492 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1493 
1494 		if (++txq->write_idx == txq->count)
1495 			txq->write_idx = 0;
1496 		tpd = &txq->tpd[txq->write_idx];
1497 
1498 		tpd->word1 = first_tpd->word1;
1499 
1500 		maplen = skb_frag_size(frag);
1501 		dma = skb_frag_dma_map(txq->dev, frag, 0,
1502 				       maplen, DMA_TO_DEVICE);
1503 		if (dma_mapping_error(txq->dev, dma))
1504 			goto err_dma;
1505 		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1506 		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1507 
1508 		tpd->adrl.addr = cpu_to_le64(dma);
1509 		tpd->len = cpu_to_le16(maplen);
1510 	}
1511 
1512 	/* last TPD, set EOP flag and store skb */
1513 	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1514 	txq->bufs[txq->write_idx].skb = skb;
1515 
1516 	if (++txq->write_idx == txq->count)
1517 		txq->write_idx = 0;
1518 
1519 	return 0;
1520 
1521 err_dma:
1522 	f = first_idx;
1523 	while (f != txq->write_idx) {
1524 		alx_free_txbuf(txq, f);
1525 		if (++f == txq->count)
1526 			f = 0;
1527 	}
1528 	return -ENOMEM;
1529 }
1530 
1531 static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1532 				       struct alx_tx_queue *txq)
1533 {
1534 	struct alx_priv *alx;
1535 	struct alx_txd *first;
1536 	int tso;
1537 
1538 	alx = netdev_priv(txq->netdev);
1539 
1540 	if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1541 		netif_tx_stop_queue(alx_get_tx_queue(txq));
1542 		goto drop;
1543 	}
1544 
1545 	first = &txq->tpd[txq->write_idx];
1546 	memset(first, 0, sizeof(*first));
1547 
1548 	tso = alx_tso(skb, first);
1549 	if (tso < 0)
1550 		goto drop;
1551 	else if (!tso && alx_tx_csum(skb, first))
1552 		goto drop;
1553 
1554 	if (alx_map_tx_skb(txq, skb) < 0)
1555 		goto drop;
1556 
1557 	netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1558 
1559 	/* flush updates before updating hardware */
1560 	wmb();
1561 	alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1562 
1563 	if (alx_tpd_avail(txq) < txq->count / 8)
1564 		netif_tx_stop_queue(alx_get_tx_queue(txq));
1565 
1566 	return NETDEV_TX_OK;
1567 
1568 drop:
1569 	dev_kfree_skb_any(skb);
1570 	return NETDEV_TX_OK;
1571 }
1572 
1573 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1574 				  struct net_device *netdev)
1575 {
1576 	struct alx_priv *alx = netdev_priv(netdev);
1577 	return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1578 }
1579 
1580 static void alx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1581 {
1582 	struct alx_priv *alx = netdev_priv(dev);
1583 
1584 	alx_schedule_reset(alx);
1585 }
1586 
1587 static int alx_mdio_read(struct net_device *netdev,
1588 			 int prtad, int devad, u16 addr)
1589 {
1590 	struct alx_priv *alx = netdev_priv(netdev);
1591 	struct alx_hw *hw = &alx->hw;
1592 	u16 val;
1593 	int err;
1594 
1595 	if (prtad != hw->mdio.prtad)
1596 		return -EINVAL;
1597 
1598 	if (devad == MDIO_DEVAD_NONE)
1599 		err = alx_read_phy_reg(hw, addr, &val);
1600 	else
1601 		err = alx_read_phy_ext(hw, devad, addr, &val);
1602 
1603 	if (err)
1604 		return err;
1605 	return val;
1606 }
1607 
1608 static int alx_mdio_write(struct net_device *netdev,
1609 			  int prtad, int devad, u16 addr, u16 val)
1610 {
1611 	struct alx_priv *alx = netdev_priv(netdev);
1612 	struct alx_hw *hw = &alx->hw;
1613 
1614 	if (prtad != hw->mdio.prtad)
1615 		return -EINVAL;
1616 
1617 	if (devad == MDIO_DEVAD_NONE)
1618 		return alx_write_phy_reg(hw, addr, val);
1619 
1620 	return alx_write_phy_ext(hw, devad, addr, val);
1621 }
1622 
1623 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1624 {
1625 	struct alx_priv *alx = netdev_priv(netdev);
1626 
1627 	if (!netif_running(netdev))
1628 		return -EAGAIN;
1629 
1630 	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1631 }
1632 
1633 #ifdef CONFIG_NET_POLL_CONTROLLER
1634 static void alx_poll_controller(struct net_device *netdev)
1635 {
1636 	struct alx_priv *alx = netdev_priv(netdev);
1637 	int i;
1638 
1639 	if (alx->hw.pdev->msix_enabled) {
1640 		alx_intr_msix_misc(0, alx);
1641 		for (i = 0; i < alx->num_txq; i++)
1642 			alx_intr_msix_ring(0, alx->qnapi[i]);
1643 	} else if (alx->hw.pdev->msi_enabled)
1644 		alx_intr_msi(0, alx);
1645 	else
1646 		alx_intr_legacy(0, alx);
1647 }
1648 #endif
1649 
1650 static void alx_get_stats64(struct net_device *dev,
1651 			    struct rtnl_link_stats64 *net_stats)
1652 {
1653 	struct alx_priv *alx = netdev_priv(dev);
1654 	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1655 
1656 	spin_lock(&alx->stats_lock);
1657 
1658 	alx_update_hw_stats(&alx->hw);
1659 
1660 	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1661 	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1662 	net_stats->multicast  = hw_stats->rx_mcast;
1663 	net_stats->collisions = hw_stats->tx_single_col +
1664 				hw_stats->tx_multi_col +
1665 				hw_stats->tx_late_col +
1666 				hw_stats->tx_abort_col;
1667 
1668 	net_stats->rx_errors  = hw_stats->rx_frag +
1669 				hw_stats->rx_fcs_err +
1670 				hw_stats->rx_len_err +
1671 				hw_stats->rx_ov_sz +
1672 				hw_stats->rx_ov_rrd +
1673 				hw_stats->rx_align_err +
1674 				hw_stats->rx_ov_rxf;
1675 
1676 	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1677 	net_stats->rx_length_errors = hw_stats->rx_len_err;
1678 	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1679 	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1680 	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1681 
1682 	net_stats->tx_errors = hw_stats->tx_late_col +
1683 			       hw_stats->tx_abort_col +
1684 			       hw_stats->tx_underrun +
1685 			       hw_stats->tx_trunc;
1686 
1687 	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1688 	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1689 	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1690 
1691 	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1692 	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1693 
1694 	spin_unlock(&alx->stats_lock);
1695 }
1696 
1697 static const struct net_device_ops alx_netdev_ops = {
1698 	.ndo_open               = alx_open,
1699 	.ndo_stop               = alx_stop,
1700 	.ndo_start_xmit         = alx_start_xmit,
1701 	.ndo_get_stats64        = alx_get_stats64,
1702 	.ndo_set_rx_mode        = alx_set_rx_mode,
1703 	.ndo_validate_addr      = eth_validate_addr,
1704 	.ndo_set_mac_address    = alx_set_mac_address,
1705 	.ndo_change_mtu         = alx_change_mtu,
1706 	.ndo_eth_ioctl           = alx_ioctl,
1707 	.ndo_tx_timeout         = alx_tx_timeout,
1708 	.ndo_fix_features	= alx_fix_features,
1709 #ifdef CONFIG_NET_POLL_CONTROLLER
1710 	.ndo_poll_controller    = alx_poll_controller,
1711 #endif
1712 };
1713 
1714 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1715 {
1716 	struct net_device *netdev;
1717 	struct alx_priv *alx;
1718 	struct alx_hw *hw;
1719 	bool phy_configured;
1720 	int err;
1721 
1722 	err = pci_enable_device_mem(pdev);
1723 	if (err)
1724 		return err;
1725 
1726 	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1727 	 * shared register for the high 32 bits, so only a single, aligned,
1728 	 * 4 GB physical address range can be used for descriptors.
1729 	 */
1730 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1731 		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1732 	} else {
1733 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1734 		if (err) {
1735 			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1736 			goto out_pci_disable;
1737 		}
1738 	}
1739 
1740 	err = pci_request_mem_regions(pdev, alx_drv_name);
1741 	if (err) {
1742 		dev_err(&pdev->dev,
1743 			"pci_request_mem_regions failed\n");
1744 		goto out_pci_disable;
1745 	}
1746 
1747 	pci_set_master(pdev);
1748 
1749 	if (!pdev->pm_cap) {
1750 		dev_err(&pdev->dev,
1751 			"Can't find power management capability, aborting\n");
1752 		err = -EIO;
1753 		goto out_pci_release;
1754 	}
1755 
1756 	netdev = alloc_etherdev_mqs(sizeof(*alx),
1757 				    ALX_MAX_TX_QUEUES, 1);
1758 	if (!netdev) {
1759 		err = -ENOMEM;
1760 		goto out_pci_release;
1761 	}
1762 
1763 	SET_NETDEV_DEV(netdev, &pdev->dev);
1764 	alx = netdev_priv(netdev);
1765 	spin_lock_init(&alx->hw.mdio_lock);
1766 	spin_lock_init(&alx->irq_lock);
1767 	spin_lock_init(&alx->stats_lock);
1768 	alx->dev = netdev;
1769 	alx->hw.pdev = pdev;
1770 	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1771 			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1772 	hw = &alx->hw;
1773 	pci_set_drvdata(pdev, alx);
1774 
1775 	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1776 	if (!hw->hw_addr) {
1777 		dev_err(&pdev->dev, "cannot map device registers\n");
1778 		err = -EIO;
1779 		goto out_free_netdev;
1780 	}
1781 
1782 	netdev->netdev_ops = &alx_netdev_ops;
1783 	netdev->ethtool_ops = &alx_ethtool_ops;
1784 	netdev->irq = pci_irq_vector(pdev, 0);
1785 	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1786 
1787 	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1788 		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1789 
1790 	err = alx_init_sw(alx);
1791 	if (err) {
1792 		dev_err(&pdev->dev, "net device private data init failed\n");
1793 		goto out_unmap;
1794 	}
1795 
1796 	mutex_lock(&alx->mtx);
1797 
1798 	alx_reset_pcie(hw);
1799 
1800 	phy_configured = alx_phy_configured(hw);
1801 
1802 	if (!phy_configured)
1803 		alx_reset_phy(hw);
1804 
1805 	err = alx_reset_mac(hw);
1806 	if (err) {
1807 		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1808 		goto out_unlock;
1809 	}
1810 
1811 	/* setup link to put it in a known good starting state */
1812 	if (!phy_configured) {
1813 		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1814 		if (err) {
1815 			dev_err(&pdev->dev,
1816 				"failed to configure PHY speed/duplex (err=%d)\n",
1817 				err);
1818 			goto out_unlock;
1819 		}
1820 	}
1821 
1822 	netdev->hw_features = NETIF_F_SG |
1823 			      NETIF_F_HW_CSUM |
1824 			      NETIF_F_RXCSUM |
1825 			      NETIF_F_TSO |
1826 			      NETIF_F_TSO6;
1827 
1828 	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1829 		dev_warn(&pdev->dev,
1830 			 "Invalid permanent address programmed, using random one\n");
1831 		eth_hw_addr_random(netdev);
1832 		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1833 	}
1834 
1835 	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1836 	eth_hw_addr_set(netdev, hw->mac_addr);
1837 	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1838 
1839 	hw->mdio.prtad = 0;
1840 	hw->mdio.mmds = 0;
1841 	hw->mdio.dev = netdev;
1842 	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1843 				MDIO_SUPPORTS_C22 |
1844 				MDIO_EMULATE_C22;
1845 	hw->mdio.mdio_read = alx_mdio_read;
1846 	hw->mdio.mdio_write = alx_mdio_write;
1847 
1848 	if (!alx_get_phy_info(hw)) {
1849 		dev_err(&pdev->dev, "failed to identify PHY\n");
1850 		err = -EIO;
1851 		goto out_unlock;
1852 	}
1853 
1854 	mutex_unlock(&alx->mtx);
1855 
1856 	INIT_WORK(&alx->link_check_wk, alx_link_check);
1857 	INIT_WORK(&alx->reset_wk, alx_reset);
1858 	netif_carrier_off(netdev);
1859 
1860 	err = register_netdev(netdev);
1861 	if (err) {
1862 		dev_err(&pdev->dev, "register netdevice failed\n");
1863 		goto out_unmap;
1864 	}
1865 
1866 	netdev_info(netdev,
1867 		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1868 		    netdev->dev_addr);
1869 
1870 	return 0;
1871 
1872 out_unlock:
1873 	mutex_unlock(&alx->mtx);
1874 out_unmap:
1875 	iounmap(hw->hw_addr);
1876 out_free_netdev:
1877 	free_netdev(netdev);
1878 out_pci_release:
1879 	pci_release_mem_regions(pdev);
1880 out_pci_disable:
1881 	pci_disable_device(pdev);
1882 	return err;
1883 }
1884 
1885 static void alx_remove(struct pci_dev *pdev)
1886 {
1887 	struct alx_priv *alx = pci_get_drvdata(pdev);
1888 	struct alx_hw *hw = &alx->hw;
1889 
1890 	/* restore permanent mac address */
1891 	alx_set_macaddr(hw, hw->perm_addr);
1892 
1893 	unregister_netdev(alx->dev);
1894 	iounmap(hw->hw_addr);
1895 	pci_release_mem_regions(pdev);
1896 
1897 	pci_disable_device(pdev);
1898 
1899 	mutex_destroy(&alx->mtx);
1900 
1901 	free_netdev(alx->dev);
1902 }
1903 
1904 static int alx_suspend(struct device *dev)
1905 {
1906 	struct alx_priv *alx = dev_get_drvdata(dev);
1907 
1908 	if (!netif_running(alx->dev))
1909 		return 0;
1910 
1911 	rtnl_lock();
1912 	netif_device_detach(alx->dev);
1913 
1914 	mutex_lock(&alx->mtx);
1915 	__alx_stop(alx);
1916 	mutex_unlock(&alx->mtx);
1917 	rtnl_unlock();
1918 
1919 	return 0;
1920 }
1921 
1922 static int alx_resume(struct device *dev)
1923 {
1924 	struct alx_priv *alx = dev_get_drvdata(dev);
1925 	struct alx_hw *hw = &alx->hw;
1926 	int err;
1927 
1928 	rtnl_lock();
1929 	mutex_lock(&alx->mtx);
1930 	alx_reset_phy(hw);
1931 
1932 	if (!netif_running(alx->dev)) {
1933 		err = 0;
1934 		goto unlock;
1935 	}
1936 
1937 	err = __alx_open(alx, true);
1938 	if (err)
1939 		goto unlock;
1940 
1941 	netif_device_attach(alx->dev);
1942 
1943 unlock:
1944 	mutex_unlock(&alx->mtx);
1945 	rtnl_unlock();
1946 	return err;
1947 }
1948 
1949 static DEFINE_SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1950 
1951 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1952 					       pci_channel_state_t state)
1953 {
1954 	struct alx_priv *alx = pci_get_drvdata(pdev);
1955 	struct net_device *netdev = alx->dev;
1956 	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1957 
1958 	dev_info(&pdev->dev, "pci error detected\n");
1959 
1960 	mutex_lock(&alx->mtx);
1961 
1962 	if (netif_running(netdev)) {
1963 		netif_device_detach(netdev);
1964 		alx_halt(alx);
1965 	}
1966 
1967 	if (state == pci_channel_io_perm_failure)
1968 		rc = PCI_ERS_RESULT_DISCONNECT;
1969 	else
1970 		pci_disable_device(pdev);
1971 
1972 	mutex_unlock(&alx->mtx);
1973 
1974 	return rc;
1975 }
1976 
1977 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1978 {
1979 	struct alx_priv *alx = pci_get_drvdata(pdev);
1980 	struct alx_hw *hw = &alx->hw;
1981 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1982 
1983 	dev_info(&pdev->dev, "pci error slot reset\n");
1984 
1985 	mutex_lock(&alx->mtx);
1986 
1987 	if (pci_enable_device(pdev)) {
1988 		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1989 		goto out;
1990 	}
1991 
1992 	pci_set_master(pdev);
1993 
1994 	alx_reset_pcie(hw);
1995 	if (!alx_reset_mac(hw))
1996 		rc = PCI_ERS_RESULT_RECOVERED;
1997 out:
1998 	mutex_unlock(&alx->mtx);
1999 
2000 	return rc;
2001 }
2002 
2003 static void alx_pci_error_resume(struct pci_dev *pdev)
2004 {
2005 	struct alx_priv *alx = pci_get_drvdata(pdev);
2006 	struct net_device *netdev = alx->dev;
2007 
2008 	dev_info(&pdev->dev, "pci error resume\n");
2009 
2010 	mutex_lock(&alx->mtx);
2011 
2012 	if (netif_running(netdev)) {
2013 		alx_activate(alx);
2014 		netif_device_attach(netdev);
2015 	}
2016 
2017 	mutex_unlock(&alx->mtx);
2018 }
2019 
2020 static const struct pci_error_handlers alx_err_handlers = {
2021 	.error_detected = alx_pci_error_detected,
2022 	.slot_reset     = alx_pci_error_slot_reset,
2023 	.resume         = alx_pci_error_resume,
2024 };
2025 
2026 static const struct pci_device_id alx_pci_tbl[] = {
2027 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
2028 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2029 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
2030 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2031 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
2032 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2033 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
2034 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2035 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2036 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2037 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2038 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2039 	{}
2040 };
2041 
2042 static struct pci_driver alx_driver = {
2043 	.name        = alx_drv_name,
2044 	.id_table    = alx_pci_tbl,
2045 	.probe       = alx_probe,
2046 	.remove      = alx_remove,
2047 	.err_handler = &alx_err_handlers,
2048 	.driver.pm   = pm_sleep_ptr(&alx_pm_ops),
2049 };
2050 
2051 module_pci_driver(alx_driver);
2052 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2053 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2054 MODULE_AUTHOR("Qualcomm Corporation");
2055 MODULE_DESCRIPTION(
2056 	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2057 MODULE_LICENSE("GPL");
2058