1 /*
2  * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3  *
4  *  This file is free software: you may copy, redistribute and/or modify it
5  *  under the terms of the GNU General Public License as published by the
6  *  Free Software Foundation, either version 2 of the License, or (at your
7  *  option) any later version.
8  *
9  *  This file is distributed in the hope that it will be useful, but
10  *  WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  *  General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * This file incorporates work covered by the following copyright and
18  * permission notice:
19  *
20  * Copyright (c) 2012 Qualcomm Atheros, Inc.
21  *
22  * Permission to use, copy, modify, and/or distribute this software for any
23  * purpose with or without fee is hereby granted, provided that the above
24  * copyright notice and this permission notice appear in all copies.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51 
52 const char alx_drv_name[] = "alx";
53 
54 
55 static void alx_free_txbuf(struct alx_priv *alx, int entry)
56 {
57 	struct alx_buffer *txb = &alx->txq.bufs[entry];
58 
59 	if (dma_unmap_len(txb, size)) {
60 		dma_unmap_single(&alx->hw.pdev->dev,
61 				 dma_unmap_addr(txb, dma),
62 				 dma_unmap_len(txb, size),
63 				 DMA_TO_DEVICE);
64 		dma_unmap_len_set(txb, size, 0);
65 	}
66 
67 	if (txb->skb) {
68 		dev_kfree_skb_any(txb->skb);
69 		txb->skb = NULL;
70 	}
71 }
72 
73 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
74 {
75 	struct alx_rx_queue *rxq = &alx->rxq;
76 	struct sk_buff *skb;
77 	struct alx_buffer *cur_buf;
78 	dma_addr_t dma;
79 	u16 cur, next, count = 0;
80 
81 	next = cur = rxq->write_idx;
82 	if (++next == alx->rx_ringsz)
83 		next = 0;
84 	cur_buf = &rxq->bufs[cur];
85 
86 	while (!cur_buf->skb && next != rxq->read_idx) {
87 		struct alx_rfd *rfd = &rxq->rfd[cur];
88 
89 		/*
90 		 * When DMA RX address is set to something like
91 		 * 0x....fc0, it will be very likely to cause DMA
92 		 * RFD overflow issue.
93 		 *
94 		 * To work around it, we apply rx skb with 64 bytes
95 		 * longer space, and offset the address whenever
96 		 * 0x....fc0 is detected.
97 		 */
98 		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
99 		if (!skb)
100 			break;
101 
102 		if (((unsigned long)skb->data & 0xfff) == 0xfc0)
103 			skb_reserve(skb, 64);
104 
105 		dma = dma_map_single(&alx->hw.pdev->dev,
106 				     skb->data, alx->rxbuf_size,
107 				     DMA_FROM_DEVICE);
108 		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
109 			dev_kfree_skb(skb);
110 			break;
111 		}
112 
113 		/* Unfortunately, RX descriptor buffers must be 4-byte
114 		 * aligned, so we can't use IP alignment.
115 		 */
116 		if (WARN_ON(dma & 3)) {
117 			dev_kfree_skb(skb);
118 			break;
119 		}
120 
121 		cur_buf->skb = skb;
122 		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
123 		dma_unmap_addr_set(cur_buf, dma, dma);
124 		rfd->addr = cpu_to_le64(dma);
125 
126 		cur = next;
127 		if (++next == alx->rx_ringsz)
128 			next = 0;
129 		cur_buf = &rxq->bufs[cur];
130 		count++;
131 	}
132 
133 	if (count) {
134 		/* flush all updates before updating hardware */
135 		wmb();
136 		rxq->write_idx = cur;
137 		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
138 	}
139 
140 	return count;
141 }
142 
143 static inline int alx_tpd_avail(struct alx_priv *alx)
144 {
145 	struct alx_tx_queue *txq = &alx->txq;
146 
147 	if (txq->write_idx >= txq->read_idx)
148 		return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
149 	return txq->read_idx - txq->write_idx - 1;
150 }
151 
152 static bool alx_clean_tx_irq(struct alx_priv *alx)
153 {
154 	struct alx_tx_queue *txq = &alx->txq;
155 	u16 hw_read_idx, sw_read_idx;
156 	unsigned int total_bytes = 0, total_packets = 0;
157 	int budget = ALX_DEFAULT_TX_WORK;
158 
159 	sw_read_idx = txq->read_idx;
160 	hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
161 
162 	if (sw_read_idx != hw_read_idx) {
163 		while (sw_read_idx != hw_read_idx && budget > 0) {
164 			struct sk_buff *skb;
165 
166 			skb = txq->bufs[sw_read_idx].skb;
167 			if (skb) {
168 				total_bytes += skb->len;
169 				total_packets++;
170 				budget--;
171 			}
172 
173 			alx_free_txbuf(alx, sw_read_idx);
174 
175 			if (++sw_read_idx == alx->tx_ringsz)
176 				sw_read_idx = 0;
177 		}
178 		txq->read_idx = sw_read_idx;
179 
180 		netdev_completed_queue(alx->dev, total_packets, total_bytes);
181 	}
182 
183 	if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
184 	    alx_tpd_avail(alx) > alx->tx_ringsz/4)
185 		netif_wake_queue(alx->dev);
186 
187 	return sw_read_idx == hw_read_idx;
188 }
189 
190 static void alx_schedule_link_check(struct alx_priv *alx)
191 {
192 	schedule_work(&alx->link_check_wk);
193 }
194 
195 static void alx_schedule_reset(struct alx_priv *alx)
196 {
197 	schedule_work(&alx->reset_wk);
198 }
199 
200 static int alx_clean_rx_irq(struct alx_priv *alx, int budget)
201 {
202 	struct alx_rx_queue *rxq = &alx->rxq;
203 	struct alx_rrd *rrd;
204 	struct alx_buffer *rxb;
205 	struct sk_buff *skb;
206 	u16 length, rfd_cleaned = 0;
207 	int work = 0;
208 
209 	while (work < budget) {
210 		rrd = &rxq->rrd[rxq->rrd_read_idx];
211 		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
212 			break;
213 		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
214 
215 		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
216 				  RRD_SI) != rxq->read_idx ||
217 		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
218 				  RRD_NOR) != 1) {
219 			alx_schedule_reset(alx);
220 			return work;
221 		}
222 
223 		rxb = &rxq->bufs[rxq->read_idx];
224 		dma_unmap_single(&alx->hw.pdev->dev,
225 				 dma_unmap_addr(rxb, dma),
226 				 dma_unmap_len(rxb, size),
227 				 DMA_FROM_DEVICE);
228 		dma_unmap_len_set(rxb, size, 0);
229 		skb = rxb->skb;
230 		rxb->skb = NULL;
231 
232 		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
233 		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
234 			rrd->word3 = 0;
235 			dev_kfree_skb_any(skb);
236 			goto next_pkt;
237 		}
238 
239 		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
240 				       RRD_PKTLEN) - ETH_FCS_LEN;
241 		skb_put(skb, length);
242 		skb->protocol = eth_type_trans(skb, alx->dev);
243 
244 		skb_checksum_none_assert(skb);
245 		if (alx->dev->features & NETIF_F_RXCSUM &&
246 		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
247 				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
248 			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
249 					      RRD_PID)) {
250 			case RRD_PID_IPV6UDP:
251 			case RRD_PID_IPV4UDP:
252 			case RRD_PID_IPV4TCP:
253 			case RRD_PID_IPV6TCP:
254 				skb->ip_summed = CHECKSUM_UNNECESSARY;
255 				break;
256 			}
257 		}
258 
259 		napi_gro_receive(&alx->napi, skb);
260 		work++;
261 
262 next_pkt:
263 		if (++rxq->read_idx == alx->rx_ringsz)
264 			rxq->read_idx = 0;
265 		if (++rxq->rrd_read_idx == alx->rx_ringsz)
266 			rxq->rrd_read_idx = 0;
267 
268 		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
269 			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
270 	}
271 
272 	if (rfd_cleaned)
273 		alx_refill_rx_ring(alx, GFP_ATOMIC);
274 
275 	return work;
276 }
277 
278 static int alx_poll(struct napi_struct *napi, int budget)
279 {
280 	struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
281 	struct alx_hw *hw = &alx->hw;
282 	unsigned long flags;
283 	bool tx_complete;
284 	int work;
285 
286 	tx_complete = alx_clean_tx_irq(alx);
287 	work = alx_clean_rx_irq(alx, budget);
288 
289 	if (!tx_complete || work == budget)
290 		return budget;
291 
292 	napi_complete(&alx->napi);
293 
294 	/* enable interrupt */
295 	spin_lock_irqsave(&alx->irq_lock, flags);
296 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
297 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
298 	spin_unlock_irqrestore(&alx->irq_lock, flags);
299 
300 	alx_post_write(hw);
301 
302 	return work;
303 }
304 
305 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
306 {
307 	struct alx_hw *hw = &alx->hw;
308 	bool write_int_mask = false;
309 
310 	spin_lock(&alx->irq_lock);
311 
312 	/* ACK interrupt */
313 	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
314 	intr &= alx->int_mask;
315 
316 	if (intr & ALX_ISR_FATAL) {
317 		netif_warn(alx, hw, alx->dev,
318 			   "fatal interrupt 0x%x, resetting\n", intr);
319 		alx_schedule_reset(alx);
320 		goto out;
321 	}
322 
323 	if (intr & ALX_ISR_ALERT)
324 		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
325 
326 	if (intr & ALX_ISR_PHY) {
327 		/* suppress PHY interrupt, because the source
328 		 * is from PHY internal. only the internal status
329 		 * is cleared, the interrupt status could be cleared.
330 		 */
331 		alx->int_mask &= ~ALX_ISR_PHY;
332 		write_int_mask = true;
333 		alx_schedule_link_check(alx);
334 	}
335 
336 	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
337 		napi_schedule(&alx->napi);
338 		/* mask rx/tx interrupt, enable them when napi complete */
339 		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
340 		write_int_mask = true;
341 	}
342 
343 	if (write_int_mask)
344 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
345 
346 	alx_write_mem32(hw, ALX_ISR, 0);
347 
348  out:
349 	spin_unlock(&alx->irq_lock);
350 	return IRQ_HANDLED;
351 }
352 
353 static irqreturn_t alx_intr_msi(int irq, void *data)
354 {
355 	struct alx_priv *alx = data;
356 
357 	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
358 }
359 
360 static irqreturn_t alx_intr_legacy(int irq, void *data)
361 {
362 	struct alx_priv *alx = data;
363 	struct alx_hw *hw = &alx->hw;
364 	u32 intr;
365 
366 	intr = alx_read_mem32(hw, ALX_ISR);
367 
368 	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
369 		return IRQ_NONE;
370 
371 	return alx_intr_handle(alx, intr);
372 }
373 
374 static void alx_init_ring_ptrs(struct alx_priv *alx)
375 {
376 	struct alx_hw *hw = &alx->hw;
377 	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
378 
379 	alx->rxq.read_idx = 0;
380 	alx->rxq.write_idx = 0;
381 	alx->rxq.rrd_read_idx = 0;
382 	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
383 	alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
384 	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
385 	alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
386 	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
387 	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
388 
389 	alx->txq.read_idx = 0;
390 	alx->txq.write_idx = 0;
391 	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
392 	alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
393 	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
394 
395 	/* load these pointers into the chip */
396 	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
397 }
398 
399 static void alx_free_txring_buf(struct alx_priv *alx)
400 {
401 	struct alx_tx_queue *txq = &alx->txq;
402 	int i;
403 
404 	if (!txq->bufs)
405 		return;
406 
407 	for (i = 0; i < alx->tx_ringsz; i++)
408 		alx_free_txbuf(alx, i);
409 
410 	memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
411 	memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
412 	txq->write_idx = 0;
413 	txq->read_idx = 0;
414 
415 	netdev_reset_queue(alx->dev);
416 }
417 
418 static void alx_free_rxring_buf(struct alx_priv *alx)
419 {
420 	struct alx_rx_queue *rxq = &alx->rxq;
421 	struct alx_buffer *cur_buf;
422 	u16 i;
423 
424 	if (rxq == NULL)
425 		return;
426 
427 	for (i = 0; i < alx->rx_ringsz; i++) {
428 		cur_buf = rxq->bufs + i;
429 		if (cur_buf->skb) {
430 			dma_unmap_single(&alx->hw.pdev->dev,
431 					 dma_unmap_addr(cur_buf, dma),
432 					 dma_unmap_len(cur_buf, size),
433 					 DMA_FROM_DEVICE);
434 			dev_kfree_skb(cur_buf->skb);
435 			cur_buf->skb = NULL;
436 			dma_unmap_len_set(cur_buf, size, 0);
437 			dma_unmap_addr_set(cur_buf, dma, 0);
438 		}
439 	}
440 
441 	rxq->write_idx = 0;
442 	rxq->read_idx = 0;
443 	rxq->rrd_read_idx = 0;
444 }
445 
446 static void alx_free_buffers(struct alx_priv *alx)
447 {
448 	alx_free_txring_buf(alx);
449 	alx_free_rxring_buf(alx);
450 }
451 
452 static int alx_reinit_rings(struct alx_priv *alx)
453 {
454 	alx_free_buffers(alx);
455 
456 	alx_init_ring_ptrs(alx);
457 
458 	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
459 		return -ENOMEM;
460 
461 	return 0;
462 }
463 
464 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
465 {
466 	u32 crc32, bit, reg;
467 
468 	crc32 = ether_crc(ETH_ALEN, addr);
469 	reg = (crc32 >> 31) & 0x1;
470 	bit = (crc32 >> 26) & 0x1F;
471 
472 	mc_hash[reg] |= BIT(bit);
473 }
474 
475 static void __alx_set_rx_mode(struct net_device *netdev)
476 {
477 	struct alx_priv *alx = netdev_priv(netdev);
478 	struct alx_hw *hw = &alx->hw;
479 	struct netdev_hw_addr *ha;
480 	u32 mc_hash[2] = {};
481 
482 	if (!(netdev->flags & IFF_ALLMULTI)) {
483 		netdev_for_each_mc_addr(ha, netdev)
484 			alx_add_mc_addr(hw, ha->addr, mc_hash);
485 
486 		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
487 		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
488 	}
489 
490 	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
491 	if (netdev->flags & IFF_PROMISC)
492 		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
493 	if (netdev->flags & IFF_ALLMULTI)
494 		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
495 
496 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
497 }
498 
499 static void alx_set_rx_mode(struct net_device *netdev)
500 {
501 	__alx_set_rx_mode(netdev);
502 }
503 
504 static int alx_set_mac_address(struct net_device *netdev, void *data)
505 {
506 	struct alx_priv *alx = netdev_priv(netdev);
507 	struct alx_hw *hw = &alx->hw;
508 	struct sockaddr *addr = data;
509 
510 	if (!is_valid_ether_addr(addr->sa_data))
511 		return -EADDRNOTAVAIL;
512 
513 	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
514 		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
515 
516 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
517 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
518 	alx_set_macaddr(hw, hw->mac_addr);
519 
520 	return 0;
521 }
522 
523 static int alx_alloc_descriptors(struct alx_priv *alx)
524 {
525 	alx->txq.bufs = kcalloc(alx->tx_ringsz,
526 				sizeof(struct alx_buffer),
527 				GFP_KERNEL);
528 	if (!alx->txq.bufs)
529 		return -ENOMEM;
530 
531 	alx->rxq.bufs = kcalloc(alx->rx_ringsz,
532 				sizeof(struct alx_buffer),
533 				GFP_KERNEL);
534 	if (!alx->rxq.bufs)
535 		goto out_free;
536 
537 	/* physical tx/rx ring descriptors
538 	 *
539 	 * Allocate them as a single chunk because they must not cross a
540 	 * 4G boundary (hardware has a single register for high 32 bits
541 	 * of addresses only)
542 	 */
543 	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
544 			    sizeof(struct alx_rrd) * alx->rx_ringsz +
545 			    sizeof(struct alx_rfd) * alx->rx_ringsz;
546 	alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
547 						alx->descmem.size,
548 						&alx->descmem.dma,
549 						GFP_KERNEL);
550 	if (!alx->descmem.virt)
551 		goto out_free;
552 
553 	alx->txq.tpd = alx->descmem.virt;
554 	alx->txq.tpd_dma = alx->descmem.dma;
555 
556 	/* alignment requirement for next block */
557 	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
558 
559 	alx->rxq.rrd =
560 		(void *)((u8 *)alx->descmem.virt +
561 			 sizeof(struct alx_txd) * alx->tx_ringsz);
562 	alx->rxq.rrd_dma = alx->descmem.dma +
563 			   sizeof(struct alx_txd) * alx->tx_ringsz;
564 
565 	/* alignment requirement for next block */
566 	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
567 
568 	alx->rxq.rfd =
569 		(void *)((u8 *)alx->descmem.virt +
570 			 sizeof(struct alx_txd) * alx->tx_ringsz +
571 			 sizeof(struct alx_rrd) * alx->rx_ringsz);
572 	alx->rxq.rfd_dma = alx->descmem.dma +
573 			   sizeof(struct alx_txd) * alx->tx_ringsz +
574 			   sizeof(struct alx_rrd) * alx->rx_ringsz;
575 
576 	return 0;
577 out_free:
578 	kfree(alx->txq.bufs);
579 	kfree(alx->rxq.bufs);
580 	return -ENOMEM;
581 }
582 
583 static int alx_alloc_rings(struct alx_priv *alx)
584 {
585 	int err;
586 
587 	err = alx_alloc_descriptors(alx);
588 	if (err)
589 		return err;
590 
591 	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
592 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
593 
594 	netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
595 
596 	alx_reinit_rings(alx);
597 	return 0;
598 }
599 
600 static void alx_free_rings(struct alx_priv *alx)
601 {
602 	netif_napi_del(&alx->napi);
603 	alx_free_buffers(alx);
604 
605 	kfree(alx->txq.bufs);
606 	kfree(alx->rxq.bufs);
607 
608 	dma_free_coherent(&alx->hw.pdev->dev,
609 			  alx->descmem.size,
610 			  alx->descmem.virt,
611 			  alx->descmem.dma);
612 }
613 
614 static void alx_config_vector_mapping(struct alx_priv *alx)
615 {
616 	struct alx_hw *hw = &alx->hw;
617 
618 	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
619 	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
620 	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
621 }
622 
623 static void alx_irq_enable(struct alx_priv *alx)
624 {
625 	struct alx_hw *hw = &alx->hw;
626 
627 	/* level-1 interrupt switch */
628 	alx_write_mem32(hw, ALX_ISR, 0);
629 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
630 	alx_post_write(hw);
631 }
632 
633 static void alx_irq_disable(struct alx_priv *alx)
634 {
635 	struct alx_hw *hw = &alx->hw;
636 
637 	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
638 	alx_write_mem32(hw, ALX_IMR, 0);
639 	alx_post_write(hw);
640 
641 	synchronize_irq(alx->hw.pdev->irq);
642 }
643 
644 static int alx_request_irq(struct alx_priv *alx)
645 {
646 	struct pci_dev *pdev = alx->hw.pdev;
647 	struct alx_hw *hw = &alx->hw;
648 	int err;
649 	u32 msi_ctrl;
650 
651 	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
652 
653 	if (!pci_enable_msi(alx->hw.pdev)) {
654 		alx->msi = true;
655 
656 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
657 				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
658 		err = request_irq(pdev->irq, alx_intr_msi, 0,
659 				  alx->dev->name, alx);
660 		if (!err)
661 			goto out;
662 		/* fall back to legacy interrupt */
663 		pci_disable_msi(alx->hw.pdev);
664 	}
665 
666 	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
667 	err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
668 			  alx->dev->name, alx);
669 out:
670 	if (!err)
671 		alx_config_vector_mapping(alx);
672 	return err;
673 }
674 
675 static void alx_free_irq(struct alx_priv *alx)
676 {
677 	struct pci_dev *pdev = alx->hw.pdev;
678 
679 	free_irq(pdev->irq, alx);
680 
681 	if (alx->msi) {
682 		pci_disable_msi(alx->hw.pdev);
683 		alx->msi = false;
684 	}
685 }
686 
687 static int alx_identify_hw(struct alx_priv *alx)
688 {
689 	struct alx_hw *hw = &alx->hw;
690 	int rev = alx_hw_revision(hw);
691 
692 	if (rev > ALX_REV_C0)
693 		return -EINVAL;
694 
695 	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
696 
697 	return 0;
698 }
699 
700 static int alx_init_sw(struct alx_priv *alx)
701 {
702 	struct pci_dev *pdev = alx->hw.pdev;
703 	struct alx_hw *hw = &alx->hw;
704 	int err;
705 
706 	err = alx_identify_hw(alx);
707 	if (err) {
708 		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
709 		return err;
710 	}
711 
712 	alx->hw.lnk_patch =
713 		pdev->device == ALX_DEV_ID_AR8161 &&
714 		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
715 		pdev->subsystem_device == 0x0091 &&
716 		pdev->revision == 0;
717 
718 	hw->smb_timer = 400;
719 	hw->mtu = alx->dev->mtu;
720 	alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
721 	alx->tx_ringsz = 256;
722 	alx->rx_ringsz = 512;
723 	hw->imt = 200;
724 	alx->int_mask = ALX_ISR_MISC;
725 	hw->dma_chnl = hw->max_dma_chnl;
726 	hw->ith_tpd = alx->tx_ringsz / 3;
727 	hw->link_speed = SPEED_UNKNOWN;
728 	hw->duplex = DUPLEX_UNKNOWN;
729 	hw->adv_cfg = ADVERTISED_Autoneg |
730 		      ADVERTISED_10baseT_Half |
731 		      ADVERTISED_10baseT_Full |
732 		      ADVERTISED_100baseT_Full |
733 		      ADVERTISED_100baseT_Half |
734 		      ADVERTISED_1000baseT_Full;
735 	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
736 
737 	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
738 		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
739 		      ALX_MAC_CTRL_BRD_EN |
740 		      ALX_MAC_CTRL_PCRCE |
741 		      ALX_MAC_CTRL_CRCE |
742 		      ALX_MAC_CTRL_RXFC_EN |
743 		      ALX_MAC_CTRL_TXFC_EN |
744 		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
745 
746 	return err;
747 }
748 
749 
750 static netdev_features_t alx_fix_features(struct net_device *netdev,
751 					  netdev_features_t features)
752 {
753 	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
754 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
755 
756 	return features;
757 }
758 
759 static void alx_netif_stop(struct alx_priv *alx)
760 {
761 	netif_trans_update(alx->dev);
762 	if (netif_carrier_ok(alx->dev)) {
763 		netif_carrier_off(alx->dev);
764 		netif_tx_disable(alx->dev);
765 		napi_disable(&alx->napi);
766 	}
767 }
768 
769 static void alx_halt(struct alx_priv *alx)
770 {
771 	struct alx_hw *hw = &alx->hw;
772 
773 	alx_netif_stop(alx);
774 	hw->link_speed = SPEED_UNKNOWN;
775 	hw->duplex = DUPLEX_UNKNOWN;
776 
777 	alx_reset_mac(hw);
778 
779 	/* disable l0s/l1 */
780 	alx_enable_aspm(hw, false, false);
781 	alx_irq_disable(alx);
782 	alx_free_buffers(alx);
783 }
784 
785 static void alx_configure(struct alx_priv *alx)
786 {
787 	struct alx_hw *hw = &alx->hw;
788 
789 	alx_configure_basic(hw);
790 	alx_disable_rss(hw);
791 	__alx_set_rx_mode(alx->dev);
792 
793 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
794 }
795 
796 static void alx_activate(struct alx_priv *alx)
797 {
798 	/* hardware setting lost, restore it */
799 	alx_reinit_rings(alx);
800 	alx_configure(alx);
801 
802 	/* clear old interrupts */
803 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
804 
805 	alx_irq_enable(alx);
806 
807 	alx_schedule_link_check(alx);
808 }
809 
810 static void alx_reinit(struct alx_priv *alx)
811 {
812 	ASSERT_RTNL();
813 
814 	alx_halt(alx);
815 	alx_activate(alx);
816 }
817 
818 static int alx_change_mtu(struct net_device *netdev, int mtu)
819 {
820 	struct alx_priv *alx = netdev_priv(netdev);
821 	int max_frame = ALX_MAX_FRAME_LEN(mtu);
822 
823 	if ((max_frame < ALX_MIN_FRAME_SIZE) ||
824 	    (max_frame > ALX_MAX_FRAME_SIZE))
825 		return -EINVAL;
826 
827 	if (netdev->mtu == mtu)
828 		return 0;
829 
830 	netdev->mtu = mtu;
831 	alx->hw.mtu = mtu;
832 	alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
833 	netdev_update_features(netdev);
834 	if (netif_running(netdev))
835 		alx_reinit(alx);
836 	return 0;
837 }
838 
839 static void alx_netif_start(struct alx_priv *alx)
840 {
841 	netif_tx_wake_all_queues(alx->dev);
842 	napi_enable(&alx->napi);
843 	netif_carrier_on(alx->dev);
844 }
845 
846 static int __alx_open(struct alx_priv *alx, bool resume)
847 {
848 	int err;
849 
850 	if (!resume)
851 		netif_carrier_off(alx->dev);
852 
853 	err = alx_alloc_rings(alx);
854 	if (err)
855 		return err;
856 
857 	alx_configure(alx);
858 
859 	err = alx_request_irq(alx);
860 	if (err)
861 		goto out_free_rings;
862 
863 	/* clear old interrupts */
864 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
865 
866 	alx_irq_enable(alx);
867 
868 	if (!resume)
869 		netif_tx_start_all_queues(alx->dev);
870 
871 	alx_schedule_link_check(alx);
872 	return 0;
873 
874 out_free_rings:
875 	alx_free_rings(alx);
876 	return err;
877 }
878 
879 static void __alx_stop(struct alx_priv *alx)
880 {
881 	alx_halt(alx);
882 	alx_free_irq(alx);
883 	alx_free_rings(alx);
884 }
885 
886 static const char *alx_speed_desc(struct alx_hw *hw)
887 {
888 	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
889 	case ADVERTISED_1000baseT_Full:
890 		return "1 Gbps Full";
891 	case ADVERTISED_100baseT_Full:
892 		return "100 Mbps Full";
893 	case ADVERTISED_100baseT_Half:
894 		return "100 Mbps Half";
895 	case ADVERTISED_10baseT_Full:
896 		return "10 Mbps Full";
897 	case ADVERTISED_10baseT_Half:
898 		return "10 Mbps Half";
899 	default:
900 		return "Unknown speed";
901 	}
902 }
903 
904 static void alx_check_link(struct alx_priv *alx)
905 {
906 	struct alx_hw *hw = &alx->hw;
907 	unsigned long flags;
908 	int old_speed;
909 	u8 old_duplex;
910 	int err;
911 
912 	/* clear PHY internal interrupt status, otherwise the main
913 	 * interrupt status will be asserted forever
914 	 */
915 	alx_clear_phy_intr(hw);
916 
917 	old_speed = hw->link_speed;
918 	old_duplex = hw->duplex;
919 	err = alx_read_phy_link(hw);
920 	if (err < 0)
921 		goto reset;
922 
923 	spin_lock_irqsave(&alx->irq_lock, flags);
924 	alx->int_mask |= ALX_ISR_PHY;
925 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
926 	spin_unlock_irqrestore(&alx->irq_lock, flags);
927 
928 	if (old_speed == hw->link_speed)
929 		return;
930 
931 	if (hw->link_speed != SPEED_UNKNOWN) {
932 		netif_info(alx, link, alx->dev,
933 			   "NIC Up: %s\n", alx_speed_desc(hw));
934 		alx_post_phy_link(hw);
935 		alx_enable_aspm(hw, true, true);
936 		alx_start_mac(hw);
937 
938 		if (old_speed == SPEED_UNKNOWN)
939 			alx_netif_start(alx);
940 	} else {
941 		/* link is now down */
942 		alx_netif_stop(alx);
943 		netif_info(alx, link, alx->dev, "Link Down\n");
944 		err = alx_reset_mac(hw);
945 		if (err)
946 			goto reset;
947 		alx_irq_disable(alx);
948 
949 		/* MAC reset causes all HW settings to be lost, restore all */
950 		err = alx_reinit_rings(alx);
951 		if (err)
952 			goto reset;
953 		alx_configure(alx);
954 		alx_enable_aspm(hw, false, true);
955 		alx_post_phy_link(hw);
956 		alx_irq_enable(alx);
957 	}
958 
959 	return;
960 
961 reset:
962 	alx_schedule_reset(alx);
963 }
964 
965 static int alx_open(struct net_device *netdev)
966 {
967 	return __alx_open(netdev_priv(netdev), false);
968 }
969 
970 static int alx_stop(struct net_device *netdev)
971 {
972 	__alx_stop(netdev_priv(netdev));
973 	return 0;
974 }
975 
976 static void alx_link_check(struct work_struct *work)
977 {
978 	struct alx_priv *alx;
979 
980 	alx = container_of(work, struct alx_priv, link_check_wk);
981 
982 	rtnl_lock();
983 	alx_check_link(alx);
984 	rtnl_unlock();
985 }
986 
987 static void alx_reset(struct work_struct *work)
988 {
989 	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
990 
991 	rtnl_lock();
992 	alx_reinit(alx);
993 	rtnl_unlock();
994 }
995 
996 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
997 {
998 	u8 cso, css;
999 
1000 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1001 		return 0;
1002 
1003 	cso = skb_checksum_start_offset(skb);
1004 	if (cso & 1)
1005 		return -EINVAL;
1006 
1007 	css = cso + skb->csum_offset;
1008 	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1009 	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1010 	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1011 
1012 	return 0;
1013 }
1014 
1015 static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
1016 {
1017 	struct alx_tx_queue *txq = &alx->txq;
1018 	struct alx_txd *tpd, *first_tpd;
1019 	dma_addr_t dma;
1020 	int maplen, f, first_idx = txq->write_idx;
1021 
1022 	first_tpd = &txq->tpd[txq->write_idx];
1023 	tpd = first_tpd;
1024 
1025 	maplen = skb_headlen(skb);
1026 	dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
1027 			     DMA_TO_DEVICE);
1028 	if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1029 		goto err_dma;
1030 
1031 	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1032 	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1033 
1034 	tpd->adrl.addr = cpu_to_le64(dma);
1035 	tpd->len = cpu_to_le16(maplen);
1036 
1037 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1038 		struct skb_frag_struct *frag;
1039 
1040 		frag = &skb_shinfo(skb)->frags[f];
1041 
1042 		if (++txq->write_idx == alx->tx_ringsz)
1043 			txq->write_idx = 0;
1044 		tpd = &txq->tpd[txq->write_idx];
1045 
1046 		tpd->word1 = first_tpd->word1;
1047 
1048 		maplen = skb_frag_size(frag);
1049 		dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
1050 				       maplen, DMA_TO_DEVICE);
1051 		if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1052 			goto err_dma;
1053 		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1054 		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1055 
1056 		tpd->adrl.addr = cpu_to_le64(dma);
1057 		tpd->len = cpu_to_le16(maplen);
1058 	}
1059 
1060 	/* last TPD, set EOP flag and store skb */
1061 	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1062 	txq->bufs[txq->write_idx].skb = skb;
1063 
1064 	if (++txq->write_idx == alx->tx_ringsz)
1065 		txq->write_idx = 0;
1066 
1067 	return 0;
1068 
1069 err_dma:
1070 	f = first_idx;
1071 	while (f != txq->write_idx) {
1072 		alx_free_txbuf(alx, f);
1073 		if (++f == alx->tx_ringsz)
1074 			f = 0;
1075 	}
1076 	return -ENOMEM;
1077 }
1078 
1079 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1080 				  struct net_device *netdev)
1081 {
1082 	struct alx_priv *alx = netdev_priv(netdev);
1083 	struct alx_tx_queue *txq = &alx->txq;
1084 	struct alx_txd *first;
1085 	int tpdreq = skb_shinfo(skb)->nr_frags + 1;
1086 
1087 	if (alx_tpd_avail(alx) < tpdreq) {
1088 		netif_stop_queue(alx->dev);
1089 		goto drop;
1090 	}
1091 
1092 	first = &txq->tpd[txq->write_idx];
1093 	memset(first, 0, sizeof(*first));
1094 
1095 	if (alx_tx_csum(skb, first))
1096 		goto drop;
1097 
1098 	if (alx_map_tx_skb(alx, skb) < 0)
1099 		goto drop;
1100 
1101 	netdev_sent_queue(alx->dev, skb->len);
1102 
1103 	/* flush updates before updating hardware */
1104 	wmb();
1105 	alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
1106 
1107 	if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
1108 		netif_stop_queue(alx->dev);
1109 
1110 	return NETDEV_TX_OK;
1111 
1112 drop:
1113 	dev_kfree_skb_any(skb);
1114 	return NETDEV_TX_OK;
1115 }
1116 
1117 static void alx_tx_timeout(struct net_device *dev)
1118 {
1119 	struct alx_priv *alx = netdev_priv(dev);
1120 
1121 	alx_schedule_reset(alx);
1122 }
1123 
1124 static int alx_mdio_read(struct net_device *netdev,
1125 			 int prtad, int devad, u16 addr)
1126 {
1127 	struct alx_priv *alx = netdev_priv(netdev);
1128 	struct alx_hw *hw = &alx->hw;
1129 	u16 val;
1130 	int err;
1131 
1132 	if (prtad != hw->mdio.prtad)
1133 		return -EINVAL;
1134 
1135 	if (devad == MDIO_DEVAD_NONE)
1136 		err = alx_read_phy_reg(hw, addr, &val);
1137 	else
1138 		err = alx_read_phy_ext(hw, devad, addr, &val);
1139 
1140 	if (err)
1141 		return err;
1142 	return val;
1143 }
1144 
1145 static int alx_mdio_write(struct net_device *netdev,
1146 			  int prtad, int devad, u16 addr, u16 val)
1147 {
1148 	struct alx_priv *alx = netdev_priv(netdev);
1149 	struct alx_hw *hw = &alx->hw;
1150 
1151 	if (prtad != hw->mdio.prtad)
1152 		return -EINVAL;
1153 
1154 	if (devad == MDIO_DEVAD_NONE)
1155 		return alx_write_phy_reg(hw, addr, val);
1156 
1157 	return alx_write_phy_ext(hw, devad, addr, val);
1158 }
1159 
1160 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1161 {
1162 	struct alx_priv *alx = netdev_priv(netdev);
1163 
1164 	if (!netif_running(netdev))
1165 		return -EAGAIN;
1166 
1167 	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1168 }
1169 
1170 #ifdef CONFIG_NET_POLL_CONTROLLER
1171 static void alx_poll_controller(struct net_device *netdev)
1172 {
1173 	struct alx_priv *alx = netdev_priv(netdev);
1174 
1175 	if (alx->msi)
1176 		alx_intr_msi(0, alx);
1177 	else
1178 		alx_intr_legacy(0, alx);
1179 }
1180 #endif
1181 
1182 static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
1183 					struct rtnl_link_stats64 *net_stats)
1184 {
1185 	struct alx_priv *alx = netdev_priv(dev);
1186 	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1187 
1188 	spin_lock(&alx->stats_lock);
1189 
1190 	alx_update_hw_stats(&alx->hw);
1191 
1192 	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1193 	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1194 	net_stats->multicast  = hw_stats->rx_mcast;
1195 	net_stats->collisions = hw_stats->tx_single_col +
1196 				hw_stats->tx_multi_col +
1197 				hw_stats->tx_late_col +
1198 				hw_stats->tx_abort_col;
1199 
1200 	net_stats->rx_errors  = hw_stats->rx_frag +
1201 				hw_stats->rx_fcs_err +
1202 				hw_stats->rx_len_err +
1203 				hw_stats->rx_ov_sz +
1204 				hw_stats->rx_ov_rrd +
1205 				hw_stats->rx_align_err +
1206 				hw_stats->rx_ov_rxf;
1207 
1208 	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1209 	net_stats->rx_length_errors = hw_stats->rx_len_err;
1210 	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1211 	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1212 	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1213 
1214 	net_stats->tx_errors = hw_stats->tx_late_col +
1215 			       hw_stats->tx_abort_col +
1216 			       hw_stats->tx_underrun +
1217 			       hw_stats->tx_trunc;
1218 
1219 	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1220 	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1221 	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1222 
1223 	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1224 	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1225 
1226 	spin_unlock(&alx->stats_lock);
1227 
1228 	return net_stats;
1229 }
1230 
1231 static const struct net_device_ops alx_netdev_ops = {
1232 	.ndo_open               = alx_open,
1233 	.ndo_stop               = alx_stop,
1234 	.ndo_start_xmit         = alx_start_xmit,
1235 	.ndo_get_stats64        = alx_get_stats64,
1236 	.ndo_set_rx_mode        = alx_set_rx_mode,
1237 	.ndo_validate_addr      = eth_validate_addr,
1238 	.ndo_set_mac_address    = alx_set_mac_address,
1239 	.ndo_change_mtu         = alx_change_mtu,
1240 	.ndo_do_ioctl           = alx_ioctl,
1241 	.ndo_tx_timeout         = alx_tx_timeout,
1242 	.ndo_fix_features	= alx_fix_features,
1243 #ifdef CONFIG_NET_POLL_CONTROLLER
1244 	.ndo_poll_controller    = alx_poll_controller,
1245 #endif
1246 };
1247 
1248 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1249 {
1250 	struct net_device *netdev;
1251 	struct alx_priv *alx;
1252 	struct alx_hw *hw;
1253 	bool phy_configured;
1254 	int err;
1255 
1256 	err = pci_enable_device_mem(pdev);
1257 	if (err)
1258 		return err;
1259 
1260 	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1261 	 * shared register for the high 32 bits, so only a single, aligned,
1262 	 * 4 GB physical address range can be used for descriptors.
1263 	 */
1264 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1265 		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1266 	} else {
1267 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1268 		if (err) {
1269 			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1270 			goto out_pci_disable;
1271 		}
1272 	}
1273 
1274 	err = pci_request_mem_regions(pdev, alx_drv_name);
1275 	if (err) {
1276 		dev_err(&pdev->dev,
1277 			"pci_request_mem_regions failed\n");
1278 		goto out_pci_disable;
1279 	}
1280 
1281 	pci_enable_pcie_error_reporting(pdev);
1282 	pci_set_master(pdev);
1283 
1284 	if (!pdev->pm_cap) {
1285 		dev_err(&pdev->dev,
1286 			"Can't find power management capability, aborting\n");
1287 		err = -EIO;
1288 		goto out_pci_release;
1289 	}
1290 
1291 	netdev = alloc_etherdev(sizeof(*alx));
1292 	if (!netdev) {
1293 		err = -ENOMEM;
1294 		goto out_pci_release;
1295 	}
1296 
1297 	SET_NETDEV_DEV(netdev, &pdev->dev);
1298 	alx = netdev_priv(netdev);
1299 	spin_lock_init(&alx->hw.mdio_lock);
1300 	spin_lock_init(&alx->irq_lock);
1301 	spin_lock_init(&alx->stats_lock);
1302 	alx->dev = netdev;
1303 	alx->hw.pdev = pdev;
1304 	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1305 			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1306 	hw = &alx->hw;
1307 	pci_set_drvdata(pdev, alx);
1308 
1309 	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1310 	if (!hw->hw_addr) {
1311 		dev_err(&pdev->dev, "cannot map device registers\n");
1312 		err = -EIO;
1313 		goto out_free_netdev;
1314 	}
1315 
1316 	netdev->netdev_ops = &alx_netdev_ops;
1317 	netdev->ethtool_ops = &alx_ethtool_ops;
1318 	netdev->irq = pdev->irq;
1319 	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1320 
1321 	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1322 		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1323 
1324 	err = alx_init_sw(alx);
1325 	if (err) {
1326 		dev_err(&pdev->dev, "net device private data init failed\n");
1327 		goto out_unmap;
1328 	}
1329 
1330 	alx_reset_pcie(hw);
1331 
1332 	phy_configured = alx_phy_configured(hw);
1333 
1334 	if (!phy_configured)
1335 		alx_reset_phy(hw);
1336 
1337 	err = alx_reset_mac(hw);
1338 	if (err) {
1339 		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1340 		goto out_unmap;
1341 	}
1342 
1343 	/* setup link to put it in a known good starting state */
1344 	if (!phy_configured) {
1345 		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1346 		if (err) {
1347 			dev_err(&pdev->dev,
1348 				"failed to configure PHY speed/duplex (err=%d)\n",
1349 				err);
1350 			goto out_unmap;
1351 		}
1352 	}
1353 
1354 	netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
1355 
1356 	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1357 		dev_warn(&pdev->dev,
1358 			 "Invalid permanent address programmed, using random one\n");
1359 		eth_hw_addr_random(netdev);
1360 		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1361 	}
1362 
1363 	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1364 	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1365 	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1366 
1367 	hw->mdio.prtad = 0;
1368 	hw->mdio.mmds = 0;
1369 	hw->mdio.dev = netdev;
1370 	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1371 				MDIO_SUPPORTS_C22 |
1372 				MDIO_EMULATE_C22;
1373 	hw->mdio.mdio_read = alx_mdio_read;
1374 	hw->mdio.mdio_write = alx_mdio_write;
1375 
1376 	if (!alx_get_phy_info(hw)) {
1377 		dev_err(&pdev->dev, "failed to identify PHY\n");
1378 		err = -EIO;
1379 		goto out_unmap;
1380 	}
1381 
1382 	INIT_WORK(&alx->link_check_wk, alx_link_check);
1383 	INIT_WORK(&alx->reset_wk, alx_reset);
1384 	netif_carrier_off(netdev);
1385 
1386 	err = register_netdev(netdev);
1387 	if (err) {
1388 		dev_err(&pdev->dev, "register netdevice failed\n");
1389 		goto out_unmap;
1390 	}
1391 
1392 	netdev_info(netdev,
1393 		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1394 		    netdev->dev_addr);
1395 
1396 	return 0;
1397 
1398 out_unmap:
1399 	iounmap(hw->hw_addr);
1400 out_free_netdev:
1401 	free_netdev(netdev);
1402 out_pci_release:
1403 	pci_release_mem_regions(pdev);
1404 out_pci_disable:
1405 	pci_disable_device(pdev);
1406 	return err;
1407 }
1408 
1409 static void alx_remove(struct pci_dev *pdev)
1410 {
1411 	struct alx_priv *alx = pci_get_drvdata(pdev);
1412 	struct alx_hw *hw = &alx->hw;
1413 
1414 	cancel_work_sync(&alx->link_check_wk);
1415 	cancel_work_sync(&alx->reset_wk);
1416 
1417 	/* restore permanent mac address */
1418 	alx_set_macaddr(hw, hw->perm_addr);
1419 
1420 	unregister_netdev(alx->dev);
1421 	iounmap(hw->hw_addr);
1422 	pci_release_mem_regions(pdev);
1423 
1424 	pci_disable_pcie_error_reporting(pdev);
1425 	pci_disable_device(pdev);
1426 
1427 	free_netdev(alx->dev);
1428 }
1429 
1430 #ifdef CONFIG_PM_SLEEP
1431 static int alx_suspend(struct device *dev)
1432 {
1433 	struct pci_dev *pdev = to_pci_dev(dev);
1434 	struct alx_priv *alx = pci_get_drvdata(pdev);
1435 
1436 	if (!netif_running(alx->dev))
1437 		return 0;
1438 	netif_device_detach(alx->dev);
1439 	__alx_stop(alx);
1440 	return 0;
1441 }
1442 
1443 static int alx_resume(struct device *dev)
1444 {
1445 	struct pci_dev *pdev = to_pci_dev(dev);
1446 	struct alx_priv *alx = pci_get_drvdata(pdev);
1447 	struct alx_hw *hw = &alx->hw;
1448 
1449 	alx_reset_phy(hw);
1450 
1451 	if (!netif_running(alx->dev))
1452 		return 0;
1453 	netif_device_attach(alx->dev);
1454 	return __alx_open(alx, true);
1455 }
1456 
1457 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1458 #define ALX_PM_OPS      (&alx_pm_ops)
1459 #else
1460 #define ALX_PM_OPS      NULL
1461 #endif
1462 
1463 
1464 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1465 					       pci_channel_state_t state)
1466 {
1467 	struct alx_priv *alx = pci_get_drvdata(pdev);
1468 	struct net_device *netdev = alx->dev;
1469 	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1470 
1471 	dev_info(&pdev->dev, "pci error detected\n");
1472 
1473 	rtnl_lock();
1474 
1475 	if (netif_running(netdev)) {
1476 		netif_device_detach(netdev);
1477 		alx_halt(alx);
1478 	}
1479 
1480 	if (state == pci_channel_io_perm_failure)
1481 		rc = PCI_ERS_RESULT_DISCONNECT;
1482 	else
1483 		pci_disable_device(pdev);
1484 
1485 	rtnl_unlock();
1486 
1487 	return rc;
1488 }
1489 
1490 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1491 {
1492 	struct alx_priv *alx = pci_get_drvdata(pdev);
1493 	struct alx_hw *hw = &alx->hw;
1494 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1495 
1496 	dev_info(&pdev->dev, "pci error slot reset\n");
1497 
1498 	rtnl_lock();
1499 
1500 	if (pci_enable_device(pdev)) {
1501 		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1502 		goto out;
1503 	}
1504 
1505 	pci_set_master(pdev);
1506 
1507 	alx_reset_pcie(hw);
1508 	if (!alx_reset_mac(hw))
1509 		rc = PCI_ERS_RESULT_RECOVERED;
1510 out:
1511 	pci_cleanup_aer_uncorrect_error_status(pdev);
1512 
1513 	rtnl_unlock();
1514 
1515 	return rc;
1516 }
1517 
1518 static void alx_pci_error_resume(struct pci_dev *pdev)
1519 {
1520 	struct alx_priv *alx = pci_get_drvdata(pdev);
1521 	struct net_device *netdev = alx->dev;
1522 
1523 	dev_info(&pdev->dev, "pci error resume\n");
1524 
1525 	rtnl_lock();
1526 
1527 	if (netif_running(netdev)) {
1528 		alx_activate(alx);
1529 		netif_device_attach(netdev);
1530 	}
1531 
1532 	rtnl_unlock();
1533 }
1534 
1535 static const struct pci_error_handlers alx_err_handlers = {
1536 	.error_detected = alx_pci_error_detected,
1537 	.slot_reset     = alx_pci_error_slot_reset,
1538 	.resume         = alx_pci_error_resume,
1539 };
1540 
1541 static const struct pci_device_id alx_pci_tbl[] = {
1542 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1543 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1544 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1545 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1546 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1547 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1548 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
1549 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1550 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
1551 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1552 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
1553 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
1554 	{}
1555 };
1556 
1557 static struct pci_driver alx_driver = {
1558 	.name        = alx_drv_name,
1559 	.id_table    = alx_pci_tbl,
1560 	.probe       = alx_probe,
1561 	.remove      = alx_remove,
1562 	.err_handler = &alx_err_handlers,
1563 	.driver.pm   = ALX_PM_OPS,
1564 };
1565 
1566 module_pci_driver(alx_driver);
1567 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
1568 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
1569 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
1570 MODULE_DESCRIPTION(
1571 	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
1572 MODULE_LICENSE("GPL");
1573