xref: /openbmc/linux/drivers/net/ethernet/atheros/alx/main.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 /*
2  * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3  *
4  *  This file is free software: you may copy, redistribute and/or modify it
5  *  under the terms of the GNU General Public License as published by the
6  *  Free Software Foundation, either version 2 of the License, or (at your
7  *  option) any later version.
8  *
9  *  This file is distributed in the hope that it will be useful, but
10  *  WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  *  General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * This file incorporates work covered by the following copyright and
18  * permission notice:
19  *
20  * Copyright (c) 2012 Qualcomm Atheros, Inc.
21  *
22  * Permission to use, copy, modify, and/or distribute this software for any
23  * purpose with or without fee is hereby granted, provided that the above
24  * copyright notice and this permission notice appear in all copies.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51 
52 static const char alx_drv_name[] = "alx";
53 
54 static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
55 {
56 	struct alx_buffer *txb = &txq->bufs[entry];
57 
58 	if (dma_unmap_len(txb, size)) {
59 		dma_unmap_single(txq->dev,
60 				 dma_unmap_addr(txb, dma),
61 				 dma_unmap_len(txb, size),
62 				 DMA_TO_DEVICE);
63 		dma_unmap_len_set(txb, size, 0);
64 	}
65 
66 	if (txb->skb) {
67 		dev_kfree_skb_any(txb->skb);
68 		txb->skb = NULL;
69 	}
70 }
71 
72 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
73 {
74 	struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
75 	struct sk_buff *skb;
76 	struct alx_buffer *cur_buf;
77 	dma_addr_t dma;
78 	u16 cur, next, count = 0;
79 
80 	next = cur = rxq->write_idx;
81 	if (++next == alx->rx_ringsz)
82 		next = 0;
83 	cur_buf = &rxq->bufs[cur];
84 
85 	while (!cur_buf->skb && next != rxq->read_idx) {
86 		struct alx_rfd *rfd = &rxq->rfd[cur];
87 
88 		/*
89 		 * When DMA RX address is set to something like
90 		 * 0x....fc0, it will be very likely to cause DMA
91 		 * RFD overflow issue.
92 		 *
93 		 * To work around it, we apply rx skb with 64 bytes
94 		 * longer space, and offset the address whenever
95 		 * 0x....fc0 is detected.
96 		 */
97 		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
98 		if (!skb)
99 			break;
100 
101 		if (((unsigned long)skb->data & 0xfff) == 0xfc0)
102 			skb_reserve(skb, 64);
103 
104 		dma = dma_map_single(&alx->hw.pdev->dev,
105 				     skb->data, alx->rxbuf_size,
106 				     DMA_FROM_DEVICE);
107 		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
108 			dev_kfree_skb(skb);
109 			break;
110 		}
111 
112 		/* Unfortunately, RX descriptor buffers must be 4-byte
113 		 * aligned, so we can't use IP alignment.
114 		 */
115 		if (WARN_ON(dma & 3)) {
116 			dev_kfree_skb(skb);
117 			break;
118 		}
119 
120 		cur_buf->skb = skb;
121 		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
122 		dma_unmap_addr_set(cur_buf, dma, dma);
123 		rfd->addr = cpu_to_le64(dma);
124 
125 		cur = next;
126 		if (++next == alx->rx_ringsz)
127 			next = 0;
128 		cur_buf = &rxq->bufs[cur];
129 		count++;
130 	}
131 
132 	if (count) {
133 		/* flush all updates before updating hardware */
134 		wmb();
135 		rxq->write_idx = cur;
136 		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
137 	}
138 
139 	return count;
140 }
141 
142 static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
143 						 struct sk_buff *skb)
144 {
145 	unsigned int r_idx = skb->queue_mapping;
146 
147 	if (r_idx >= alx->num_txq)
148 		r_idx = r_idx % alx->num_txq;
149 
150 	return alx->qnapi[r_idx]->txq;
151 }
152 
153 static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
154 {
155 	return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
156 }
157 
158 static inline int alx_tpd_avail(struct alx_tx_queue *txq)
159 {
160 	if (txq->write_idx >= txq->read_idx)
161 		return txq->count + txq->read_idx - txq->write_idx - 1;
162 	return txq->read_idx - txq->write_idx - 1;
163 }
164 
165 static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
166 {
167 	struct alx_priv *alx;
168 	struct netdev_queue *tx_queue;
169 	u16 hw_read_idx, sw_read_idx;
170 	unsigned int total_bytes = 0, total_packets = 0;
171 	int budget = ALX_DEFAULT_TX_WORK;
172 
173 	alx = netdev_priv(txq->netdev);
174 	tx_queue = alx_get_tx_queue(txq);
175 
176 	sw_read_idx = txq->read_idx;
177 	hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
178 
179 	if (sw_read_idx != hw_read_idx) {
180 		while (sw_read_idx != hw_read_idx && budget > 0) {
181 			struct sk_buff *skb;
182 
183 			skb = txq->bufs[sw_read_idx].skb;
184 			if (skb) {
185 				total_bytes += skb->len;
186 				total_packets++;
187 				budget--;
188 			}
189 
190 			alx_free_txbuf(txq, sw_read_idx);
191 
192 			if (++sw_read_idx == txq->count)
193 				sw_read_idx = 0;
194 		}
195 		txq->read_idx = sw_read_idx;
196 
197 		netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
198 	}
199 
200 	if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
201 	    alx_tpd_avail(txq) > txq->count / 4)
202 		netif_tx_wake_queue(tx_queue);
203 
204 	return sw_read_idx == hw_read_idx;
205 }
206 
207 static void alx_schedule_link_check(struct alx_priv *alx)
208 {
209 	schedule_work(&alx->link_check_wk);
210 }
211 
212 static void alx_schedule_reset(struct alx_priv *alx)
213 {
214 	schedule_work(&alx->reset_wk);
215 }
216 
217 static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
218 {
219 	struct alx_priv *alx;
220 	struct alx_rrd *rrd;
221 	struct alx_buffer *rxb;
222 	struct sk_buff *skb;
223 	u16 length, rfd_cleaned = 0;
224 	int work = 0;
225 
226 	alx = netdev_priv(rxq->netdev);
227 
228 	while (work < budget) {
229 		rrd = &rxq->rrd[rxq->rrd_read_idx];
230 		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
231 			break;
232 		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
233 
234 		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
235 				  RRD_SI) != rxq->read_idx ||
236 		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
237 				  RRD_NOR) != 1) {
238 			alx_schedule_reset(alx);
239 			return work;
240 		}
241 
242 		rxb = &rxq->bufs[rxq->read_idx];
243 		dma_unmap_single(rxq->dev,
244 				 dma_unmap_addr(rxb, dma),
245 				 dma_unmap_len(rxb, size),
246 				 DMA_FROM_DEVICE);
247 		dma_unmap_len_set(rxb, size, 0);
248 		skb = rxb->skb;
249 		rxb->skb = NULL;
250 
251 		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
252 		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
253 			rrd->word3 = 0;
254 			dev_kfree_skb_any(skb);
255 			goto next_pkt;
256 		}
257 
258 		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
259 				       RRD_PKTLEN) - ETH_FCS_LEN;
260 		skb_put(skb, length);
261 		skb->protocol = eth_type_trans(skb, rxq->netdev);
262 
263 		skb_checksum_none_assert(skb);
264 		if (alx->dev->features & NETIF_F_RXCSUM &&
265 		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
266 				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
267 			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
268 					      RRD_PID)) {
269 			case RRD_PID_IPV6UDP:
270 			case RRD_PID_IPV4UDP:
271 			case RRD_PID_IPV4TCP:
272 			case RRD_PID_IPV6TCP:
273 				skb->ip_summed = CHECKSUM_UNNECESSARY;
274 				break;
275 			}
276 		}
277 
278 		napi_gro_receive(&rxq->np->napi, skb);
279 		work++;
280 
281 next_pkt:
282 		if (++rxq->read_idx == rxq->count)
283 			rxq->read_idx = 0;
284 		if (++rxq->rrd_read_idx == rxq->count)
285 			rxq->rrd_read_idx = 0;
286 
287 		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
288 			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
289 	}
290 
291 	if (rfd_cleaned)
292 		alx_refill_rx_ring(alx, GFP_ATOMIC);
293 
294 	return work;
295 }
296 
297 static int alx_poll(struct napi_struct *napi, int budget)
298 {
299 	struct alx_napi *np = container_of(napi, struct alx_napi, napi);
300 	struct alx_priv *alx = np->alx;
301 	struct alx_hw *hw = &alx->hw;
302 	unsigned long flags;
303 	bool tx_complete = true;
304 	int work = 0;
305 
306 	if (np->txq)
307 		tx_complete = alx_clean_tx_irq(np->txq);
308 	if (np->rxq)
309 		work = alx_clean_rx_irq(np->rxq, budget);
310 
311 	if (!tx_complete || work == budget)
312 		return budget;
313 
314 	napi_complete_done(&np->napi, work);
315 
316 	/* enable interrupt */
317 	if (alx->hw.pdev->msix_enabled) {
318 		alx_mask_msix(hw, np->vec_idx, false);
319 	} else {
320 		spin_lock_irqsave(&alx->irq_lock, flags);
321 		alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
322 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
323 		spin_unlock_irqrestore(&alx->irq_lock, flags);
324 	}
325 
326 	alx_post_write(hw);
327 
328 	return work;
329 }
330 
331 static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
332 {
333 	struct alx_hw *hw = &alx->hw;
334 
335 	if (intr & ALX_ISR_FATAL) {
336 		netif_warn(alx, hw, alx->dev,
337 			   "fatal interrupt 0x%x, resetting\n", intr);
338 		alx_schedule_reset(alx);
339 		return true;
340 	}
341 
342 	if (intr & ALX_ISR_ALERT)
343 		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
344 
345 	if (intr & ALX_ISR_PHY) {
346 		/* suppress PHY interrupt, because the source
347 		 * is from PHY internal. only the internal status
348 		 * is cleared, the interrupt status could be cleared.
349 		 */
350 		alx->int_mask &= ~ALX_ISR_PHY;
351 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
352 		alx_schedule_link_check(alx);
353 	}
354 
355 	return false;
356 }
357 
358 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
359 {
360 	struct alx_hw *hw = &alx->hw;
361 
362 	spin_lock(&alx->irq_lock);
363 
364 	/* ACK interrupt */
365 	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
366 	intr &= alx->int_mask;
367 
368 	if (alx_intr_handle_misc(alx, intr))
369 		goto out;
370 
371 	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
372 		napi_schedule(&alx->qnapi[0]->napi);
373 		/* mask rx/tx interrupt, enable them when napi complete */
374 		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
375 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
376 	}
377 
378 	alx_write_mem32(hw, ALX_ISR, 0);
379 
380  out:
381 	spin_unlock(&alx->irq_lock);
382 	return IRQ_HANDLED;
383 }
384 
385 static irqreturn_t alx_intr_msix_ring(int irq, void *data)
386 {
387 	struct alx_napi *np = data;
388 	struct alx_hw *hw = &np->alx->hw;
389 
390 	/* mask interrupt to ACK chip */
391 	alx_mask_msix(hw, np->vec_idx, true);
392 	/* clear interrupt status */
393 	alx_write_mem32(hw, ALX_ISR, np->vec_mask);
394 
395 	napi_schedule(&np->napi);
396 
397 	return IRQ_HANDLED;
398 }
399 
400 static irqreturn_t alx_intr_msix_misc(int irq, void *data)
401 {
402 	struct alx_priv *alx = data;
403 	struct alx_hw *hw = &alx->hw;
404 	u32 intr;
405 
406 	/* mask interrupt to ACK chip */
407 	alx_mask_msix(hw, 0, true);
408 
409 	/* read interrupt status */
410 	intr = alx_read_mem32(hw, ALX_ISR);
411 	intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
412 
413 	if (alx_intr_handle_misc(alx, intr))
414 		return IRQ_HANDLED;
415 
416 	/* clear interrupt status */
417 	alx_write_mem32(hw, ALX_ISR, intr);
418 
419 	/* enable interrupt again */
420 	alx_mask_msix(hw, 0, false);
421 
422 	return IRQ_HANDLED;
423 }
424 
425 static irqreturn_t alx_intr_msi(int irq, void *data)
426 {
427 	struct alx_priv *alx = data;
428 
429 	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
430 }
431 
432 static irqreturn_t alx_intr_legacy(int irq, void *data)
433 {
434 	struct alx_priv *alx = data;
435 	struct alx_hw *hw = &alx->hw;
436 	u32 intr;
437 
438 	intr = alx_read_mem32(hw, ALX_ISR);
439 
440 	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
441 		return IRQ_NONE;
442 
443 	return alx_intr_handle(alx, intr);
444 }
445 
446 static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
447 					ALX_TPD_PRI1_ADDR_LO,
448 					ALX_TPD_PRI2_ADDR_LO,
449 					ALX_TPD_PRI3_ADDR_LO};
450 
451 static void alx_init_ring_ptrs(struct alx_priv *alx)
452 {
453 	struct alx_hw *hw = &alx->hw;
454 	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
455 	struct alx_napi *np;
456 	int i;
457 
458 	for (i = 0; i < alx->num_napi; i++) {
459 		np = alx->qnapi[i];
460 		if (np->txq) {
461 			np->txq->read_idx = 0;
462 			np->txq->write_idx = 0;
463 			alx_write_mem32(hw,
464 					txring_header_reg[np->txq->queue_idx],
465 					np->txq->tpd_dma);
466 		}
467 
468 		if (np->rxq) {
469 			np->rxq->read_idx = 0;
470 			np->rxq->write_idx = 0;
471 			np->rxq->rrd_read_idx = 0;
472 			alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
473 			alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
474 		}
475 	}
476 
477 	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
478 	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
479 
480 	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
481 	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
482 	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
483 	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
484 
485 	/* load these pointers into the chip */
486 	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
487 }
488 
489 static void alx_free_txring_buf(struct alx_tx_queue *txq)
490 {
491 	int i;
492 
493 	if (!txq->bufs)
494 		return;
495 
496 	for (i = 0; i < txq->count; i++)
497 		alx_free_txbuf(txq, i);
498 
499 	memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
500 	memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
501 	txq->write_idx = 0;
502 	txq->read_idx = 0;
503 
504 	netdev_tx_reset_queue(alx_get_tx_queue(txq));
505 }
506 
507 static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
508 {
509 	struct alx_buffer *cur_buf;
510 	u16 i;
511 
512 	if (!rxq->bufs)
513 		return;
514 
515 	for (i = 0; i < rxq->count; i++) {
516 		cur_buf = rxq->bufs + i;
517 		if (cur_buf->skb) {
518 			dma_unmap_single(rxq->dev,
519 					 dma_unmap_addr(cur_buf, dma),
520 					 dma_unmap_len(cur_buf, size),
521 					 DMA_FROM_DEVICE);
522 			dev_kfree_skb(cur_buf->skb);
523 			cur_buf->skb = NULL;
524 			dma_unmap_len_set(cur_buf, size, 0);
525 			dma_unmap_addr_set(cur_buf, dma, 0);
526 		}
527 	}
528 
529 	rxq->write_idx = 0;
530 	rxq->read_idx = 0;
531 	rxq->rrd_read_idx = 0;
532 }
533 
534 static void alx_free_buffers(struct alx_priv *alx)
535 {
536 	int i;
537 
538 	for (i = 0; i < alx->num_txq; i++)
539 		if (alx->qnapi[i] && alx->qnapi[i]->txq)
540 			alx_free_txring_buf(alx->qnapi[i]->txq);
541 
542 	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
543 		alx_free_rxring_buf(alx->qnapi[0]->rxq);
544 }
545 
546 static int alx_reinit_rings(struct alx_priv *alx)
547 {
548 	alx_free_buffers(alx);
549 
550 	alx_init_ring_ptrs(alx);
551 
552 	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
553 		return -ENOMEM;
554 
555 	return 0;
556 }
557 
558 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
559 {
560 	u32 crc32, bit, reg;
561 
562 	crc32 = ether_crc(ETH_ALEN, addr);
563 	reg = (crc32 >> 31) & 0x1;
564 	bit = (crc32 >> 26) & 0x1F;
565 
566 	mc_hash[reg] |= BIT(bit);
567 }
568 
569 static void __alx_set_rx_mode(struct net_device *netdev)
570 {
571 	struct alx_priv *alx = netdev_priv(netdev);
572 	struct alx_hw *hw = &alx->hw;
573 	struct netdev_hw_addr *ha;
574 	u32 mc_hash[2] = {};
575 
576 	if (!(netdev->flags & IFF_ALLMULTI)) {
577 		netdev_for_each_mc_addr(ha, netdev)
578 			alx_add_mc_addr(hw, ha->addr, mc_hash);
579 
580 		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
581 		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
582 	}
583 
584 	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
585 	if (netdev->flags & IFF_PROMISC)
586 		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
587 	if (netdev->flags & IFF_ALLMULTI)
588 		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
589 
590 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
591 }
592 
593 static void alx_set_rx_mode(struct net_device *netdev)
594 {
595 	__alx_set_rx_mode(netdev);
596 }
597 
598 static int alx_set_mac_address(struct net_device *netdev, void *data)
599 {
600 	struct alx_priv *alx = netdev_priv(netdev);
601 	struct alx_hw *hw = &alx->hw;
602 	struct sockaddr *addr = data;
603 
604 	if (!is_valid_ether_addr(addr->sa_data))
605 		return -EADDRNOTAVAIL;
606 
607 	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
608 		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
609 
610 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
611 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
612 	alx_set_macaddr(hw, hw->mac_addr);
613 
614 	return 0;
615 }
616 
617 static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
618 			     int offset)
619 {
620 	txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
621 	if (!txq->bufs)
622 		return -ENOMEM;
623 
624 	txq->tpd = alx->descmem.virt + offset;
625 	txq->tpd_dma = alx->descmem.dma + offset;
626 	offset += sizeof(struct alx_txd) * txq->count;
627 
628 	return offset;
629 }
630 
631 static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
632 			     int offset)
633 {
634 	rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
635 	if (!rxq->bufs)
636 		return -ENOMEM;
637 
638 	rxq->rrd = alx->descmem.virt + offset;
639 	rxq->rrd_dma = alx->descmem.dma + offset;
640 	offset += sizeof(struct alx_rrd) * rxq->count;
641 
642 	rxq->rfd = alx->descmem.virt + offset;
643 	rxq->rfd_dma = alx->descmem.dma + offset;
644 	offset += sizeof(struct alx_rfd) * rxq->count;
645 
646 	return offset;
647 }
648 
649 static int alx_alloc_rings(struct alx_priv *alx)
650 {
651 	int i, offset = 0;
652 
653 	/* physical tx/rx ring descriptors
654 	 *
655 	 * Allocate them as a single chunk because they must not cross a
656 	 * 4G boundary (hardware has a single register for high 32 bits
657 	 * of addresses only)
658 	 */
659 	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
660 			    alx->num_txq +
661 			    sizeof(struct alx_rrd) * alx->rx_ringsz +
662 			    sizeof(struct alx_rfd) * alx->rx_ringsz;
663 	alx->descmem.virt = dma_alloc_coherent(&alx->hw.pdev->dev,
664 					       alx->descmem.size,
665 					       &alx->descmem.dma, GFP_KERNEL);
666 	if (!alx->descmem.virt)
667 		return -ENOMEM;
668 
669 	/* alignment requirements */
670 	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
671 	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
672 
673 	for (i = 0; i < alx->num_txq; i++) {
674 		offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
675 		if (offset < 0) {
676 			netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
677 			return -ENOMEM;
678 		}
679 	}
680 
681 	offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
682 	if (offset < 0) {
683 		netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
684 		return -ENOMEM;
685 	}
686 
687 	return 0;
688 }
689 
690 static void alx_free_rings(struct alx_priv *alx)
691 {
692 	int i;
693 
694 	alx_free_buffers(alx);
695 
696 	for (i = 0; i < alx->num_txq; i++)
697 		if (alx->qnapi[i] && alx->qnapi[i]->txq)
698 			kfree(alx->qnapi[i]->txq->bufs);
699 
700 	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
701 		kfree(alx->qnapi[0]->rxq->bufs);
702 
703 	if (alx->descmem.virt)
704 		dma_free_coherent(&alx->hw.pdev->dev,
705 				  alx->descmem.size,
706 				  alx->descmem.virt,
707 				  alx->descmem.dma);
708 }
709 
710 static void alx_free_napis(struct alx_priv *alx)
711 {
712 	struct alx_napi *np;
713 	int i;
714 
715 	for (i = 0; i < alx->num_napi; i++) {
716 		np = alx->qnapi[i];
717 		if (!np)
718 			continue;
719 
720 		netif_napi_del(&np->napi);
721 		kfree(np->txq);
722 		kfree(np->rxq);
723 		kfree(np);
724 		alx->qnapi[i] = NULL;
725 	}
726 }
727 
728 static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
729 				  ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
730 static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
731 				  ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
732 static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
733 				   ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
734 static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
735 				   ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
736 				   ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
737 				   ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
738 
739 static int alx_alloc_napis(struct alx_priv *alx)
740 {
741 	struct alx_napi *np;
742 	struct alx_rx_queue *rxq;
743 	struct alx_tx_queue *txq;
744 	int i;
745 
746 	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
747 
748 	/* allocate alx_napi structures */
749 	for (i = 0; i < alx->num_napi; i++) {
750 		np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
751 		if (!np)
752 			goto err_out;
753 
754 		np->alx = alx;
755 		netif_napi_add(alx->dev, &np->napi, alx_poll, 64);
756 		alx->qnapi[i] = np;
757 	}
758 
759 	/* allocate tx queues */
760 	for (i = 0; i < alx->num_txq; i++) {
761 		np = alx->qnapi[i];
762 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
763 		if (!txq)
764 			goto err_out;
765 
766 		np->txq = txq;
767 		txq->p_reg = tx_pidx_reg[i];
768 		txq->c_reg = tx_cidx_reg[i];
769 		txq->queue_idx = i;
770 		txq->count = alx->tx_ringsz;
771 		txq->netdev = alx->dev;
772 		txq->dev = &alx->hw.pdev->dev;
773 		np->vec_mask |= tx_vect_mask[i];
774 		alx->int_mask |= tx_vect_mask[i];
775 	}
776 
777 	/* allocate rx queues */
778 	np = alx->qnapi[0];
779 	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
780 	if (!rxq)
781 		goto err_out;
782 
783 	np->rxq = rxq;
784 	rxq->np = alx->qnapi[0];
785 	rxq->queue_idx = 0;
786 	rxq->count = alx->rx_ringsz;
787 	rxq->netdev = alx->dev;
788 	rxq->dev = &alx->hw.pdev->dev;
789 	np->vec_mask |= rx_vect_mask[0];
790 	alx->int_mask |= rx_vect_mask[0];
791 
792 	return 0;
793 
794 err_out:
795 	netdev_err(alx->dev, "error allocating internal structures\n");
796 	alx_free_napis(alx);
797 	return -ENOMEM;
798 }
799 
800 static const int txq_vec_mapping_shift[] = {
801 	0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
802 	0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
803 	1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
804 	1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
805 };
806 
807 static void alx_config_vector_mapping(struct alx_priv *alx)
808 {
809 	struct alx_hw *hw = &alx->hw;
810 	u32 tbl[2] = {0, 0};
811 	int i, vector, idx, shift;
812 
813 	if (alx->hw.pdev->msix_enabled) {
814 		/* tx mappings */
815 		for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
816 			idx = txq_vec_mapping_shift[i * 2];
817 			shift = txq_vec_mapping_shift[i * 2 + 1];
818 			tbl[idx] |= vector << shift;
819 		}
820 
821 		/* rx mapping */
822 		tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
823 	}
824 
825 	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
826 	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
827 	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
828 }
829 
830 static int alx_enable_msix(struct alx_priv *alx)
831 {
832 	int err, num_vec, num_txq, num_rxq;
833 
834 	num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
835 	num_rxq = 1;
836 	num_vec = max_t(int, num_txq, num_rxq) + 1;
837 
838 	err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
839 			PCI_IRQ_MSIX);
840 	if (err < 0) {
841 		netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
842 		return err;
843 	}
844 
845 	alx->num_vec = num_vec;
846 	alx->num_napi = num_vec - 1;
847 	alx->num_txq = num_txq;
848 	alx->num_rxq = num_rxq;
849 
850 	return err;
851 }
852 
853 static int alx_request_msix(struct alx_priv *alx)
854 {
855 	struct net_device *netdev = alx->dev;
856 	int i, err, vector = 0, free_vector = 0;
857 
858 	err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
859 			  0, netdev->name, alx);
860 	if (err)
861 		goto out_err;
862 
863 	for (i = 0; i < alx->num_napi; i++) {
864 		struct alx_napi *np = alx->qnapi[i];
865 
866 		vector++;
867 
868 		if (np->txq && np->rxq)
869 			sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
870 				np->txq->queue_idx);
871 		else if (np->txq)
872 			sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
873 				np->txq->queue_idx);
874 		else if (np->rxq)
875 			sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
876 				np->rxq->queue_idx);
877 		else
878 			sprintf(np->irq_lbl, "%s-unused", netdev->name);
879 
880 		np->vec_idx = vector;
881 		err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
882 				  alx_intr_msix_ring, 0, np->irq_lbl, np);
883 		if (err)
884 			goto out_free;
885 	}
886 	return 0;
887 
888 out_free:
889 	free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
890 
891 	vector--;
892 	for (i = 0; i < vector; i++)
893 		free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
894 			 alx->qnapi[i]);
895 
896 out_err:
897 	return err;
898 }
899 
900 static int alx_init_intr(struct alx_priv *alx)
901 {
902 	int ret;
903 
904 	ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
905 			PCI_IRQ_MSI | PCI_IRQ_LEGACY);
906 	if (ret < 0)
907 		return ret;
908 
909 	alx->num_vec = 1;
910 	alx->num_napi = 1;
911 	alx->num_txq = 1;
912 	alx->num_rxq = 1;
913 	return 0;
914 }
915 
916 static void alx_irq_enable(struct alx_priv *alx)
917 {
918 	struct alx_hw *hw = &alx->hw;
919 	int i;
920 
921 	/* level-1 interrupt switch */
922 	alx_write_mem32(hw, ALX_ISR, 0);
923 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
924 	alx_post_write(hw);
925 
926 	if (alx->hw.pdev->msix_enabled) {
927 		/* enable all msix irqs */
928 		for (i = 0; i < alx->num_vec; i++)
929 			alx_mask_msix(hw, i, false);
930 	}
931 }
932 
933 static void alx_irq_disable(struct alx_priv *alx)
934 {
935 	struct alx_hw *hw = &alx->hw;
936 	int i;
937 
938 	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
939 	alx_write_mem32(hw, ALX_IMR, 0);
940 	alx_post_write(hw);
941 
942 	if (alx->hw.pdev->msix_enabled) {
943 		for (i = 0; i < alx->num_vec; i++) {
944 			alx_mask_msix(hw, i, true);
945 			synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
946 		}
947 	} else {
948 		synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
949 	}
950 }
951 
952 static int alx_realloc_resources(struct alx_priv *alx)
953 {
954 	int err;
955 
956 	alx_free_rings(alx);
957 	alx_free_napis(alx);
958 	pci_free_irq_vectors(alx->hw.pdev);
959 
960 	err = alx_init_intr(alx);
961 	if (err)
962 		return err;
963 
964 	err = alx_alloc_napis(alx);
965 	if (err)
966 		return err;
967 
968 	err = alx_alloc_rings(alx);
969 	if (err)
970 		return err;
971 
972 	return 0;
973 }
974 
975 static int alx_request_irq(struct alx_priv *alx)
976 {
977 	struct pci_dev *pdev = alx->hw.pdev;
978 	struct alx_hw *hw = &alx->hw;
979 	int err;
980 	u32 msi_ctrl;
981 
982 	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
983 
984 	if (alx->hw.pdev->msix_enabled) {
985 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
986 		err = alx_request_msix(alx);
987 		if (!err)
988 			goto out;
989 
990 		/* msix request failed, realloc resources */
991 		err = alx_realloc_resources(alx);
992 		if (err)
993 			goto out;
994 	}
995 
996 	if (alx->hw.pdev->msi_enabled) {
997 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
998 				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
999 		err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
1000 				  alx->dev->name, alx);
1001 		if (!err)
1002 			goto out;
1003 
1004 		/* fall back to legacy interrupt */
1005 		pci_free_irq_vectors(alx->hw.pdev);
1006 	}
1007 
1008 	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1009 	err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
1010 			  alx->dev->name, alx);
1011 out:
1012 	if (!err)
1013 		alx_config_vector_mapping(alx);
1014 	else
1015 		netdev_err(alx->dev, "IRQ registration failed!\n");
1016 	return err;
1017 }
1018 
1019 static void alx_free_irq(struct alx_priv *alx)
1020 {
1021 	struct pci_dev *pdev = alx->hw.pdev;
1022 	int i;
1023 
1024 	free_irq(pci_irq_vector(pdev, 0), alx);
1025 	if (alx->hw.pdev->msix_enabled) {
1026 		for (i = 0; i < alx->num_napi; i++)
1027 			free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
1028 	}
1029 
1030 	pci_free_irq_vectors(pdev);
1031 }
1032 
1033 static int alx_identify_hw(struct alx_priv *alx)
1034 {
1035 	struct alx_hw *hw = &alx->hw;
1036 	int rev = alx_hw_revision(hw);
1037 
1038 	if (rev > ALX_REV_C0)
1039 		return -EINVAL;
1040 
1041 	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1042 
1043 	return 0;
1044 }
1045 
1046 static int alx_init_sw(struct alx_priv *alx)
1047 {
1048 	struct pci_dev *pdev = alx->hw.pdev;
1049 	struct alx_hw *hw = &alx->hw;
1050 	int err;
1051 
1052 	err = alx_identify_hw(alx);
1053 	if (err) {
1054 		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1055 		return err;
1056 	}
1057 
1058 	alx->hw.lnk_patch =
1059 		pdev->device == ALX_DEV_ID_AR8161 &&
1060 		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1061 		pdev->subsystem_device == 0x0091 &&
1062 		pdev->revision == 0;
1063 
1064 	hw->smb_timer = 400;
1065 	hw->mtu = alx->dev->mtu;
1066 	alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1067 	/* MTU range: 34 - 9256 */
1068 	alx->dev->min_mtu = 34;
1069 	alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1070 	alx->tx_ringsz = 256;
1071 	alx->rx_ringsz = 512;
1072 	hw->imt = 200;
1073 	alx->int_mask = ALX_ISR_MISC;
1074 	hw->dma_chnl = hw->max_dma_chnl;
1075 	hw->ith_tpd = alx->tx_ringsz / 3;
1076 	hw->link_speed = SPEED_UNKNOWN;
1077 	hw->duplex = DUPLEX_UNKNOWN;
1078 	hw->adv_cfg = ADVERTISED_Autoneg |
1079 		      ADVERTISED_10baseT_Half |
1080 		      ADVERTISED_10baseT_Full |
1081 		      ADVERTISED_100baseT_Full |
1082 		      ADVERTISED_100baseT_Half |
1083 		      ADVERTISED_1000baseT_Full;
1084 	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1085 
1086 	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1087 		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
1088 		      ALX_MAC_CTRL_BRD_EN |
1089 		      ALX_MAC_CTRL_PCRCE |
1090 		      ALX_MAC_CTRL_CRCE |
1091 		      ALX_MAC_CTRL_RXFC_EN |
1092 		      ALX_MAC_CTRL_TXFC_EN |
1093 		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1094 
1095 	return err;
1096 }
1097 
1098 
1099 static netdev_features_t alx_fix_features(struct net_device *netdev,
1100 					  netdev_features_t features)
1101 {
1102 	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1103 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1104 
1105 	return features;
1106 }
1107 
1108 static void alx_netif_stop(struct alx_priv *alx)
1109 {
1110 	int i;
1111 
1112 	netif_trans_update(alx->dev);
1113 	if (netif_carrier_ok(alx->dev)) {
1114 		netif_carrier_off(alx->dev);
1115 		netif_tx_disable(alx->dev);
1116 		for (i = 0; i < alx->num_napi; i++)
1117 			napi_disable(&alx->qnapi[i]->napi);
1118 	}
1119 }
1120 
1121 static void alx_halt(struct alx_priv *alx)
1122 {
1123 	struct alx_hw *hw = &alx->hw;
1124 
1125 	alx_netif_stop(alx);
1126 	hw->link_speed = SPEED_UNKNOWN;
1127 	hw->duplex = DUPLEX_UNKNOWN;
1128 
1129 	alx_reset_mac(hw);
1130 
1131 	/* disable l0s/l1 */
1132 	alx_enable_aspm(hw, false, false);
1133 	alx_irq_disable(alx);
1134 	alx_free_buffers(alx);
1135 }
1136 
1137 static void alx_configure(struct alx_priv *alx)
1138 {
1139 	struct alx_hw *hw = &alx->hw;
1140 
1141 	alx_configure_basic(hw);
1142 	alx_disable_rss(hw);
1143 	__alx_set_rx_mode(alx->dev);
1144 
1145 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1146 }
1147 
1148 static void alx_activate(struct alx_priv *alx)
1149 {
1150 	/* hardware setting lost, restore it */
1151 	alx_reinit_rings(alx);
1152 	alx_configure(alx);
1153 
1154 	/* clear old interrupts */
1155 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1156 
1157 	alx_irq_enable(alx);
1158 
1159 	alx_schedule_link_check(alx);
1160 }
1161 
1162 static void alx_reinit(struct alx_priv *alx)
1163 {
1164 	ASSERT_RTNL();
1165 
1166 	alx_halt(alx);
1167 	alx_activate(alx);
1168 }
1169 
1170 static int alx_change_mtu(struct net_device *netdev, int mtu)
1171 {
1172 	struct alx_priv *alx = netdev_priv(netdev);
1173 	int max_frame = ALX_MAX_FRAME_LEN(mtu);
1174 
1175 	netdev->mtu = mtu;
1176 	alx->hw.mtu = mtu;
1177 	alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1178 	netdev_update_features(netdev);
1179 	if (netif_running(netdev))
1180 		alx_reinit(alx);
1181 	return 0;
1182 }
1183 
1184 static void alx_netif_start(struct alx_priv *alx)
1185 {
1186 	int i;
1187 
1188 	netif_tx_wake_all_queues(alx->dev);
1189 	for (i = 0; i < alx->num_napi; i++)
1190 		napi_enable(&alx->qnapi[i]->napi);
1191 	netif_carrier_on(alx->dev);
1192 }
1193 
1194 static int __alx_open(struct alx_priv *alx, bool resume)
1195 {
1196 	int err;
1197 
1198 	err = alx_enable_msix(alx);
1199 	if (err < 0) {
1200 		err = alx_init_intr(alx);
1201 		if (err)
1202 			return err;
1203 	}
1204 
1205 	if (!resume)
1206 		netif_carrier_off(alx->dev);
1207 
1208 	err = alx_alloc_napis(alx);
1209 	if (err)
1210 		goto out_disable_adv_intr;
1211 
1212 	err = alx_alloc_rings(alx);
1213 	if (err)
1214 		goto out_free_rings;
1215 
1216 	alx_configure(alx);
1217 
1218 	err = alx_request_irq(alx);
1219 	if (err)
1220 		goto out_free_rings;
1221 
1222 	/* must be called after alx_request_irq because the chip stops working
1223 	 * if we copy the dma addresses in alx_init_ring_ptrs twice when
1224 	 * requesting msi-x interrupts failed
1225 	 */
1226 	alx_reinit_rings(alx);
1227 
1228 	netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1229 	netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1230 
1231 	/* clear old interrupts */
1232 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1233 
1234 	alx_irq_enable(alx);
1235 
1236 	if (!resume)
1237 		netif_tx_start_all_queues(alx->dev);
1238 
1239 	alx_schedule_link_check(alx);
1240 	return 0;
1241 
1242 out_free_rings:
1243 	alx_free_rings(alx);
1244 	alx_free_napis(alx);
1245 out_disable_adv_intr:
1246 	pci_free_irq_vectors(alx->hw.pdev);
1247 	return err;
1248 }
1249 
1250 static void __alx_stop(struct alx_priv *alx)
1251 {
1252 	alx_halt(alx);
1253 	alx_free_irq(alx);
1254 	alx_free_rings(alx);
1255 	alx_free_napis(alx);
1256 }
1257 
1258 static const char *alx_speed_desc(struct alx_hw *hw)
1259 {
1260 	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1261 	case ADVERTISED_1000baseT_Full:
1262 		return "1 Gbps Full";
1263 	case ADVERTISED_100baseT_Full:
1264 		return "100 Mbps Full";
1265 	case ADVERTISED_100baseT_Half:
1266 		return "100 Mbps Half";
1267 	case ADVERTISED_10baseT_Full:
1268 		return "10 Mbps Full";
1269 	case ADVERTISED_10baseT_Half:
1270 		return "10 Mbps Half";
1271 	default:
1272 		return "Unknown speed";
1273 	}
1274 }
1275 
1276 static void alx_check_link(struct alx_priv *alx)
1277 {
1278 	struct alx_hw *hw = &alx->hw;
1279 	unsigned long flags;
1280 	int old_speed;
1281 	int err;
1282 
1283 	/* clear PHY internal interrupt status, otherwise the main
1284 	 * interrupt status will be asserted forever
1285 	 */
1286 	alx_clear_phy_intr(hw);
1287 
1288 	old_speed = hw->link_speed;
1289 	err = alx_read_phy_link(hw);
1290 	if (err < 0)
1291 		goto reset;
1292 
1293 	spin_lock_irqsave(&alx->irq_lock, flags);
1294 	alx->int_mask |= ALX_ISR_PHY;
1295 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1296 	spin_unlock_irqrestore(&alx->irq_lock, flags);
1297 
1298 	if (old_speed == hw->link_speed)
1299 		return;
1300 
1301 	if (hw->link_speed != SPEED_UNKNOWN) {
1302 		netif_info(alx, link, alx->dev,
1303 			   "NIC Up: %s\n", alx_speed_desc(hw));
1304 		alx_post_phy_link(hw);
1305 		alx_enable_aspm(hw, true, true);
1306 		alx_start_mac(hw);
1307 
1308 		if (old_speed == SPEED_UNKNOWN)
1309 			alx_netif_start(alx);
1310 	} else {
1311 		/* link is now down */
1312 		alx_netif_stop(alx);
1313 		netif_info(alx, link, alx->dev, "Link Down\n");
1314 		err = alx_reset_mac(hw);
1315 		if (err)
1316 			goto reset;
1317 		alx_irq_disable(alx);
1318 
1319 		/* MAC reset causes all HW settings to be lost, restore all */
1320 		err = alx_reinit_rings(alx);
1321 		if (err)
1322 			goto reset;
1323 		alx_configure(alx);
1324 		alx_enable_aspm(hw, false, true);
1325 		alx_post_phy_link(hw);
1326 		alx_irq_enable(alx);
1327 	}
1328 
1329 	return;
1330 
1331 reset:
1332 	alx_schedule_reset(alx);
1333 }
1334 
1335 static int alx_open(struct net_device *netdev)
1336 {
1337 	return __alx_open(netdev_priv(netdev), false);
1338 }
1339 
1340 static int alx_stop(struct net_device *netdev)
1341 {
1342 	__alx_stop(netdev_priv(netdev));
1343 	return 0;
1344 }
1345 
1346 static void alx_link_check(struct work_struct *work)
1347 {
1348 	struct alx_priv *alx;
1349 
1350 	alx = container_of(work, struct alx_priv, link_check_wk);
1351 
1352 	rtnl_lock();
1353 	alx_check_link(alx);
1354 	rtnl_unlock();
1355 }
1356 
1357 static void alx_reset(struct work_struct *work)
1358 {
1359 	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1360 
1361 	rtnl_lock();
1362 	alx_reinit(alx);
1363 	rtnl_unlock();
1364 }
1365 
1366 static int alx_tpd_req(struct sk_buff *skb)
1367 {
1368 	int num;
1369 
1370 	num = skb_shinfo(skb)->nr_frags + 1;
1371 	/* we need one extra descriptor for LSOv2 */
1372 	if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1373 		num++;
1374 
1375 	return num;
1376 }
1377 
1378 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1379 {
1380 	u8 cso, css;
1381 
1382 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1383 		return 0;
1384 
1385 	cso = skb_checksum_start_offset(skb);
1386 	if (cso & 1)
1387 		return -EINVAL;
1388 
1389 	css = cso + skb->csum_offset;
1390 	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1391 	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1392 	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1393 
1394 	return 0;
1395 }
1396 
1397 static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1398 {
1399 	int err;
1400 
1401 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1402 		return 0;
1403 
1404 	if (!skb_is_gso(skb))
1405 		return 0;
1406 
1407 	err = skb_cow_head(skb, 0);
1408 	if (err < 0)
1409 		return err;
1410 
1411 	if (skb->protocol == htons(ETH_P_IP)) {
1412 		struct iphdr *iph = ip_hdr(skb);
1413 
1414 		iph->check = 0;
1415 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1416 							 0, IPPROTO_TCP, 0);
1417 		first->word1 |= 1 << TPD_IPV4_SHIFT;
1418 	} else if (skb_is_gso_v6(skb)) {
1419 		ipv6_hdr(skb)->payload_len = 0;
1420 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1421 						       &ipv6_hdr(skb)->daddr,
1422 						       0, IPPROTO_TCP, 0);
1423 		/* LSOv2: the first TPD only provides the packet length */
1424 		first->adrl.l.pkt_len = skb->len;
1425 		first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1426 	}
1427 
1428 	first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1429 	first->word1 |= (skb_transport_offset(skb) &
1430 			 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1431 	first->word1 |= (skb_shinfo(skb)->gso_size &
1432 			 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1433 	return 1;
1434 }
1435 
1436 static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1437 {
1438 	struct alx_txd *tpd, *first_tpd;
1439 	dma_addr_t dma;
1440 	int maplen, f, first_idx = txq->write_idx;
1441 
1442 	first_tpd = &txq->tpd[txq->write_idx];
1443 	tpd = first_tpd;
1444 
1445 	if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1446 		if (++txq->write_idx == txq->count)
1447 			txq->write_idx = 0;
1448 
1449 		tpd = &txq->tpd[txq->write_idx];
1450 		tpd->len = first_tpd->len;
1451 		tpd->vlan_tag = first_tpd->vlan_tag;
1452 		tpd->word1 = first_tpd->word1;
1453 	}
1454 
1455 	maplen = skb_headlen(skb);
1456 	dma = dma_map_single(txq->dev, skb->data, maplen,
1457 			     DMA_TO_DEVICE);
1458 	if (dma_mapping_error(txq->dev, dma))
1459 		goto err_dma;
1460 
1461 	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1462 	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1463 
1464 	tpd->adrl.addr = cpu_to_le64(dma);
1465 	tpd->len = cpu_to_le16(maplen);
1466 
1467 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1468 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1469 
1470 		if (++txq->write_idx == txq->count)
1471 			txq->write_idx = 0;
1472 		tpd = &txq->tpd[txq->write_idx];
1473 
1474 		tpd->word1 = first_tpd->word1;
1475 
1476 		maplen = skb_frag_size(frag);
1477 		dma = skb_frag_dma_map(txq->dev, frag, 0,
1478 				       maplen, DMA_TO_DEVICE);
1479 		if (dma_mapping_error(txq->dev, dma))
1480 			goto err_dma;
1481 		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1482 		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1483 
1484 		tpd->adrl.addr = cpu_to_le64(dma);
1485 		tpd->len = cpu_to_le16(maplen);
1486 	}
1487 
1488 	/* last TPD, set EOP flag and store skb */
1489 	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1490 	txq->bufs[txq->write_idx].skb = skb;
1491 
1492 	if (++txq->write_idx == txq->count)
1493 		txq->write_idx = 0;
1494 
1495 	return 0;
1496 
1497 err_dma:
1498 	f = first_idx;
1499 	while (f != txq->write_idx) {
1500 		alx_free_txbuf(txq, f);
1501 		if (++f == txq->count)
1502 			f = 0;
1503 	}
1504 	return -ENOMEM;
1505 }
1506 
1507 static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1508 				       struct alx_tx_queue *txq)
1509 {
1510 	struct alx_priv *alx;
1511 	struct alx_txd *first;
1512 	int tso;
1513 
1514 	alx = netdev_priv(txq->netdev);
1515 
1516 	if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1517 		netif_tx_stop_queue(alx_get_tx_queue(txq));
1518 		goto drop;
1519 	}
1520 
1521 	first = &txq->tpd[txq->write_idx];
1522 	memset(first, 0, sizeof(*first));
1523 
1524 	tso = alx_tso(skb, first);
1525 	if (tso < 0)
1526 		goto drop;
1527 	else if (!tso && alx_tx_csum(skb, first))
1528 		goto drop;
1529 
1530 	if (alx_map_tx_skb(txq, skb) < 0)
1531 		goto drop;
1532 
1533 	netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1534 
1535 	/* flush updates before updating hardware */
1536 	wmb();
1537 	alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1538 
1539 	if (alx_tpd_avail(txq) < txq->count / 8)
1540 		netif_tx_stop_queue(alx_get_tx_queue(txq));
1541 
1542 	return NETDEV_TX_OK;
1543 
1544 drop:
1545 	dev_kfree_skb_any(skb);
1546 	return NETDEV_TX_OK;
1547 }
1548 
1549 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1550 				  struct net_device *netdev)
1551 {
1552 	struct alx_priv *alx = netdev_priv(netdev);
1553 	return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1554 }
1555 
1556 static void alx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1557 {
1558 	struct alx_priv *alx = netdev_priv(dev);
1559 
1560 	alx_schedule_reset(alx);
1561 }
1562 
1563 static int alx_mdio_read(struct net_device *netdev,
1564 			 int prtad, int devad, u16 addr)
1565 {
1566 	struct alx_priv *alx = netdev_priv(netdev);
1567 	struct alx_hw *hw = &alx->hw;
1568 	u16 val;
1569 	int err;
1570 
1571 	if (prtad != hw->mdio.prtad)
1572 		return -EINVAL;
1573 
1574 	if (devad == MDIO_DEVAD_NONE)
1575 		err = alx_read_phy_reg(hw, addr, &val);
1576 	else
1577 		err = alx_read_phy_ext(hw, devad, addr, &val);
1578 
1579 	if (err)
1580 		return err;
1581 	return val;
1582 }
1583 
1584 static int alx_mdio_write(struct net_device *netdev,
1585 			  int prtad, int devad, u16 addr, u16 val)
1586 {
1587 	struct alx_priv *alx = netdev_priv(netdev);
1588 	struct alx_hw *hw = &alx->hw;
1589 
1590 	if (prtad != hw->mdio.prtad)
1591 		return -EINVAL;
1592 
1593 	if (devad == MDIO_DEVAD_NONE)
1594 		return alx_write_phy_reg(hw, addr, val);
1595 
1596 	return alx_write_phy_ext(hw, devad, addr, val);
1597 }
1598 
1599 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1600 {
1601 	struct alx_priv *alx = netdev_priv(netdev);
1602 
1603 	if (!netif_running(netdev))
1604 		return -EAGAIN;
1605 
1606 	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1607 }
1608 
1609 #ifdef CONFIG_NET_POLL_CONTROLLER
1610 static void alx_poll_controller(struct net_device *netdev)
1611 {
1612 	struct alx_priv *alx = netdev_priv(netdev);
1613 	int i;
1614 
1615 	if (alx->hw.pdev->msix_enabled) {
1616 		alx_intr_msix_misc(0, alx);
1617 		for (i = 0; i < alx->num_txq; i++)
1618 			alx_intr_msix_ring(0, alx->qnapi[i]);
1619 	} else if (alx->hw.pdev->msi_enabled)
1620 		alx_intr_msi(0, alx);
1621 	else
1622 		alx_intr_legacy(0, alx);
1623 }
1624 #endif
1625 
1626 static void alx_get_stats64(struct net_device *dev,
1627 			    struct rtnl_link_stats64 *net_stats)
1628 {
1629 	struct alx_priv *alx = netdev_priv(dev);
1630 	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1631 
1632 	spin_lock(&alx->stats_lock);
1633 
1634 	alx_update_hw_stats(&alx->hw);
1635 
1636 	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1637 	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1638 	net_stats->multicast  = hw_stats->rx_mcast;
1639 	net_stats->collisions = hw_stats->tx_single_col +
1640 				hw_stats->tx_multi_col +
1641 				hw_stats->tx_late_col +
1642 				hw_stats->tx_abort_col;
1643 
1644 	net_stats->rx_errors  = hw_stats->rx_frag +
1645 				hw_stats->rx_fcs_err +
1646 				hw_stats->rx_len_err +
1647 				hw_stats->rx_ov_sz +
1648 				hw_stats->rx_ov_rrd +
1649 				hw_stats->rx_align_err +
1650 				hw_stats->rx_ov_rxf;
1651 
1652 	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1653 	net_stats->rx_length_errors = hw_stats->rx_len_err;
1654 	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1655 	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1656 	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1657 
1658 	net_stats->tx_errors = hw_stats->tx_late_col +
1659 			       hw_stats->tx_abort_col +
1660 			       hw_stats->tx_underrun +
1661 			       hw_stats->tx_trunc;
1662 
1663 	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1664 	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1665 	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1666 
1667 	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1668 	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1669 
1670 	spin_unlock(&alx->stats_lock);
1671 }
1672 
1673 static const struct net_device_ops alx_netdev_ops = {
1674 	.ndo_open               = alx_open,
1675 	.ndo_stop               = alx_stop,
1676 	.ndo_start_xmit         = alx_start_xmit,
1677 	.ndo_get_stats64        = alx_get_stats64,
1678 	.ndo_set_rx_mode        = alx_set_rx_mode,
1679 	.ndo_validate_addr      = eth_validate_addr,
1680 	.ndo_set_mac_address    = alx_set_mac_address,
1681 	.ndo_change_mtu         = alx_change_mtu,
1682 	.ndo_do_ioctl           = alx_ioctl,
1683 	.ndo_tx_timeout         = alx_tx_timeout,
1684 	.ndo_fix_features	= alx_fix_features,
1685 #ifdef CONFIG_NET_POLL_CONTROLLER
1686 	.ndo_poll_controller    = alx_poll_controller,
1687 #endif
1688 };
1689 
1690 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1691 {
1692 	struct net_device *netdev;
1693 	struct alx_priv *alx;
1694 	struct alx_hw *hw;
1695 	bool phy_configured;
1696 	int err;
1697 
1698 	err = pci_enable_device_mem(pdev);
1699 	if (err)
1700 		return err;
1701 
1702 	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1703 	 * shared register for the high 32 bits, so only a single, aligned,
1704 	 * 4 GB physical address range can be used for descriptors.
1705 	 */
1706 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1707 		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1708 	} else {
1709 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1710 		if (err) {
1711 			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1712 			goto out_pci_disable;
1713 		}
1714 	}
1715 
1716 	err = pci_request_mem_regions(pdev, alx_drv_name);
1717 	if (err) {
1718 		dev_err(&pdev->dev,
1719 			"pci_request_mem_regions failed\n");
1720 		goto out_pci_disable;
1721 	}
1722 
1723 	pci_enable_pcie_error_reporting(pdev);
1724 	pci_set_master(pdev);
1725 
1726 	if (!pdev->pm_cap) {
1727 		dev_err(&pdev->dev,
1728 			"Can't find power management capability, aborting\n");
1729 		err = -EIO;
1730 		goto out_pci_release;
1731 	}
1732 
1733 	netdev = alloc_etherdev_mqs(sizeof(*alx),
1734 				    ALX_MAX_TX_QUEUES, 1);
1735 	if (!netdev) {
1736 		err = -ENOMEM;
1737 		goto out_pci_release;
1738 	}
1739 
1740 	SET_NETDEV_DEV(netdev, &pdev->dev);
1741 	alx = netdev_priv(netdev);
1742 	spin_lock_init(&alx->hw.mdio_lock);
1743 	spin_lock_init(&alx->irq_lock);
1744 	spin_lock_init(&alx->stats_lock);
1745 	alx->dev = netdev;
1746 	alx->hw.pdev = pdev;
1747 	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1748 			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1749 	hw = &alx->hw;
1750 	pci_set_drvdata(pdev, alx);
1751 
1752 	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1753 	if (!hw->hw_addr) {
1754 		dev_err(&pdev->dev, "cannot map device registers\n");
1755 		err = -EIO;
1756 		goto out_free_netdev;
1757 	}
1758 
1759 	netdev->netdev_ops = &alx_netdev_ops;
1760 	netdev->ethtool_ops = &alx_ethtool_ops;
1761 	netdev->irq = pci_irq_vector(pdev, 0);
1762 	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1763 
1764 	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1765 		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1766 
1767 	err = alx_init_sw(alx);
1768 	if (err) {
1769 		dev_err(&pdev->dev, "net device private data init failed\n");
1770 		goto out_unmap;
1771 	}
1772 
1773 	alx_reset_pcie(hw);
1774 
1775 	phy_configured = alx_phy_configured(hw);
1776 
1777 	if (!phy_configured)
1778 		alx_reset_phy(hw);
1779 
1780 	err = alx_reset_mac(hw);
1781 	if (err) {
1782 		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1783 		goto out_unmap;
1784 	}
1785 
1786 	/* setup link to put it in a known good starting state */
1787 	if (!phy_configured) {
1788 		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1789 		if (err) {
1790 			dev_err(&pdev->dev,
1791 				"failed to configure PHY speed/duplex (err=%d)\n",
1792 				err);
1793 			goto out_unmap;
1794 		}
1795 	}
1796 
1797 	netdev->hw_features = NETIF_F_SG |
1798 			      NETIF_F_HW_CSUM |
1799 			      NETIF_F_RXCSUM |
1800 			      NETIF_F_TSO |
1801 			      NETIF_F_TSO6;
1802 
1803 	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1804 		dev_warn(&pdev->dev,
1805 			 "Invalid permanent address programmed, using random one\n");
1806 		eth_hw_addr_random(netdev);
1807 		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1808 	}
1809 
1810 	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1811 	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1812 	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1813 
1814 	hw->mdio.prtad = 0;
1815 	hw->mdio.mmds = 0;
1816 	hw->mdio.dev = netdev;
1817 	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1818 				MDIO_SUPPORTS_C22 |
1819 				MDIO_EMULATE_C22;
1820 	hw->mdio.mdio_read = alx_mdio_read;
1821 	hw->mdio.mdio_write = alx_mdio_write;
1822 
1823 	if (!alx_get_phy_info(hw)) {
1824 		dev_err(&pdev->dev, "failed to identify PHY\n");
1825 		err = -EIO;
1826 		goto out_unmap;
1827 	}
1828 
1829 	INIT_WORK(&alx->link_check_wk, alx_link_check);
1830 	INIT_WORK(&alx->reset_wk, alx_reset);
1831 	netif_carrier_off(netdev);
1832 
1833 	err = register_netdev(netdev);
1834 	if (err) {
1835 		dev_err(&pdev->dev, "register netdevice failed\n");
1836 		goto out_unmap;
1837 	}
1838 
1839 	netdev_info(netdev,
1840 		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1841 		    netdev->dev_addr);
1842 
1843 	return 0;
1844 
1845 out_unmap:
1846 	iounmap(hw->hw_addr);
1847 out_free_netdev:
1848 	free_netdev(netdev);
1849 out_pci_release:
1850 	pci_release_mem_regions(pdev);
1851 out_pci_disable:
1852 	pci_disable_device(pdev);
1853 	return err;
1854 }
1855 
1856 static void alx_remove(struct pci_dev *pdev)
1857 {
1858 	struct alx_priv *alx = pci_get_drvdata(pdev);
1859 	struct alx_hw *hw = &alx->hw;
1860 
1861 	cancel_work_sync(&alx->link_check_wk);
1862 	cancel_work_sync(&alx->reset_wk);
1863 
1864 	/* restore permanent mac address */
1865 	alx_set_macaddr(hw, hw->perm_addr);
1866 
1867 	unregister_netdev(alx->dev);
1868 	iounmap(hw->hw_addr);
1869 	pci_release_mem_regions(pdev);
1870 
1871 	pci_disable_pcie_error_reporting(pdev);
1872 	pci_disable_device(pdev);
1873 
1874 	free_netdev(alx->dev);
1875 }
1876 
1877 #ifdef CONFIG_PM_SLEEP
1878 static int alx_suspend(struct device *dev)
1879 {
1880 	struct alx_priv *alx = dev_get_drvdata(dev);
1881 
1882 	if (!netif_running(alx->dev))
1883 		return 0;
1884 	netif_device_detach(alx->dev);
1885 	__alx_stop(alx);
1886 	return 0;
1887 }
1888 
1889 static int alx_resume(struct device *dev)
1890 {
1891 	struct alx_priv *alx = dev_get_drvdata(dev);
1892 	struct alx_hw *hw = &alx->hw;
1893 	int err;
1894 
1895 	alx_reset_phy(hw);
1896 
1897 	if (!netif_running(alx->dev))
1898 		return 0;
1899 	netif_device_attach(alx->dev);
1900 
1901 	rtnl_lock();
1902 	err = __alx_open(alx, true);
1903 	rtnl_unlock();
1904 
1905 	return err;
1906 }
1907 
1908 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1909 #define ALX_PM_OPS      (&alx_pm_ops)
1910 #else
1911 #define ALX_PM_OPS      NULL
1912 #endif
1913 
1914 
1915 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1916 					       pci_channel_state_t state)
1917 {
1918 	struct alx_priv *alx = pci_get_drvdata(pdev);
1919 	struct net_device *netdev = alx->dev;
1920 	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1921 
1922 	dev_info(&pdev->dev, "pci error detected\n");
1923 
1924 	rtnl_lock();
1925 
1926 	if (netif_running(netdev)) {
1927 		netif_device_detach(netdev);
1928 		alx_halt(alx);
1929 	}
1930 
1931 	if (state == pci_channel_io_perm_failure)
1932 		rc = PCI_ERS_RESULT_DISCONNECT;
1933 	else
1934 		pci_disable_device(pdev);
1935 
1936 	rtnl_unlock();
1937 
1938 	return rc;
1939 }
1940 
1941 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1942 {
1943 	struct alx_priv *alx = pci_get_drvdata(pdev);
1944 	struct alx_hw *hw = &alx->hw;
1945 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1946 
1947 	dev_info(&pdev->dev, "pci error slot reset\n");
1948 
1949 	rtnl_lock();
1950 
1951 	if (pci_enable_device(pdev)) {
1952 		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1953 		goto out;
1954 	}
1955 
1956 	pci_set_master(pdev);
1957 
1958 	alx_reset_pcie(hw);
1959 	if (!alx_reset_mac(hw))
1960 		rc = PCI_ERS_RESULT_RECOVERED;
1961 out:
1962 	rtnl_unlock();
1963 
1964 	return rc;
1965 }
1966 
1967 static void alx_pci_error_resume(struct pci_dev *pdev)
1968 {
1969 	struct alx_priv *alx = pci_get_drvdata(pdev);
1970 	struct net_device *netdev = alx->dev;
1971 
1972 	dev_info(&pdev->dev, "pci error resume\n");
1973 
1974 	rtnl_lock();
1975 
1976 	if (netif_running(netdev)) {
1977 		alx_activate(alx);
1978 		netif_device_attach(netdev);
1979 	}
1980 
1981 	rtnl_unlock();
1982 }
1983 
1984 static const struct pci_error_handlers alx_err_handlers = {
1985 	.error_detected = alx_pci_error_detected,
1986 	.slot_reset     = alx_pci_error_slot_reset,
1987 	.resume         = alx_pci_error_resume,
1988 };
1989 
1990 static const struct pci_device_id alx_pci_tbl[] = {
1991 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1992 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1993 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1994 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1995 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1996 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1997 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
1998 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1999 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2000 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2001 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2002 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2003 	{}
2004 };
2005 
2006 static struct pci_driver alx_driver = {
2007 	.name        = alx_drv_name,
2008 	.id_table    = alx_pci_tbl,
2009 	.probe       = alx_probe,
2010 	.remove      = alx_remove,
2011 	.err_handler = &alx_err_handlers,
2012 	.driver.pm   = ALX_PM_OPS,
2013 };
2014 
2015 module_pci_driver(alx_driver);
2016 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2017 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2018 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
2019 MODULE_DESCRIPTION(
2020 	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2021 MODULE_LICENSE("GPL");
2022