1 /*
2  * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3  *
4  *  This file is free software: you may copy, redistribute and/or modify it
5  *  under the terms of the GNU General Public License as published by the
6  *  Free Software Foundation, either version 2 of the License, or (at your
7  *  option) any later version.
8  *
9  *  This file is distributed in the hope that it will be useful, but
10  *  WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  *  General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * This file incorporates work covered by the following copyright and
18  * permission notice:
19  *
20  * Copyright (c) 2012 Qualcomm Atheros, Inc.
21  *
22  * Permission to use, copy, modify, and/or distribute this software for any
23  * purpose with or without fee is hereby granted, provided that the above
24  * copyright notice and this permission notice appear in all copies.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51 
52 const char alx_drv_name[] = "alx";
53 
54 static bool msix = false;
55 module_param(msix, bool, 0);
56 MODULE_PARM_DESC(msix, "Enable msi-x interrupt support");
57 
58 static void alx_free_txbuf(struct alx_priv *alx, int entry)
59 {
60 	struct alx_buffer *txb = &alx->txq.bufs[entry];
61 
62 	if (dma_unmap_len(txb, size)) {
63 		dma_unmap_single(&alx->hw.pdev->dev,
64 				 dma_unmap_addr(txb, dma),
65 				 dma_unmap_len(txb, size),
66 				 DMA_TO_DEVICE);
67 		dma_unmap_len_set(txb, size, 0);
68 	}
69 
70 	if (txb->skb) {
71 		dev_kfree_skb_any(txb->skb);
72 		txb->skb = NULL;
73 	}
74 }
75 
76 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
77 {
78 	struct alx_rx_queue *rxq = &alx->rxq;
79 	struct sk_buff *skb;
80 	struct alx_buffer *cur_buf;
81 	dma_addr_t dma;
82 	u16 cur, next, count = 0;
83 
84 	next = cur = rxq->write_idx;
85 	if (++next == alx->rx_ringsz)
86 		next = 0;
87 	cur_buf = &rxq->bufs[cur];
88 
89 	while (!cur_buf->skb && next != rxq->read_idx) {
90 		struct alx_rfd *rfd = &rxq->rfd[cur];
91 
92 		/*
93 		 * When DMA RX address is set to something like
94 		 * 0x....fc0, it will be very likely to cause DMA
95 		 * RFD overflow issue.
96 		 *
97 		 * To work around it, we apply rx skb with 64 bytes
98 		 * longer space, and offset the address whenever
99 		 * 0x....fc0 is detected.
100 		 */
101 		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
102 		if (!skb)
103 			break;
104 
105 		if (((unsigned long)skb->data & 0xfff) == 0xfc0)
106 			skb_reserve(skb, 64);
107 
108 		dma = dma_map_single(&alx->hw.pdev->dev,
109 				     skb->data, alx->rxbuf_size,
110 				     DMA_FROM_DEVICE);
111 		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
112 			dev_kfree_skb(skb);
113 			break;
114 		}
115 
116 		/* Unfortunately, RX descriptor buffers must be 4-byte
117 		 * aligned, so we can't use IP alignment.
118 		 */
119 		if (WARN_ON(dma & 3)) {
120 			dev_kfree_skb(skb);
121 			break;
122 		}
123 
124 		cur_buf->skb = skb;
125 		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
126 		dma_unmap_addr_set(cur_buf, dma, dma);
127 		rfd->addr = cpu_to_le64(dma);
128 
129 		cur = next;
130 		if (++next == alx->rx_ringsz)
131 			next = 0;
132 		cur_buf = &rxq->bufs[cur];
133 		count++;
134 	}
135 
136 	if (count) {
137 		/* flush all updates before updating hardware */
138 		wmb();
139 		rxq->write_idx = cur;
140 		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
141 	}
142 
143 	return count;
144 }
145 
146 static inline int alx_tpd_avail(struct alx_priv *alx)
147 {
148 	struct alx_tx_queue *txq = &alx->txq;
149 
150 	if (txq->write_idx >= txq->read_idx)
151 		return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
152 	return txq->read_idx - txq->write_idx - 1;
153 }
154 
155 static bool alx_clean_tx_irq(struct alx_priv *alx)
156 {
157 	struct alx_tx_queue *txq = &alx->txq;
158 	u16 hw_read_idx, sw_read_idx;
159 	unsigned int total_bytes = 0, total_packets = 0;
160 	int budget = ALX_DEFAULT_TX_WORK;
161 
162 	sw_read_idx = txq->read_idx;
163 	hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
164 
165 	if (sw_read_idx != hw_read_idx) {
166 		while (sw_read_idx != hw_read_idx && budget > 0) {
167 			struct sk_buff *skb;
168 
169 			skb = txq->bufs[sw_read_idx].skb;
170 			if (skb) {
171 				total_bytes += skb->len;
172 				total_packets++;
173 				budget--;
174 			}
175 
176 			alx_free_txbuf(alx, sw_read_idx);
177 
178 			if (++sw_read_idx == alx->tx_ringsz)
179 				sw_read_idx = 0;
180 		}
181 		txq->read_idx = sw_read_idx;
182 
183 		netdev_completed_queue(alx->dev, total_packets, total_bytes);
184 	}
185 
186 	if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
187 	    alx_tpd_avail(alx) > alx->tx_ringsz/4)
188 		netif_wake_queue(alx->dev);
189 
190 	return sw_read_idx == hw_read_idx;
191 }
192 
193 static void alx_schedule_link_check(struct alx_priv *alx)
194 {
195 	schedule_work(&alx->link_check_wk);
196 }
197 
198 static void alx_schedule_reset(struct alx_priv *alx)
199 {
200 	schedule_work(&alx->reset_wk);
201 }
202 
203 static int alx_clean_rx_irq(struct alx_priv *alx, int budget)
204 {
205 	struct alx_rx_queue *rxq = &alx->rxq;
206 	struct alx_rrd *rrd;
207 	struct alx_buffer *rxb;
208 	struct sk_buff *skb;
209 	u16 length, rfd_cleaned = 0;
210 	int work = 0;
211 
212 	while (work < budget) {
213 		rrd = &rxq->rrd[rxq->rrd_read_idx];
214 		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
215 			break;
216 		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
217 
218 		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
219 				  RRD_SI) != rxq->read_idx ||
220 		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
221 				  RRD_NOR) != 1) {
222 			alx_schedule_reset(alx);
223 			return work;
224 		}
225 
226 		rxb = &rxq->bufs[rxq->read_idx];
227 		dma_unmap_single(&alx->hw.pdev->dev,
228 				 dma_unmap_addr(rxb, dma),
229 				 dma_unmap_len(rxb, size),
230 				 DMA_FROM_DEVICE);
231 		dma_unmap_len_set(rxb, size, 0);
232 		skb = rxb->skb;
233 		rxb->skb = NULL;
234 
235 		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
236 		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
237 			rrd->word3 = 0;
238 			dev_kfree_skb_any(skb);
239 			goto next_pkt;
240 		}
241 
242 		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
243 				       RRD_PKTLEN) - ETH_FCS_LEN;
244 		skb_put(skb, length);
245 		skb->protocol = eth_type_trans(skb, alx->dev);
246 
247 		skb_checksum_none_assert(skb);
248 		if (alx->dev->features & NETIF_F_RXCSUM &&
249 		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
250 				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
251 			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
252 					      RRD_PID)) {
253 			case RRD_PID_IPV6UDP:
254 			case RRD_PID_IPV4UDP:
255 			case RRD_PID_IPV4TCP:
256 			case RRD_PID_IPV6TCP:
257 				skb->ip_summed = CHECKSUM_UNNECESSARY;
258 				break;
259 			}
260 		}
261 
262 		napi_gro_receive(&alx->napi, skb);
263 		work++;
264 
265 next_pkt:
266 		if (++rxq->read_idx == alx->rx_ringsz)
267 			rxq->read_idx = 0;
268 		if (++rxq->rrd_read_idx == alx->rx_ringsz)
269 			rxq->rrd_read_idx = 0;
270 
271 		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
272 			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
273 	}
274 
275 	if (rfd_cleaned)
276 		alx_refill_rx_ring(alx, GFP_ATOMIC);
277 
278 	return work;
279 }
280 
281 static int alx_poll(struct napi_struct *napi, int budget)
282 {
283 	struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
284 	struct alx_hw *hw = &alx->hw;
285 	unsigned long flags;
286 	bool tx_complete;
287 	int work;
288 
289 	tx_complete = alx_clean_tx_irq(alx);
290 	work = alx_clean_rx_irq(alx, budget);
291 
292 	if (!tx_complete || work == budget)
293 		return budget;
294 
295 	napi_complete(&alx->napi);
296 
297 	/* enable interrupt */
298 	if (alx->flags & ALX_FLAG_USING_MSIX) {
299 		alx_mask_msix(hw, 1, false);
300 	} else {
301 		spin_lock_irqsave(&alx->irq_lock, flags);
302 		alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
303 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
304 		spin_unlock_irqrestore(&alx->irq_lock, flags);
305 	}
306 
307 	alx_post_write(hw);
308 
309 	return work;
310 }
311 
312 static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
313 {
314 	struct alx_hw *hw = &alx->hw;
315 
316 	if (intr & ALX_ISR_FATAL) {
317 		netif_warn(alx, hw, alx->dev,
318 			   "fatal interrupt 0x%x, resetting\n", intr);
319 		alx_schedule_reset(alx);
320 		return true;
321 	}
322 
323 	if (intr & ALX_ISR_ALERT)
324 		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
325 
326 	if (intr & ALX_ISR_PHY) {
327 		/* suppress PHY interrupt, because the source
328 		 * is from PHY internal. only the internal status
329 		 * is cleared, the interrupt status could be cleared.
330 		 */
331 		alx->int_mask &= ~ALX_ISR_PHY;
332 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
333 		alx_schedule_link_check(alx);
334 	}
335 
336 	return false;
337 }
338 
339 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
340 {
341 	struct alx_hw *hw = &alx->hw;
342 
343 	spin_lock(&alx->irq_lock);
344 
345 	/* ACK interrupt */
346 	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
347 	intr &= alx->int_mask;
348 
349 	if (alx_intr_handle_misc(alx, intr))
350 		goto out;
351 
352 	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
353 		napi_schedule(&alx->napi);
354 		/* mask rx/tx interrupt, enable them when napi complete */
355 		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
356 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
357 	}
358 
359 	alx_write_mem32(hw, ALX_ISR, 0);
360 
361  out:
362 	spin_unlock(&alx->irq_lock);
363 	return IRQ_HANDLED;
364 }
365 
366 static irqreturn_t alx_intr_msix_ring(int irq, void *data)
367 {
368 	struct alx_priv *alx = data;
369 	struct alx_hw *hw = &alx->hw;
370 
371 	/* mask interrupt to ACK chip */
372 	alx_mask_msix(hw, 1, true);
373 	/* clear interrupt status */
374 	alx_write_mem32(hw, ALX_ISR, (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0));
375 
376 	napi_schedule(&alx->napi);
377 
378 	return IRQ_HANDLED;
379 }
380 
381 static irqreturn_t alx_intr_msix_misc(int irq, void *data)
382 {
383 	struct alx_priv *alx = data;
384 	struct alx_hw *hw = &alx->hw;
385 	u32 intr;
386 
387 	/* mask interrupt to ACK chip */
388 	alx_mask_msix(hw, 0, true);
389 
390 	/* read interrupt status */
391 	intr = alx_read_mem32(hw, ALX_ISR);
392 	intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
393 
394 	if (alx_intr_handle_misc(alx, intr))
395 		return IRQ_HANDLED;
396 
397 	/* clear interrupt status */
398 	alx_write_mem32(hw, ALX_ISR, intr);
399 
400 	/* enable interrupt again */
401 	alx_mask_msix(hw, 0, false);
402 
403 	return IRQ_HANDLED;
404 }
405 
406 static irqreturn_t alx_intr_msi(int irq, void *data)
407 {
408 	struct alx_priv *alx = data;
409 
410 	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
411 }
412 
413 static irqreturn_t alx_intr_legacy(int irq, void *data)
414 {
415 	struct alx_priv *alx = data;
416 	struct alx_hw *hw = &alx->hw;
417 	u32 intr;
418 
419 	intr = alx_read_mem32(hw, ALX_ISR);
420 
421 	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
422 		return IRQ_NONE;
423 
424 	return alx_intr_handle(alx, intr);
425 }
426 
427 static void alx_init_ring_ptrs(struct alx_priv *alx)
428 {
429 	struct alx_hw *hw = &alx->hw;
430 	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
431 
432 	alx->rxq.read_idx = 0;
433 	alx->rxq.write_idx = 0;
434 	alx->rxq.rrd_read_idx = 0;
435 	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
436 	alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
437 	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
438 	alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
439 	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
440 	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
441 
442 	alx->txq.read_idx = 0;
443 	alx->txq.write_idx = 0;
444 	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
445 	alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
446 	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
447 
448 	/* load these pointers into the chip */
449 	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
450 }
451 
452 static void alx_free_txring_buf(struct alx_priv *alx)
453 {
454 	struct alx_tx_queue *txq = &alx->txq;
455 	int i;
456 
457 	if (!txq->bufs)
458 		return;
459 
460 	for (i = 0; i < alx->tx_ringsz; i++)
461 		alx_free_txbuf(alx, i);
462 
463 	memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
464 	memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
465 	txq->write_idx = 0;
466 	txq->read_idx = 0;
467 
468 	netdev_reset_queue(alx->dev);
469 }
470 
471 static void alx_free_rxring_buf(struct alx_priv *alx)
472 {
473 	struct alx_rx_queue *rxq = &alx->rxq;
474 	struct alx_buffer *cur_buf;
475 	u16 i;
476 
477 	if (rxq == NULL)
478 		return;
479 
480 	for (i = 0; i < alx->rx_ringsz; i++) {
481 		cur_buf = rxq->bufs + i;
482 		if (cur_buf->skb) {
483 			dma_unmap_single(&alx->hw.pdev->dev,
484 					 dma_unmap_addr(cur_buf, dma),
485 					 dma_unmap_len(cur_buf, size),
486 					 DMA_FROM_DEVICE);
487 			dev_kfree_skb(cur_buf->skb);
488 			cur_buf->skb = NULL;
489 			dma_unmap_len_set(cur_buf, size, 0);
490 			dma_unmap_addr_set(cur_buf, dma, 0);
491 		}
492 	}
493 
494 	rxq->write_idx = 0;
495 	rxq->read_idx = 0;
496 	rxq->rrd_read_idx = 0;
497 }
498 
499 static void alx_free_buffers(struct alx_priv *alx)
500 {
501 	alx_free_txring_buf(alx);
502 	alx_free_rxring_buf(alx);
503 }
504 
505 static int alx_reinit_rings(struct alx_priv *alx)
506 {
507 	alx_free_buffers(alx);
508 
509 	alx_init_ring_ptrs(alx);
510 
511 	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
512 		return -ENOMEM;
513 
514 	return 0;
515 }
516 
517 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
518 {
519 	u32 crc32, bit, reg;
520 
521 	crc32 = ether_crc(ETH_ALEN, addr);
522 	reg = (crc32 >> 31) & 0x1;
523 	bit = (crc32 >> 26) & 0x1F;
524 
525 	mc_hash[reg] |= BIT(bit);
526 }
527 
528 static void __alx_set_rx_mode(struct net_device *netdev)
529 {
530 	struct alx_priv *alx = netdev_priv(netdev);
531 	struct alx_hw *hw = &alx->hw;
532 	struct netdev_hw_addr *ha;
533 	u32 mc_hash[2] = {};
534 
535 	if (!(netdev->flags & IFF_ALLMULTI)) {
536 		netdev_for_each_mc_addr(ha, netdev)
537 			alx_add_mc_addr(hw, ha->addr, mc_hash);
538 
539 		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
540 		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
541 	}
542 
543 	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
544 	if (netdev->flags & IFF_PROMISC)
545 		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
546 	if (netdev->flags & IFF_ALLMULTI)
547 		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
548 
549 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
550 }
551 
552 static void alx_set_rx_mode(struct net_device *netdev)
553 {
554 	__alx_set_rx_mode(netdev);
555 }
556 
557 static int alx_set_mac_address(struct net_device *netdev, void *data)
558 {
559 	struct alx_priv *alx = netdev_priv(netdev);
560 	struct alx_hw *hw = &alx->hw;
561 	struct sockaddr *addr = data;
562 
563 	if (!is_valid_ether_addr(addr->sa_data))
564 		return -EADDRNOTAVAIL;
565 
566 	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
567 		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
568 
569 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
570 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
571 	alx_set_macaddr(hw, hw->mac_addr);
572 
573 	return 0;
574 }
575 
576 static int alx_alloc_descriptors(struct alx_priv *alx)
577 {
578 	alx->txq.bufs = kcalloc(alx->tx_ringsz,
579 				sizeof(struct alx_buffer),
580 				GFP_KERNEL);
581 	if (!alx->txq.bufs)
582 		return -ENOMEM;
583 
584 	alx->rxq.bufs = kcalloc(alx->rx_ringsz,
585 				sizeof(struct alx_buffer),
586 				GFP_KERNEL);
587 	if (!alx->rxq.bufs)
588 		goto out_free;
589 
590 	/* physical tx/rx ring descriptors
591 	 *
592 	 * Allocate them as a single chunk because they must not cross a
593 	 * 4G boundary (hardware has a single register for high 32 bits
594 	 * of addresses only)
595 	 */
596 	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
597 			    sizeof(struct alx_rrd) * alx->rx_ringsz +
598 			    sizeof(struct alx_rfd) * alx->rx_ringsz;
599 	alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
600 						alx->descmem.size,
601 						&alx->descmem.dma,
602 						GFP_KERNEL);
603 	if (!alx->descmem.virt)
604 		goto out_free;
605 
606 	alx->txq.tpd = alx->descmem.virt;
607 	alx->txq.tpd_dma = alx->descmem.dma;
608 
609 	/* alignment requirement for next block */
610 	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
611 
612 	alx->rxq.rrd =
613 		(void *)((u8 *)alx->descmem.virt +
614 			 sizeof(struct alx_txd) * alx->tx_ringsz);
615 	alx->rxq.rrd_dma = alx->descmem.dma +
616 			   sizeof(struct alx_txd) * alx->tx_ringsz;
617 
618 	/* alignment requirement for next block */
619 	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
620 
621 	alx->rxq.rfd =
622 		(void *)((u8 *)alx->descmem.virt +
623 			 sizeof(struct alx_txd) * alx->tx_ringsz +
624 			 sizeof(struct alx_rrd) * alx->rx_ringsz);
625 	alx->rxq.rfd_dma = alx->descmem.dma +
626 			   sizeof(struct alx_txd) * alx->tx_ringsz +
627 			   sizeof(struct alx_rrd) * alx->rx_ringsz;
628 
629 	return 0;
630 out_free:
631 	kfree(alx->txq.bufs);
632 	kfree(alx->rxq.bufs);
633 	return -ENOMEM;
634 }
635 
636 static int alx_alloc_rings(struct alx_priv *alx)
637 {
638 	int err;
639 
640 	err = alx_alloc_descriptors(alx);
641 	if (err)
642 		return err;
643 
644 	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
645 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
646 
647 	netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
648 
649 	alx_reinit_rings(alx);
650 	return 0;
651 }
652 
653 static void alx_free_rings(struct alx_priv *alx)
654 {
655 	netif_napi_del(&alx->napi);
656 	alx_free_buffers(alx);
657 
658 	kfree(alx->txq.bufs);
659 	kfree(alx->rxq.bufs);
660 
661 	dma_free_coherent(&alx->hw.pdev->dev,
662 			  alx->descmem.size,
663 			  alx->descmem.virt,
664 			  alx->descmem.dma);
665 }
666 
667 static void alx_config_vector_mapping(struct alx_priv *alx)
668 {
669 	struct alx_hw *hw = &alx->hw;
670 	u32 tbl = 0;
671 
672 	if (alx->flags & ALX_FLAG_USING_MSIX) {
673 		tbl |= 1 << ALX_MSI_MAP_TBL1_TXQ0_SHIFT;
674 		tbl |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
675 	}
676 
677 	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl);
678 	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
679 	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
680 }
681 
682 static bool alx_enable_msix(struct alx_priv *alx)
683 {
684 	int i, err, num_vec = 2;
685 
686 	alx->msix_entries = kcalloc(num_vec, sizeof(struct msix_entry),
687 				    GFP_KERNEL);
688 	if (!alx->msix_entries) {
689 		netdev_warn(alx->dev, "Allocation of msix entries failed!\n");
690 		return false;
691 	}
692 
693 	for (i = 0; i < num_vec; i++)
694 		alx->msix_entries[i].entry = i;
695 
696 	err = pci_enable_msix(alx->hw.pdev, alx->msix_entries, num_vec);
697 	if (err) {
698 		kfree(alx->msix_entries);
699 		netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
700 		return false;
701 	}
702 
703 	alx->num_vec = num_vec;
704 	return true;
705 }
706 
707 static int alx_request_msix(struct alx_priv *alx)
708 {
709 	struct net_device *netdev = alx->dev;
710 	int i, err, vector = 0, free_vector = 0;
711 
712 	err = request_irq(alx->msix_entries[0].vector, alx_intr_msix_misc,
713 			  0, netdev->name, alx);
714 	if (err)
715 		goto out_err;
716 
717 	vector++;
718 	sprintf(alx->irq_lbl, "%s-TxRx-0", netdev->name);
719 
720 	err = request_irq(alx->msix_entries[vector].vector,
721 			  alx_intr_msix_ring, 0, alx->irq_lbl, alx);
722 		if (err)
723 			goto out_free;
724 
725 	return 0;
726 
727 out_free:
728 	free_irq(alx->msix_entries[free_vector++].vector, alx);
729 
730 	vector--;
731 	for (i = 0; i < vector; i++)
732 		free_irq(alx->msix_entries[free_vector++].vector, alx);
733 
734 out_err:
735 	return err;
736 }
737 
738 static void alx_init_intr(struct alx_priv *alx, bool msix)
739 {
740 	if (msix) {
741 		if (alx_enable_msix(alx))
742 			alx->flags |= ALX_FLAG_USING_MSIX;
743 	}
744 
745 	if (!(alx->flags & ALX_FLAG_USING_MSIX)) {
746 		alx->num_vec = 1;
747 
748 		if (!pci_enable_msi(alx->hw.pdev))
749 			alx->flags |= ALX_FLAG_USING_MSI;
750 	}
751 }
752 
753 static void alx_disable_advanced_intr(struct alx_priv *alx)
754 {
755 	if (alx->flags & ALX_FLAG_USING_MSIX) {
756 		kfree(alx->msix_entries);
757 		pci_disable_msix(alx->hw.pdev);
758 		alx->flags &= ~ALX_FLAG_USING_MSIX;
759 	}
760 
761 	if (alx->flags & ALX_FLAG_USING_MSI) {
762 		pci_disable_msi(alx->hw.pdev);
763 		alx->flags &= ~ALX_FLAG_USING_MSI;
764 	}
765 }
766 
767 static void alx_irq_enable(struct alx_priv *alx)
768 {
769 	struct alx_hw *hw = &alx->hw;
770 	int i;
771 
772 	/* level-1 interrupt switch */
773 	alx_write_mem32(hw, ALX_ISR, 0);
774 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
775 	alx_post_write(hw);
776 
777 	if (alx->flags & ALX_FLAG_USING_MSIX)
778 		/* enable all msix irqs */
779 		for (i = 0; i < alx->num_vec; i++)
780 			alx_mask_msix(hw, i, false);
781 }
782 
783 static void alx_irq_disable(struct alx_priv *alx)
784 {
785 	struct alx_hw *hw = &alx->hw;
786 	int i;
787 
788 	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
789 	alx_write_mem32(hw, ALX_IMR, 0);
790 	alx_post_write(hw);
791 
792 	if (alx->flags & ALX_FLAG_USING_MSIX) {
793 		for (i = 0; i < alx->num_vec; i++) {
794 			alx_mask_msix(hw, i, true);
795 			synchronize_irq(alx->msix_entries[i].vector);
796 		}
797 	} else {
798 		synchronize_irq(alx->hw.pdev->irq);
799 	}
800 }
801 
802 static int alx_request_irq(struct alx_priv *alx)
803 {
804 	struct pci_dev *pdev = alx->hw.pdev;
805 	struct alx_hw *hw = &alx->hw;
806 	int err;
807 	u32 msi_ctrl;
808 
809 	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
810 
811 	if (alx->flags & ALX_FLAG_USING_MSIX) {
812 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
813 		err = alx_request_msix(alx);
814 		if (!err)
815 			goto out;
816 
817 		/* msix request failed, realloc resources */
818 		alx_disable_advanced_intr(alx);
819 		alx_init_intr(alx, false);
820 	}
821 
822 	if (alx->flags & ALX_FLAG_USING_MSI) {
823 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
824 				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
825 		err = request_irq(pdev->irq, alx_intr_msi, 0,
826 				  alx->dev->name, alx);
827 		if (!err)
828 			goto out;
829 		/* fall back to legacy interrupt */
830 		alx->flags &= ~ALX_FLAG_USING_MSI;
831 		pci_disable_msi(alx->hw.pdev);
832 	}
833 
834 	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
835 	err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
836 			  alx->dev->name, alx);
837 out:
838 	if (!err)
839 		alx_config_vector_mapping(alx);
840 	else
841 		netdev_err(alx->dev, "IRQ registration failed!\n");
842 	return err;
843 }
844 
845 static void alx_free_irq(struct alx_priv *alx)
846 {
847 	struct pci_dev *pdev = alx->hw.pdev;
848 	int i;
849 
850 	if (alx->flags & ALX_FLAG_USING_MSIX) {
851 		/* we have only 2 vectors without multi queue support */
852 		for (i = 0; i < 2; i++)
853 			free_irq(alx->msix_entries[i].vector, alx);
854 	} else {
855 		free_irq(pdev->irq, alx);
856 	}
857 
858 	alx_disable_advanced_intr(alx);
859 }
860 
861 static int alx_identify_hw(struct alx_priv *alx)
862 {
863 	struct alx_hw *hw = &alx->hw;
864 	int rev = alx_hw_revision(hw);
865 
866 	if (rev > ALX_REV_C0)
867 		return -EINVAL;
868 
869 	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
870 
871 	return 0;
872 }
873 
874 static int alx_init_sw(struct alx_priv *alx)
875 {
876 	struct pci_dev *pdev = alx->hw.pdev;
877 	struct alx_hw *hw = &alx->hw;
878 	int err;
879 
880 	err = alx_identify_hw(alx);
881 	if (err) {
882 		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
883 		return err;
884 	}
885 
886 	alx->hw.lnk_patch =
887 		pdev->device == ALX_DEV_ID_AR8161 &&
888 		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
889 		pdev->subsystem_device == 0x0091 &&
890 		pdev->revision == 0;
891 
892 	hw->smb_timer = 400;
893 	hw->mtu = alx->dev->mtu;
894 	alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
895 	alx->tx_ringsz = 256;
896 	alx->rx_ringsz = 512;
897 	hw->imt = 200;
898 	alx->int_mask = ALX_ISR_MISC;
899 	hw->dma_chnl = hw->max_dma_chnl;
900 	hw->ith_tpd = alx->tx_ringsz / 3;
901 	hw->link_speed = SPEED_UNKNOWN;
902 	hw->duplex = DUPLEX_UNKNOWN;
903 	hw->adv_cfg = ADVERTISED_Autoneg |
904 		      ADVERTISED_10baseT_Half |
905 		      ADVERTISED_10baseT_Full |
906 		      ADVERTISED_100baseT_Full |
907 		      ADVERTISED_100baseT_Half |
908 		      ADVERTISED_1000baseT_Full;
909 	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
910 
911 	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
912 		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
913 		      ALX_MAC_CTRL_BRD_EN |
914 		      ALX_MAC_CTRL_PCRCE |
915 		      ALX_MAC_CTRL_CRCE |
916 		      ALX_MAC_CTRL_RXFC_EN |
917 		      ALX_MAC_CTRL_TXFC_EN |
918 		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
919 
920 	return err;
921 }
922 
923 
924 static netdev_features_t alx_fix_features(struct net_device *netdev,
925 					  netdev_features_t features)
926 {
927 	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
928 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
929 
930 	return features;
931 }
932 
933 static void alx_netif_stop(struct alx_priv *alx)
934 {
935 	netif_trans_update(alx->dev);
936 	if (netif_carrier_ok(alx->dev)) {
937 		netif_carrier_off(alx->dev);
938 		netif_tx_disable(alx->dev);
939 		napi_disable(&alx->napi);
940 	}
941 }
942 
943 static void alx_halt(struct alx_priv *alx)
944 {
945 	struct alx_hw *hw = &alx->hw;
946 
947 	alx_netif_stop(alx);
948 	hw->link_speed = SPEED_UNKNOWN;
949 	hw->duplex = DUPLEX_UNKNOWN;
950 
951 	alx_reset_mac(hw);
952 
953 	/* disable l0s/l1 */
954 	alx_enable_aspm(hw, false, false);
955 	alx_irq_disable(alx);
956 	alx_free_buffers(alx);
957 }
958 
959 static void alx_configure(struct alx_priv *alx)
960 {
961 	struct alx_hw *hw = &alx->hw;
962 
963 	alx_configure_basic(hw);
964 	alx_disable_rss(hw);
965 	__alx_set_rx_mode(alx->dev);
966 
967 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
968 }
969 
970 static void alx_activate(struct alx_priv *alx)
971 {
972 	/* hardware setting lost, restore it */
973 	alx_reinit_rings(alx);
974 	alx_configure(alx);
975 
976 	/* clear old interrupts */
977 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
978 
979 	alx_irq_enable(alx);
980 
981 	alx_schedule_link_check(alx);
982 }
983 
984 static void alx_reinit(struct alx_priv *alx)
985 {
986 	ASSERT_RTNL();
987 
988 	alx_halt(alx);
989 	alx_activate(alx);
990 }
991 
992 static int alx_change_mtu(struct net_device *netdev, int mtu)
993 {
994 	struct alx_priv *alx = netdev_priv(netdev);
995 	int max_frame = ALX_MAX_FRAME_LEN(mtu);
996 
997 	if ((max_frame < ALX_MIN_FRAME_SIZE) ||
998 	    (max_frame > ALX_MAX_FRAME_SIZE))
999 		return -EINVAL;
1000 
1001 	if (netdev->mtu == mtu)
1002 		return 0;
1003 
1004 	netdev->mtu = mtu;
1005 	alx->hw.mtu = mtu;
1006 	alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1007 	netdev_update_features(netdev);
1008 	if (netif_running(netdev))
1009 		alx_reinit(alx);
1010 	return 0;
1011 }
1012 
1013 static void alx_netif_start(struct alx_priv *alx)
1014 {
1015 	netif_tx_wake_all_queues(alx->dev);
1016 	napi_enable(&alx->napi);
1017 	netif_carrier_on(alx->dev);
1018 }
1019 
1020 static int __alx_open(struct alx_priv *alx, bool resume)
1021 {
1022 	int err;
1023 
1024 	alx_init_intr(alx, msix);
1025 
1026 	if (!resume)
1027 		netif_carrier_off(alx->dev);
1028 
1029 	err = alx_alloc_rings(alx);
1030 	if (err)
1031 		goto out_disable_adv_intr;
1032 
1033 	alx_configure(alx);
1034 
1035 	err = alx_request_irq(alx);
1036 	if (err)
1037 		goto out_free_rings;
1038 
1039 	/* clear old interrupts */
1040 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1041 
1042 	alx_irq_enable(alx);
1043 
1044 	if (!resume)
1045 		netif_tx_start_all_queues(alx->dev);
1046 
1047 	alx_schedule_link_check(alx);
1048 	return 0;
1049 
1050 out_free_rings:
1051 	alx_free_rings(alx);
1052 out_disable_adv_intr:
1053 	alx_disable_advanced_intr(alx);
1054 	return err;
1055 }
1056 
1057 static void __alx_stop(struct alx_priv *alx)
1058 {
1059 	alx_halt(alx);
1060 	alx_free_irq(alx);
1061 	alx_free_rings(alx);
1062 }
1063 
1064 static const char *alx_speed_desc(struct alx_hw *hw)
1065 {
1066 	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1067 	case ADVERTISED_1000baseT_Full:
1068 		return "1 Gbps Full";
1069 	case ADVERTISED_100baseT_Full:
1070 		return "100 Mbps Full";
1071 	case ADVERTISED_100baseT_Half:
1072 		return "100 Mbps Half";
1073 	case ADVERTISED_10baseT_Full:
1074 		return "10 Mbps Full";
1075 	case ADVERTISED_10baseT_Half:
1076 		return "10 Mbps Half";
1077 	default:
1078 		return "Unknown speed";
1079 	}
1080 }
1081 
1082 static void alx_check_link(struct alx_priv *alx)
1083 {
1084 	struct alx_hw *hw = &alx->hw;
1085 	unsigned long flags;
1086 	int old_speed;
1087 	u8 old_duplex;
1088 	int err;
1089 
1090 	/* clear PHY internal interrupt status, otherwise the main
1091 	 * interrupt status will be asserted forever
1092 	 */
1093 	alx_clear_phy_intr(hw);
1094 
1095 	old_speed = hw->link_speed;
1096 	old_duplex = hw->duplex;
1097 	err = alx_read_phy_link(hw);
1098 	if (err < 0)
1099 		goto reset;
1100 
1101 	spin_lock_irqsave(&alx->irq_lock, flags);
1102 	alx->int_mask |= ALX_ISR_PHY;
1103 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1104 	spin_unlock_irqrestore(&alx->irq_lock, flags);
1105 
1106 	if (old_speed == hw->link_speed)
1107 		return;
1108 
1109 	if (hw->link_speed != SPEED_UNKNOWN) {
1110 		netif_info(alx, link, alx->dev,
1111 			   "NIC Up: %s\n", alx_speed_desc(hw));
1112 		alx_post_phy_link(hw);
1113 		alx_enable_aspm(hw, true, true);
1114 		alx_start_mac(hw);
1115 
1116 		if (old_speed == SPEED_UNKNOWN)
1117 			alx_netif_start(alx);
1118 	} else {
1119 		/* link is now down */
1120 		alx_netif_stop(alx);
1121 		netif_info(alx, link, alx->dev, "Link Down\n");
1122 		err = alx_reset_mac(hw);
1123 		if (err)
1124 			goto reset;
1125 		alx_irq_disable(alx);
1126 
1127 		/* MAC reset causes all HW settings to be lost, restore all */
1128 		err = alx_reinit_rings(alx);
1129 		if (err)
1130 			goto reset;
1131 		alx_configure(alx);
1132 		alx_enable_aspm(hw, false, true);
1133 		alx_post_phy_link(hw);
1134 		alx_irq_enable(alx);
1135 	}
1136 
1137 	return;
1138 
1139 reset:
1140 	alx_schedule_reset(alx);
1141 }
1142 
1143 static int alx_open(struct net_device *netdev)
1144 {
1145 	return __alx_open(netdev_priv(netdev), false);
1146 }
1147 
1148 static int alx_stop(struct net_device *netdev)
1149 {
1150 	__alx_stop(netdev_priv(netdev));
1151 	return 0;
1152 }
1153 
1154 static void alx_link_check(struct work_struct *work)
1155 {
1156 	struct alx_priv *alx;
1157 
1158 	alx = container_of(work, struct alx_priv, link_check_wk);
1159 
1160 	rtnl_lock();
1161 	alx_check_link(alx);
1162 	rtnl_unlock();
1163 }
1164 
1165 static void alx_reset(struct work_struct *work)
1166 {
1167 	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1168 
1169 	rtnl_lock();
1170 	alx_reinit(alx);
1171 	rtnl_unlock();
1172 }
1173 
1174 static int alx_tpd_req(struct sk_buff *skb)
1175 {
1176 	int num;
1177 
1178 	num = skb_shinfo(skb)->nr_frags + 1;
1179 	/* we need one extra descriptor for LSOv2 */
1180 	if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1181 		num++;
1182 
1183 	return num;
1184 }
1185 
1186 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1187 {
1188 	u8 cso, css;
1189 
1190 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1191 		return 0;
1192 
1193 	cso = skb_checksum_start_offset(skb);
1194 	if (cso & 1)
1195 		return -EINVAL;
1196 
1197 	css = cso + skb->csum_offset;
1198 	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1199 	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1200 	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1201 
1202 	return 0;
1203 }
1204 
1205 static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1206 {
1207 	int err;
1208 
1209 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1210 		return 0;
1211 
1212 	if (!skb_is_gso(skb))
1213 		return 0;
1214 
1215 	err = skb_cow_head(skb, 0);
1216 	if (err < 0)
1217 		return err;
1218 
1219 	if (skb->protocol == htons(ETH_P_IP)) {
1220 		struct iphdr *iph = ip_hdr(skb);
1221 
1222 		iph->check = 0;
1223 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1224 							 0, IPPROTO_TCP, 0);
1225 		first->word1 |= 1 << TPD_IPV4_SHIFT;
1226 	} else if (skb_is_gso_v6(skb)) {
1227 		ipv6_hdr(skb)->payload_len = 0;
1228 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1229 						       &ipv6_hdr(skb)->daddr,
1230 						       0, IPPROTO_TCP, 0);
1231 		/* LSOv2: the first TPD only provides the packet length */
1232 		first->adrl.l.pkt_len = skb->len;
1233 		first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1234 	}
1235 
1236 	first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1237 	first->word1 |= (skb_transport_offset(skb) &
1238 			 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1239 	first->word1 |= (skb_shinfo(skb)->gso_size &
1240 			 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1241 	return 1;
1242 }
1243 
1244 static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
1245 {
1246 	struct alx_tx_queue *txq = &alx->txq;
1247 	struct alx_txd *tpd, *first_tpd;
1248 	dma_addr_t dma;
1249 	int maplen, f, first_idx = txq->write_idx;
1250 
1251 	first_tpd = &txq->tpd[txq->write_idx];
1252 	tpd = first_tpd;
1253 
1254 	if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1255 		if (++txq->write_idx == alx->tx_ringsz)
1256 			txq->write_idx = 0;
1257 
1258 		tpd = &txq->tpd[txq->write_idx];
1259 		tpd->len = first_tpd->len;
1260 		tpd->vlan_tag = first_tpd->vlan_tag;
1261 		tpd->word1 = first_tpd->word1;
1262 	}
1263 
1264 	maplen = skb_headlen(skb);
1265 	dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
1266 			     DMA_TO_DEVICE);
1267 	if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1268 		goto err_dma;
1269 
1270 	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1271 	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1272 
1273 	tpd->adrl.addr = cpu_to_le64(dma);
1274 	tpd->len = cpu_to_le16(maplen);
1275 
1276 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1277 		struct skb_frag_struct *frag;
1278 
1279 		frag = &skb_shinfo(skb)->frags[f];
1280 
1281 		if (++txq->write_idx == alx->tx_ringsz)
1282 			txq->write_idx = 0;
1283 		tpd = &txq->tpd[txq->write_idx];
1284 
1285 		tpd->word1 = first_tpd->word1;
1286 
1287 		maplen = skb_frag_size(frag);
1288 		dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
1289 				       maplen, DMA_TO_DEVICE);
1290 		if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1291 			goto err_dma;
1292 		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1293 		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1294 
1295 		tpd->adrl.addr = cpu_to_le64(dma);
1296 		tpd->len = cpu_to_le16(maplen);
1297 	}
1298 
1299 	/* last TPD, set EOP flag and store skb */
1300 	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1301 	txq->bufs[txq->write_idx].skb = skb;
1302 
1303 	if (++txq->write_idx == alx->tx_ringsz)
1304 		txq->write_idx = 0;
1305 
1306 	return 0;
1307 
1308 err_dma:
1309 	f = first_idx;
1310 	while (f != txq->write_idx) {
1311 		alx_free_txbuf(alx, f);
1312 		if (++f == alx->tx_ringsz)
1313 			f = 0;
1314 	}
1315 	return -ENOMEM;
1316 }
1317 
1318 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1319 				  struct net_device *netdev)
1320 {
1321 	struct alx_priv *alx = netdev_priv(netdev);
1322 	struct alx_tx_queue *txq = &alx->txq;
1323 	struct alx_txd *first;
1324 	int tso;
1325 
1326 	if (alx_tpd_avail(alx) < alx_tpd_req(skb)) {
1327 		netif_stop_queue(alx->dev);
1328 		goto drop;
1329 	}
1330 
1331 	first = &txq->tpd[txq->write_idx];
1332 	memset(first, 0, sizeof(*first));
1333 
1334 	tso = alx_tso(skb, first);
1335 	if (tso < 0)
1336 		goto drop;
1337 	else if (!tso && alx_tx_csum(skb, first))
1338 		goto drop;
1339 
1340 	if (alx_map_tx_skb(alx, skb) < 0)
1341 		goto drop;
1342 
1343 	netdev_sent_queue(alx->dev, skb->len);
1344 
1345 	/* flush updates before updating hardware */
1346 	wmb();
1347 	alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
1348 
1349 	if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
1350 		netif_stop_queue(alx->dev);
1351 
1352 	return NETDEV_TX_OK;
1353 
1354 drop:
1355 	dev_kfree_skb_any(skb);
1356 	return NETDEV_TX_OK;
1357 }
1358 
1359 static void alx_tx_timeout(struct net_device *dev)
1360 {
1361 	struct alx_priv *alx = netdev_priv(dev);
1362 
1363 	alx_schedule_reset(alx);
1364 }
1365 
1366 static int alx_mdio_read(struct net_device *netdev,
1367 			 int prtad, int devad, u16 addr)
1368 {
1369 	struct alx_priv *alx = netdev_priv(netdev);
1370 	struct alx_hw *hw = &alx->hw;
1371 	u16 val;
1372 	int err;
1373 
1374 	if (prtad != hw->mdio.prtad)
1375 		return -EINVAL;
1376 
1377 	if (devad == MDIO_DEVAD_NONE)
1378 		err = alx_read_phy_reg(hw, addr, &val);
1379 	else
1380 		err = alx_read_phy_ext(hw, devad, addr, &val);
1381 
1382 	if (err)
1383 		return err;
1384 	return val;
1385 }
1386 
1387 static int alx_mdio_write(struct net_device *netdev,
1388 			  int prtad, int devad, u16 addr, u16 val)
1389 {
1390 	struct alx_priv *alx = netdev_priv(netdev);
1391 	struct alx_hw *hw = &alx->hw;
1392 
1393 	if (prtad != hw->mdio.prtad)
1394 		return -EINVAL;
1395 
1396 	if (devad == MDIO_DEVAD_NONE)
1397 		return alx_write_phy_reg(hw, addr, val);
1398 
1399 	return alx_write_phy_ext(hw, devad, addr, val);
1400 }
1401 
1402 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1403 {
1404 	struct alx_priv *alx = netdev_priv(netdev);
1405 
1406 	if (!netif_running(netdev))
1407 		return -EAGAIN;
1408 
1409 	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1410 }
1411 
1412 #ifdef CONFIG_NET_POLL_CONTROLLER
1413 static void alx_poll_controller(struct net_device *netdev)
1414 {
1415 	struct alx_priv *alx = netdev_priv(netdev);
1416 
1417 	if (alx->flags & ALX_FLAG_USING_MSIX) {
1418 		alx_intr_msix_misc(0, alx);
1419 		alx_intr_msix_ring(0, alx);
1420 	} else if (alx->flags & ALX_FLAG_USING_MSI)
1421 		alx_intr_msi(0, alx);
1422 	else
1423 		alx_intr_legacy(0, alx);
1424 }
1425 #endif
1426 
1427 static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
1428 					struct rtnl_link_stats64 *net_stats)
1429 {
1430 	struct alx_priv *alx = netdev_priv(dev);
1431 	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1432 
1433 	spin_lock(&alx->stats_lock);
1434 
1435 	alx_update_hw_stats(&alx->hw);
1436 
1437 	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1438 	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1439 	net_stats->multicast  = hw_stats->rx_mcast;
1440 	net_stats->collisions = hw_stats->tx_single_col +
1441 				hw_stats->tx_multi_col +
1442 				hw_stats->tx_late_col +
1443 				hw_stats->tx_abort_col;
1444 
1445 	net_stats->rx_errors  = hw_stats->rx_frag +
1446 				hw_stats->rx_fcs_err +
1447 				hw_stats->rx_len_err +
1448 				hw_stats->rx_ov_sz +
1449 				hw_stats->rx_ov_rrd +
1450 				hw_stats->rx_align_err +
1451 				hw_stats->rx_ov_rxf;
1452 
1453 	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1454 	net_stats->rx_length_errors = hw_stats->rx_len_err;
1455 	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1456 	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1457 	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1458 
1459 	net_stats->tx_errors = hw_stats->tx_late_col +
1460 			       hw_stats->tx_abort_col +
1461 			       hw_stats->tx_underrun +
1462 			       hw_stats->tx_trunc;
1463 
1464 	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1465 	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1466 	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1467 
1468 	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1469 	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1470 
1471 	spin_unlock(&alx->stats_lock);
1472 
1473 	return net_stats;
1474 }
1475 
1476 static const struct net_device_ops alx_netdev_ops = {
1477 	.ndo_open               = alx_open,
1478 	.ndo_stop               = alx_stop,
1479 	.ndo_start_xmit         = alx_start_xmit,
1480 	.ndo_get_stats64        = alx_get_stats64,
1481 	.ndo_set_rx_mode        = alx_set_rx_mode,
1482 	.ndo_validate_addr      = eth_validate_addr,
1483 	.ndo_set_mac_address    = alx_set_mac_address,
1484 	.ndo_change_mtu         = alx_change_mtu,
1485 	.ndo_do_ioctl           = alx_ioctl,
1486 	.ndo_tx_timeout         = alx_tx_timeout,
1487 	.ndo_fix_features	= alx_fix_features,
1488 #ifdef CONFIG_NET_POLL_CONTROLLER
1489 	.ndo_poll_controller    = alx_poll_controller,
1490 #endif
1491 };
1492 
1493 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1494 {
1495 	struct net_device *netdev;
1496 	struct alx_priv *alx;
1497 	struct alx_hw *hw;
1498 	bool phy_configured;
1499 	int err;
1500 
1501 	err = pci_enable_device_mem(pdev);
1502 	if (err)
1503 		return err;
1504 
1505 	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1506 	 * shared register for the high 32 bits, so only a single, aligned,
1507 	 * 4 GB physical address range can be used for descriptors.
1508 	 */
1509 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1510 		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1511 	} else {
1512 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1513 		if (err) {
1514 			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1515 			goto out_pci_disable;
1516 		}
1517 	}
1518 
1519 	err = pci_request_mem_regions(pdev, alx_drv_name);
1520 	if (err) {
1521 		dev_err(&pdev->dev,
1522 			"pci_request_mem_regions failed\n");
1523 		goto out_pci_disable;
1524 	}
1525 
1526 	pci_enable_pcie_error_reporting(pdev);
1527 	pci_set_master(pdev);
1528 
1529 	if (!pdev->pm_cap) {
1530 		dev_err(&pdev->dev,
1531 			"Can't find power management capability, aborting\n");
1532 		err = -EIO;
1533 		goto out_pci_release;
1534 	}
1535 
1536 	netdev = alloc_etherdev(sizeof(*alx));
1537 	if (!netdev) {
1538 		err = -ENOMEM;
1539 		goto out_pci_release;
1540 	}
1541 
1542 	SET_NETDEV_DEV(netdev, &pdev->dev);
1543 	alx = netdev_priv(netdev);
1544 	spin_lock_init(&alx->hw.mdio_lock);
1545 	spin_lock_init(&alx->irq_lock);
1546 	spin_lock_init(&alx->stats_lock);
1547 	alx->dev = netdev;
1548 	alx->hw.pdev = pdev;
1549 	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1550 			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1551 	hw = &alx->hw;
1552 	pci_set_drvdata(pdev, alx);
1553 
1554 	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1555 	if (!hw->hw_addr) {
1556 		dev_err(&pdev->dev, "cannot map device registers\n");
1557 		err = -EIO;
1558 		goto out_free_netdev;
1559 	}
1560 
1561 	netdev->netdev_ops = &alx_netdev_ops;
1562 	netdev->ethtool_ops = &alx_ethtool_ops;
1563 	netdev->irq = pdev->irq;
1564 	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1565 
1566 	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1567 		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1568 
1569 	err = alx_init_sw(alx);
1570 	if (err) {
1571 		dev_err(&pdev->dev, "net device private data init failed\n");
1572 		goto out_unmap;
1573 	}
1574 
1575 	alx_reset_pcie(hw);
1576 
1577 	phy_configured = alx_phy_configured(hw);
1578 
1579 	if (!phy_configured)
1580 		alx_reset_phy(hw);
1581 
1582 	err = alx_reset_mac(hw);
1583 	if (err) {
1584 		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1585 		goto out_unmap;
1586 	}
1587 
1588 	/* setup link to put it in a known good starting state */
1589 	if (!phy_configured) {
1590 		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1591 		if (err) {
1592 			dev_err(&pdev->dev,
1593 				"failed to configure PHY speed/duplex (err=%d)\n",
1594 				err);
1595 			goto out_unmap;
1596 		}
1597 	}
1598 
1599 	netdev->hw_features = NETIF_F_SG |
1600 			      NETIF_F_HW_CSUM |
1601 			      NETIF_F_TSO |
1602 			      NETIF_F_TSO6;
1603 
1604 	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1605 		dev_warn(&pdev->dev,
1606 			 "Invalid permanent address programmed, using random one\n");
1607 		eth_hw_addr_random(netdev);
1608 		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1609 	}
1610 
1611 	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1612 	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1613 	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1614 
1615 	hw->mdio.prtad = 0;
1616 	hw->mdio.mmds = 0;
1617 	hw->mdio.dev = netdev;
1618 	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1619 				MDIO_SUPPORTS_C22 |
1620 				MDIO_EMULATE_C22;
1621 	hw->mdio.mdio_read = alx_mdio_read;
1622 	hw->mdio.mdio_write = alx_mdio_write;
1623 
1624 	if (!alx_get_phy_info(hw)) {
1625 		dev_err(&pdev->dev, "failed to identify PHY\n");
1626 		err = -EIO;
1627 		goto out_unmap;
1628 	}
1629 
1630 	INIT_WORK(&alx->link_check_wk, alx_link_check);
1631 	INIT_WORK(&alx->reset_wk, alx_reset);
1632 	netif_carrier_off(netdev);
1633 
1634 	err = register_netdev(netdev);
1635 	if (err) {
1636 		dev_err(&pdev->dev, "register netdevice failed\n");
1637 		goto out_unmap;
1638 	}
1639 
1640 	netdev_info(netdev,
1641 		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1642 		    netdev->dev_addr);
1643 
1644 	return 0;
1645 
1646 out_unmap:
1647 	iounmap(hw->hw_addr);
1648 out_free_netdev:
1649 	free_netdev(netdev);
1650 out_pci_release:
1651 	pci_release_mem_regions(pdev);
1652 out_pci_disable:
1653 	pci_disable_device(pdev);
1654 	return err;
1655 }
1656 
1657 static void alx_remove(struct pci_dev *pdev)
1658 {
1659 	struct alx_priv *alx = pci_get_drvdata(pdev);
1660 	struct alx_hw *hw = &alx->hw;
1661 
1662 	cancel_work_sync(&alx->link_check_wk);
1663 	cancel_work_sync(&alx->reset_wk);
1664 
1665 	/* restore permanent mac address */
1666 	alx_set_macaddr(hw, hw->perm_addr);
1667 
1668 	unregister_netdev(alx->dev);
1669 	iounmap(hw->hw_addr);
1670 	pci_release_mem_regions(pdev);
1671 
1672 	pci_disable_pcie_error_reporting(pdev);
1673 	pci_disable_device(pdev);
1674 
1675 	free_netdev(alx->dev);
1676 }
1677 
1678 #ifdef CONFIG_PM_SLEEP
1679 static int alx_suspend(struct device *dev)
1680 {
1681 	struct pci_dev *pdev = to_pci_dev(dev);
1682 	struct alx_priv *alx = pci_get_drvdata(pdev);
1683 
1684 	if (!netif_running(alx->dev))
1685 		return 0;
1686 	netif_device_detach(alx->dev);
1687 	__alx_stop(alx);
1688 	return 0;
1689 }
1690 
1691 static int alx_resume(struct device *dev)
1692 {
1693 	struct pci_dev *pdev = to_pci_dev(dev);
1694 	struct alx_priv *alx = pci_get_drvdata(pdev);
1695 	struct alx_hw *hw = &alx->hw;
1696 
1697 	alx_reset_phy(hw);
1698 
1699 	if (!netif_running(alx->dev))
1700 		return 0;
1701 	netif_device_attach(alx->dev);
1702 	return __alx_open(alx, true);
1703 }
1704 
1705 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1706 #define ALX_PM_OPS      (&alx_pm_ops)
1707 #else
1708 #define ALX_PM_OPS      NULL
1709 #endif
1710 
1711 
1712 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1713 					       pci_channel_state_t state)
1714 {
1715 	struct alx_priv *alx = pci_get_drvdata(pdev);
1716 	struct net_device *netdev = alx->dev;
1717 	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1718 
1719 	dev_info(&pdev->dev, "pci error detected\n");
1720 
1721 	rtnl_lock();
1722 
1723 	if (netif_running(netdev)) {
1724 		netif_device_detach(netdev);
1725 		alx_halt(alx);
1726 	}
1727 
1728 	if (state == pci_channel_io_perm_failure)
1729 		rc = PCI_ERS_RESULT_DISCONNECT;
1730 	else
1731 		pci_disable_device(pdev);
1732 
1733 	rtnl_unlock();
1734 
1735 	return rc;
1736 }
1737 
1738 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1739 {
1740 	struct alx_priv *alx = pci_get_drvdata(pdev);
1741 	struct alx_hw *hw = &alx->hw;
1742 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1743 
1744 	dev_info(&pdev->dev, "pci error slot reset\n");
1745 
1746 	rtnl_lock();
1747 
1748 	if (pci_enable_device(pdev)) {
1749 		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1750 		goto out;
1751 	}
1752 
1753 	pci_set_master(pdev);
1754 
1755 	alx_reset_pcie(hw);
1756 	if (!alx_reset_mac(hw))
1757 		rc = PCI_ERS_RESULT_RECOVERED;
1758 out:
1759 	pci_cleanup_aer_uncorrect_error_status(pdev);
1760 
1761 	rtnl_unlock();
1762 
1763 	return rc;
1764 }
1765 
1766 static void alx_pci_error_resume(struct pci_dev *pdev)
1767 {
1768 	struct alx_priv *alx = pci_get_drvdata(pdev);
1769 	struct net_device *netdev = alx->dev;
1770 
1771 	dev_info(&pdev->dev, "pci error resume\n");
1772 
1773 	rtnl_lock();
1774 
1775 	if (netif_running(netdev)) {
1776 		alx_activate(alx);
1777 		netif_device_attach(netdev);
1778 	}
1779 
1780 	rtnl_unlock();
1781 }
1782 
1783 static const struct pci_error_handlers alx_err_handlers = {
1784 	.error_detected = alx_pci_error_detected,
1785 	.slot_reset     = alx_pci_error_slot_reset,
1786 	.resume         = alx_pci_error_resume,
1787 };
1788 
1789 static const struct pci_device_id alx_pci_tbl[] = {
1790 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1791 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1792 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1793 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1794 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1795 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1796 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
1797 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1798 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
1799 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1800 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
1801 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
1802 	{}
1803 };
1804 
1805 static struct pci_driver alx_driver = {
1806 	.name        = alx_drv_name,
1807 	.id_table    = alx_pci_tbl,
1808 	.probe       = alx_probe,
1809 	.remove      = alx_remove,
1810 	.err_handler = &alx_err_handlers,
1811 	.driver.pm   = ALX_PM_OPS,
1812 };
1813 
1814 module_pci_driver(alx_driver);
1815 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
1816 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
1817 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
1818 MODULE_DESCRIPTION(
1819 	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
1820 MODULE_LICENSE("GPL");
1821