1 /* 2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net> 3 * 4 * This file is free software: you may copy, redistribute and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation, either version 2 of the License, or (at your 7 * option) any later version. 8 * 9 * This file is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 * 17 * This file incorporates work covered by the following copyright and 18 * permission notice: 19 * 20 * Copyright (c) 2012 Qualcomm Atheros, Inc. 21 * 22 * Permission to use, copy, modify, and/or distribute this software for any 23 * purpose with or without fee is hereby granted, provided that the above 24 * copyright notice and this permission notice appear in all copies. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/interrupt.h> 38 #include <linux/ip.h> 39 #include <linux/ipv6.h> 40 #include <linux/if_vlan.h> 41 #include <linux/mdio.h> 42 #include <linux/aer.h> 43 #include <linux/bitops.h> 44 #include <linux/netdevice.h> 45 #include <linux/etherdevice.h> 46 #include <net/ip6_checksum.h> 47 #include <linux/crc32.h> 48 #include "alx.h" 49 #include "hw.h" 50 #include "reg.h" 51 52 static const char alx_drv_name[] = "alx"; 53 54 static void alx_free_txbuf(struct alx_tx_queue *txq, int entry) 55 { 56 struct alx_buffer *txb = &txq->bufs[entry]; 57 58 if (dma_unmap_len(txb, size)) { 59 dma_unmap_single(txq->dev, 60 dma_unmap_addr(txb, dma), 61 dma_unmap_len(txb, size), 62 DMA_TO_DEVICE); 63 dma_unmap_len_set(txb, size, 0); 64 } 65 66 if (txb->skb) { 67 dev_kfree_skb_any(txb->skb); 68 txb->skb = NULL; 69 } 70 } 71 72 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp) 73 { 74 struct alx_rx_queue *rxq = alx->qnapi[0]->rxq; 75 struct sk_buff *skb; 76 struct alx_buffer *cur_buf; 77 dma_addr_t dma; 78 u16 cur, next, count = 0; 79 80 next = cur = rxq->write_idx; 81 if (++next == alx->rx_ringsz) 82 next = 0; 83 cur_buf = &rxq->bufs[cur]; 84 85 while (!cur_buf->skb && next != rxq->read_idx) { 86 struct alx_rfd *rfd = &rxq->rfd[cur]; 87 88 /* 89 * When DMA RX address is set to something like 90 * 0x....fc0, it will be very likely to cause DMA 91 * RFD overflow issue. 92 * 93 * To work around it, we apply rx skb with 64 bytes 94 * longer space, and offset the address whenever 95 * 0x....fc0 is detected. 96 */ 97 skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp); 98 if (!skb) 99 break; 100 101 if (((unsigned long)skb->data & 0xfff) == 0xfc0) 102 skb_reserve(skb, 64); 103 104 dma = dma_map_single(&alx->hw.pdev->dev, 105 skb->data, alx->rxbuf_size, 106 DMA_FROM_DEVICE); 107 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) { 108 dev_kfree_skb(skb); 109 break; 110 } 111 112 /* Unfortunately, RX descriptor buffers must be 4-byte 113 * aligned, so we can't use IP alignment. 114 */ 115 if (WARN_ON(dma & 3)) { 116 dev_kfree_skb(skb); 117 break; 118 } 119 120 cur_buf->skb = skb; 121 dma_unmap_len_set(cur_buf, size, alx->rxbuf_size); 122 dma_unmap_addr_set(cur_buf, dma, dma); 123 rfd->addr = cpu_to_le64(dma); 124 125 cur = next; 126 if (++next == alx->rx_ringsz) 127 next = 0; 128 cur_buf = &rxq->bufs[cur]; 129 count++; 130 } 131 132 if (count) { 133 /* flush all updates before updating hardware */ 134 wmb(); 135 rxq->write_idx = cur; 136 alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur); 137 } 138 139 return count; 140 } 141 142 static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx, 143 struct sk_buff *skb) 144 { 145 unsigned int r_idx = skb->queue_mapping; 146 147 if (r_idx >= alx->num_txq) 148 r_idx = r_idx % alx->num_txq; 149 150 return alx->qnapi[r_idx]->txq; 151 } 152 153 static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq) 154 { 155 return netdev_get_tx_queue(txq->netdev, txq->queue_idx); 156 } 157 158 static inline int alx_tpd_avail(struct alx_tx_queue *txq) 159 { 160 if (txq->write_idx >= txq->read_idx) 161 return txq->count + txq->read_idx - txq->write_idx - 1; 162 return txq->read_idx - txq->write_idx - 1; 163 } 164 165 static bool alx_clean_tx_irq(struct alx_tx_queue *txq) 166 { 167 struct alx_priv *alx; 168 struct netdev_queue *tx_queue; 169 u16 hw_read_idx, sw_read_idx; 170 unsigned int total_bytes = 0, total_packets = 0; 171 int budget = ALX_DEFAULT_TX_WORK; 172 173 alx = netdev_priv(txq->netdev); 174 tx_queue = alx_get_tx_queue(txq); 175 176 sw_read_idx = txq->read_idx; 177 hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg); 178 179 if (sw_read_idx != hw_read_idx) { 180 while (sw_read_idx != hw_read_idx && budget > 0) { 181 struct sk_buff *skb; 182 183 skb = txq->bufs[sw_read_idx].skb; 184 if (skb) { 185 total_bytes += skb->len; 186 total_packets++; 187 budget--; 188 } 189 190 alx_free_txbuf(txq, sw_read_idx); 191 192 if (++sw_read_idx == txq->count) 193 sw_read_idx = 0; 194 } 195 txq->read_idx = sw_read_idx; 196 197 netdev_tx_completed_queue(tx_queue, total_packets, total_bytes); 198 } 199 200 if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) && 201 alx_tpd_avail(txq) > txq->count / 4) 202 netif_tx_wake_queue(tx_queue); 203 204 return sw_read_idx == hw_read_idx; 205 } 206 207 static void alx_schedule_link_check(struct alx_priv *alx) 208 { 209 schedule_work(&alx->link_check_wk); 210 } 211 212 static void alx_schedule_reset(struct alx_priv *alx) 213 { 214 schedule_work(&alx->reset_wk); 215 } 216 217 static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget) 218 { 219 struct alx_priv *alx; 220 struct alx_rrd *rrd; 221 struct alx_buffer *rxb; 222 struct sk_buff *skb; 223 u16 length, rfd_cleaned = 0; 224 int work = 0; 225 226 alx = netdev_priv(rxq->netdev); 227 228 while (work < budget) { 229 rrd = &rxq->rrd[rxq->rrd_read_idx]; 230 if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT))) 231 break; 232 rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT); 233 234 if (ALX_GET_FIELD(le32_to_cpu(rrd->word0), 235 RRD_SI) != rxq->read_idx || 236 ALX_GET_FIELD(le32_to_cpu(rrd->word0), 237 RRD_NOR) != 1) { 238 alx_schedule_reset(alx); 239 return work; 240 } 241 242 rxb = &rxq->bufs[rxq->read_idx]; 243 dma_unmap_single(rxq->dev, 244 dma_unmap_addr(rxb, dma), 245 dma_unmap_len(rxb, size), 246 DMA_FROM_DEVICE); 247 dma_unmap_len_set(rxb, size, 0); 248 skb = rxb->skb; 249 rxb->skb = NULL; 250 251 if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) || 252 rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) { 253 rrd->word3 = 0; 254 dev_kfree_skb_any(skb); 255 goto next_pkt; 256 } 257 258 length = ALX_GET_FIELD(le32_to_cpu(rrd->word3), 259 RRD_PKTLEN) - ETH_FCS_LEN; 260 skb_put(skb, length); 261 skb->protocol = eth_type_trans(skb, rxq->netdev); 262 263 skb_checksum_none_assert(skb); 264 if (alx->dev->features & NETIF_F_RXCSUM && 265 !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) | 266 cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) { 267 switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2), 268 RRD_PID)) { 269 case RRD_PID_IPV6UDP: 270 case RRD_PID_IPV4UDP: 271 case RRD_PID_IPV4TCP: 272 case RRD_PID_IPV6TCP: 273 skb->ip_summed = CHECKSUM_UNNECESSARY; 274 break; 275 } 276 } 277 278 napi_gro_receive(&rxq->np->napi, skb); 279 work++; 280 281 next_pkt: 282 if (++rxq->read_idx == rxq->count) 283 rxq->read_idx = 0; 284 if (++rxq->rrd_read_idx == rxq->count) 285 rxq->rrd_read_idx = 0; 286 287 if (++rfd_cleaned > ALX_RX_ALLOC_THRESH) 288 rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC); 289 } 290 291 if (rfd_cleaned) 292 alx_refill_rx_ring(alx, GFP_ATOMIC); 293 294 return work; 295 } 296 297 static int alx_poll(struct napi_struct *napi, int budget) 298 { 299 struct alx_napi *np = container_of(napi, struct alx_napi, napi); 300 struct alx_priv *alx = np->alx; 301 struct alx_hw *hw = &alx->hw; 302 unsigned long flags; 303 bool tx_complete = true; 304 int work = 0; 305 306 if (np->txq) 307 tx_complete = alx_clean_tx_irq(np->txq); 308 if (np->rxq) 309 work = alx_clean_rx_irq(np->rxq, budget); 310 311 if (!tx_complete || work == budget) 312 return budget; 313 314 napi_complete_done(&np->napi, work); 315 316 /* enable interrupt */ 317 if (alx->hw.pdev->msix_enabled) { 318 alx_mask_msix(hw, np->vec_idx, false); 319 } else { 320 spin_lock_irqsave(&alx->irq_lock, flags); 321 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0; 322 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 323 spin_unlock_irqrestore(&alx->irq_lock, flags); 324 } 325 326 alx_post_write(hw); 327 328 return work; 329 } 330 331 static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr) 332 { 333 struct alx_hw *hw = &alx->hw; 334 335 if (intr & ALX_ISR_FATAL) { 336 netif_warn(alx, hw, alx->dev, 337 "fatal interrupt 0x%x, resetting\n", intr); 338 alx_schedule_reset(alx); 339 return true; 340 } 341 342 if (intr & ALX_ISR_ALERT) 343 netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr); 344 345 if (intr & ALX_ISR_PHY) { 346 /* suppress PHY interrupt, because the source 347 * is from PHY internal. only the internal status 348 * is cleared, the interrupt status could be cleared. 349 */ 350 alx->int_mask &= ~ALX_ISR_PHY; 351 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 352 alx_schedule_link_check(alx); 353 } 354 355 return false; 356 } 357 358 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr) 359 { 360 struct alx_hw *hw = &alx->hw; 361 362 spin_lock(&alx->irq_lock); 363 364 /* ACK interrupt */ 365 alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS); 366 intr &= alx->int_mask; 367 368 if (alx_intr_handle_misc(alx, intr)) 369 goto out; 370 371 if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) { 372 napi_schedule(&alx->qnapi[0]->napi); 373 /* mask rx/tx interrupt, enable them when napi complete */ 374 alx->int_mask &= ~ALX_ISR_ALL_QUEUES; 375 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 376 } 377 378 alx_write_mem32(hw, ALX_ISR, 0); 379 380 out: 381 spin_unlock(&alx->irq_lock); 382 return IRQ_HANDLED; 383 } 384 385 static irqreturn_t alx_intr_msix_ring(int irq, void *data) 386 { 387 struct alx_napi *np = data; 388 struct alx_hw *hw = &np->alx->hw; 389 390 /* mask interrupt to ACK chip */ 391 alx_mask_msix(hw, np->vec_idx, true); 392 /* clear interrupt status */ 393 alx_write_mem32(hw, ALX_ISR, np->vec_mask); 394 395 napi_schedule(&np->napi); 396 397 return IRQ_HANDLED; 398 } 399 400 static irqreturn_t alx_intr_msix_misc(int irq, void *data) 401 { 402 struct alx_priv *alx = data; 403 struct alx_hw *hw = &alx->hw; 404 u32 intr; 405 406 /* mask interrupt to ACK chip */ 407 alx_mask_msix(hw, 0, true); 408 409 /* read interrupt status */ 410 intr = alx_read_mem32(hw, ALX_ISR); 411 intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES); 412 413 if (alx_intr_handle_misc(alx, intr)) 414 return IRQ_HANDLED; 415 416 /* clear interrupt status */ 417 alx_write_mem32(hw, ALX_ISR, intr); 418 419 /* enable interrupt again */ 420 alx_mask_msix(hw, 0, false); 421 422 return IRQ_HANDLED; 423 } 424 425 static irqreturn_t alx_intr_msi(int irq, void *data) 426 { 427 struct alx_priv *alx = data; 428 429 return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR)); 430 } 431 432 static irqreturn_t alx_intr_legacy(int irq, void *data) 433 { 434 struct alx_priv *alx = data; 435 struct alx_hw *hw = &alx->hw; 436 u32 intr; 437 438 intr = alx_read_mem32(hw, ALX_ISR); 439 440 if (intr & ALX_ISR_DIS || !(intr & alx->int_mask)) 441 return IRQ_NONE; 442 443 return alx_intr_handle(alx, intr); 444 } 445 446 static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO, 447 ALX_TPD_PRI1_ADDR_LO, 448 ALX_TPD_PRI2_ADDR_LO, 449 ALX_TPD_PRI3_ADDR_LO}; 450 451 static void alx_init_ring_ptrs(struct alx_priv *alx) 452 { 453 struct alx_hw *hw = &alx->hw; 454 u32 addr_hi = ((u64)alx->descmem.dma) >> 32; 455 struct alx_napi *np; 456 int i; 457 458 for (i = 0; i < alx->num_napi; i++) { 459 np = alx->qnapi[i]; 460 if (np->txq) { 461 np->txq->read_idx = 0; 462 np->txq->write_idx = 0; 463 alx_write_mem32(hw, 464 txring_header_reg[np->txq->queue_idx], 465 np->txq->tpd_dma); 466 } 467 468 if (np->rxq) { 469 np->rxq->read_idx = 0; 470 np->rxq->write_idx = 0; 471 np->rxq->rrd_read_idx = 0; 472 alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma); 473 alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma); 474 } 475 } 476 477 alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi); 478 alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz); 479 480 alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi); 481 alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz); 482 alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz); 483 alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size); 484 485 /* load these pointers into the chip */ 486 alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR); 487 } 488 489 static void alx_free_txring_buf(struct alx_tx_queue *txq) 490 { 491 int i; 492 493 if (!txq->bufs) 494 return; 495 496 for (i = 0; i < txq->count; i++) 497 alx_free_txbuf(txq, i); 498 499 memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer)); 500 memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd)); 501 txq->write_idx = 0; 502 txq->read_idx = 0; 503 504 netdev_tx_reset_queue(alx_get_tx_queue(txq)); 505 } 506 507 static void alx_free_rxring_buf(struct alx_rx_queue *rxq) 508 { 509 struct alx_buffer *cur_buf; 510 u16 i; 511 512 if (!rxq->bufs) 513 return; 514 515 for (i = 0; i < rxq->count; i++) { 516 cur_buf = rxq->bufs + i; 517 if (cur_buf->skb) { 518 dma_unmap_single(rxq->dev, 519 dma_unmap_addr(cur_buf, dma), 520 dma_unmap_len(cur_buf, size), 521 DMA_FROM_DEVICE); 522 dev_kfree_skb(cur_buf->skb); 523 cur_buf->skb = NULL; 524 dma_unmap_len_set(cur_buf, size, 0); 525 dma_unmap_addr_set(cur_buf, dma, 0); 526 } 527 } 528 529 rxq->write_idx = 0; 530 rxq->read_idx = 0; 531 rxq->rrd_read_idx = 0; 532 } 533 534 static void alx_free_buffers(struct alx_priv *alx) 535 { 536 int i; 537 538 for (i = 0; i < alx->num_txq; i++) 539 if (alx->qnapi[i] && alx->qnapi[i]->txq) 540 alx_free_txring_buf(alx->qnapi[i]->txq); 541 542 if (alx->qnapi[0] && alx->qnapi[0]->rxq) 543 alx_free_rxring_buf(alx->qnapi[0]->rxq); 544 } 545 546 static int alx_reinit_rings(struct alx_priv *alx) 547 { 548 alx_free_buffers(alx); 549 550 alx_init_ring_ptrs(alx); 551 552 if (!alx_refill_rx_ring(alx, GFP_KERNEL)) 553 return -ENOMEM; 554 555 return 0; 556 } 557 558 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash) 559 { 560 u32 crc32, bit, reg; 561 562 crc32 = ether_crc(ETH_ALEN, addr); 563 reg = (crc32 >> 31) & 0x1; 564 bit = (crc32 >> 26) & 0x1F; 565 566 mc_hash[reg] |= BIT(bit); 567 } 568 569 static void __alx_set_rx_mode(struct net_device *netdev) 570 { 571 struct alx_priv *alx = netdev_priv(netdev); 572 struct alx_hw *hw = &alx->hw; 573 struct netdev_hw_addr *ha; 574 u32 mc_hash[2] = {}; 575 576 if (!(netdev->flags & IFF_ALLMULTI)) { 577 netdev_for_each_mc_addr(ha, netdev) 578 alx_add_mc_addr(hw, ha->addr, mc_hash); 579 580 alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]); 581 alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]); 582 } 583 584 hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN); 585 if (netdev->flags & IFF_PROMISC) 586 hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN; 587 if (netdev->flags & IFF_ALLMULTI) 588 hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN; 589 590 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); 591 } 592 593 static void alx_set_rx_mode(struct net_device *netdev) 594 { 595 __alx_set_rx_mode(netdev); 596 } 597 598 static int alx_set_mac_address(struct net_device *netdev, void *data) 599 { 600 struct alx_priv *alx = netdev_priv(netdev); 601 struct alx_hw *hw = &alx->hw; 602 struct sockaddr *addr = data; 603 604 if (!is_valid_ether_addr(addr->sa_data)) 605 return -EADDRNOTAVAIL; 606 607 if (netdev->addr_assign_type & NET_ADDR_RANDOM) 608 netdev->addr_assign_type ^= NET_ADDR_RANDOM; 609 610 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 611 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 612 alx_set_macaddr(hw, hw->mac_addr); 613 614 return 0; 615 } 616 617 static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq, 618 int offset) 619 { 620 txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL); 621 if (!txq->bufs) 622 return -ENOMEM; 623 624 txq->tpd = alx->descmem.virt + offset; 625 txq->tpd_dma = alx->descmem.dma + offset; 626 offset += sizeof(struct alx_txd) * txq->count; 627 628 return offset; 629 } 630 631 static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq, 632 int offset) 633 { 634 rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL); 635 if (!rxq->bufs) 636 return -ENOMEM; 637 638 rxq->rrd = alx->descmem.virt + offset; 639 rxq->rrd_dma = alx->descmem.dma + offset; 640 offset += sizeof(struct alx_rrd) * rxq->count; 641 642 rxq->rfd = alx->descmem.virt + offset; 643 rxq->rfd_dma = alx->descmem.dma + offset; 644 offset += sizeof(struct alx_rfd) * rxq->count; 645 646 return offset; 647 } 648 649 static int alx_alloc_rings(struct alx_priv *alx) 650 { 651 int i, offset = 0; 652 653 /* physical tx/rx ring descriptors 654 * 655 * Allocate them as a single chunk because they must not cross a 656 * 4G boundary (hardware has a single register for high 32 bits 657 * of addresses only) 658 */ 659 alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz * 660 alx->num_txq + 661 sizeof(struct alx_rrd) * alx->rx_ringsz + 662 sizeof(struct alx_rfd) * alx->rx_ringsz; 663 alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev, 664 alx->descmem.size, 665 &alx->descmem.dma, 666 GFP_KERNEL); 667 if (!alx->descmem.virt) 668 return -ENOMEM; 669 670 /* alignment requirements */ 671 BUILD_BUG_ON(sizeof(struct alx_txd) % 8); 672 BUILD_BUG_ON(sizeof(struct alx_rrd) % 8); 673 674 for (i = 0; i < alx->num_txq; i++) { 675 offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset); 676 if (offset < 0) { 677 netdev_err(alx->dev, "Allocation of tx buffer failed!\n"); 678 return -ENOMEM; 679 } 680 } 681 682 offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset); 683 if (offset < 0) { 684 netdev_err(alx->dev, "Allocation of rx buffer failed!\n"); 685 return -ENOMEM; 686 } 687 688 return 0; 689 } 690 691 static void alx_free_rings(struct alx_priv *alx) 692 { 693 int i; 694 695 alx_free_buffers(alx); 696 697 for (i = 0; i < alx->num_txq; i++) 698 if (alx->qnapi[i] && alx->qnapi[i]->txq) 699 kfree(alx->qnapi[i]->txq->bufs); 700 701 if (alx->qnapi[0] && alx->qnapi[0]->rxq) 702 kfree(alx->qnapi[0]->rxq->bufs); 703 704 if (alx->descmem.virt) 705 dma_free_coherent(&alx->hw.pdev->dev, 706 alx->descmem.size, 707 alx->descmem.virt, 708 alx->descmem.dma); 709 } 710 711 static void alx_free_napis(struct alx_priv *alx) 712 { 713 struct alx_napi *np; 714 int i; 715 716 for (i = 0; i < alx->num_napi; i++) { 717 np = alx->qnapi[i]; 718 if (!np) 719 continue; 720 721 netif_napi_del(&np->napi); 722 kfree(np->txq); 723 kfree(np->rxq); 724 kfree(np); 725 alx->qnapi[i] = NULL; 726 } 727 } 728 729 static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX, 730 ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX}; 731 static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX, 732 ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX}; 733 static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1, 734 ALX_ISR_TX_Q2, ALX_ISR_TX_Q3}; 735 static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1, 736 ALX_ISR_RX_Q2, ALX_ISR_RX_Q3, 737 ALX_ISR_RX_Q4, ALX_ISR_RX_Q5, 738 ALX_ISR_RX_Q6, ALX_ISR_RX_Q7}; 739 740 static int alx_alloc_napis(struct alx_priv *alx) 741 { 742 struct alx_napi *np; 743 struct alx_rx_queue *rxq; 744 struct alx_tx_queue *txq; 745 int i; 746 747 alx->int_mask &= ~ALX_ISR_ALL_QUEUES; 748 749 /* allocate alx_napi structures */ 750 for (i = 0; i < alx->num_napi; i++) { 751 np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL); 752 if (!np) 753 goto err_out; 754 755 np->alx = alx; 756 netif_napi_add(alx->dev, &np->napi, alx_poll, 64); 757 alx->qnapi[i] = np; 758 } 759 760 /* allocate tx queues */ 761 for (i = 0; i < alx->num_txq; i++) { 762 np = alx->qnapi[i]; 763 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 764 if (!txq) 765 goto err_out; 766 767 np->txq = txq; 768 txq->p_reg = tx_pidx_reg[i]; 769 txq->c_reg = tx_cidx_reg[i]; 770 txq->queue_idx = i; 771 txq->count = alx->tx_ringsz; 772 txq->netdev = alx->dev; 773 txq->dev = &alx->hw.pdev->dev; 774 np->vec_mask |= tx_vect_mask[i]; 775 alx->int_mask |= tx_vect_mask[i]; 776 } 777 778 /* allocate rx queues */ 779 np = alx->qnapi[0]; 780 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); 781 if (!rxq) 782 goto err_out; 783 784 np->rxq = rxq; 785 rxq->np = alx->qnapi[0]; 786 rxq->queue_idx = 0; 787 rxq->count = alx->rx_ringsz; 788 rxq->netdev = alx->dev; 789 rxq->dev = &alx->hw.pdev->dev; 790 np->vec_mask |= rx_vect_mask[0]; 791 alx->int_mask |= rx_vect_mask[0]; 792 793 return 0; 794 795 err_out: 796 netdev_err(alx->dev, "error allocating internal structures\n"); 797 alx_free_napis(alx); 798 return -ENOMEM; 799 } 800 801 static const int txq_vec_mapping_shift[] = { 802 0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT, 803 0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT, 804 1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT, 805 1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT, 806 }; 807 808 static void alx_config_vector_mapping(struct alx_priv *alx) 809 { 810 struct alx_hw *hw = &alx->hw; 811 u32 tbl[2] = {0, 0}; 812 int i, vector, idx, shift; 813 814 if (alx->hw.pdev->msix_enabled) { 815 /* tx mappings */ 816 for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) { 817 idx = txq_vec_mapping_shift[i * 2]; 818 shift = txq_vec_mapping_shift[i * 2 + 1]; 819 tbl[idx] |= vector << shift; 820 } 821 822 /* rx mapping */ 823 tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT; 824 } 825 826 alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]); 827 alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]); 828 alx_write_mem32(hw, ALX_MSI_ID_MAP, 0); 829 } 830 831 static int alx_enable_msix(struct alx_priv *alx) 832 { 833 int err, num_vec, num_txq, num_rxq; 834 835 num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES); 836 num_rxq = 1; 837 num_vec = max_t(int, num_txq, num_rxq) + 1; 838 839 err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec, 840 PCI_IRQ_MSIX); 841 if (err < 0) { 842 netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n"); 843 return err; 844 } 845 846 alx->num_vec = num_vec; 847 alx->num_napi = num_vec - 1; 848 alx->num_txq = num_txq; 849 alx->num_rxq = num_rxq; 850 851 return err; 852 } 853 854 static int alx_request_msix(struct alx_priv *alx) 855 { 856 struct net_device *netdev = alx->dev; 857 int i, err, vector = 0, free_vector = 0; 858 859 err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc, 860 0, netdev->name, alx); 861 if (err) 862 goto out_err; 863 864 for (i = 0; i < alx->num_napi; i++) { 865 struct alx_napi *np = alx->qnapi[i]; 866 867 vector++; 868 869 if (np->txq && np->rxq) 870 sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name, 871 np->txq->queue_idx); 872 else if (np->txq) 873 sprintf(np->irq_lbl, "%s-tx-%u", netdev->name, 874 np->txq->queue_idx); 875 else if (np->rxq) 876 sprintf(np->irq_lbl, "%s-rx-%u", netdev->name, 877 np->rxq->queue_idx); 878 else 879 sprintf(np->irq_lbl, "%s-unused", netdev->name); 880 881 np->vec_idx = vector; 882 err = request_irq(pci_irq_vector(alx->hw.pdev, vector), 883 alx_intr_msix_ring, 0, np->irq_lbl, np); 884 if (err) 885 goto out_free; 886 } 887 return 0; 888 889 out_free: 890 free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx); 891 892 vector--; 893 for (i = 0; i < vector; i++) 894 free_irq(pci_irq_vector(alx->hw.pdev,free_vector++), 895 alx->qnapi[i]); 896 897 out_err: 898 return err; 899 } 900 901 static int alx_init_intr(struct alx_priv *alx) 902 { 903 int ret; 904 905 ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1, 906 PCI_IRQ_MSI | PCI_IRQ_LEGACY); 907 if (ret < 0) 908 return ret; 909 910 alx->num_vec = 1; 911 alx->num_napi = 1; 912 alx->num_txq = 1; 913 alx->num_rxq = 1; 914 return 0; 915 } 916 917 static void alx_irq_enable(struct alx_priv *alx) 918 { 919 struct alx_hw *hw = &alx->hw; 920 int i; 921 922 /* level-1 interrupt switch */ 923 alx_write_mem32(hw, ALX_ISR, 0); 924 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 925 alx_post_write(hw); 926 927 if (alx->hw.pdev->msix_enabled) { 928 /* enable all msix irqs */ 929 for (i = 0; i < alx->num_vec; i++) 930 alx_mask_msix(hw, i, false); 931 } 932 } 933 934 static void alx_irq_disable(struct alx_priv *alx) 935 { 936 struct alx_hw *hw = &alx->hw; 937 int i; 938 939 alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS); 940 alx_write_mem32(hw, ALX_IMR, 0); 941 alx_post_write(hw); 942 943 if (alx->hw.pdev->msix_enabled) { 944 for (i = 0; i < alx->num_vec; i++) { 945 alx_mask_msix(hw, i, true); 946 synchronize_irq(pci_irq_vector(alx->hw.pdev, i)); 947 } 948 } else { 949 synchronize_irq(pci_irq_vector(alx->hw.pdev, 0)); 950 } 951 } 952 953 static int alx_realloc_resources(struct alx_priv *alx) 954 { 955 int err; 956 957 alx_free_rings(alx); 958 alx_free_napis(alx); 959 pci_free_irq_vectors(alx->hw.pdev); 960 961 err = alx_init_intr(alx); 962 if (err) 963 return err; 964 965 err = alx_alloc_napis(alx); 966 if (err) 967 return err; 968 969 err = alx_alloc_rings(alx); 970 if (err) 971 return err; 972 973 return 0; 974 } 975 976 static int alx_request_irq(struct alx_priv *alx) 977 { 978 struct pci_dev *pdev = alx->hw.pdev; 979 struct alx_hw *hw = &alx->hw; 980 int err; 981 u32 msi_ctrl; 982 983 msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT; 984 985 if (alx->hw.pdev->msix_enabled) { 986 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl); 987 err = alx_request_msix(alx); 988 if (!err) 989 goto out; 990 991 /* msix request failed, realloc resources */ 992 err = alx_realloc_resources(alx); 993 if (err) 994 goto out; 995 } 996 997 if (alx->hw.pdev->msi_enabled) { 998 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 999 msi_ctrl | ALX_MSI_MASK_SEL_LINE); 1000 err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0, 1001 alx->dev->name, alx); 1002 if (!err) 1003 goto out; 1004 1005 /* fall back to legacy interrupt */ 1006 pci_free_irq_vectors(alx->hw.pdev); 1007 } 1008 1009 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0); 1010 err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED, 1011 alx->dev->name, alx); 1012 out: 1013 if (!err) 1014 alx_config_vector_mapping(alx); 1015 else 1016 netdev_err(alx->dev, "IRQ registration failed!\n"); 1017 return err; 1018 } 1019 1020 static void alx_free_irq(struct alx_priv *alx) 1021 { 1022 struct pci_dev *pdev = alx->hw.pdev; 1023 int i; 1024 1025 free_irq(pci_irq_vector(pdev, 0), alx); 1026 if (alx->hw.pdev->msix_enabled) { 1027 for (i = 0; i < alx->num_napi; i++) 1028 free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]); 1029 } 1030 1031 pci_free_irq_vectors(pdev); 1032 } 1033 1034 static int alx_identify_hw(struct alx_priv *alx) 1035 { 1036 struct alx_hw *hw = &alx->hw; 1037 int rev = alx_hw_revision(hw); 1038 1039 if (rev > ALX_REV_C0) 1040 return -EINVAL; 1041 1042 hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2; 1043 1044 return 0; 1045 } 1046 1047 static int alx_init_sw(struct alx_priv *alx) 1048 { 1049 struct pci_dev *pdev = alx->hw.pdev; 1050 struct alx_hw *hw = &alx->hw; 1051 int err; 1052 1053 err = alx_identify_hw(alx); 1054 if (err) { 1055 dev_err(&pdev->dev, "unrecognized chip, aborting\n"); 1056 return err; 1057 } 1058 1059 alx->hw.lnk_patch = 1060 pdev->device == ALX_DEV_ID_AR8161 && 1061 pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC && 1062 pdev->subsystem_device == 0x0091 && 1063 pdev->revision == 0; 1064 1065 hw->smb_timer = 400; 1066 hw->mtu = alx->dev->mtu; 1067 alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu); 1068 /* MTU range: 34 - 9256 */ 1069 alx->dev->min_mtu = 34; 1070 alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE); 1071 alx->tx_ringsz = 256; 1072 alx->rx_ringsz = 512; 1073 hw->imt = 200; 1074 alx->int_mask = ALX_ISR_MISC; 1075 hw->dma_chnl = hw->max_dma_chnl; 1076 hw->ith_tpd = alx->tx_ringsz / 3; 1077 hw->link_speed = SPEED_UNKNOWN; 1078 hw->duplex = DUPLEX_UNKNOWN; 1079 hw->adv_cfg = ADVERTISED_Autoneg | 1080 ADVERTISED_10baseT_Half | 1081 ADVERTISED_10baseT_Full | 1082 ADVERTISED_100baseT_Full | 1083 ADVERTISED_100baseT_Half | 1084 ADVERTISED_1000baseT_Full; 1085 hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX; 1086 1087 hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN | 1088 ALX_MAC_CTRL_MHASH_ALG_HI5B | 1089 ALX_MAC_CTRL_BRD_EN | 1090 ALX_MAC_CTRL_PCRCE | 1091 ALX_MAC_CTRL_CRCE | 1092 ALX_MAC_CTRL_RXFC_EN | 1093 ALX_MAC_CTRL_TXFC_EN | 1094 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT; 1095 1096 return err; 1097 } 1098 1099 1100 static netdev_features_t alx_fix_features(struct net_device *netdev, 1101 netdev_features_t features) 1102 { 1103 if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE) 1104 features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 1105 1106 return features; 1107 } 1108 1109 static void alx_netif_stop(struct alx_priv *alx) 1110 { 1111 int i; 1112 1113 netif_trans_update(alx->dev); 1114 if (netif_carrier_ok(alx->dev)) { 1115 netif_carrier_off(alx->dev); 1116 netif_tx_disable(alx->dev); 1117 for (i = 0; i < alx->num_napi; i++) 1118 napi_disable(&alx->qnapi[i]->napi); 1119 } 1120 } 1121 1122 static void alx_halt(struct alx_priv *alx) 1123 { 1124 struct alx_hw *hw = &alx->hw; 1125 1126 alx_netif_stop(alx); 1127 hw->link_speed = SPEED_UNKNOWN; 1128 hw->duplex = DUPLEX_UNKNOWN; 1129 1130 alx_reset_mac(hw); 1131 1132 /* disable l0s/l1 */ 1133 alx_enable_aspm(hw, false, false); 1134 alx_irq_disable(alx); 1135 alx_free_buffers(alx); 1136 } 1137 1138 static void alx_configure(struct alx_priv *alx) 1139 { 1140 struct alx_hw *hw = &alx->hw; 1141 1142 alx_configure_basic(hw); 1143 alx_disable_rss(hw); 1144 __alx_set_rx_mode(alx->dev); 1145 1146 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); 1147 } 1148 1149 static void alx_activate(struct alx_priv *alx) 1150 { 1151 /* hardware setting lost, restore it */ 1152 alx_reinit_rings(alx); 1153 alx_configure(alx); 1154 1155 /* clear old interrupts */ 1156 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); 1157 1158 alx_irq_enable(alx); 1159 1160 alx_schedule_link_check(alx); 1161 } 1162 1163 static void alx_reinit(struct alx_priv *alx) 1164 { 1165 ASSERT_RTNL(); 1166 1167 alx_halt(alx); 1168 alx_activate(alx); 1169 } 1170 1171 static int alx_change_mtu(struct net_device *netdev, int mtu) 1172 { 1173 struct alx_priv *alx = netdev_priv(netdev); 1174 int max_frame = ALX_MAX_FRAME_LEN(mtu); 1175 1176 netdev->mtu = mtu; 1177 alx->hw.mtu = mtu; 1178 alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE); 1179 netdev_update_features(netdev); 1180 if (netif_running(netdev)) 1181 alx_reinit(alx); 1182 return 0; 1183 } 1184 1185 static void alx_netif_start(struct alx_priv *alx) 1186 { 1187 int i; 1188 1189 netif_tx_wake_all_queues(alx->dev); 1190 for (i = 0; i < alx->num_napi; i++) 1191 napi_enable(&alx->qnapi[i]->napi); 1192 netif_carrier_on(alx->dev); 1193 } 1194 1195 static int __alx_open(struct alx_priv *alx, bool resume) 1196 { 1197 int err; 1198 1199 err = alx_enable_msix(alx); 1200 if (err < 0) { 1201 err = alx_init_intr(alx); 1202 if (err) 1203 return err; 1204 } 1205 1206 if (!resume) 1207 netif_carrier_off(alx->dev); 1208 1209 err = alx_alloc_napis(alx); 1210 if (err) 1211 goto out_disable_adv_intr; 1212 1213 err = alx_alloc_rings(alx); 1214 if (err) 1215 goto out_free_rings; 1216 1217 alx_configure(alx); 1218 1219 err = alx_request_irq(alx); 1220 if (err) 1221 goto out_free_rings; 1222 1223 /* must be called after alx_request_irq because the chip stops working 1224 * if we copy the dma addresses in alx_init_ring_ptrs twice when 1225 * requesting msi-x interrupts failed 1226 */ 1227 alx_reinit_rings(alx); 1228 1229 netif_set_real_num_tx_queues(alx->dev, alx->num_txq); 1230 netif_set_real_num_rx_queues(alx->dev, alx->num_rxq); 1231 1232 /* clear old interrupts */ 1233 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); 1234 1235 alx_irq_enable(alx); 1236 1237 if (!resume) 1238 netif_tx_start_all_queues(alx->dev); 1239 1240 alx_schedule_link_check(alx); 1241 return 0; 1242 1243 out_free_rings: 1244 alx_free_rings(alx); 1245 alx_free_napis(alx); 1246 out_disable_adv_intr: 1247 pci_free_irq_vectors(alx->hw.pdev); 1248 return err; 1249 } 1250 1251 static void __alx_stop(struct alx_priv *alx) 1252 { 1253 alx_halt(alx); 1254 alx_free_irq(alx); 1255 alx_free_rings(alx); 1256 alx_free_napis(alx); 1257 } 1258 1259 static const char *alx_speed_desc(struct alx_hw *hw) 1260 { 1261 switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) { 1262 case ADVERTISED_1000baseT_Full: 1263 return "1 Gbps Full"; 1264 case ADVERTISED_100baseT_Full: 1265 return "100 Mbps Full"; 1266 case ADVERTISED_100baseT_Half: 1267 return "100 Mbps Half"; 1268 case ADVERTISED_10baseT_Full: 1269 return "10 Mbps Full"; 1270 case ADVERTISED_10baseT_Half: 1271 return "10 Mbps Half"; 1272 default: 1273 return "Unknown speed"; 1274 } 1275 } 1276 1277 static void alx_check_link(struct alx_priv *alx) 1278 { 1279 struct alx_hw *hw = &alx->hw; 1280 unsigned long flags; 1281 int old_speed; 1282 int err; 1283 1284 /* clear PHY internal interrupt status, otherwise the main 1285 * interrupt status will be asserted forever 1286 */ 1287 alx_clear_phy_intr(hw); 1288 1289 old_speed = hw->link_speed; 1290 err = alx_read_phy_link(hw); 1291 if (err < 0) 1292 goto reset; 1293 1294 spin_lock_irqsave(&alx->irq_lock, flags); 1295 alx->int_mask |= ALX_ISR_PHY; 1296 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 1297 spin_unlock_irqrestore(&alx->irq_lock, flags); 1298 1299 if (old_speed == hw->link_speed) 1300 return; 1301 1302 if (hw->link_speed != SPEED_UNKNOWN) { 1303 netif_info(alx, link, alx->dev, 1304 "NIC Up: %s\n", alx_speed_desc(hw)); 1305 alx_post_phy_link(hw); 1306 alx_enable_aspm(hw, true, true); 1307 alx_start_mac(hw); 1308 1309 if (old_speed == SPEED_UNKNOWN) 1310 alx_netif_start(alx); 1311 } else { 1312 /* link is now down */ 1313 alx_netif_stop(alx); 1314 netif_info(alx, link, alx->dev, "Link Down\n"); 1315 err = alx_reset_mac(hw); 1316 if (err) 1317 goto reset; 1318 alx_irq_disable(alx); 1319 1320 /* MAC reset causes all HW settings to be lost, restore all */ 1321 err = alx_reinit_rings(alx); 1322 if (err) 1323 goto reset; 1324 alx_configure(alx); 1325 alx_enable_aspm(hw, false, true); 1326 alx_post_phy_link(hw); 1327 alx_irq_enable(alx); 1328 } 1329 1330 return; 1331 1332 reset: 1333 alx_schedule_reset(alx); 1334 } 1335 1336 static int alx_open(struct net_device *netdev) 1337 { 1338 return __alx_open(netdev_priv(netdev), false); 1339 } 1340 1341 static int alx_stop(struct net_device *netdev) 1342 { 1343 __alx_stop(netdev_priv(netdev)); 1344 return 0; 1345 } 1346 1347 static void alx_link_check(struct work_struct *work) 1348 { 1349 struct alx_priv *alx; 1350 1351 alx = container_of(work, struct alx_priv, link_check_wk); 1352 1353 rtnl_lock(); 1354 alx_check_link(alx); 1355 rtnl_unlock(); 1356 } 1357 1358 static void alx_reset(struct work_struct *work) 1359 { 1360 struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk); 1361 1362 rtnl_lock(); 1363 alx_reinit(alx); 1364 rtnl_unlock(); 1365 } 1366 1367 static int alx_tpd_req(struct sk_buff *skb) 1368 { 1369 int num; 1370 1371 num = skb_shinfo(skb)->nr_frags + 1; 1372 /* we need one extra descriptor for LSOv2 */ 1373 if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) 1374 num++; 1375 1376 return num; 1377 } 1378 1379 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first) 1380 { 1381 u8 cso, css; 1382 1383 if (skb->ip_summed != CHECKSUM_PARTIAL) 1384 return 0; 1385 1386 cso = skb_checksum_start_offset(skb); 1387 if (cso & 1) 1388 return -EINVAL; 1389 1390 css = cso + skb->csum_offset; 1391 first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT); 1392 first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT); 1393 first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT); 1394 1395 return 0; 1396 } 1397 1398 static int alx_tso(struct sk_buff *skb, struct alx_txd *first) 1399 { 1400 int err; 1401 1402 if (skb->ip_summed != CHECKSUM_PARTIAL) 1403 return 0; 1404 1405 if (!skb_is_gso(skb)) 1406 return 0; 1407 1408 err = skb_cow_head(skb, 0); 1409 if (err < 0) 1410 return err; 1411 1412 if (skb->protocol == htons(ETH_P_IP)) { 1413 struct iphdr *iph = ip_hdr(skb); 1414 1415 iph->check = 0; 1416 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 1417 0, IPPROTO_TCP, 0); 1418 first->word1 |= 1 << TPD_IPV4_SHIFT; 1419 } else if (skb_is_gso_v6(skb)) { 1420 ipv6_hdr(skb)->payload_len = 0; 1421 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1422 &ipv6_hdr(skb)->daddr, 1423 0, IPPROTO_TCP, 0); 1424 /* LSOv2: the first TPD only provides the packet length */ 1425 first->adrl.l.pkt_len = skb->len; 1426 first->word1 |= 1 << TPD_LSO_V2_SHIFT; 1427 } 1428 1429 first->word1 |= 1 << TPD_LSO_EN_SHIFT; 1430 first->word1 |= (skb_transport_offset(skb) & 1431 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT; 1432 first->word1 |= (skb_shinfo(skb)->gso_size & 1433 TPD_MSS_MASK) << TPD_MSS_SHIFT; 1434 return 1; 1435 } 1436 1437 static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb) 1438 { 1439 struct alx_txd *tpd, *first_tpd; 1440 dma_addr_t dma; 1441 int maplen, f, first_idx = txq->write_idx; 1442 1443 first_tpd = &txq->tpd[txq->write_idx]; 1444 tpd = first_tpd; 1445 1446 if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) { 1447 if (++txq->write_idx == txq->count) 1448 txq->write_idx = 0; 1449 1450 tpd = &txq->tpd[txq->write_idx]; 1451 tpd->len = first_tpd->len; 1452 tpd->vlan_tag = first_tpd->vlan_tag; 1453 tpd->word1 = first_tpd->word1; 1454 } 1455 1456 maplen = skb_headlen(skb); 1457 dma = dma_map_single(txq->dev, skb->data, maplen, 1458 DMA_TO_DEVICE); 1459 if (dma_mapping_error(txq->dev, dma)) 1460 goto err_dma; 1461 1462 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); 1463 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); 1464 1465 tpd->adrl.addr = cpu_to_le64(dma); 1466 tpd->len = cpu_to_le16(maplen); 1467 1468 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 1469 struct skb_frag_struct *frag; 1470 1471 frag = &skb_shinfo(skb)->frags[f]; 1472 1473 if (++txq->write_idx == txq->count) 1474 txq->write_idx = 0; 1475 tpd = &txq->tpd[txq->write_idx]; 1476 1477 tpd->word1 = first_tpd->word1; 1478 1479 maplen = skb_frag_size(frag); 1480 dma = skb_frag_dma_map(txq->dev, frag, 0, 1481 maplen, DMA_TO_DEVICE); 1482 if (dma_mapping_error(txq->dev, dma)) 1483 goto err_dma; 1484 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); 1485 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); 1486 1487 tpd->adrl.addr = cpu_to_le64(dma); 1488 tpd->len = cpu_to_le16(maplen); 1489 } 1490 1491 /* last TPD, set EOP flag and store skb */ 1492 tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT); 1493 txq->bufs[txq->write_idx].skb = skb; 1494 1495 if (++txq->write_idx == txq->count) 1496 txq->write_idx = 0; 1497 1498 return 0; 1499 1500 err_dma: 1501 f = first_idx; 1502 while (f != txq->write_idx) { 1503 alx_free_txbuf(txq, f); 1504 if (++f == txq->count) 1505 f = 0; 1506 } 1507 return -ENOMEM; 1508 } 1509 1510 static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb, 1511 struct alx_tx_queue *txq) 1512 { 1513 struct alx_priv *alx; 1514 struct alx_txd *first; 1515 int tso; 1516 1517 alx = netdev_priv(txq->netdev); 1518 1519 if (alx_tpd_avail(txq) < alx_tpd_req(skb)) { 1520 netif_tx_stop_queue(alx_get_tx_queue(txq)); 1521 goto drop; 1522 } 1523 1524 first = &txq->tpd[txq->write_idx]; 1525 memset(first, 0, sizeof(*first)); 1526 1527 tso = alx_tso(skb, first); 1528 if (tso < 0) 1529 goto drop; 1530 else if (!tso && alx_tx_csum(skb, first)) 1531 goto drop; 1532 1533 if (alx_map_tx_skb(txq, skb) < 0) 1534 goto drop; 1535 1536 netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len); 1537 1538 /* flush updates before updating hardware */ 1539 wmb(); 1540 alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx); 1541 1542 if (alx_tpd_avail(txq) < txq->count / 8) 1543 netif_tx_stop_queue(alx_get_tx_queue(txq)); 1544 1545 return NETDEV_TX_OK; 1546 1547 drop: 1548 dev_kfree_skb_any(skb); 1549 return NETDEV_TX_OK; 1550 } 1551 1552 static netdev_tx_t alx_start_xmit(struct sk_buff *skb, 1553 struct net_device *netdev) 1554 { 1555 struct alx_priv *alx = netdev_priv(netdev); 1556 return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb)); 1557 } 1558 1559 static void alx_tx_timeout(struct net_device *dev) 1560 { 1561 struct alx_priv *alx = netdev_priv(dev); 1562 1563 alx_schedule_reset(alx); 1564 } 1565 1566 static int alx_mdio_read(struct net_device *netdev, 1567 int prtad, int devad, u16 addr) 1568 { 1569 struct alx_priv *alx = netdev_priv(netdev); 1570 struct alx_hw *hw = &alx->hw; 1571 u16 val; 1572 int err; 1573 1574 if (prtad != hw->mdio.prtad) 1575 return -EINVAL; 1576 1577 if (devad == MDIO_DEVAD_NONE) 1578 err = alx_read_phy_reg(hw, addr, &val); 1579 else 1580 err = alx_read_phy_ext(hw, devad, addr, &val); 1581 1582 if (err) 1583 return err; 1584 return val; 1585 } 1586 1587 static int alx_mdio_write(struct net_device *netdev, 1588 int prtad, int devad, u16 addr, u16 val) 1589 { 1590 struct alx_priv *alx = netdev_priv(netdev); 1591 struct alx_hw *hw = &alx->hw; 1592 1593 if (prtad != hw->mdio.prtad) 1594 return -EINVAL; 1595 1596 if (devad == MDIO_DEVAD_NONE) 1597 return alx_write_phy_reg(hw, addr, val); 1598 1599 return alx_write_phy_ext(hw, devad, addr, val); 1600 } 1601 1602 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1603 { 1604 struct alx_priv *alx = netdev_priv(netdev); 1605 1606 if (!netif_running(netdev)) 1607 return -EAGAIN; 1608 1609 return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd); 1610 } 1611 1612 #ifdef CONFIG_NET_POLL_CONTROLLER 1613 static void alx_poll_controller(struct net_device *netdev) 1614 { 1615 struct alx_priv *alx = netdev_priv(netdev); 1616 int i; 1617 1618 if (alx->hw.pdev->msix_enabled) { 1619 alx_intr_msix_misc(0, alx); 1620 for (i = 0; i < alx->num_txq; i++) 1621 alx_intr_msix_ring(0, alx->qnapi[i]); 1622 } else if (alx->hw.pdev->msi_enabled) 1623 alx_intr_msi(0, alx); 1624 else 1625 alx_intr_legacy(0, alx); 1626 } 1627 #endif 1628 1629 static void alx_get_stats64(struct net_device *dev, 1630 struct rtnl_link_stats64 *net_stats) 1631 { 1632 struct alx_priv *alx = netdev_priv(dev); 1633 struct alx_hw_stats *hw_stats = &alx->hw.stats; 1634 1635 spin_lock(&alx->stats_lock); 1636 1637 alx_update_hw_stats(&alx->hw); 1638 1639 net_stats->tx_bytes = hw_stats->tx_byte_cnt; 1640 net_stats->rx_bytes = hw_stats->rx_byte_cnt; 1641 net_stats->multicast = hw_stats->rx_mcast; 1642 net_stats->collisions = hw_stats->tx_single_col + 1643 hw_stats->tx_multi_col + 1644 hw_stats->tx_late_col + 1645 hw_stats->tx_abort_col; 1646 1647 net_stats->rx_errors = hw_stats->rx_frag + 1648 hw_stats->rx_fcs_err + 1649 hw_stats->rx_len_err + 1650 hw_stats->rx_ov_sz + 1651 hw_stats->rx_ov_rrd + 1652 hw_stats->rx_align_err + 1653 hw_stats->rx_ov_rxf; 1654 1655 net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf; 1656 net_stats->rx_length_errors = hw_stats->rx_len_err; 1657 net_stats->rx_crc_errors = hw_stats->rx_fcs_err; 1658 net_stats->rx_frame_errors = hw_stats->rx_align_err; 1659 net_stats->rx_dropped = hw_stats->rx_ov_rrd; 1660 1661 net_stats->tx_errors = hw_stats->tx_late_col + 1662 hw_stats->tx_abort_col + 1663 hw_stats->tx_underrun + 1664 hw_stats->tx_trunc; 1665 1666 net_stats->tx_aborted_errors = hw_stats->tx_abort_col; 1667 net_stats->tx_fifo_errors = hw_stats->tx_underrun; 1668 net_stats->tx_window_errors = hw_stats->tx_late_col; 1669 1670 net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors; 1671 net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors; 1672 1673 spin_unlock(&alx->stats_lock); 1674 } 1675 1676 static const struct net_device_ops alx_netdev_ops = { 1677 .ndo_open = alx_open, 1678 .ndo_stop = alx_stop, 1679 .ndo_start_xmit = alx_start_xmit, 1680 .ndo_get_stats64 = alx_get_stats64, 1681 .ndo_set_rx_mode = alx_set_rx_mode, 1682 .ndo_validate_addr = eth_validate_addr, 1683 .ndo_set_mac_address = alx_set_mac_address, 1684 .ndo_change_mtu = alx_change_mtu, 1685 .ndo_do_ioctl = alx_ioctl, 1686 .ndo_tx_timeout = alx_tx_timeout, 1687 .ndo_fix_features = alx_fix_features, 1688 #ifdef CONFIG_NET_POLL_CONTROLLER 1689 .ndo_poll_controller = alx_poll_controller, 1690 #endif 1691 }; 1692 1693 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1694 { 1695 struct net_device *netdev; 1696 struct alx_priv *alx; 1697 struct alx_hw *hw; 1698 bool phy_configured; 1699 int err; 1700 1701 err = pci_enable_device_mem(pdev); 1702 if (err) 1703 return err; 1704 1705 /* The alx chip can DMA to 64-bit addresses, but it uses a single 1706 * shared register for the high 32 bits, so only a single, aligned, 1707 * 4 GB physical address range can be used for descriptors. 1708 */ 1709 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1710 dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n"); 1711 } else { 1712 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1713 if (err) { 1714 dev_err(&pdev->dev, "No usable DMA config, aborting\n"); 1715 goto out_pci_disable; 1716 } 1717 } 1718 1719 err = pci_request_mem_regions(pdev, alx_drv_name); 1720 if (err) { 1721 dev_err(&pdev->dev, 1722 "pci_request_mem_regions failed\n"); 1723 goto out_pci_disable; 1724 } 1725 1726 pci_enable_pcie_error_reporting(pdev); 1727 pci_set_master(pdev); 1728 1729 if (!pdev->pm_cap) { 1730 dev_err(&pdev->dev, 1731 "Can't find power management capability, aborting\n"); 1732 err = -EIO; 1733 goto out_pci_release; 1734 } 1735 1736 netdev = alloc_etherdev_mqs(sizeof(*alx), 1737 ALX_MAX_TX_QUEUES, 1); 1738 if (!netdev) { 1739 err = -ENOMEM; 1740 goto out_pci_release; 1741 } 1742 1743 SET_NETDEV_DEV(netdev, &pdev->dev); 1744 alx = netdev_priv(netdev); 1745 spin_lock_init(&alx->hw.mdio_lock); 1746 spin_lock_init(&alx->irq_lock); 1747 spin_lock_init(&alx->stats_lock); 1748 alx->dev = netdev; 1749 alx->hw.pdev = pdev; 1750 alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP | 1751 NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL; 1752 hw = &alx->hw; 1753 pci_set_drvdata(pdev, alx); 1754 1755 hw->hw_addr = pci_ioremap_bar(pdev, 0); 1756 if (!hw->hw_addr) { 1757 dev_err(&pdev->dev, "cannot map device registers\n"); 1758 err = -EIO; 1759 goto out_free_netdev; 1760 } 1761 1762 netdev->netdev_ops = &alx_netdev_ops; 1763 netdev->ethtool_ops = &alx_ethtool_ops; 1764 netdev->irq = pci_irq_vector(pdev, 0); 1765 netdev->watchdog_timeo = ALX_WATCHDOG_TIME; 1766 1767 if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG) 1768 pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG; 1769 1770 err = alx_init_sw(alx); 1771 if (err) { 1772 dev_err(&pdev->dev, "net device private data init failed\n"); 1773 goto out_unmap; 1774 } 1775 1776 alx_reset_pcie(hw); 1777 1778 phy_configured = alx_phy_configured(hw); 1779 1780 if (!phy_configured) 1781 alx_reset_phy(hw); 1782 1783 err = alx_reset_mac(hw); 1784 if (err) { 1785 dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err); 1786 goto out_unmap; 1787 } 1788 1789 /* setup link to put it in a known good starting state */ 1790 if (!phy_configured) { 1791 err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl); 1792 if (err) { 1793 dev_err(&pdev->dev, 1794 "failed to configure PHY speed/duplex (err=%d)\n", 1795 err); 1796 goto out_unmap; 1797 } 1798 } 1799 1800 netdev->hw_features = NETIF_F_SG | 1801 NETIF_F_HW_CSUM | 1802 NETIF_F_RXCSUM | 1803 NETIF_F_TSO | 1804 NETIF_F_TSO6; 1805 1806 if (alx_get_perm_macaddr(hw, hw->perm_addr)) { 1807 dev_warn(&pdev->dev, 1808 "Invalid permanent address programmed, using random one\n"); 1809 eth_hw_addr_random(netdev); 1810 memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len); 1811 } 1812 1813 memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN); 1814 memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN); 1815 memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN); 1816 1817 hw->mdio.prtad = 0; 1818 hw->mdio.mmds = 0; 1819 hw->mdio.dev = netdev; 1820 hw->mdio.mode_support = MDIO_SUPPORTS_C45 | 1821 MDIO_SUPPORTS_C22 | 1822 MDIO_EMULATE_C22; 1823 hw->mdio.mdio_read = alx_mdio_read; 1824 hw->mdio.mdio_write = alx_mdio_write; 1825 1826 if (!alx_get_phy_info(hw)) { 1827 dev_err(&pdev->dev, "failed to identify PHY\n"); 1828 err = -EIO; 1829 goto out_unmap; 1830 } 1831 1832 INIT_WORK(&alx->link_check_wk, alx_link_check); 1833 INIT_WORK(&alx->reset_wk, alx_reset); 1834 netif_carrier_off(netdev); 1835 1836 err = register_netdev(netdev); 1837 if (err) { 1838 dev_err(&pdev->dev, "register netdevice failed\n"); 1839 goto out_unmap; 1840 } 1841 1842 netdev_info(netdev, 1843 "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n", 1844 netdev->dev_addr); 1845 1846 return 0; 1847 1848 out_unmap: 1849 iounmap(hw->hw_addr); 1850 out_free_netdev: 1851 free_netdev(netdev); 1852 out_pci_release: 1853 pci_release_mem_regions(pdev); 1854 out_pci_disable: 1855 pci_disable_device(pdev); 1856 return err; 1857 } 1858 1859 static void alx_remove(struct pci_dev *pdev) 1860 { 1861 struct alx_priv *alx = pci_get_drvdata(pdev); 1862 struct alx_hw *hw = &alx->hw; 1863 1864 cancel_work_sync(&alx->link_check_wk); 1865 cancel_work_sync(&alx->reset_wk); 1866 1867 /* restore permanent mac address */ 1868 alx_set_macaddr(hw, hw->perm_addr); 1869 1870 unregister_netdev(alx->dev); 1871 iounmap(hw->hw_addr); 1872 pci_release_mem_regions(pdev); 1873 1874 pci_disable_pcie_error_reporting(pdev); 1875 pci_disable_device(pdev); 1876 1877 free_netdev(alx->dev); 1878 } 1879 1880 #ifdef CONFIG_PM_SLEEP 1881 static int alx_suspend(struct device *dev) 1882 { 1883 struct pci_dev *pdev = to_pci_dev(dev); 1884 struct alx_priv *alx = pci_get_drvdata(pdev); 1885 1886 if (!netif_running(alx->dev)) 1887 return 0; 1888 netif_device_detach(alx->dev); 1889 __alx_stop(alx); 1890 return 0; 1891 } 1892 1893 static int alx_resume(struct device *dev) 1894 { 1895 struct pci_dev *pdev = to_pci_dev(dev); 1896 struct alx_priv *alx = pci_get_drvdata(pdev); 1897 struct alx_hw *hw = &alx->hw; 1898 int err; 1899 1900 alx_reset_phy(hw); 1901 1902 if (!netif_running(alx->dev)) 1903 return 0; 1904 netif_device_attach(alx->dev); 1905 1906 rtnl_lock(); 1907 err = __alx_open(alx, true); 1908 rtnl_unlock(); 1909 1910 return err; 1911 } 1912 1913 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume); 1914 #define ALX_PM_OPS (&alx_pm_ops) 1915 #else 1916 #define ALX_PM_OPS NULL 1917 #endif 1918 1919 1920 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev, 1921 pci_channel_state_t state) 1922 { 1923 struct alx_priv *alx = pci_get_drvdata(pdev); 1924 struct net_device *netdev = alx->dev; 1925 pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET; 1926 1927 dev_info(&pdev->dev, "pci error detected\n"); 1928 1929 rtnl_lock(); 1930 1931 if (netif_running(netdev)) { 1932 netif_device_detach(netdev); 1933 alx_halt(alx); 1934 } 1935 1936 if (state == pci_channel_io_perm_failure) 1937 rc = PCI_ERS_RESULT_DISCONNECT; 1938 else 1939 pci_disable_device(pdev); 1940 1941 rtnl_unlock(); 1942 1943 return rc; 1944 } 1945 1946 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev) 1947 { 1948 struct alx_priv *alx = pci_get_drvdata(pdev); 1949 struct alx_hw *hw = &alx->hw; 1950 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 1951 1952 dev_info(&pdev->dev, "pci error slot reset\n"); 1953 1954 rtnl_lock(); 1955 1956 if (pci_enable_device(pdev)) { 1957 dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n"); 1958 goto out; 1959 } 1960 1961 pci_set_master(pdev); 1962 1963 alx_reset_pcie(hw); 1964 if (!alx_reset_mac(hw)) 1965 rc = PCI_ERS_RESULT_RECOVERED; 1966 out: 1967 rtnl_unlock(); 1968 1969 return rc; 1970 } 1971 1972 static void alx_pci_error_resume(struct pci_dev *pdev) 1973 { 1974 struct alx_priv *alx = pci_get_drvdata(pdev); 1975 struct net_device *netdev = alx->dev; 1976 1977 dev_info(&pdev->dev, "pci error resume\n"); 1978 1979 rtnl_lock(); 1980 1981 if (netif_running(netdev)) { 1982 alx_activate(alx); 1983 netif_device_attach(netdev); 1984 } 1985 1986 rtnl_unlock(); 1987 } 1988 1989 static const struct pci_error_handlers alx_err_handlers = { 1990 .error_detected = alx_pci_error_detected, 1991 .slot_reset = alx_pci_error_slot_reset, 1992 .resume = alx_pci_error_resume, 1993 }; 1994 1995 static const struct pci_device_id alx_pci_tbl[] = { 1996 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161), 1997 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 1998 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200), 1999 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 2000 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400), 2001 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 2002 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500), 2003 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 2004 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162), 2005 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 2006 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) }, 2007 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) }, 2008 {} 2009 }; 2010 2011 static struct pci_driver alx_driver = { 2012 .name = alx_drv_name, 2013 .id_table = alx_pci_tbl, 2014 .probe = alx_probe, 2015 .remove = alx_remove, 2016 .err_handler = &alx_err_handlers, 2017 .driver.pm = ALX_PM_OPS, 2018 }; 2019 2020 module_pci_driver(alx_driver); 2021 MODULE_DEVICE_TABLE(pci, alx_pci_tbl); 2022 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 2023 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>"); 2024 MODULE_DESCRIPTION( 2025 "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver"); 2026 MODULE_LICENSE("GPL"); 2027