1 /*
2  * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3  *
4  *  This file is free software: you may copy, redistribute and/or modify it
5  *  under the terms of the GNU General Public License as published by the
6  *  Free Software Foundation, either version 2 of the License, or (at your
7  *  option) any later version.
8  *
9  *  This file is distributed in the hope that it will be useful, but
10  *  WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  *  General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * This file incorporates work covered by the following copyright and
18  * permission notice:
19  *
20  * Copyright (c) 2012 Qualcomm Atheros, Inc.
21  *
22  * Permission to use, copy, modify, and/or distribute this software for any
23  * purpose with or without fee is hereby granted, provided that the above
24  * copyright notice and this permission notice appear in all copies.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51 
52 const char alx_drv_name[] = "alx";
53 
54 
55 static void alx_free_txbuf(struct alx_priv *alx, int entry)
56 {
57 	struct alx_buffer *txb = &alx->txq.bufs[entry];
58 
59 	if (dma_unmap_len(txb, size)) {
60 		dma_unmap_single(&alx->hw.pdev->dev,
61 				 dma_unmap_addr(txb, dma),
62 				 dma_unmap_len(txb, size),
63 				 DMA_TO_DEVICE);
64 		dma_unmap_len_set(txb, size, 0);
65 	}
66 
67 	if (txb->skb) {
68 		dev_kfree_skb_any(txb->skb);
69 		txb->skb = NULL;
70 	}
71 }
72 
73 static struct sk_buff *alx_alloc_skb(struct alx_priv *alx, gfp_t gfp)
74 {
75 	struct sk_buff *skb;
76 	struct page *page;
77 
78 	if (alx->rx_frag_size > PAGE_SIZE)
79 		return __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp);
80 
81 	page = alx->rx_page;
82 	if (!page) {
83 		alx->rx_page = page = alloc_page(gfp);
84 		if (unlikely(!page))
85 			return NULL;
86 		alx->rx_page_offset = 0;
87 	}
88 
89 	skb = build_skb(page_address(page) + alx->rx_page_offset,
90 			alx->rx_frag_size);
91 	if (likely(skb)) {
92 		alx->rx_page_offset += alx->rx_frag_size;
93 		if (alx->rx_page_offset >= PAGE_SIZE)
94 			alx->rx_page = NULL;
95 		else
96 			get_page(page);
97 	}
98 	return skb;
99 }
100 
101 
102 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
103 {
104 	struct alx_rx_queue *rxq = &alx->rxq;
105 	struct sk_buff *skb;
106 	struct alx_buffer *cur_buf;
107 	dma_addr_t dma;
108 	u16 cur, next, count = 0;
109 
110 	next = cur = rxq->write_idx;
111 	if (++next == alx->rx_ringsz)
112 		next = 0;
113 	cur_buf = &rxq->bufs[cur];
114 
115 	while (!cur_buf->skb && next != rxq->read_idx) {
116 		struct alx_rfd *rfd = &rxq->rfd[cur];
117 
118 		skb = alx_alloc_skb(alx, gfp);
119 		if (!skb)
120 			break;
121 		dma = dma_map_single(&alx->hw.pdev->dev,
122 				     skb->data, alx->rxbuf_size,
123 				     DMA_FROM_DEVICE);
124 		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
125 			dev_kfree_skb(skb);
126 			break;
127 		}
128 
129 		/* Unfortunately, RX descriptor buffers must be 4-byte
130 		 * aligned, so we can't use IP alignment.
131 		 */
132 		if (WARN_ON(dma & 3)) {
133 			dev_kfree_skb(skb);
134 			break;
135 		}
136 
137 		cur_buf->skb = skb;
138 		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
139 		dma_unmap_addr_set(cur_buf, dma, dma);
140 		rfd->addr = cpu_to_le64(dma);
141 
142 		cur = next;
143 		if (++next == alx->rx_ringsz)
144 			next = 0;
145 		cur_buf = &rxq->bufs[cur];
146 		count++;
147 	}
148 
149 	if (count) {
150 		/* flush all updates before updating hardware */
151 		wmb();
152 		rxq->write_idx = cur;
153 		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
154 	}
155 
156 
157 	return count;
158 }
159 
160 static inline int alx_tpd_avail(struct alx_priv *alx)
161 {
162 	struct alx_tx_queue *txq = &alx->txq;
163 
164 	if (txq->write_idx >= txq->read_idx)
165 		return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
166 	return txq->read_idx - txq->write_idx - 1;
167 }
168 
169 static bool alx_clean_tx_irq(struct alx_priv *alx)
170 {
171 	struct alx_tx_queue *txq = &alx->txq;
172 	u16 hw_read_idx, sw_read_idx;
173 	unsigned int total_bytes = 0, total_packets = 0;
174 	int budget = ALX_DEFAULT_TX_WORK;
175 
176 	sw_read_idx = txq->read_idx;
177 	hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
178 
179 	if (sw_read_idx != hw_read_idx) {
180 		while (sw_read_idx != hw_read_idx && budget > 0) {
181 			struct sk_buff *skb;
182 
183 			skb = txq->bufs[sw_read_idx].skb;
184 			if (skb) {
185 				total_bytes += skb->len;
186 				total_packets++;
187 				budget--;
188 			}
189 
190 			alx_free_txbuf(alx, sw_read_idx);
191 
192 			if (++sw_read_idx == alx->tx_ringsz)
193 				sw_read_idx = 0;
194 		}
195 		txq->read_idx = sw_read_idx;
196 
197 		netdev_completed_queue(alx->dev, total_packets, total_bytes);
198 	}
199 
200 	if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
201 	    alx_tpd_avail(alx) > alx->tx_ringsz/4)
202 		netif_wake_queue(alx->dev);
203 
204 	return sw_read_idx == hw_read_idx;
205 }
206 
207 static void alx_schedule_link_check(struct alx_priv *alx)
208 {
209 	schedule_work(&alx->link_check_wk);
210 }
211 
212 static void alx_schedule_reset(struct alx_priv *alx)
213 {
214 	schedule_work(&alx->reset_wk);
215 }
216 
217 static int alx_clean_rx_irq(struct alx_priv *alx, int budget)
218 {
219 	struct alx_rx_queue *rxq = &alx->rxq;
220 	struct alx_rrd *rrd;
221 	struct alx_buffer *rxb;
222 	struct sk_buff *skb;
223 	u16 length, rfd_cleaned = 0;
224 	int work = 0;
225 
226 	while (work < budget) {
227 		rrd = &rxq->rrd[rxq->rrd_read_idx];
228 		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
229 			break;
230 		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
231 
232 		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
233 				  RRD_SI) != rxq->read_idx ||
234 		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
235 				  RRD_NOR) != 1) {
236 			alx_schedule_reset(alx);
237 			return work;
238 		}
239 
240 		rxb = &rxq->bufs[rxq->read_idx];
241 		dma_unmap_single(&alx->hw.pdev->dev,
242 				 dma_unmap_addr(rxb, dma),
243 				 dma_unmap_len(rxb, size),
244 				 DMA_FROM_DEVICE);
245 		dma_unmap_len_set(rxb, size, 0);
246 		skb = rxb->skb;
247 		rxb->skb = NULL;
248 
249 		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
250 		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
251 			rrd->word3 = 0;
252 			dev_kfree_skb_any(skb);
253 			goto next_pkt;
254 		}
255 
256 		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
257 				       RRD_PKTLEN) - ETH_FCS_LEN;
258 		skb_put(skb, length);
259 		skb->protocol = eth_type_trans(skb, alx->dev);
260 
261 		skb_checksum_none_assert(skb);
262 		if (alx->dev->features & NETIF_F_RXCSUM &&
263 		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
264 				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
265 			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
266 					      RRD_PID)) {
267 			case RRD_PID_IPV6UDP:
268 			case RRD_PID_IPV4UDP:
269 			case RRD_PID_IPV4TCP:
270 			case RRD_PID_IPV6TCP:
271 				skb->ip_summed = CHECKSUM_UNNECESSARY;
272 				break;
273 			}
274 		}
275 
276 		napi_gro_receive(&alx->napi, skb);
277 		work++;
278 
279 next_pkt:
280 		if (++rxq->read_idx == alx->rx_ringsz)
281 			rxq->read_idx = 0;
282 		if (++rxq->rrd_read_idx == alx->rx_ringsz)
283 			rxq->rrd_read_idx = 0;
284 
285 		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
286 			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
287 	}
288 
289 	if (rfd_cleaned)
290 		alx_refill_rx_ring(alx, GFP_ATOMIC);
291 
292 	return work;
293 }
294 
295 static int alx_poll(struct napi_struct *napi, int budget)
296 {
297 	struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
298 	struct alx_hw *hw = &alx->hw;
299 	unsigned long flags;
300 	bool tx_complete;
301 	int work;
302 
303 	tx_complete = alx_clean_tx_irq(alx);
304 	work = alx_clean_rx_irq(alx, budget);
305 
306 	if (!tx_complete || work == budget)
307 		return budget;
308 
309 	napi_complete(&alx->napi);
310 
311 	/* enable interrupt */
312 	spin_lock_irqsave(&alx->irq_lock, flags);
313 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
314 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
315 	spin_unlock_irqrestore(&alx->irq_lock, flags);
316 
317 	alx_post_write(hw);
318 
319 	return work;
320 }
321 
322 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
323 {
324 	struct alx_hw *hw = &alx->hw;
325 	bool write_int_mask = false;
326 
327 	spin_lock(&alx->irq_lock);
328 
329 	/* ACK interrupt */
330 	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
331 	intr &= alx->int_mask;
332 
333 	if (intr & ALX_ISR_FATAL) {
334 		netif_warn(alx, hw, alx->dev,
335 			   "fatal interrupt 0x%x, resetting\n", intr);
336 		alx_schedule_reset(alx);
337 		goto out;
338 	}
339 
340 	if (intr & ALX_ISR_ALERT)
341 		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
342 
343 	if (intr & ALX_ISR_PHY) {
344 		/* suppress PHY interrupt, because the source
345 		 * is from PHY internal. only the internal status
346 		 * is cleared, the interrupt status could be cleared.
347 		 */
348 		alx->int_mask &= ~ALX_ISR_PHY;
349 		write_int_mask = true;
350 		alx_schedule_link_check(alx);
351 	}
352 
353 	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
354 		napi_schedule(&alx->napi);
355 		/* mask rx/tx interrupt, enable them when napi complete */
356 		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
357 		write_int_mask = true;
358 	}
359 
360 	if (write_int_mask)
361 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
362 
363 	alx_write_mem32(hw, ALX_ISR, 0);
364 
365  out:
366 	spin_unlock(&alx->irq_lock);
367 	return IRQ_HANDLED;
368 }
369 
370 static irqreturn_t alx_intr_msi(int irq, void *data)
371 {
372 	struct alx_priv *alx = data;
373 
374 	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
375 }
376 
377 static irqreturn_t alx_intr_legacy(int irq, void *data)
378 {
379 	struct alx_priv *alx = data;
380 	struct alx_hw *hw = &alx->hw;
381 	u32 intr;
382 
383 	intr = alx_read_mem32(hw, ALX_ISR);
384 
385 	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
386 		return IRQ_NONE;
387 
388 	return alx_intr_handle(alx, intr);
389 }
390 
391 static void alx_init_ring_ptrs(struct alx_priv *alx)
392 {
393 	struct alx_hw *hw = &alx->hw;
394 	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
395 
396 	alx->rxq.read_idx = 0;
397 	alx->rxq.write_idx = 0;
398 	alx->rxq.rrd_read_idx = 0;
399 	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
400 	alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
401 	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
402 	alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
403 	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
404 	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
405 
406 	alx->txq.read_idx = 0;
407 	alx->txq.write_idx = 0;
408 	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
409 	alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
410 	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
411 
412 	/* load these pointers into the chip */
413 	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
414 }
415 
416 static void alx_free_txring_buf(struct alx_priv *alx)
417 {
418 	struct alx_tx_queue *txq = &alx->txq;
419 	int i;
420 
421 	if (!txq->bufs)
422 		return;
423 
424 	for (i = 0; i < alx->tx_ringsz; i++)
425 		alx_free_txbuf(alx, i);
426 
427 	memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
428 	memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
429 	txq->write_idx = 0;
430 	txq->read_idx = 0;
431 
432 	netdev_reset_queue(alx->dev);
433 }
434 
435 static void alx_free_rxring_buf(struct alx_priv *alx)
436 {
437 	struct alx_rx_queue *rxq = &alx->rxq;
438 	struct alx_buffer *cur_buf;
439 	u16 i;
440 
441 	if (rxq == NULL)
442 		return;
443 
444 	for (i = 0; i < alx->rx_ringsz; i++) {
445 		cur_buf = rxq->bufs + i;
446 		if (cur_buf->skb) {
447 			dma_unmap_single(&alx->hw.pdev->dev,
448 					 dma_unmap_addr(cur_buf, dma),
449 					 dma_unmap_len(cur_buf, size),
450 					 DMA_FROM_DEVICE);
451 			dev_kfree_skb(cur_buf->skb);
452 			cur_buf->skb = NULL;
453 			dma_unmap_len_set(cur_buf, size, 0);
454 			dma_unmap_addr_set(cur_buf, dma, 0);
455 		}
456 	}
457 
458 	rxq->write_idx = 0;
459 	rxq->read_idx = 0;
460 	rxq->rrd_read_idx = 0;
461 }
462 
463 static void alx_free_buffers(struct alx_priv *alx)
464 {
465 	alx_free_txring_buf(alx);
466 	alx_free_rxring_buf(alx);
467 }
468 
469 static int alx_reinit_rings(struct alx_priv *alx)
470 {
471 	alx_free_buffers(alx);
472 
473 	alx_init_ring_ptrs(alx);
474 
475 	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
476 		return -ENOMEM;
477 
478 	return 0;
479 }
480 
481 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
482 {
483 	u32 crc32, bit, reg;
484 
485 	crc32 = ether_crc(ETH_ALEN, addr);
486 	reg = (crc32 >> 31) & 0x1;
487 	bit = (crc32 >> 26) & 0x1F;
488 
489 	mc_hash[reg] |= BIT(bit);
490 }
491 
492 static void __alx_set_rx_mode(struct net_device *netdev)
493 {
494 	struct alx_priv *alx = netdev_priv(netdev);
495 	struct alx_hw *hw = &alx->hw;
496 	struct netdev_hw_addr *ha;
497 	u32 mc_hash[2] = {};
498 
499 	if (!(netdev->flags & IFF_ALLMULTI)) {
500 		netdev_for_each_mc_addr(ha, netdev)
501 			alx_add_mc_addr(hw, ha->addr, mc_hash);
502 
503 		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
504 		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
505 	}
506 
507 	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
508 	if (netdev->flags & IFF_PROMISC)
509 		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
510 	if (netdev->flags & IFF_ALLMULTI)
511 		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
512 
513 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
514 }
515 
516 static void alx_set_rx_mode(struct net_device *netdev)
517 {
518 	__alx_set_rx_mode(netdev);
519 }
520 
521 static int alx_set_mac_address(struct net_device *netdev, void *data)
522 {
523 	struct alx_priv *alx = netdev_priv(netdev);
524 	struct alx_hw *hw = &alx->hw;
525 	struct sockaddr *addr = data;
526 
527 	if (!is_valid_ether_addr(addr->sa_data))
528 		return -EADDRNOTAVAIL;
529 
530 	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
531 		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
532 
533 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
534 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
535 	alx_set_macaddr(hw, hw->mac_addr);
536 
537 	return 0;
538 }
539 
540 static int alx_alloc_descriptors(struct alx_priv *alx)
541 {
542 	alx->txq.bufs = kcalloc(alx->tx_ringsz,
543 				sizeof(struct alx_buffer),
544 				GFP_KERNEL);
545 	if (!alx->txq.bufs)
546 		return -ENOMEM;
547 
548 	alx->rxq.bufs = kcalloc(alx->rx_ringsz,
549 				sizeof(struct alx_buffer),
550 				GFP_KERNEL);
551 	if (!alx->rxq.bufs)
552 		goto out_free;
553 
554 	/* physical tx/rx ring descriptors
555 	 *
556 	 * Allocate them as a single chunk because they must not cross a
557 	 * 4G boundary (hardware has a single register for high 32 bits
558 	 * of addresses only)
559 	 */
560 	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
561 			    sizeof(struct alx_rrd) * alx->rx_ringsz +
562 			    sizeof(struct alx_rfd) * alx->rx_ringsz;
563 	alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
564 						alx->descmem.size,
565 						&alx->descmem.dma,
566 						GFP_KERNEL);
567 	if (!alx->descmem.virt)
568 		goto out_free;
569 
570 	alx->txq.tpd = alx->descmem.virt;
571 	alx->txq.tpd_dma = alx->descmem.dma;
572 
573 	/* alignment requirement for next block */
574 	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
575 
576 	alx->rxq.rrd =
577 		(void *)((u8 *)alx->descmem.virt +
578 			 sizeof(struct alx_txd) * alx->tx_ringsz);
579 	alx->rxq.rrd_dma = alx->descmem.dma +
580 			   sizeof(struct alx_txd) * alx->tx_ringsz;
581 
582 	/* alignment requirement for next block */
583 	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
584 
585 	alx->rxq.rfd =
586 		(void *)((u8 *)alx->descmem.virt +
587 			 sizeof(struct alx_txd) * alx->tx_ringsz +
588 			 sizeof(struct alx_rrd) * alx->rx_ringsz);
589 	alx->rxq.rfd_dma = alx->descmem.dma +
590 			   sizeof(struct alx_txd) * alx->tx_ringsz +
591 			   sizeof(struct alx_rrd) * alx->rx_ringsz;
592 
593 	return 0;
594 out_free:
595 	kfree(alx->txq.bufs);
596 	kfree(alx->rxq.bufs);
597 	return -ENOMEM;
598 }
599 
600 static int alx_alloc_rings(struct alx_priv *alx)
601 {
602 	int err;
603 
604 	err = alx_alloc_descriptors(alx);
605 	if (err)
606 		return err;
607 
608 	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
609 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
610 
611 	netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
612 
613 	alx_reinit_rings(alx);
614 	return 0;
615 }
616 
617 static void alx_free_rings(struct alx_priv *alx)
618 {
619 	netif_napi_del(&alx->napi);
620 	alx_free_buffers(alx);
621 
622 	kfree(alx->txq.bufs);
623 	kfree(alx->rxq.bufs);
624 
625 	if (alx->rx_page) {
626 		put_page(alx->rx_page);
627 		alx->rx_page = NULL;
628 	}
629 
630 	dma_free_coherent(&alx->hw.pdev->dev,
631 			  alx->descmem.size,
632 			  alx->descmem.virt,
633 			  alx->descmem.dma);
634 }
635 
636 static void alx_config_vector_mapping(struct alx_priv *alx)
637 {
638 	struct alx_hw *hw = &alx->hw;
639 
640 	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
641 	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
642 	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
643 }
644 
645 static void alx_irq_enable(struct alx_priv *alx)
646 {
647 	struct alx_hw *hw = &alx->hw;
648 
649 	/* level-1 interrupt switch */
650 	alx_write_mem32(hw, ALX_ISR, 0);
651 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
652 	alx_post_write(hw);
653 }
654 
655 static void alx_irq_disable(struct alx_priv *alx)
656 {
657 	struct alx_hw *hw = &alx->hw;
658 
659 	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
660 	alx_write_mem32(hw, ALX_IMR, 0);
661 	alx_post_write(hw);
662 
663 	synchronize_irq(alx->hw.pdev->irq);
664 }
665 
666 static int alx_request_irq(struct alx_priv *alx)
667 {
668 	struct pci_dev *pdev = alx->hw.pdev;
669 	struct alx_hw *hw = &alx->hw;
670 	int err;
671 	u32 msi_ctrl;
672 
673 	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
674 
675 	if (!pci_enable_msi(alx->hw.pdev)) {
676 		alx->msi = true;
677 
678 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
679 				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
680 		err = request_irq(pdev->irq, alx_intr_msi, 0,
681 				  alx->dev->name, alx);
682 		if (!err)
683 			goto out;
684 
685 		/* fall back to legacy interrupt */
686 		pci_disable_msi(alx->hw.pdev);
687 	}
688 
689 	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
690 	err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
691 			  alx->dev->name, alx);
692 out:
693 	if (!err)
694 		alx_config_vector_mapping(alx);
695 	return err;
696 }
697 
698 static void alx_free_irq(struct alx_priv *alx)
699 {
700 	struct pci_dev *pdev = alx->hw.pdev;
701 
702 	free_irq(pdev->irq, alx);
703 
704 	if (alx->msi) {
705 		pci_disable_msi(alx->hw.pdev);
706 		alx->msi = false;
707 	}
708 }
709 
710 static int alx_identify_hw(struct alx_priv *alx)
711 {
712 	struct alx_hw *hw = &alx->hw;
713 	int rev = alx_hw_revision(hw);
714 
715 	if (rev > ALX_REV_C0)
716 		return -EINVAL;
717 
718 	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
719 
720 	return 0;
721 }
722 
723 static int alx_init_sw(struct alx_priv *alx)
724 {
725 	struct pci_dev *pdev = alx->hw.pdev;
726 	struct alx_hw *hw = &alx->hw;
727 	int err;
728 	unsigned int head_size;
729 
730 	err = alx_identify_hw(alx);
731 	if (err) {
732 		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
733 		return err;
734 	}
735 
736 	alx->hw.lnk_patch =
737 		pdev->device == ALX_DEV_ID_AR8161 &&
738 		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
739 		pdev->subsystem_device == 0x0091 &&
740 		pdev->revision == 0;
741 
742 	hw->smb_timer = 400;
743 	hw->mtu = alx->dev->mtu;
744 
745 	alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
746 	head_size = SKB_DATA_ALIGN(alx->rxbuf_size + NET_SKB_PAD) +
747 		    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
748 	alx->rx_frag_size = roundup_pow_of_two(head_size);
749 
750 	alx->tx_ringsz = 256;
751 	alx->rx_ringsz = 512;
752 	hw->imt = 200;
753 	alx->int_mask = ALX_ISR_MISC;
754 	hw->dma_chnl = hw->max_dma_chnl;
755 	hw->ith_tpd = alx->tx_ringsz / 3;
756 	hw->link_speed = SPEED_UNKNOWN;
757 	hw->duplex = DUPLEX_UNKNOWN;
758 	hw->adv_cfg = ADVERTISED_Autoneg |
759 		      ADVERTISED_10baseT_Half |
760 		      ADVERTISED_10baseT_Full |
761 		      ADVERTISED_100baseT_Full |
762 		      ADVERTISED_100baseT_Half |
763 		      ADVERTISED_1000baseT_Full;
764 	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
765 
766 	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
767 		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
768 		      ALX_MAC_CTRL_BRD_EN |
769 		      ALX_MAC_CTRL_PCRCE |
770 		      ALX_MAC_CTRL_CRCE |
771 		      ALX_MAC_CTRL_RXFC_EN |
772 		      ALX_MAC_CTRL_TXFC_EN |
773 		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
774 
775 	return err;
776 }
777 
778 
779 static netdev_features_t alx_fix_features(struct net_device *netdev,
780 					  netdev_features_t features)
781 {
782 	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
783 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
784 
785 	return features;
786 }
787 
788 static void alx_netif_stop(struct alx_priv *alx)
789 {
790 	netif_trans_update(alx->dev);
791 	if (netif_carrier_ok(alx->dev)) {
792 		netif_carrier_off(alx->dev);
793 		netif_tx_disable(alx->dev);
794 		napi_disable(&alx->napi);
795 	}
796 }
797 
798 static void alx_halt(struct alx_priv *alx)
799 {
800 	struct alx_hw *hw = &alx->hw;
801 
802 	alx_netif_stop(alx);
803 	hw->link_speed = SPEED_UNKNOWN;
804 	hw->duplex = DUPLEX_UNKNOWN;
805 
806 	alx_reset_mac(hw);
807 
808 	/* disable l0s/l1 */
809 	alx_enable_aspm(hw, false, false);
810 	alx_irq_disable(alx);
811 	alx_free_buffers(alx);
812 }
813 
814 static void alx_configure(struct alx_priv *alx)
815 {
816 	struct alx_hw *hw = &alx->hw;
817 
818 	alx_configure_basic(hw);
819 	alx_disable_rss(hw);
820 	__alx_set_rx_mode(alx->dev);
821 
822 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
823 }
824 
825 static void alx_activate(struct alx_priv *alx)
826 {
827 	/* hardware setting lost, restore it */
828 	alx_reinit_rings(alx);
829 	alx_configure(alx);
830 
831 	/* clear old interrupts */
832 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
833 
834 	alx_irq_enable(alx);
835 
836 	alx_schedule_link_check(alx);
837 }
838 
839 static void alx_reinit(struct alx_priv *alx)
840 {
841 	ASSERT_RTNL();
842 
843 	alx_halt(alx);
844 	alx_activate(alx);
845 }
846 
847 static int alx_change_mtu(struct net_device *netdev, int mtu)
848 {
849 	struct alx_priv *alx = netdev_priv(netdev);
850 	int max_frame = ALX_MAX_FRAME_LEN(mtu);
851 	unsigned int head_size;
852 
853 	if ((max_frame < ALX_MIN_FRAME_SIZE) ||
854 	    (max_frame > ALX_MAX_FRAME_SIZE))
855 		return -EINVAL;
856 
857 	if (netdev->mtu == mtu)
858 		return 0;
859 
860 	netdev->mtu = mtu;
861 	alx->hw.mtu = mtu;
862 	alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
863 	head_size = SKB_DATA_ALIGN(alx->rxbuf_size + NET_SKB_PAD) +
864 		    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
865 	alx->rx_frag_size = roundup_pow_of_two(head_size);
866 	netdev_update_features(netdev);
867 	if (netif_running(netdev))
868 		alx_reinit(alx);
869 	return 0;
870 }
871 
872 static void alx_netif_start(struct alx_priv *alx)
873 {
874 	netif_tx_wake_all_queues(alx->dev);
875 	napi_enable(&alx->napi);
876 	netif_carrier_on(alx->dev);
877 }
878 
879 static int __alx_open(struct alx_priv *alx, bool resume)
880 {
881 	int err;
882 
883 	if (!resume)
884 		netif_carrier_off(alx->dev);
885 
886 	err = alx_alloc_rings(alx);
887 	if (err)
888 		return err;
889 
890 	alx_configure(alx);
891 
892 	err = alx_request_irq(alx);
893 	if (err)
894 		goto out_free_rings;
895 
896 	/* clear old interrupts */
897 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
898 
899 	alx_irq_enable(alx);
900 
901 	if (!resume)
902 		netif_tx_start_all_queues(alx->dev);
903 
904 	alx_schedule_link_check(alx);
905 	return 0;
906 
907 out_free_rings:
908 	alx_free_rings(alx);
909 	return err;
910 }
911 
912 static void __alx_stop(struct alx_priv *alx)
913 {
914 	alx_halt(alx);
915 	alx_free_irq(alx);
916 	alx_free_rings(alx);
917 }
918 
919 static const char *alx_speed_desc(struct alx_hw *hw)
920 {
921 	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
922 	case ADVERTISED_1000baseT_Full:
923 		return "1 Gbps Full";
924 	case ADVERTISED_100baseT_Full:
925 		return "100 Mbps Full";
926 	case ADVERTISED_100baseT_Half:
927 		return "100 Mbps Half";
928 	case ADVERTISED_10baseT_Full:
929 		return "10 Mbps Full";
930 	case ADVERTISED_10baseT_Half:
931 		return "10 Mbps Half";
932 	default:
933 		return "Unknown speed";
934 	}
935 }
936 
937 static void alx_check_link(struct alx_priv *alx)
938 {
939 	struct alx_hw *hw = &alx->hw;
940 	unsigned long flags;
941 	int old_speed;
942 	u8 old_duplex;
943 	int err;
944 
945 	/* clear PHY internal interrupt status, otherwise the main
946 	 * interrupt status will be asserted forever
947 	 */
948 	alx_clear_phy_intr(hw);
949 
950 	old_speed = hw->link_speed;
951 	old_duplex = hw->duplex;
952 	err = alx_read_phy_link(hw);
953 	if (err < 0)
954 		goto reset;
955 
956 	spin_lock_irqsave(&alx->irq_lock, flags);
957 	alx->int_mask |= ALX_ISR_PHY;
958 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
959 	spin_unlock_irqrestore(&alx->irq_lock, flags);
960 
961 	if (old_speed == hw->link_speed)
962 		return;
963 
964 	if (hw->link_speed != SPEED_UNKNOWN) {
965 		netif_info(alx, link, alx->dev,
966 			   "NIC Up: %s\n", alx_speed_desc(hw));
967 		alx_post_phy_link(hw);
968 		alx_enable_aspm(hw, true, true);
969 		alx_start_mac(hw);
970 
971 		if (old_speed == SPEED_UNKNOWN)
972 			alx_netif_start(alx);
973 	} else {
974 		/* link is now down */
975 		alx_netif_stop(alx);
976 		netif_info(alx, link, alx->dev, "Link Down\n");
977 		err = alx_reset_mac(hw);
978 		if (err)
979 			goto reset;
980 		alx_irq_disable(alx);
981 
982 		/* MAC reset causes all HW settings to be lost, restore all */
983 		err = alx_reinit_rings(alx);
984 		if (err)
985 			goto reset;
986 		alx_configure(alx);
987 		alx_enable_aspm(hw, false, true);
988 		alx_post_phy_link(hw);
989 		alx_irq_enable(alx);
990 	}
991 
992 	return;
993 
994 reset:
995 	alx_schedule_reset(alx);
996 }
997 
998 static int alx_open(struct net_device *netdev)
999 {
1000 	return __alx_open(netdev_priv(netdev), false);
1001 }
1002 
1003 static int alx_stop(struct net_device *netdev)
1004 {
1005 	__alx_stop(netdev_priv(netdev));
1006 	return 0;
1007 }
1008 
1009 static void alx_link_check(struct work_struct *work)
1010 {
1011 	struct alx_priv *alx;
1012 
1013 	alx = container_of(work, struct alx_priv, link_check_wk);
1014 
1015 	rtnl_lock();
1016 	alx_check_link(alx);
1017 	rtnl_unlock();
1018 }
1019 
1020 static void alx_reset(struct work_struct *work)
1021 {
1022 	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1023 
1024 	rtnl_lock();
1025 	alx_reinit(alx);
1026 	rtnl_unlock();
1027 }
1028 
1029 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1030 {
1031 	u8 cso, css;
1032 
1033 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1034 		return 0;
1035 
1036 	cso = skb_checksum_start_offset(skb);
1037 	if (cso & 1)
1038 		return -EINVAL;
1039 
1040 	css = cso + skb->csum_offset;
1041 	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1042 	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1043 	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1044 
1045 	return 0;
1046 }
1047 
1048 static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
1049 {
1050 	struct alx_tx_queue *txq = &alx->txq;
1051 	struct alx_txd *tpd, *first_tpd;
1052 	dma_addr_t dma;
1053 	int maplen, f, first_idx = txq->write_idx;
1054 
1055 	first_tpd = &txq->tpd[txq->write_idx];
1056 	tpd = first_tpd;
1057 
1058 	maplen = skb_headlen(skb);
1059 	dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
1060 			     DMA_TO_DEVICE);
1061 	if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1062 		goto err_dma;
1063 
1064 	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1065 	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1066 
1067 	tpd->adrl.addr = cpu_to_le64(dma);
1068 	tpd->len = cpu_to_le16(maplen);
1069 
1070 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1071 		struct skb_frag_struct *frag;
1072 
1073 		frag = &skb_shinfo(skb)->frags[f];
1074 
1075 		if (++txq->write_idx == alx->tx_ringsz)
1076 			txq->write_idx = 0;
1077 		tpd = &txq->tpd[txq->write_idx];
1078 
1079 		tpd->word1 = first_tpd->word1;
1080 
1081 		maplen = skb_frag_size(frag);
1082 		dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
1083 				       maplen, DMA_TO_DEVICE);
1084 		if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1085 			goto err_dma;
1086 		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1087 		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1088 
1089 		tpd->adrl.addr = cpu_to_le64(dma);
1090 		tpd->len = cpu_to_le16(maplen);
1091 	}
1092 
1093 	/* last TPD, set EOP flag and store skb */
1094 	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1095 	txq->bufs[txq->write_idx].skb = skb;
1096 
1097 	if (++txq->write_idx == alx->tx_ringsz)
1098 		txq->write_idx = 0;
1099 
1100 	return 0;
1101 
1102 err_dma:
1103 	f = first_idx;
1104 	while (f != txq->write_idx) {
1105 		alx_free_txbuf(alx, f);
1106 		if (++f == alx->tx_ringsz)
1107 			f = 0;
1108 	}
1109 	return -ENOMEM;
1110 }
1111 
1112 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1113 				  struct net_device *netdev)
1114 {
1115 	struct alx_priv *alx = netdev_priv(netdev);
1116 	struct alx_tx_queue *txq = &alx->txq;
1117 	struct alx_txd *first;
1118 	int tpdreq = skb_shinfo(skb)->nr_frags + 1;
1119 
1120 	if (alx_tpd_avail(alx) < tpdreq) {
1121 		netif_stop_queue(alx->dev);
1122 		goto drop;
1123 	}
1124 
1125 	first = &txq->tpd[txq->write_idx];
1126 	memset(first, 0, sizeof(*first));
1127 
1128 	if (alx_tx_csum(skb, first))
1129 		goto drop;
1130 
1131 	if (alx_map_tx_skb(alx, skb) < 0)
1132 		goto drop;
1133 
1134 	netdev_sent_queue(alx->dev, skb->len);
1135 
1136 	/* flush updates before updating hardware */
1137 	wmb();
1138 	alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
1139 
1140 	if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
1141 		netif_stop_queue(alx->dev);
1142 
1143 	return NETDEV_TX_OK;
1144 
1145 drop:
1146 	dev_kfree_skb_any(skb);
1147 	return NETDEV_TX_OK;
1148 }
1149 
1150 static void alx_tx_timeout(struct net_device *dev)
1151 {
1152 	struct alx_priv *alx = netdev_priv(dev);
1153 
1154 	alx_schedule_reset(alx);
1155 }
1156 
1157 static int alx_mdio_read(struct net_device *netdev,
1158 			 int prtad, int devad, u16 addr)
1159 {
1160 	struct alx_priv *alx = netdev_priv(netdev);
1161 	struct alx_hw *hw = &alx->hw;
1162 	u16 val;
1163 	int err;
1164 
1165 	if (prtad != hw->mdio.prtad)
1166 		return -EINVAL;
1167 
1168 	if (devad == MDIO_DEVAD_NONE)
1169 		err = alx_read_phy_reg(hw, addr, &val);
1170 	else
1171 		err = alx_read_phy_ext(hw, devad, addr, &val);
1172 
1173 	if (err)
1174 		return err;
1175 	return val;
1176 }
1177 
1178 static int alx_mdio_write(struct net_device *netdev,
1179 			  int prtad, int devad, u16 addr, u16 val)
1180 {
1181 	struct alx_priv *alx = netdev_priv(netdev);
1182 	struct alx_hw *hw = &alx->hw;
1183 
1184 	if (prtad != hw->mdio.prtad)
1185 		return -EINVAL;
1186 
1187 	if (devad == MDIO_DEVAD_NONE)
1188 		return alx_write_phy_reg(hw, addr, val);
1189 
1190 	return alx_write_phy_ext(hw, devad, addr, val);
1191 }
1192 
1193 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1194 {
1195 	struct alx_priv *alx = netdev_priv(netdev);
1196 
1197 	if (!netif_running(netdev))
1198 		return -EAGAIN;
1199 
1200 	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1201 }
1202 
1203 #ifdef CONFIG_NET_POLL_CONTROLLER
1204 static void alx_poll_controller(struct net_device *netdev)
1205 {
1206 	struct alx_priv *alx = netdev_priv(netdev);
1207 
1208 	if (alx->msi)
1209 		alx_intr_msi(0, alx);
1210 	else
1211 		alx_intr_legacy(0, alx);
1212 }
1213 #endif
1214 
1215 static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
1216 					struct rtnl_link_stats64 *net_stats)
1217 {
1218 	struct alx_priv *alx = netdev_priv(dev);
1219 	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1220 
1221 	spin_lock(&alx->stats_lock);
1222 
1223 	alx_update_hw_stats(&alx->hw);
1224 
1225 	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1226 	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1227 	net_stats->multicast  = hw_stats->rx_mcast;
1228 	net_stats->collisions = hw_stats->tx_single_col +
1229 				hw_stats->tx_multi_col +
1230 				hw_stats->tx_late_col +
1231 				hw_stats->tx_abort_col;
1232 
1233 	net_stats->rx_errors  = hw_stats->rx_frag +
1234 				hw_stats->rx_fcs_err +
1235 				hw_stats->rx_len_err +
1236 				hw_stats->rx_ov_sz +
1237 				hw_stats->rx_ov_rrd +
1238 				hw_stats->rx_align_err +
1239 				hw_stats->rx_ov_rxf;
1240 
1241 	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1242 	net_stats->rx_length_errors = hw_stats->rx_len_err;
1243 	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1244 	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1245 	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1246 
1247 	net_stats->tx_errors = hw_stats->tx_late_col +
1248 			       hw_stats->tx_abort_col +
1249 			       hw_stats->tx_underrun +
1250 			       hw_stats->tx_trunc;
1251 
1252 	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1253 	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1254 	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1255 
1256 	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1257 	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1258 
1259 	spin_unlock(&alx->stats_lock);
1260 
1261 	return net_stats;
1262 }
1263 
1264 static const struct net_device_ops alx_netdev_ops = {
1265 	.ndo_open               = alx_open,
1266 	.ndo_stop               = alx_stop,
1267 	.ndo_start_xmit         = alx_start_xmit,
1268 	.ndo_get_stats64        = alx_get_stats64,
1269 	.ndo_set_rx_mode        = alx_set_rx_mode,
1270 	.ndo_validate_addr      = eth_validate_addr,
1271 	.ndo_set_mac_address    = alx_set_mac_address,
1272 	.ndo_change_mtu         = alx_change_mtu,
1273 	.ndo_do_ioctl           = alx_ioctl,
1274 	.ndo_tx_timeout         = alx_tx_timeout,
1275 	.ndo_fix_features	= alx_fix_features,
1276 #ifdef CONFIG_NET_POLL_CONTROLLER
1277 	.ndo_poll_controller    = alx_poll_controller,
1278 #endif
1279 };
1280 
1281 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1282 {
1283 	struct net_device *netdev;
1284 	struct alx_priv *alx;
1285 	struct alx_hw *hw;
1286 	bool phy_configured;
1287 	int bars, err;
1288 
1289 	err = pci_enable_device_mem(pdev);
1290 	if (err)
1291 		return err;
1292 
1293 	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1294 	 * shared register for the high 32 bits, so only a single, aligned,
1295 	 * 4 GB physical address range can be used for descriptors.
1296 	 */
1297 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1298 		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1299 	} else {
1300 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1301 		if (err) {
1302 			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1303 			goto out_pci_disable;
1304 		}
1305 	}
1306 
1307 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1308 	err = pci_request_selected_regions(pdev, bars, alx_drv_name);
1309 	if (err) {
1310 		dev_err(&pdev->dev,
1311 			"pci_request_selected_regions failed(bars:%d)\n", bars);
1312 		goto out_pci_disable;
1313 	}
1314 
1315 	pci_enable_pcie_error_reporting(pdev);
1316 	pci_set_master(pdev);
1317 
1318 	if (!pdev->pm_cap) {
1319 		dev_err(&pdev->dev,
1320 			"Can't find power management capability, aborting\n");
1321 		err = -EIO;
1322 		goto out_pci_release;
1323 	}
1324 
1325 	netdev = alloc_etherdev(sizeof(*alx));
1326 	if (!netdev) {
1327 		err = -ENOMEM;
1328 		goto out_pci_release;
1329 	}
1330 
1331 	SET_NETDEV_DEV(netdev, &pdev->dev);
1332 	alx = netdev_priv(netdev);
1333 	spin_lock_init(&alx->hw.mdio_lock);
1334 	spin_lock_init(&alx->irq_lock);
1335 	spin_lock_init(&alx->stats_lock);
1336 	alx->dev = netdev;
1337 	alx->hw.pdev = pdev;
1338 	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1339 			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1340 	hw = &alx->hw;
1341 	pci_set_drvdata(pdev, alx);
1342 
1343 	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1344 	if (!hw->hw_addr) {
1345 		dev_err(&pdev->dev, "cannot map device registers\n");
1346 		err = -EIO;
1347 		goto out_free_netdev;
1348 	}
1349 
1350 	netdev->netdev_ops = &alx_netdev_ops;
1351 	netdev->ethtool_ops = &alx_ethtool_ops;
1352 	netdev->irq = pdev->irq;
1353 	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1354 
1355 	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1356 		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1357 
1358 	err = alx_init_sw(alx);
1359 	if (err) {
1360 		dev_err(&pdev->dev, "net device private data init failed\n");
1361 		goto out_unmap;
1362 	}
1363 
1364 	alx_reset_pcie(hw);
1365 
1366 	phy_configured = alx_phy_configured(hw);
1367 
1368 	if (!phy_configured)
1369 		alx_reset_phy(hw);
1370 
1371 	err = alx_reset_mac(hw);
1372 	if (err) {
1373 		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1374 		goto out_unmap;
1375 	}
1376 
1377 	/* setup link to put it in a known good starting state */
1378 	if (!phy_configured) {
1379 		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1380 		if (err) {
1381 			dev_err(&pdev->dev,
1382 				"failed to configure PHY speed/duplex (err=%d)\n",
1383 				err);
1384 			goto out_unmap;
1385 		}
1386 	}
1387 
1388 	netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
1389 
1390 	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1391 		dev_warn(&pdev->dev,
1392 			 "Invalid permanent address programmed, using random one\n");
1393 		eth_hw_addr_random(netdev);
1394 		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1395 	}
1396 
1397 	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1398 	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1399 	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1400 
1401 	hw->mdio.prtad = 0;
1402 	hw->mdio.mmds = 0;
1403 	hw->mdio.dev = netdev;
1404 	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1405 				MDIO_SUPPORTS_C22 |
1406 				MDIO_EMULATE_C22;
1407 	hw->mdio.mdio_read = alx_mdio_read;
1408 	hw->mdio.mdio_write = alx_mdio_write;
1409 
1410 	if (!alx_get_phy_info(hw)) {
1411 		dev_err(&pdev->dev, "failed to identify PHY\n");
1412 		err = -EIO;
1413 		goto out_unmap;
1414 	}
1415 
1416 	INIT_WORK(&alx->link_check_wk, alx_link_check);
1417 	INIT_WORK(&alx->reset_wk, alx_reset);
1418 	netif_carrier_off(netdev);
1419 
1420 	err = register_netdev(netdev);
1421 	if (err) {
1422 		dev_err(&pdev->dev, "register netdevice failed\n");
1423 		goto out_unmap;
1424 	}
1425 
1426 	netdev_info(netdev,
1427 		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1428 		    netdev->dev_addr);
1429 
1430 	return 0;
1431 
1432 out_unmap:
1433 	iounmap(hw->hw_addr);
1434 out_free_netdev:
1435 	free_netdev(netdev);
1436 out_pci_release:
1437 	pci_release_selected_regions(pdev, bars);
1438 out_pci_disable:
1439 	pci_disable_device(pdev);
1440 	return err;
1441 }
1442 
1443 static void alx_remove(struct pci_dev *pdev)
1444 {
1445 	struct alx_priv *alx = pci_get_drvdata(pdev);
1446 	struct alx_hw *hw = &alx->hw;
1447 
1448 	cancel_work_sync(&alx->link_check_wk);
1449 	cancel_work_sync(&alx->reset_wk);
1450 
1451 	/* restore permanent mac address */
1452 	alx_set_macaddr(hw, hw->perm_addr);
1453 
1454 	unregister_netdev(alx->dev);
1455 	iounmap(hw->hw_addr);
1456 	pci_release_selected_regions(pdev,
1457 				     pci_select_bars(pdev, IORESOURCE_MEM));
1458 
1459 	pci_disable_pcie_error_reporting(pdev);
1460 	pci_disable_device(pdev);
1461 
1462 	free_netdev(alx->dev);
1463 }
1464 
1465 #ifdef CONFIG_PM_SLEEP
1466 static int alx_suspend(struct device *dev)
1467 {
1468 	struct pci_dev *pdev = to_pci_dev(dev);
1469 	struct alx_priv *alx = pci_get_drvdata(pdev);
1470 
1471 	if (!netif_running(alx->dev))
1472 		return 0;
1473 	netif_device_detach(alx->dev);
1474 	__alx_stop(alx);
1475 	return 0;
1476 }
1477 
1478 static int alx_resume(struct device *dev)
1479 {
1480 	struct pci_dev *pdev = to_pci_dev(dev);
1481 	struct alx_priv *alx = pci_get_drvdata(pdev);
1482 	struct alx_hw *hw = &alx->hw;
1483 
1484 	alx_reset_phy(hw);
1485 
1486 	if (!netif_running(alx->dev))
1487 		return 0;
1488 	netif_device_attach(alx->dev);
1489 	return __alx_open(alx, true);
1490 }
1491 
1492 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1493 #define ALX_PM_OPS      (&alx_pm_ops)
1494 #else
1495 #define ALX_PM_OPS      NULL
1496 #endif
1497 
1498 
1499 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1500 					       pci_channel_state_t state)
1501 {
1502 	struct alx_priv *alx = pci_get_drvdata(pdev);
1503 	struct net_device *netdev = alx->dev;
1504 	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1505 
1506 	dev_info(&pdev->dev, "pci error detected\n");
1507 
1508 	rtnl_lock();
1509 
1510 	if (netif_running(netdev)) {
1511 		netif_device_detach(netdev);
1512 		alx_halt(alx);
1513 	}
1514 
1515 	if (state == pci_channel_io_perm_failure)
1516 		rc = PCI_ERS_RESULT_DISCONNECT;
1517 	else
1518 		pci_disable_device(pdev);
1519 
1520 	rtnl_unlock();
1521 
1522 	return rc;
1523 }
1524 
1525 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1526 {
1527 	struct alx_priv *alx = pci_get_drvdata(pdev);
1528 	struct alx_hw *hw = &alx->hw;
1529 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1530 
1531 	dev_info(&pdev->dev, "pci error slot reset\n");
1532 
1533 	rtnl_lock();
1534 
1535 	if (pci_enable_device(pdev)) {
1536 		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1537 		goto out;
1538 	}
1539 
1540 	pci_set_master(pdev);
1541 
1542 	alx_reset_pcie(hw);
1543 	if (!alx_reset_mac(hw))
1544 		rc = PCI_ERS_RESULT_RECOVERED;
1545 out:
1546 	pci_cleanup_aer_uncorrect_error_status(pdev);
1547 
1548 	rtnl_unlock();
1549 
1550 	return rc;
1551 }
1552 
1553 static void alx_pci_error_resume(struct pci_dev *pdev)
1554 {
1555 	struct alx_priv *alx = pci_get_drvdata(pdev);
1556 	struct net_device *netdev = alx->dev;
1557 
1558 	dev_info(&pdev->dev, "pci error resume\n");
1559 
1560 	rtnl_lock();
1561 
1562 	if (netif_running(netdev)) {
1563 		alx_activate(alx);
1564 		netif_device_attach(netdev);
1565 	}
1566 
1567 	rtnl_unlock();
1568 }
1569 
1570 static const struct pci_error_handlers alx_err_handlers = {
1571 	.error_detected = alx_pci_error_detected,
1572 	.slot_reset     = alx_pci_error_slot_reset,
1573 	.resume         = alx_pci_error_resume,
1574 };
1575 
1576 static const struct pci_device_id alx_pci_tbl[] = {
1577 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1578 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1579 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1580 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1581 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1582 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1583 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
1584 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1585 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
1586 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
1587 	{}
1588 };
1589 
1590 static struct pci_driver alx_driver = {
1591 	.name        = alx_drv_name,
1592 	.id_table    = alx_pci_tbl,
1593 	.probe       = alx_probe,
1594 	.remove      = alx_remove,
1595 	.err_handler = &alx_err_handlers,
1596 	.driver.pm   = ALX_PM_OPS,
1597 };
1598 
1599 module_pci_driver(alx_driver);
1600 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
1601 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
1602 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
1603 MODULE_DESCRIPTION(
1604 	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
1605 MODULE_LICENSE("GPL");
1606