1 /* 2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net> 3 * 4 * This file is free software: you may copy, redistribute and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation, either version 2 of the License, or (at your 7 * option) any later version. 8 * 9 * This file is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 * 17 * This file incorporates work covered by the following copyright and 18 * permission notice: 19 * 20 * Copyright (c) 2012 Qualcomm Atheros, Inc. 21 * 22 * Permission to use, copy, modify, and/or distribute this software for any 23 * purpose with or without fee is hereby granted, provided that the above 24 * copyright notice and this permission notice appear in all copies. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/interrupt.h> 38 #include <linux/ip.h> 39 #include <linux/ipv6.h> 40 #include <linux/if_vlan.h> 41 #include <linux/mdio.h> 42 #include <linux/aer.h> 43 #include <linux/bitops.h> 44 #include <linux/netdevice.h> 45 #include <linux/etherdevice.h> 46 #include <net/ip6_checksum.h> 47 #include <linux/crc32.h> 48 #include "alx.h" 49 #include "hw.h" 50 #include "reg.h" 51 52 const char alx_drv_name[] = "alx"; 53 54 55 static void alx_free_txbuf(struct alx_priv *alx, int entry) 56 { 57 struct alx_buffer *txb = &alx->txq.bufs[entry]; 58 59 if (dma_unmap_len(txb, size)) { 60 dma_unmap_single(&alx->hw.pdev->dev, 61 dma_unmap_addr(txb, dma), 62 dma_unmap_len(txb, size), 63 DMA_TO_DEVICE); 64 dma_unmap_len_set(txb, size, 0); 65 } 66 67 if (txb->skb) { 68 dev_kfree_skb_any(txb->skb); 69 txb->skb = NULL; 70 } 71 } 72 73 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp) 74 { 75 struct alx_rx_queue *rxq = &alx->rxq; 76 struct sk_buff *skb; 77 struct alx_buffer *cur_buf; 78 dma_addr_t dma; 79 u16 cur, next, count = 0; 80 81 next = cur = rxq->write_idx; 82 if (++next == alx->rx_ringsz) 83 next = 0; 84 cur_buf = &rxq->bufs[cur]; 85 86 while (!cur_buf->skb && next != rxq->read_idx) { 87 struct alx_rfd *rfd = &rxq->rfd[cur]; 88 89 skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp); 90 if (!skb) 91 break; 92 dma = dma_map_single(&alx->hw.pdev->dev, 93 skb->data, alx->rxbuf_size, 94 DMA_FROM_DEVICE); 95 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) { 96 dev_kfree_skb(skb); 97 break; 98 } 99 100 /* Unfortunately, RX descriptor buffers must be 4-byte 101 * aligned, so we can't use IP alignment. 102 */ 103 if (WARN_ON(dma & 3)) { 104 dev_kfree_skb(skb); 105 break; 106 } 107 108 cur_buf->skb = skb; 109 dma_unmap_len_set(cur_buf, size, alx->rxbuf_size); 110 dma_unmap_addr_set(cur_buf, dma, dma); 111 rfd->addr = cpu_to_le64(dma); 112 113 cur = next; 114 if (++next == alx->rx_ringsz) 115 next = 0; 116 cur_buf = &rxq->bufs[cur]; 117 count++; 118 } 119 120 if (count) { 121 /* flush all updates before updating hardware */ 122 wmb(); 123 rxq->write_idx = cur; 124 alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur); 125 } 126 127 return count; 128 } 129 130 static inline int alx_tpd_avail(struct alx_priv *alx) 131 { 132 struct alx_tx_queue *txq = &alx->txq; 133 134 if (txq->write_idx >= txq->read_idx) 135 return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1; 136 return txq->read_idx - txq->write_idx - 1; 137 } 138 139 static bool alx_clean_tx_irq(struct alx_priv *alx) 140 { 141 struct alx_tx_queue *txq = &alx->txq; 142 u16 hw_read_idx, sw_read_idx; 143 unsigned int total_bytes = 0, total_packets = 0; 144 int budget = ALX_DEFAULT_TX_WORK; 145 146 sw_read_idx = txq->read_idx; 147 hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX); 148 149 if (sw_read_idx != hw_read_idx) { 150 while (sw_read_idx != hw_read_idx && budget > 0) { 151 struct sk_buff *skb; 152 153 skb = txq->bufs[sw_read_idx].skb; 154 if (skb) { 155 total_bytes += skb->len; 156 total_packets++; 157 budget--; 158 } 159 160 alx_free_txbuf(alx, sw_read_idx); 161 162 if (++sw_read_idx == alx->tx_ringsz) 163 sw_read_idx = 0; 164 } 165 txq->read_idx = sw_read_idx; 166 167 netdev_completed_queue(alx->dev, total_packets, total_bytes); 168 } 169 170 if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) && 171 alx_tpd_avail(alx) > alx->tx_ringsz/4) 172 netif_wake_queue(alx->dev); 173 174 return sw_read_idx == hw_read_idx; 175 } 176 177 static void alx_schedule_link_check(struct alx_priv *alx) 178 { 179 schedule_work(&alx->link_check_wk); 180 } 181 182 static void alx_schedule_reset(struct alx_priv *alx) 183 { 184 schedule_work(&alx->reset_wk); 185 } 186 187 static int alx_clean_rx_irq(struct alx_priv *alx, int budget) 188 { 189 struct alx_rx_queue *rxq = &alx->rxq; 190 struct alx_rrd *rrd; 191 struct alx_buffer *rxb; 192 struct sk_buff *skb; 193 u16 length, rfd_cleaned = 0; 194 int work = 0; 195 196 while (work < budget) { 197 rrd = &rxq->rrd[rxq->rrd_read_idx]; 198 if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT))) 199 break; 200 rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT); 201 202 if (ALX_GET_FIELD(le32_to_cpu(rrd->word0), 203 RRD_SI) != rxq->read_idx || 204 ALX_GET_FIELD(le32_to_cpu(rrd->word0), 205 RRD_NOR) != 1) { 206 alx_schedule_reset(alx); 207 return work; 208 } 209 210 rxb = &rxq->bufs[rxq->read_idx]; 211 dma_unmap_single(&alx->hw.pdev->dev, 212 dma_unmap_addr(rxb, dma), 213 dma_unmap_len(rxb, size), 214 DMA_FROM_DEVICE); 215 dma_unmap_len_set(rxb, size, 0); 216 skb = rxb->skb; 217 rxb->skb = NULL; 218 219 if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) || 220 rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) { 221 rrd->word3 = 0; 222 dev_kfree_skb_any(skb); 223 goto next_pkt; 224 } 225 226 length = ALX_GET_FIELD(le32_to_cpu(rrd->word3), 227 RRD_PKTLEN) - ETH_FCS_LEN; 228 skb_put(skb, length); 229 skb->protocol = eth_type_trans(skb, alx->dev); 230 231 skb_checksum_none_assert(skb); 232 if (alx->dev->features & NETIF_F_RXCSUM && 233 !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) | 234 cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) { 235 switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2), 236 RRD_PID)) { 237 case RRD_PID_IPV6UDP: 238 case RRD_PID_IPV4UDP: 239 case RRD_PID_IPV4TCP: 240 case RRD_PID_IPV6TCP: 241 skb->ip_summed = CHECKSUM_UNNECESSARY; 242 break; 243 } 244 } 245 246 napi_gro_receive(&alx->napi, skb); 247 work++; 248 249 next_pkt: 250 if (++rxq->read_idx == alx->rx_ringsz) 251 rxq->read_idx = 0; 252 if (++rxq->rrd_read_idx == alx->rx_ringsz) 253 rxq->rrd_read_idx = 0; 254 255 if (++rfd_cleaned > ALX_RX_ALLOC_THRESH) 256 rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC); 257 } 258 259 if (rfd_cleaned) 260 alx_refill_rx_ring(alx, GFP_ATOMIC); 261 262 return work; 263 } 264 265 static int alx_poll(struct napi_struct *napi, int budget) 266 { 267 struct alx_priv *alx = container_of(napi, struct alx_priv, napi); 268 struct alx_hw *hw = &alx->hw; 269 unsigned long flags; 270 bool tx_complete; 271 int work; 272 273 tx_complete = alx_clean_tx_irq(alx); 274 work = alx_clean_rx_irq(alx, budget); 275 276 if (!tx_complete || work == budget) 277 return budget; 278 279 napi_complete(&alx->napi); 280 281 /* enable interrupt */ 282 spin_lock_irqsave(&alx->irq_lock, flags); 283 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0; 284 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 285 spin_unlock_irqrestore(&alx->irq_lock, flags); 286 287 alx_post_write(hw); 288 289 return work; 290 } 291 292 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr) 293 { 294 struct alx_hw *hw = &alx->hw; 295 bool write_int_mask = false; 296 297 spin_lock(&alx->irq_lock); 298 299 /* ACK interrupt */ 300 alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS); 301 intr &= alx->int_mask; 302 303 if (intr & ALX_ISR_FATAL) { 304 netif_warn(alx, hw, alx->dev, 305 "fatal interrupt 0x%x, resetting\n", intr); 306 alx_schedule_reset(alx); 307 goto out; 308 } 309 310 if (intr & ALX_ISR_ALERT) 311 netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr); 312 313 if (intr & ALX_ISR_PHY) { 314 /* suppress PHY interrupt, because the source 315 * is from PHY internal. only the internal status 316 * is cleared, the interrupt status could be cleared. 317 */ 318 alx->int_mask &= ~ALX_ISR_PHY; 319 write_int_mask = true; 320 alx_schedule_link_check(alx); 321 } 322 323 if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) { 324 napi_schedule(&alx->napi); 325 /* mask rx/tx interrupt, enable them when napi complete */ 326 alx->int_mask &= ~ALX_ISR_ALL_QUEUES; 327 write_int_mask = true; 328 } 329 330 if (write_int_mask) 331 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 332 333 alx_write_mem32(hw, ALX_ISR, 0); 334 335 out: 336 spin_unlock(&alx->irq_lock); 337 return IRQ_HANDLED; 338 } 339 340 static irqreturn_t alx_intr_msi(int irq, void *data) 341 { 342 struct alx_priv *alx = data; 343 344 return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR)); 345 } 346 347 static irqreturn_t alx_intr_legacy(int irq, void *data) 348 { 349 struct alx_priv *alx = data; 350 struct alx_hw *hw = &alx->hw; 351 u32 intr; 352 353 intr = alx_read_mem32(hw, ALX_ISR); 354 355 if (intr & ALX_ISR_DIS || !(intr & alx->int_mask)) 356 return IRQ_NONE; 357 358 return alx_intr_handle(alx, intr); 359 } 360 361 static void alx_init_ring_ptrs(struct alx_priv *alx) 362 { 363 struct alx_hw *hw = &alx->hw; 364 u32 addr_hi = ((u64)alx->descmem.dma) >> 32; 365 366 alx->rxq.read_idx = 0; 367 alx->rxq.write_idx = 0; 368 alx->rxq.rrd_read_idx = 0; 369 alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi); 370 alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma); 371 alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz); 372 alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma); 373 alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz); 374 alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size); 375 376 alx->txq.read_idx = 0; 377 alx->txq.write_idx = 0; 378 alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi); 379 alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma); 380 alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz); 381 382 /* load these pointers into the chip */ 383 alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR); 384 } 385 386 static void alx_free_txring_buf(struct alx_priv *alx) 387 { 388 struct alx_tx_queue *txq = &alx->txq; 389 int i; 390 391 if (!txq->bufs) 392 return; 393 394 for (i = 0; i < alx->tx_ringsz; i++) 395 alx_free_txbuf(alx, i); 396 397 memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer)); 398 memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd)); 399 txq->write_idx = 0; 400 txq->read_idx = 0; 401 402 netdev_reset_queue(alx->dev); 403 } 404 405 static void alx_free_rxring_buf(struct alx_priv *alx) 406 { 407 struct alx_rx_queue *rxq = &alx->rxq; 408 struct alx_buffer *cur_buf; 409 u16 i; 410 411 if (rxq == NULL) 412 return; 413 414 for (i = 0; i < alx->rx_ringsz; i++) { 415 cur_buf = rxq->bufs + i; 416 if (cur_buf->skb) { 417 dma_unmap_single(&alx->hw.pdev->dev, 418 dma_unmap_addr(cur_buf, dma), 419 dma_unmap_len(cur_buf, size), 420 DMA_FROM_DEVICE); 421 dev_kfree_skb(cur_buf->skb); 422 cur_buf->skb = NULL; 423 dma_unmap_len_set(cur_buf, size, 0); 424 dma_unmap_addr_set(cur_buf, dma, 0); 425 } 426 } 427 428 rxq->write_idx = 0; 429 rxq->read_idx = 0; 430 rxq->rrd_read_idx = 0; 431 } 432 433 static void alx_free_buffers(struct alx_priv *alx) 434 { 435 alx_free_txring_buf(alx); 436 alx_free_rxring_buf(alx); 437 } 438 439 static int alx_reinit_rings(struct alx_priv *alx) 440 { 441 alx_free_buffers(alx); 442 443 alx_init_ring_ptrs(alx); 444 445 if (!alx_refill_rx_ring(alx, GFP_KERNEL)) 446 return -ENOMEM; 447 448 return 0; 449 } 450 451 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash) 452 { 453 u32 crc32, bit, reg; 454 455 crc32 = ether_crc(ETH_ALEN, addr); 456 reg = (crc32 >> 31) & 0x1; 457 bit = (crc32 >> 26) & 0x1F; 458 459 mc_hash[reg] |= BIT(bit); 460 } 461 462 static void __alx_set_rx_mode(struct net_device *netdev) 463 { 464 struct alx_priv *alx = netdev_priv(netdev); 465 struct alx_hw *hw = &alx->hw; 466 struct netdev_hw_addr *ha; 467 u32 mc_hash[2] = {}; 468 469 if (!(netdev->flags & IFF_ALLMULTI)) { 470 netdev_for_each_mc_addr(ha, netdev) 471 alx_add_mc_addr(hw, ha->addr, mc_hash); 472 473 alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]); 474 alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]); 475 } 476 477 hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN); 478 if (netdev->flags & IFF_PROMISC) 479 hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN; 480 if (netdev->flags & IFF_ALLMULTI) 481 hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN; 482 483 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); 484 } 485 486 static void alx_set_rx_mode(struct net_device *netdev) 487 { 488 __alx_set_rx_mode(netdev); 489 } 490 491 static int alx_set_mac_address(struct net_device *netdev, void *data) 492 { 493 struct alx_priv *alx = netdev_priv(netdev); 494 struct alx_hw *hw = &alx->hw; 495 struct sockaddr *addr = data; 496 497 if (!is_valid_ether_addr(addr->sa_data)) 498 return -EADDRNOTAVAIL; 499 500 if (netdev->addr_assign_type & NET_ADDR_RANDOM) 501 netdev->addr_assign_type ^= NET_ADDR_RANDOM; 502 503 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 504 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 505 alx_set_macaddr(hw, hw->mac_addr); 506 507 return 0; 508 } 509 510 static int alx_alloc_descriptors(struct alx_priv *alx) 511 { 512 alx->txq.bufs = kcalloc(alx->tx_ringsz, 513 sizeof(struct alx_buffer), 514 GFP_KERNEL); 515 if (!alx->txq.bufs) 516 return -ENOMEM; 517 518 alx->rxq.bufs = kcalloc(alx->rx_ringsz, 519 sizeof(struct alx_buffer), 520 GFP_KERNEL); 521 if (!alx->rxq.bufs) 522 goto out_free; 523 524 /* physical tx/rx ring descriptors 525 * 526 * Allocate them as a single chunk because they must not cross a 527 * 4G boundary (hardware has a single register for high 32 bits 528 * of addresses only) 529 */ 530 alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz + 531 sizeof(struct alx_rrd) * alx->rx_ringsz + 532 sizeof(struct alx_rfd) * alx->rx_ringsz; 533 alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev, 534 alx->descmem.size, 535 &alx->descmem.dma, 536 GFP_KERNEL); 537 if (!alx->descmem.virt) 538 goto out_free; 539 540 alx->txq.tpd = alx->descmem.virt; 541 alx->txq.tpd_dma = alx->descmem.dma; 542 543 /* alignment requirement for next block */ 544 BUILD_BUG_ON(sizeof(struct alx_txd) % 8); 545 546 alx->rxq.rrd = 547 (void *)((u8 *)alx->descmem.virt + 548 sizeof(struct alx_txd) * alx->tx_ringsz); 549 alx->rxq.rrd_dma = alx->descmem.dma + 550 sizeof(struct alx_txd) * alx->tx_ringsz; 551 552 /* alignment requirement for next block */ 553 BUILD_BUG_ON(sizeof(struct alx_rrd) % 8); 554 555 alx->rxq.rfd = 556 (void *)((u8 *)alx->descmem.virt + 557 sizeof(struct alx_txd) * alx->tx_ringsz + 558 sizeof(struct alx_rrd) * alx->rx_ringsz); 559 alx->rxq.rfd_dma = alx->descmem.dma + 560 sizeof(struct alx_txd) * alx->tx_ringsz + 561 sizeof(struct alx_rrd) * alx->rx_ringsz; 562 563 return 0; 564 out_free: 565 kfree(alx->txq.bufs); 566 kfree(alx->rxq.bufs); 567 return -ENOMEM; 568 } 569 570 static int alx_alloc_rings(struct alx_priv *alx) 571 { 572 int err; 573 574 err = alx_alloc_descriptors(alx); 575 if (err) 576 return err; 577 578 alx->int_mask &= ~ALX_ISR_ALL_QUEUES; 579 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0; 580 581 netif_napi_add(alx->dev, &alx->napi, alx_poll, 64); 582 583 alx_reinit_rings(alx); 584 return 0; 585 } 586 587 static void alx_free_rings(struct alx_priv *alx) 588 { 589 netif_napi_del(&alx->napi); 590 alx_free_buffers(alx); 591 592 kfree(alx->txq.bufs); 593 kfree(alx->rxq.bufs); 594 595 dma_free_coherent(&alx->hw.pdev->dev, 596 alx->descmem.size, 597 alx->descmem.virt, 598 alx->descmem.dma); 599 } 600 601 static void alx_config_vector_mapping(struct alx_priv *alx) 602 { 603 struct alx_hw *hw = &alx->hw; 604 605 alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0); 606 alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0); 607 alx_write_mem32(hw, ALX_MSI_ID_MAP, 0); 608 } 609 610 static void alx_irq_enable(struct alx_priv *alx) 611 { 612 struct alx_hw *hw = &alx->hw; 613 614 /* level-1 interrupt switch */ 615 alx_write_mem32(hw, ALX_ISR, 0); 616 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 617 alx_post_write(hw); 618 } 619 620 static void alx_irq_disable(struct alx_priv *alx) 621 { 622 struct alx_hw *hw = &alx->hw; 623 624 alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS); 625 alx_write_mem32(hw, ALX_IMR, 0); 626 alx_post_write(hw); 627 628 synchronize_irq(alx->hw.pdev->irq); 629 } 630 631 static int alx_request_irq(struct alx_priv *alx) 632 { 633 struct pci_dev *pdev = alx->hw.pdev; 634 struct alx_hw *hw = &alx->hw; 635 int err; 636 u32 msi_ctrl; 637 638 msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT; 639 640 if (!pci_enable_msi(alx->hw.pdev)) { 641 alx->msi = true; 642 643 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 644 msi_ctrl | ALX_MSI_MASK_SEL_LINE); 645 err = request_irq(pdev->irq, alx_intr_msi, 0, 646 alx->dev->name, alx); 647 if (!err) 648 goto out; 649 /* fall back to legacy interrupt */ 650 pci_disable_msi(alx->hw.pdev); 651 } 652 653 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0); 654 err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED, 655 alx->dev->name, alx); 656 out: 657 if (!err) 658 alx_config_vector_mapping(alx); 659 return err; 660 } 661 662 static void alx_free_irq(struct alx_priv *alx) 663 { 664 struct pci_dev *pdev = alx->hw.pdev; 665 666 free_irq(pdev->irq, alx); 667 668 if (alx->msi) { 669 pci_disable_msi(alx->hw.pdev); 670 alx->msi = false; 671 } 672 } 673 674 static int alx_identify_hw(struct alx_priv *alx) 675 { 676 struct alx_hw *hw = &alx->hw; 677 int rev = alx_hw_revision(hw); 678 679 if (rev > ALX_REV_C0) 680 return -EINVAL; 681 682 hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2; 683 684 return 0; 685 } 686 687 static int alx_init_sw(struct alx_priv *alx) 688 { 689 struct pci_dev *pdev = alx->hw.pdev; 690 struct alx_hw *hw = &alx->hw; 691 int err; 692 693 err = alx_identify_hw(alx); 694 if (err) { 695 dev_err(&pdev->dev, "unrecognized chip, aborting\n"); 696 return err; 697 } 698 699 alx->hw.lnk_patch = 700 pdev->device == ALX_DEV_ID_AR8161 && 701 pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC && 702 pdev->subsystem_device == 0x0091 && 703 pdev->revision == 0; 704 705 hw->smb_timer = 400; 706 hw->mtu = alx->dev->mtu; 707 alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu); 708 alx->tx_ringsz = 256; 709 alx->rx_ringsz = 512; 710 hw->imt = 200; 711 alx->int_mask = ALX_ISR_MISC; 712 hw->dma_chnl = hw->max_dma_chnl; 713 hw->ith_tpd = alx->tx_ringsz / 3; 714 hw->link_speed = SPEED_UNKNOWN; 715 hw->duplex = DUPLEX_UNKNOWN; 716 hw->adv_cfg = ADVERTISED_Autoneg | 717 ADVERTISED_10baseT_Half | 718 ADVERTISED_10baseT_Full | 719 ADVERTISED_100baseT_Full | 720 ADVERTISED_100baseT_Half | 721 ADVERTISED_1000baseT_Full; 722 hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX; 723 724 hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN | 725 ALX_MAC_CTRL_MHASH_ALG_HI5B | 726 ALX_MAC_CTRL_BRD_EN | 727 ALX_MAC_CTRL_PCRCE | 728 ALX_MAC_CTRL_CRCE | 729 ALX_MAC_CTRL_RXFC_EN | 730 ALX_MAC_CTRL_TXFC_EN | 731 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT; 732 733 return err; 734 } 735 736 737 static netdev_features_t alx_fix_features(struct net_device *netdev, 738 netdev_features_t features) 739 { 740 if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE) 741 features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 742 743 return features; 744 } 745 746 static void alx_netif_stop(struct alx_priv *alx) 747 { 748 alx->dev->trans_start = jiffies; 749 if (netif_carrier_ok(alx->dev)) { 750 netif_carrier_off(alx->dev); 751 netif_tx_disable(alx->dev); 752 napi_disable(&alx->napi); 753 } 754 } 755 756 static void alx_halt(struct alx_priv *alx) 757 { 758 struct alx_hw *hw = &alx->hw; 759 760 alx_netif_stop(alx); 761 hw->link_speed = SPEED_UNKNOWN; 762 hw->duplex = DUPLEX_UNKNOWN; 763 764 alx_reset_mac(hw); 765 766 /* disable l0s/l1 */ 767 alx_enable_aspm(hw, false, false); 768 alx_irq_disable(alx); 769 alx_free_buffers(alx); 770 } 771 772 static void alx_configure(struct alx_priv *alx) 773 { 774 struct alx_hw *hw = &alx->hw; 775 776 alx_configure_basic(hw); 777 alx_disable_rss(hw); 778 __alx_set_rx_mode(alx->dev); 779 780 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); 781 } 782 783 static void alx_activate(struct alx_priv *alx) 784 { 785 /* hardware setting lost, restore it */ 786 alx_reinit_rings(alx); 787 alx_configure(alx); 788 789 /* clear old interrupts */ 790 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); 791 792 alx_irq_enable(alx); 793 794 alx_schedule_link_check(alx); 795 } 796 797 static void alx_reinit(struct alx_priv *alx) 798 { 799 ASSERT_RTNL(); 800 801 alx_halt(alx); 802 alx_activate(alx); 803 } 804 805 static int alx_change_mtu(struct net_device *netdev, int mtu) 806 { 807 struct alx_priv *alx = netdev_priv(netdev); 808 int max_frame = ALX_MAX_FRAME_LEN(mtu); 809 810 if ((max_frame < ALX_MIN_FRAME_SIZE) || 811 (max_frame > ALX_MAX_FRAME_SIZE)) 812 return -EINVAL; 813 814 if (netdev->mtu == mtu) 815 return 0; 816 817 netdev->mtu = mtu; 818 alx->hw.mtu = mtu; 819 alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE); 820 netdev_update_features(netdev); 821 if (netif_running(netdev)) 822 alx_reinit(alx); 823 return 0; 824 } 825 826 static void alx_netif_start(struct alx_priv *alx) 827 { 828 netif_tx_wake_all_queues(alx->dev); 829 napi_enable(&alx->napi); 830 netif_carrier_on(alx->dev); 831 } 832 833 static int __alx_open(struct alx_priv *alx, bool resume) 834 { 835 int err; 836 837 if (!resume) 838 netif_carrier_off(alx->dev); 839 840 err = alx_alloc_rings(alx); 841 if (err) 842 return err; 843 844 alx_configure(alx); 845 846 err = alx_request_irq(alx); 847 if (err) 848 goto out_free_rings; 849 850 /* clear old interrupts */ 851 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); 852 853 alx_irq_enable(alx); 854 855 if (!resume) 856 netif_tx_start_all_queues(alx->dev); 857 858 alx_schedule_link_check(alx); 859 return 0; 860 861 out_free_rings: 862 alx_free_rings(alx); 863 return err; 864 } 865 866 static void __alx_stop(struct alx_priv *alx) 867 { 868 alx_halt(alx); 869 alx_free_irq(alx); 870 alx_free_rings(alx); 871 } 872 873 static const char *alx_speed_desc(struct alx_hw *hw) 874 { 875 switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) { 876 case ADVERTISED_1000baseT_Full: 877 return "1 Gbps Full"; 878 case ADVERTISED_100baseT_Full: 879 return "100 Mbps Full"; 880 case ADVERTISED_100baseT_Half: 881 return "100 Mbps Half"; 882 case ADVERTISED_10baseT_Full: 883 return "10 Mbps Full"; 884 case ADVERTISED_10baseT_Half: 885 return "10 Mbps Half"; 886 default: 887 return "Unknown speed"; 888 } 889 } 890 891 static void alx_check_link(struct alx_priv *alx) 892 { 893 struct alx_hw *hw = &alx->hw; 894 unsigned long flags; 895 int old_speed; 896 u8 old_duplex; 897 int err; 898 899 /* clear PHY internal interrupt status, otherwise the main 900 * interrupt status will be asserted forever 901 */ 902 alx_clear_phy_intr(hw); 903 904 old_speed = hw->link_speed; 905 old_duplex = hw->duplex; 906 err = alx_read_phy_link(hw); 907 if (err < 0) 908 goto reset; 909 910 spin_lock_irqsave(&alx->irq_lock, flags); 911 alx->int_mask |= ALX_ISR_PHY; 912 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 913 spin_unlock_irqrestore(&alx->irq_lock, flags); 914 915 if (old_speed == hw->link_speed) 916 return; 917 918 if (hw->link_speed != SPEED_UNKNOWN) { 919 netif_info(alx, link, alx->dev, 920 "NIC Up: %s\n", alx_speed_desc(hw)); 921 alx_post_phy_link(hw); 922 alx_enable_aspm(hw, true, true); 923 alx_start_mac(hw); 924 925 if (old_speed == SPEED_UNKNOWN) 926 alx_netif_start(alx); 927 } else { 928 /* link is now down */ 929 alx_netif_stop(alx); 930 netif_info(alx, link, alx->dev, "Link Down\n"); 931 err = alx_reset_mac(hw); 932 if (err) 933 goto reset; 934 alx_irq_disable(alx); 935 936 /* MAC reset causes all HW settings to be lost, restore all */ 937 err = alx_reinit_rings(alx); 938 if (err) 939 goto reset; 940 alx_configure(alx); 941 alx_enable_aspm(hw, false, true); 942 alx_post_phy_link(hw); 943 alx_irq_enable(alx); 944 } 945 946 return; 947 948 reset: 949 alx_schedule_reset(alx); 950 } 951 952 static int alx_open(struct net_device *netdev) 953 { 954 return __alx_open(netdev_priv(netdev), false); 955 } 956 957 static int alx_stop(struct net_device *netdev) 958 { 959 __alx_stop(netdev_priv(netdev)); 960 return 0; 961 } 962 963 static void alx_link_check(struct work_struct *work) 964 { 965 struct alx_priv *alx; 966 967 alx = container_of(work, struct alx_priv, link_check_wk); 968 969 rtnl_lock(); 970 alx_check_link(alx); 971 rtnl_unlock(); 972 } 973 974 static void alx_reset(struct work_struct *work) 975 { 976 struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk); 977 978 rtnl_lock(); 979 alx_reinit(alx); 980 rtnl_unlock(); 981 } 982 983 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first) 984 { 985 u8 cso, css; 986 987 if (skb->ip_summed != CHECKSUM_PARTIAL) 988 return 0; 989 990 cso = skb_checksum_start_offset(skb); 991 if (cso & 1) 992 return -EINVAL; 993 994 css = cso + skb->csum_offset; 995 first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT); 996 first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT); 997 first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT); 998 999 return 0; 1000 } 1001 1002 static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb) 1003 { 1004 struct alx_tx_queue *txq = &alx->txq; 1005 struct alx_txd *tpd, *first_tpd; 1006 dma_addr_t dma; 1007 int maplen, f, first_idx = txq->write_idx; 1008 1009 first_tpd = &txq->tpd[txq->write_idx]; 1010 tpd = first_tpd; 1011 1012 maplen = skb_headlen(skb); 1013 dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen, 1014 DMA_TO_DEVICE); 1015 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) 1016 goto err_dma; 1017 1018 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); 1019 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); 1020 1021 tpd->adrl.addr = cpu_to_le64(dma); 1022 tpd->len = cpu_to_le16(maplen); 1023 1024 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 1025 struct skb_frag_struct *frag; 1026 1027 frag = &skb_shinfo(skb)->frags[f]; 1028 1029 if (++txq->write_idx == alx->tx_ringsz) 1030 txq->write_idx = 0; 1031 tpd = &txq->tpd[txq->write_idx]; 1032 1033 tpd->word1 = first_tpd->word1; 1034 1035 maplen = skb_frag_size(frag); 1036 dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0, 1037 maplen, DMA_TO_DEVICE); 1038 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) 1039 goto err_dma; 1040 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); 1041 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); 1042 1043 tpd->adrl.addr = cpu_to_le64(dma); 1044 tpd->len = cpu_to_le16(maplen); 1045 } 1046 1047 /* last TPD, set EOP flag and store skb */ 1048 tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT); 1049 txq->bufs[txq->write_idx].skb = skb; 1050 1051 if (++txq->write_idx == alx->tx_ringsz) 1052 txq->write_idx = 0; 1053 1054 return 0; 1055 1056 err_dma: 1057 f = first_idx; 1058 while (f != txq->write_idx) { 1059 alx_free_txbuf(alx, f); 1060 if (++f == alx->tx_ringsz) 1061 f = 0; 1062 } 1063 return -ENOMEM; 1064 } 1065 1066 static netdev_tx_t alx_start_xmit(struct sk_buff *skb, 1067 struct net_device *netdev) 1068 { 1069 struct alx_priv *alx = netdev_priv(netdev); 1070 struct alx_tx_queue *txq = &alx->txq; 1071 struct alx_txd *first; 1072 int tpdreq = skb_shinfo(skb)->nr_frags + 1; 1073 1074 if (alx_tpd_avail(alx) < tpdreq) { 1075 netif_stop_queue(alx->dev); 1076 goto drop; 1077 } 1078 1079 first = &txq->tpd[txq->write_idx]; 1080 memset(first, 0, sizeof(*first)); 1081 1082 if (alx_tx_csum(skb, first)) 1083 goto drop; 1084 1085 if (alx_map_tx_skb(alx, skb) < 0) 1086 goto drop; 1087 1088 netdev_sent_queue(alx->dev, skb->len); 1089 1090 /* flush updates before updating hardware */ 1091 wmb(); 1092 alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx); 1093 1094 if (alx_tpd_avail(alx) < alx->tx_ringsz/8) 1095 netif_stop_queue(alx->dev); 1096 1097 return NETDEV_TX_OK; 1098 1099 drop: 1100 dev_kfree_skb_any(skb); 1101 return NETDEV_TX_OK; 1102 } 1103 1104 static void alx_tx_timeout(struct net_device *dev) 1105 { 1106 struct alx_priv *alx = netdev_priv(dev); 1107 1108 alx_schedule_reset(alx); 1109 } 1110 1111 static int alx_mdio_read(struct net_device *netdev, 1112 int prtad, int devad, u16 addr) 1113 { 1114 struct alx_priv *alx = netdev_priv(netdev); 1115 struct alx_hw *hw = &alx->hw; 1116 u16 val; 1117 int err; 1118 1119 if (prtad != hw->mdio.prtad) 1120 return -EINVAL; 1121 1122 if (devad == MDIO_DEVAD_NONE) 1123 err = alx_read_phy_reg(hw, addr, &val); 1124 else 1125 err = alx_read_phy_ext(hw, devad, addr, &val); 1126 1127 if (err) 1128 return err; 1129 return val; 1130 } 1131 1132 static int alx_mdio_write(struct net_device *netdev, 1133 int prtad, int devad, u16 addr, u16 val) 1134 { 1135 struct alx_priv *alx = netdev_priv(netdev); 1136 struct alx_hw *hw = &alx->hw; 1137 1138 if (prtad != hw->mdio.prtad) 1139 return -EINVAL; 1140 1141 if (devad == MDIO_DEVAD_NONE) 1142 return alx_write_phy_reg(hw, addr, val); 1143 1144 return alx_write_phy_ext(hw, devad, addr, val); 1145 } 1146 1147 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1148 { 1149 struct alx_priv *alx = netdev_priv(netdev); 1150 1151 if (!netif_running(netdev)) 1152 return -EAGAIN; 1153 1154 return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd); 1155 } 1156 1157 #ifdef CONFIG_NET_POLL_CONTROLLER 1158 static void alx_poll_controller(struct net_device *netdev) 1159 { 1160 struct alx_priv *alx = netdev_priv(netdev); 1161 1162 if (alx->msi) 1163 alx_intr_msi(0, alx); 1164 else 1165 alx_intr_legacy(0, alx); 1166 } 1167 #endif 1168 1169 static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev, 1170 struct rtnl_link_stats64 *net_stats) 1171 { 1172 struct alx_priv *alx = netdev_priv(dev); 1173 struct alx_hw_stats *hw_stats = &alx->hw.stats; 1174 1175 spin_lock(&alx->stats_lock); 1176 1177 alx_update_hw_stats(&alx->hw); 1178 1179 net_stats->tx_bytes = hw_stats->tx_byte_cnt; 1180 net_stats->rx_bytes = hw_stats->rx_byte_cnt; 1181 net_stats->multicast = hw_stats->rx_mcast; 1182 net_stats->collisions = hw_stats->tx_single_col + 1183 hw_stats->tx_multi_col + 1184 hw_stats->tx_late_col + 1185 hw_stats->tx_abort_col; 1186 1187 net_stats->rx_errors = hw_stats->rx_frag + 1188 hw_stats->rx_fcs_err + 1189 hw_stats->rx_len_err + 1190 hw_stats->rx_ov_sz + 1191 hw_stats->rx_ov_rrd + 1192 hw_stats->rx_align_err + 1193 hw_stats->rx_ov_rxf; 1194 1195 net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf; 1196 net_stats->rx_length_errors = hw_stats->rx_len_err; 1197 net_stats->rx_crc_errors = hw_stats->rx_fcs_err; 1198 net_stats->rx_frame_errors = hw_stats->rx_align_err; 1199 net_stats->rx_dropped = hw_stats->rx_ov_rrd; 1200 1201 net_stats->tx_errors = hw_stats->tx_late_col + 1202 hw_stats->tx_abort_col + 1203 hw_stats->tx_underrun + 1204 hw_stats->tx_trunc; 1205 1206 net_stats->tx_aborted_errors = hw_stats->tx_abort_col; 1207 net_stats->tx_fifo_errors = hw_stats->tx_underrun; 1208 net_stats->tx_window_errors = hw_stats->tx_late_col; 1209 1210 net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors; 1211 net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors; 1212 1213 spin_unlock(&alx->stats_lock); 1214 1215 return net_stats; 1216 } 1217 1218 static const struct net_device_ops alx_netdev_ops = { 1219 .ndo_open = alx_open, 1220 .ndo_stop = alx_stop, 1221 .ndo_start_xmit = alx_start_xmit, 1222 .ndo_get_stats64 = alx_get_stats64, 1223 .ndo_set_rx_mode = alx_set_rx_mode, 1224 .ndo_validate_addr = eth_validate_addr, 1225 .ndo_set_mac_address = alx_set_mac_address, 1226 .ndo_change_mtu = alx_change_mtu, 1227 .ndo_do_ioctl = alx_ioctl, 1228 .ndo_tx_timeout = alx_tx_timeout, 1229 .ndo_fix_features = alx_fix_features, 1230 #ifdef CONFIG_NET_POLL_CONTROLLER 1231 .ndo_poll_controller = alx_poll_controller, 1232 #endif 1233 }; 1234 1235 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1236 { 1237 struct net_device *netdev; 1238 struct alx_priv *alx; 1239 struct alx_hw *hw; 1240 bool phy_configured; 1241 int bars, err; 1242 1243 err = pci_enable_device_mem(pdev); 1244 if (err) 1245 return err; 1246 1247 /* The alx chip can DMA to 64-bit addresses, but it uses a single 1248 * shared register for the high 32 bits, so only a single, aligned, 1249 * 4 GB physical address range can be used for descriptors. 1250 */ 1251 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1252 dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n"); 1253 } else { 1254 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1255 if (err) { 1256 dev_err(&pdev->dev, "No usable DMA config, aborting\n"); 1257 goto out_pci_disable; 1258 } 1259 } 1260 1261 bars = pci_select_bars(pdev, IORESOURCE_MEM); 1262 err = pci_request_selected_regions(pdev, bars, alx_drv_name); 1263 if (err) { 1264 dev_err(&pdev->dev, 1265 "pci_request_selected_regions failed(bars:%d)\n", bars); 1266 goto out_pci_disable; 1267 } 1268 1269 pci_enable_pcie_error_reporting(pdev); 1270 pci_set_master(pdev); 1271 1272 if (!pdev->pm_cap) { 1273 dev_err(&pdev->dev, 1274 "Can't find power management capability, aborting\n"); 1275 err = -EIO; 1276 goto out_pci_release; 1277 } 1278 1279 netdev = alloc_etherdev(sizeof(*alx)); 1280 if (!netdev) { 1281 err = -ENOMEM; 1282 goto out_pci_release; 1283 } 1284 1285 SET_NETDEV_DEV(netdev, &pdev->dev); 1286 alx = netdev_priv(netdev); 1287 spin_lock_init(&alx->hw.mdio_lock); 1288 spin_lock_init(&alx->irq_lock); 1289 spin_lock_init(&alx->stats_lock); 1290 alx->dev = netdev; 1291 alx->hw.pdev = pdev; 1292 alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP | 1293 NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL; 1294 hw = &alx->hw; 1295 pci_set_drvdata(pdev, alx); 1296 1297 hw->hw_addr = pci_ioremap_bar(pdev, 0); 1298 if (!hw->hw_addr) { 1299 dev_err(&pdev->dev, "cannot map device registers\n"); 1300 err = -EIO; 1301 goto out_free_netdev; 1302 } 1303 1304 netdev->netdev_ops = &alx_netdev_ops; 1305 netdev->ethtool_ops = &alx_ethtool_ops; 1306 netdev->irq = pdev->irq; 1307 netdev->watchdog_timeo = ALX_WATCHDOG_TIME; 1308 1309 if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG) 1310 pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG; 1311 1312 err = alx_init_sw(alx); 1313 if (err) { 1314 dev_err(&pdev->dev, "net device private data init failed\n"); 1315 goto out_unmap; 1316 } 1317 1318 alx_reset_pcie(hw); 1319 1320 phy_configured = alx_phy_configured(hw); 1321 1322 if (!phy_configured) 1323 alx_reset_phy(hw); 1324 1325 err = alx_reset_mac(hw); 1326 if (err) { 1327 dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err); 1328 goto out_unmap; 1329 } 1330 1331 /* setup link to put it in a known good starting state */ 1332 if (!phy_configured) { 1333 err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl); 1334 if (err) { 1335 dev_err(&pdev->dev, 1336 "failed to configure PHY speed/duplex (err=%d)\n", 1337 err); 1338 goto out_unmap; 1339 } 1340 } 1341 1342 netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 1343 1344 if (alx_get_perm_macaddr(hw, hw->perm_addr)) { 1345 dev_warn(&pdev->dev, 1346 "Invalid permanent address programmed, using random one\n"); 1347 eth_hw_addr_random(netdev); 1348 memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len); 1349 } 1350 1351 memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN); 1352 memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN); 1353 memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN); 1354 1355 hw->mdio.prtad = 0; 1356 hw->mdio.mmds = 0; 1357 hw->mdio.dev = netdev; 1358 hw->mdio.mode_support = MDIO_SUPPORTS_C45 | 1359 MDIO_SUPPORTS_C22 | 1360 MDIO_EMULATE_C22; 1361 hw->mdio.mdio_read = alx_mdio_read; 1362 hw->mdio.mdio_write = alx_mdio_write; 1363 1364 if (!alx_get_phy_info(hw)) { 1365 dev_err(&pdev->dev, "failed to identify PHY\n"); 1366 err = -EIO; 1367 goto out_unmap; 1368 } 1369 1370 INIT_WORK(&alx->link_check_wk, alx_link_check); 1371 INIT_WORK(&alx->reset_wk, alx_reset); 1372 netif_carrier_off(netdev); 1373 1374 err = register_netdev(netdev); 1375 if (err) { 1376 dev_err(&pdev->dev, "register netdevice failed\n"); 1377 goto out_unmap; 1378 } 1379 1380 netdev_info(netdev, 1381 "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n", 1382 netdev->dev_addr); 1383 1384 return 0; 1385 1386 out_unmap: 1387 iounmap(hw->hw_addr); 1388 out_free_netdev: 1389 free_netdev(netdev); 1390 out_pci_release: 1391 pci_release_selected_regions(pdev, bars); 1392 out_pci_disable: 1393 pci_disable_device(pdev); 1394 return err; 1395 } 1396 1397 static void alx_remove(struct pci_dev *pdev) 1398 { 1399 struct alx_priv *alx = pci_get_drvdata(pdev); 1400 struct alx_hw *hw = &alx->hw; 1401 1402 cancel_work_sync(&alx->link_check_wk); 1403 cancel_work_sync(&alx->reset_wk); 1404 1405 /* restore permanent mac address */ 1406 alx_set_macaddr(hw, hw->perm_addr); 1407 1408 unregister_netdev(alx->dev); 1409 iounmap(hw->hw_addr); 1410 pci_release_selected_regions(pdev, 1411 pci_select_bars(pdev, IORESOURCE_MEM)); 1412 1413 pci_disable_pcie_error_reporting(pdev); 1414 pci_disable_device(pdev); 1415 1416 free_netdev(alx->dev); 1417 } 1418 1419 #ifdef CONFIG_PM_SLEEP 1420 static int alx_suspend(struct device *dev) 1421 { 1422 struct pci_dev *pdev = to_pci_dev(dev); 1423 struct alx_priv *alx = pci_get_drvdata(pdev); 1424 1425 if (!netif_running(alx->dev)) 1426 return 0; 1427 netif_device_detach(alx->dev); 1428 __alx_stop(alx); 1429 return 0; 1430 } 1431 1432 static int alx_resume(struct device *dev) 1433 { 1434 struct pci_dev *pdev = to_pci_dev(dev); 1435 struct alx_priv *alx = pci_get_drvdata(pdev); 1436 struct alx_hw *hw = &alx->hw; 1437 1438 alx_reset_phy(hw); 1439 1440 if (!netif_running(alx->dev)) 1441 return 0; 1442 netif_device_attach(alx->dev); 1443 return __alx_open(alx, true); 1444 } 1445 1446 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume); 1447 #define ALX_PM_OPS (&alx_pm_ops) 1448 #else 1449 #define ALX_PM_OPS NULL 1450 #endif 1451 1452 1453 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev, 1454 pci_channel_state_t state) 1455 { 1456 struct alx_priv *alx = pci_get_drvdata(pdev); 1457 struct net_device *netdev = alx->dev; 1458 pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET; 1459 1460 dev_info(&pdev->dev, "pci error detected\n"); 1461 1462 rtnl_lock(); 1463 1464 if (netif_running(netdev)) { 1465 netif_device_detach(netdev); 1466 alx_halt(alx); 1467 } 1468 1469 if (state == pci_channel_io_perm_failure) 1470 rc = PCI_ERS_RESULT_DISCONNECT; 1471 else 1472 pci_disable_device(pdev); 1473 1474 rtnl_unlock(); 1475 1476 return rc; 1477 } 1478 1479 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev) 1480 { 1481 struct alx_priv *alx = pci_get_drvdata(pdev); 1482 struct alx_hw *hw = &alx->hw; 1483 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 1484 1485 dev_info(&pdev->dev, "pci error slot reset\n"); 1486 1487 rtnl_lock(); 1488 1489 if (pci_enable_device(pdev)) { 1490 dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n"); 1491 goto out; 1492 } 1493 1494 pci_set_master(pdev); 1495 1496 alx_reset_pcie(hw); 1497 if (!alx_reset_mac(hw)) 1498 rc = PCI_ERS_RESULT_RECOVERED; 1499 out: 1500 pci_cleanup_aer_uncorrect_error_status(pdev); 1501 1502 rtnl_unlock(); 1503 1504 return rc; 1505 } 1506 1507 static void alx_pci_error_resume(struct pci_dev *pdev) 1508 { 1509 struct alx_priv *alx = pci_get_drvdata(pdev); 1510 struct net_device *netdev = alx->dev; 1511 1512 dev_info(&pdev->dev, "pci error resume\n"); 1513 1514 rtnl_lock(); 1515 1516 if (netif_running(netdev)) { 1517 alx_activate(alx); 1518 netif_device_attach(netdev); 1519 } 1520 1521 rtnl_unlock(); 1522 } 1523 1524 static const struct pci_error_handlers alx_err_handlers = { 1525 .error_detected = alx_pci_error_detected, 1526 .slot_reset = alx_pci_error_slot_reset, 1527 .resume = alx_pci_error_resume, 1528 }; 1529 1530 static const struct pci_device_id alx_pci_tbl[] = { 1531 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161), 1532 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 1533 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200), 1534 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 1535 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400), 1536 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 1537 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162), 1538 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 1539 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) }, 1540 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) }, 1541 {} 1542 }; 1543 1544 static struct pci_driver alx_driver = { 1545 .name = alx_drv_name, 1546 .id_table = alx_pci_tbl, 1547 .probe = alx_probe, 1548 .remove = alx_remove, 1549 .err_handler = &alx_err_handlers, 1550 .driver.pm = ALX_PM_OPS, 1551 }; 1552 1553 module_pci_driver(alx_driver); 1554 MODULE_DEVICE_TABLE(pci, alx_pci_tbl); 1555 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 1556 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>"); 1557 MODULE_DESCRIPTION( 1558 "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver"); 1559 MODULE_LICENSE("GPL"); 1560