1 /*
2  * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3  *
4  *  This file is free software: you may copy, redistribute and/or modify it
5  *  under the terms of the GNU General Public License as published by the
6  *  Free Software Foundation, either version 2 of the License, or (at your
7  *  option) any later version.
8  *
9  *  This file is distributed in the hope that it will be useful, but
10  *  WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  *  General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * This file incorporates work covered by the following copyright and
18  * permission notice:
19  *
20  * Copyright (c) 2012 Qualcomm Atheros, Inc.
21  *
22  * Permission to use, copy, modify, and/or distribute this software for any
23  * purpose with or without fee is hereby granted, provided that the above
24  * copyright notice and this permission notice appear in all copies.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51 
52 const char alx_drv_name[] = "alx";
53 
54 
55 static void alx_free_txbuf(struct alx_priv *alx, int entry)
56 {
57 	struct alx_buffer *txb = &alx->txq.bufs[entry];
58 
59 	if (dma_unmap_len(txb, size)) {
60 		dma_unmap_single(&alx->hw.pdev->dev,
61 				 dma_unmap_addr(txb, dma),
62 				 dma_unmap_len(txb, size),
63 				 DMA_TO_DEVICE);
64 		dma_unmap_len_set(txb, size, 0);
65 	}
66 
67 	if (txb->skb) {
68 		dev_kfree_skb_any(txb->skb);
69 		txb->skb = NULL;
70 	}
71 }
72 
73 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
74 {
75 	struct alx_rx_queue *rxq = &alx->rxq;
76 	struct sk_buff *skb;
77 	struct alx_buffer *cur_buf;
78 	dma_addr_t dma;
79 	u16 cur, next, count = 0;
80 
81 	next = cur = rxq->write_idx;
82 	if (++next == alx->rx_ringsz)
83 		next = 0;
84 	cur_buf = &rxq->bufs[cur];
85 
86 	while (!cur_buf->skb && next != rxq->read_idx) {
87 		struct alx_rfd *rfd = &rxq->rfd[cur];
88 
89 		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp);
90 		if (!skb)
91 			break;
92 		dma = dma_map_single(&alx->hw.pdev->dev,
93 				     skb->data, alx->rxbuf_size,
94 				     DMA_FROM_DEVICE);
95 		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
96 			dev_kfree_skb(skb);
97 			break;
98 		}
99 
100 		/* Unfortunately, RX descriptor buffers must be 4-byte
101 		 * aligned, so we can't use IP alignment.
102 		 */
103 		if (WARN_ON(dma & 3)) {
104 			dev_kfree_skb(skb);
105 			break;
106 		}
107 
108 		cur_buf->skb = skb;
109 		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
110 		dma_unmap_addr_set(cur_buf, dma, dma);
111 		rfd->addr = cpu_to_le64(dma);
112 
113 		cur = next;
114 		if (++next == alx->rx_ringsz)
115 			next = 0;
116 		cur_buf = &rxq->bufs[cur];
117 		count++;
118 	}
119 
120 	if (count) {
121 		/* flush all updates before updating hardware */
122 		wmb();
123 		rxq->write_idx = cur;
124 		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
125 	}
126 
127 	return count;
128 }
129 
130 static inline int alx_tpd_avail(struct alx_priv *alx)
131 {
132 	struct alx_tx_queue *txq = &alx->txq;
133 
134 	if (txq->write_idx >= txq->read_idx)
135 		return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
136 	return txq->read_idx - txq->write_idx - 1;
137 }
138 
139 static bool alx_clean_tx_irq(struct alx_priv *alx)
140 {
141 	struct alx_tx_queue *txq = &alx->txq;
142 	u16 hw_read_idx, sw_read_idx;
143 	unsigned int total_bytes = 0, total_packets = 0;
144 	int budget = ALX_DEFAULT_TX_WORK;
145 
146 	sw_read_idx = txq->read_idx;
147 	hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
148 
149 	if (sw_read_idx != hw_read_idx) {
150 		while (sw_read_idx != hw_read_idx && budget > 0) {
151 			struct sk_buff *skb;
152 
153 			skb = txq->bufs[sw_read_idx].skb;
154 			if (skb) {
155 				total_bytes += skb->len;
156 				total_packets++;
157 				budget--;
158 			}
159 
160 			alx_free_txbuf(alx, sw_read_idx);
161 
162 			if (++sw_read_idx == alx->tx_ringsz)
163 				sw_read_idx = 0;
164 		}
165 		txq->read_idx = sw_read_idx;
166 
167 		netdev_completed_queue(alx->dev, total_packets, total_bytes);
168 	}
169 
170 	if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
171 	    alx_tpd_avail(alx) > alx->tx_ringsz/4)
172 		netif_wake_queue(alx->dev);
173 
174 	return sw_read_idx == hw_read_idx;
175 }
176 
177 static void alx_schedule_link_check(struct alx_priv *alx)
178 {
179 	schedule_work(&alx->link_check_wk);
180 }
181 
182 static void alx_schedule_reset(struct alx_priv *alx)
183 {
184 	schedule_work(&alx->reset_wk);
185 }
186 
187 static bool alx_clean_rx_irq(struct alx_priv *alx, int budget)
188 {
189 	struct alx_rx_queue *rxq = &alx->rxq;
190 	struct alx_rrd *rrd;
191 	struct alx_buffer *rxb;
192 	struct sk_buff *skb;
193 	u16 length, rfd_cleaned = 0;
194 
195 	while (budget > 0) {
196 		rrd = &rxq->rrd[rxq->rrd_read_idx];
197 		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
198 			break;
199 		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
200 
201 		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
202 				  RRD_SI) != rxq->read_idx ||
203 		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
204 				  RRD_NOR) != 1) {
205 			alx_schedule_reset(alx);
206 			return 0;
207 		}
208 
209 		rxb = &rxq->bufs[rxq->read_idx];
210 		dma_unmap_single(&alx->hw.pdev->dev,
211 				 dma_unmap_addr(rxb, dma),
212 				 dma_unmap_len(rxb, size),
213 				 DMA_FROM_DEVICE);
214 		dma_unmap_len_set(rxb, size, 0);
215 		skb = rxb->skb;
216 		rxb->skb = NULL;
217 
218 		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
219 		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
220 			rrd->word3 = 0;
221 			dev_kfree_skb_any(skb);
222 			goto next_pkt;
223 		}
224 
225 		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
226 				       RRD_PKTLEN) - ETH_FCS_LEN;
227 		skb_put(skb, length);
228 		skb->protocol = eth_type_trans(skb, alx->dev);
229 
230 		skb_checksum_none_assert(skb);
231 		if (alx->dev->features & NETIF_F_RXCSUM &&
232 		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
233 				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
234 			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
235 					      RRD_PID)) {
236 			case RRD_PID_IPV6UDP:
237 			case RRD_PID_IPV4UDP:
238 			case RRD_PID_IPV4TCP:
239 			case RRD_PID_IPV6TCP:
240 				skb->ip_summed = CHECKSUM_UNNECESSARY;
241 				break;
242 			}
243 		}
244 
245 		napi_gro_receive(&alx->napi, skb);
246 		budget--;
247 
248 next_pkt:
249 		if (++rxq->read_idx == alx->rx_ringsz)
250 			rxq->read_idx = 0;
251 		if (++rxq->rrd_read_idx == alx->rx_ringsz)
252 			rxq->rrd_read_idx = 0;
253 
254 		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
255 			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
256 	}
257 
258 	if (rfd_cleaned)
259 		alx_refill_rx_ring(alx, GFP_ATOMIC);
260 
261 	return budget > 0;
262 }
263 
264 static int alx_poll(struct napi_struct *napi, int budget)
265 {
266 	struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
267 	struct alx_hw *hw = &alx->hw;
268 	bool complete = true;
269 	unsigned long flags;
270 
271 	complete = alx_clean_tx_irq(alx) &&
272 		   alx_clean_rx_irq(alx, budget);
273 
274 	if (!complete)
275 		return 1;
276 
277 	napi_complete(&alx->napi);
278 
279 	/* enable interrupt */
280 	spin_lock_irqsave(&alx->irq_lock, flags);
281 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
282 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
283 	spin_unlock_irqrestore(&alx->irq_lock, flags);
284 
285 	alx_post_write(hw);
286 
287 	return 0;
288 }
289 
290 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
291 {
292 	struct alx_hw *hw = &alx->hw;
293 	bool write_int_mask = false;
294 
295 	spin_lock(&alx->irq_lock);
296 
297 	/* ACK interrupt */
298 	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
299 	intr &= alx->int_mask;
300 
301 	if (intr & ALX_ISR_FATAL) {
302 		netif_warn(alx, hw, alx->dev,
303 			   "fatal interrupt 0x%x, resetting\n", intr);
304 		alx_schedule_reset(alx);
305 		goto out;
306 	}
307 
308 	if (intr & ALX_ISR_ALERT)
309 		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
310 
311 	if (intr & ALX_ISR_PHY) {
312 		/* suppress PHY interrupt, because the source
313 		 * is from PHY internal. only the internal status
314 		 * is cleared, the interrupt status could be cleared.
315 		 */
316 		alx->int_mask &= ~ALX_ISR_PHY;
317 		write_int_mask = true;
318 		alx_schedule_link_check(alx);
319 	}
320 
321 	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
322 		napi_schedule(&alx->napi);
323 		/* mask rx/tx interrupt, enable them when napi complete */
324 		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
325 		write_int_mask = true;
326 	}
327 
328 	if (write_int_mask)
329 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
330 
331 	alx_write_mem32(hw, ALX_ISR, 0);
332 
333  out:
334 	spin_unlock(&alx->irq_lock);
335 	return IRQ_HANDLED;
336 }
337 
338 static irqreturn_t alx_intr_msi(int irq, void *data)
339 {
340 	struct alx_priv *alx = data;
341 
342 	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
343 }
344 
345 static irqreturn_t alx_intr_legacy(int irq, void *data)
346 {
347 	struct alx_priv *alx = data;
348 	struct alx_hw *hw = &alx->hw;
349 	u32 intr;
350 
351 	intr = alx_read_mem32(hw, ALX_ISR);
352 
353 	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
354 		return IRQ_NONE;
355 
356 	return alx_intr_handle(alx, intr);
357 }
358 
359 static void alx_init_ring_ptrs(struct alx_priv *alx)
360 {
361 	struct alx_hw *hw = &alx->hw;
362 	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
363 
364 	alx->rxq.read_idx = 0;
365 	alx->rxq.write_idx = 0;
366 	alx->rxq.rrd_read_idx = 0;
367 	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
368 	alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
369 	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
370 	alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
371 	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
372 	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
373 
374 	alx->txq.read_idx = 0;
375 	alx->txq.write_idx = 0;
376 	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
377 	alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
378 	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
379 
380 	/* load these pointers into the chip */
381 	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
382 }
383 
384 static void alx_free_txring_buf(struct alx_priv *alx)
385 {
386 	struct alx_tx_queue *txq = &alx->txq;
387 	int i;
388 
389 	if (!txq->bufs)
390 		return;
391 
392 	for (i = 0; i < alx->tx_ringsz; i++)
393 		alx_free_txbuf(alx, i);
394 
395 	memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
396 	memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
397 	txq->write_idx = 0;
398 	txq->read_idx = 0;
399 
400 	netdev_reset_queue(alx->dev);
401 }
402 
403 static void alx_free_rxring_buf(struct alx_priv *alx)
404 {
405 	struct alx_rx_queue *rxq = &alx->rxq;
406 	struct alx_buffer *cur_buf;
407 	u16 i;
408 
409 	if (rxq == NULL)
410 		return;
411 
412 	for (i = 0; i < alx->rx_ringsz; i++) {
413 		cur_buf = rxq->bufs + i;
414 		if (cur_buf->skb) {
415 			dma_unmap_single(&alx->hw.pdev->dev,
416 					 dma_unmap_addr(cur_buf, dma),
417 					 dma_unmap_len(cur_buf, size),
418 					 DMA_FROM_DEVICE);
419 			dev_kfree_skb(cur_buf->skb);
420 			cur_buf->skb = NULL;
421 			dma_unmap_len_set(cur_buf, size, 0);
422 			dma_unmap_addr_set(cur_buf, dma, 0);
423 		}
424 	}
425 
426 	rxq->write_idx = 0;
427 	rxq->read_idx = 0;
428 	rxq->rrd_read_idx = 0;
429 }
430 
431 static void alx_free_buffers(struct alx_priv *alx)
432 {
433 	alx_free_txring_buf(alx);
434 	alx_free_rxring_buf(alx);
435 }
436 
437 static int alx_reinit_rings(struct alx_priv *alx)
438 {
439 	alx_free_buffers(alx);
440 
441 	alx_init_ring_ptrs(alx);
442 
443 	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
444 		return -ENOMEM;
445 
446 	return 0;
447 }
448 
449 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
450 {
451 	u32 crc32, bit, reg;
452 
453 	crc32 = ether_crc(ETH_ALEN, addr);
454 	reg = (crc32 >> 31) & 0x1;
455 	bit = (crc32 >> 26) & 0x1F;
456 
457 	mc_hash[reg] |= BIT(bit);
458 }
459 
460 static void __alx_set_rx_mode(struct net_device *netdev)
461 {
462 	struct alx_priv *alx = netdev_priv(netdev);
463 	struct alx_hw *hw = &alx->hw;
464 	struct netdev_hw_addr *ha;
465 	u32 mc_hash[2] = {};
466 
467 	if (!(netdev->flags & IFF_ALLMULTI)) {
468 		netdev_for_each_mc_addr(ha, netdev)
469 			alx_add_mc_addr(hw, ha->addr, mc_hash);
470 
471 		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
472 		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
473 	}
474 
475 	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
476 	if (netdev->flags & IFF_PROMISC)
477 		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
478 	if (netdev->flags & IFF_ALLMULTI)
479 		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
480 
481 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
482 }
483 
484 static void alx_set_rx_mode(struct net_device *netdev)
485 {
486 	__alx_set_rx_mode(netdev);
487 }
488 
489 static int alx_set_mac_address(struct net_device *netdev, void *data)
490 {
491 	struct alx_priv *alx = netdev_priv(netdev);
492 	struct alx_hw *hw = &alx->hw;
493 	struct sockaddr *addr = data;
494 
495 	if (!is_valid_ether_addr(addr->sa_data))
496 		return -EADDRNOTAVAIL;
497 
498 	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
499 		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
500 
501 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
502 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
503 	alx_set_macaddr(hw, hw->mac_addr);
504 
505 	return 0;
506 }
507 
508 static int alx_alloc_descriptors(struct alx_priv *alx)
509 {
510 	alx->txq.bufs = kcalloc(alx->tx_ringsz,
511 				sizeof(struct alx_buffer),
512 				GFP_KERNEL);
513 	if (!alx->txq.bufs)
514 		return -ENOMEM;
515 
516 	alx->rxq.bufs = kcalloc(alx->rx_ringsz,
517 				sizeof(struct alx_buffer),
518 				GFP_KERNEL);
519 	if (!alx->rxq.bufs)
520 		goto out_free;
521 
522 	/* physical tx/rx ring descriptors
523 	 *
524 	 * Allocate them as a single chunk because they must not cross a
525 	 * 4G boundary (hardware has a single register for high 32 bits
526 	 * of addresses only)
527 	 */
528 	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
529 			    sizeof(struct alx_rrd) * alx->rx_ringsz +
530 			    sizeof(struct alx_rfd) * alx->rx_ringsz;
531 	alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
532 						alx->descmem.size,
533 						&alx->descmem.dma,
534 						GFP_KERNEL);
535 	if (!alx->descmem.virt)
536 		goto out_free;
537 
538 	alx->txq.tpd = (void *)alx->descmem.virt;
539 	alx->txq.tpd_dma = alx->descmem.dma;
540 
541 	/* alignment requirement for next block */
542 	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
543 
544 	alx->rxq.rrd =
545 		(void *)((u8 *)alx->descmem.virt +
546 			 sizeof(struct alx_txd) * alx->tx_ringsz);
547 	alx->rxq.rrd_dma = alx->descmem.dma +
548 			   sizeof(struct alx_txd) * alx->tx_ringsz;
549 
550 	/* alignment requirement for next block */
551 	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
552 
553 	alx->rxq.rfd =
554 		(void *)((u8 *)alx->descmem.virt +
555 			 sizeof(struct alx_txd) * alx->tx_ringsz +
556 			 sizeof(struct alx_rrd) * alx->rx_ringsz);
557 	alx->rxq.rfd_dma = alx->descmem.dma +
558 			   sizeof(struct alx_txd) * alx->tx_ringsz +
559 			   sizeof(struct alx_rrd) * alx->rx_ringsz;
560 
561 	return 0;
562 out_free:
563 	kfree(alx->txq.bufs);
564 	kfree(alx->rxq.bufs);
565 	return -ENOMEM;
566 }
567 
568 static int alx_alloc_rings(struct alx_priv *alx)
569 {
570 	int err;
571 
572 	err = alx_alloc_descriptors(alx);
573 	if (err)
574 		return err;
575 
576 	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
577 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
578 	alx->tx_ringsz = alx->tx_ringsz;
579 
580 	netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
581 
582 	alx_reinit_rings(alx);
583 	return 0;
584 }
585 
586 static void alx_free_rings(struct alx_priv *alx)
587 {
588 	netif_napi_del(&alx->napi);
589 	alx_free_buffers(alx);
590 
591 	kfree(alx->txq.bufs);
592 	kfree(alx->rxq.bufs);
593 
594 	dma_free_coherent(&alx->hw.pdev->dev,
595 			  alx->descmem.size,
596 			  alx->descmem.virt,
597 			  alx->descmem.dma);
598 }
599 
600 static void alx_config_vector_mapping(struct alx_priv *alx)
601 {
602 	struct alx_hw *hw = &alx->hw;
603 
604 	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
605 	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
606 	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
607 }
608 
609 static void alx_irq_enable(struct alx_priv *alx)
610 {
611 	struct alx_hw *hw = &alx->hw;
612 
613 	/* level-1 interrupt switch */
614 	alx_write_mem32(hw, ALX_ISR, 0);
615 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
616 	alx_post_write(hw);
617 }
618 
619 static void alx_irq_disable(struct alx_priv *alx)
620 {
621 	struct alx_hw *hw = &alx->hw;
622 
623 	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
624 	alx_write_mem32(hw, ALX_IMR, 0);
625 	alx_post_write(hw);
626 
627 	synchronize_irq(alx->hw.pdev->irq);
628 }
629 
630 static int alx_request_irq(struct alx_priv *alx)
631 {
632 	struct pci_dev *pdev = alx->hw.pdev;
633 	struct alx_hw *hw = &alx->hw;
634 	int err;
635 	u32 msi_ctrl;
636 
637 	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
638 
639 	if (!pci_enable_msi(alx->hw.pdev)) {
640 		alx->msi = true;
641 
642 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
643 				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
644 		err = request_irq(pdev->irq, alx_intr_msi, 0,
645 				  alx->dev->name, alx);
646 		if (!err)
647 			goto out;
648 		/* fall back to legacy interrupt */
649 		pci_disable_msi(alx->hw.pdev);
650 	}
651 
652 	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
653 	err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
654 			  alx->dev->name, alx);
655 out:
656 	if (!err)
657 		alx_config_vector_mapping(alx);
658 	return err;
659 }
660 
661 static void alx_free_irq(struct alx_priv *alx)
662 {
663 	struct pci_dev *pdev = alx->hw.pdev;
664 
665 	free_irq(pdev->irq, alx);
666 
667 	if (alx->msi) {
668 		pci_disable_msi(alx->hw.pdev);
669 		alx->msi = false;
670 	}
671 }
672 
673 static int alx_identify_hw(struct alx_priv *alx)
674 {
675 	struct alx_hw *hw = &alx->hw;
676 	int rev = alx_hw_revision(hw);
677 
678 	if (rev > ALX_REV_C0)
679 		return -EINVAL;
680 
681 	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
682 
683 	return 0;
684 }
685 
686 static int alx_init_sw(struct alx_priv *alx)
687 {
688 	struct pci_dev *pdev = alx->hw.pdev;
689 	struct alx_hw *hw = &alx->hw;
690 	int err;
691 
692 	err = alx_identify_hw(alx);
693 	if (err) {
694 		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
695 		return err;
696 	}
697 
698 	alx->hw.lnk_patch =
699 		pdev->device == ALX_DEV_ID_AR8161 &&
700 		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
701 		pdev->subsystem_device == 0x0091 &&
702 		pdev->revision == 0;
703 
704 	hw->smb_timer = 400;
705 	hw->mtu = alx->dev->mtu;
706 	alx->rxbuf_size = ALIGN(ALX_RAW_MTU(hw->mtu), 8);
707 	alx->tx_ringsz = 256;
708 	alx->rx_ringsz = 512;
709 	hw->imt = 200;
710 	alx->int_mask = ALX_ISR_MISC;
711 	hw->dma_chnl = hw->max_dma_chnl;
712 	hw->ith_tpd = alx->tx_ringsz / 3;
713 	hw->link_speed = SPEED_UNKNOWN;
714 	hw->duplex = DUPLEX_UNKNOWN;
715 	hw->adv_cfg = ADVERTISED_Autoneg |
716 		      ADVERTISED_10baseT_Half |
717 		      ADVERTISED_10baseT_Full |
718 		      ADVERTISED_100baseT_Full |
719 		      ADVERTISED_100baseT_Half |
720 		      ADVERTISED_1000baseT_Full;
721 	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
722 
723 	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
724 		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
725 		      ALX_MAC_CTRL_BRD_EN |
726 		      ALX_MAC_CTRL_PCRCE |
727 		      ALX_MAC_CTRL_CRCE |
728 		      ALX_MAC_CTRL_RXFC_EN |
729 		      ALX_MAC_CTRL_TXFC_EN |
730 		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
731 
732 	return err;
733 }
734 
735 
736 static netdev_features_t alx_fix_features(struct net_device *netdev,
737 					  netdev_features_t features)
738 {
739 	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
740 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
741 
742 	return features;
743 }
744 
745 static void alx_netif_stop(struct alx_priv *alx)
746 {
747 	alx->dev->trans_start = jiffies;
748 	if (netif_carrier_ok(alx->dev)) {
749 		netif_carrier_off(alx->dev);
750 		netif_tx_disable(alx->dev);
751 		napi_disable(&alx->napi);
752 	}
753 }
754 
755 static void alx_halt(struct alx_priv *alx)
756 {
757 	struct alx_hw *hw = &alx->hw;
758 
759 	alx_netif_stop(alx);
760 	hw->link_speed = SPEED_UNKNOWN;
761 	hw->duplex = DUPLEX_UNKNOWN;
762 
763 	alx_reset_mac(hw);
764 
765 	/* disable l0s/l1 */
766 	alx_enable_aspm(hw, false, false);
767 	alx_irq_disable(alx);
768 	alx_free_buffers(alx);
769 }
770 
771 static void alx_configure(struct alx_priv *alx)
772 {
773 	struct alx_hw *hw = &alx->hw;
774 
775 	alx_configure_basic(hw);
776 	alx_disable_rss(hw);
777 	__alx_set_rx_mode(alx->dev);
778 
779 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
780 }
781 
782 static void alx_activate(struct alx_priv *alx)
783 {
784 	/* hardware setting lost, restore it */
785 	alx_reinit_rings(alx);
786 	alx_configure(alx);
787 
788 	/* clear old interrupts */
789 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
790 
791 	alx_irq_enable(alx);
792 
793 	alx_schedule_link_check(alx);
794 }
795 
796 static void alx_reinit(struct alx_priv *alx)
797 {
798 	ASSERT_RTNL();
799 
800 	alx_halt(alx);
801 	alx_activate(alx);
802 }
803 
804 static int alx_change_mtu(struct net_device *netdev, int mtu)
805 {
806 	struct alx_priv *alx = netdev_priv(netdev);
807 	int max_frame = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
808 
809 	if ((max_frame < ALX_MIN_FRAME_SIZE) ||
810 	    (max_frame > ALX_MAX_FRAME_SIZE))
811 		return -EINVAL;
812 
813 	if (netdev->mtu == mtu)
814 		return 0;
815 
816 	netdev->mtu = mtu;
817 	alx->hw.mtu = mtu;
818 	alx->rxbuf_size = mtu > ALX_DEF_RXBUF_SIZE ?
819 			   ALIGN(max_frame, 8) : ALX_DEF_RXBUF_SIZE;
820 	netdev_update_features(netdev);
821 	if (netif_running(netdev))
822 		alx_reinit(alx);
823 	return 0;
824 }
825 
826 static void alx_netif_start(struct alx_priv *alx)
827 {
828 	netif_tx_wake_all_queues(alx->dev);
829 	napi_enable(&alx->napi);
830 	netif_carrier_on(alx->dev);
831 }
832 
833 static int __alx_open(struct alx_priv *alx, bool resume)
834 {
835 	int err;
836 
837 	if (!resume)
838 		netif_carrier_off(alx->dev);
839 
840 	err = alx_alloc_rings(alx);
841 	if (err)
842 		return err;
843 
844 	alx_configure(alx);
845 
846 	err = alx_request_irq(alx);
847 	if (err)
848 		goto out_free_rings;
849 
850 	/* clear old interrupts */
851 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
852 
853 	alx_irq_enable(alx);
854 
855 	if (!resume)
856 		netif_tx_start_all_queues(alx->dev);
857 
858 	alx_schedule_link_check(alx);
859 	return 0;
860 
861 out_free_rings:
862 	alx_free_rings(alx);
863 	return err;
864 }
865 
866 static void __alx_stop(struct alx_priv *alx)
867 {
868 	alx_halt(alx);
869 	alx_free_irq(alx);
870 	alx_free_rings(alx);
871 }
872 
873 static const char *alx_speed_desc(struct alx_hw *hw)
874 {
875 	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
876 	case ADVERTISED_1000baseT_Full:
877 		return "1 Gbps Full";
878 	case ADVERTISED_100baseT_Full:
879 		return "100 Mbps Full";
880 	case ADVERTISED_100baseT_Half:
881 		return "100 Mbps Half";
882 	case ADVERTISED_10baseT_Full:
883 		return "10 Mbps Full";
884 	case ADVERTISED_10baseT_Half:
885 		return "10 Mbps Half";
886 	default:
887 		return "Unknown speed";
888 	}
889 }
890 
891 static void alx_check_link(struct alx_priv *alx)
892 {
893 	struct alx_hw *hw = &alx->hw;
894 	unsigned long flags;
895 	int old_speed;
896 	u8 old_duplex;
897 	int err;
898 
899 	/* clear PHY internal interrupt status, otherwise the main
900 	 * interrupt status will be asserted forever
901 	 */
902 	alx_clear_phy_intr(hw);
903 
904 	old_speed = hw->link_speed;
905 	old_duplex = hw->duplex;
906 	err = alx_read_phy_link(hw);
907 	if (err < 0)
908 		goto reset;
909 
910 	spin_lock_irqsave(&alx->irq_lock, flags);
911 	alx->int_mask |= ALX_ISR_PHY;
912 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
913 	spin_unlock_irqrestore(&alx->irq_lock, flags);
914 
915 	if (old_speed == hw->link_speed)
916 		return;
917 
918 	if (hw->link_speed != SPEED_UNKNOWN) {
919 		netif_info(alx, link, alx->dev,
920 			   "NIC Up: %s\n", alx_speed_desc(hw));
921 		alx_post_phy_link(hw);
922 		alx_enable_aspm(hw, true, true);
923 		alx_start_mac(hw);
924 
925 		if (old_speed == SPEED_UNKNOWN)
926 			alx_netif_start(alx);
927 	} else {
928 		/* link is now down */
929 		alx_netif_stop(alx);
930 		netif_info(alx, link, alx->dev, "Link Down\n");
931 		err = alx_reset_mac(hw);
932 		if (err)
933 			goto reset;
934 		alx_irq_disable(alx);
935 
936 		/* MAC reset causes all HW settings to be lost, restore all */
937 		err = alx_reinit_rings(alx);
938 		if (err)
939 			goto reset;
940 		alx_configure(alx);
941 		alx_enable_aspm(hw, false, true);
942 		alx_post_phy_link(hw);
943 		alx_irq_enable(alx);
944 	}
945 
946 	return;
947 
948 reset:
949 	alx_schedule_reset(alx);
950 }
951 
952 static int alx_open(struct net_device *netdev)
953 {
954 	return __alx_open(netdev_priv(netdev), false);
955 }
956 
957 static int alx_stop(struct net_device *netdev)
958 {
959 	__alx_stop(netdev_priv(netdev));
960 	return 0;
961 }
962 
963 static void alx_link_check(struct work_struct *work)
964 {
965 	struct alx_priv *alx;
966 
967 	alx = container_of(work, struct alx_priv, link_check_wk);
968 
969 	rtnl_lock();
970 	alx_check_link(alx);
971 	rtnl_unlock();
972 }
973 
974 static void alx_reset(struct work_struct *work)
975 {
976 	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
977 
978 	rtnl_lock();
979 	alx_reinit(alx);
980 	rtnl_unlock();
981 }
982 
983 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
984 {
985 	u8 cso, css;
986 
987 	if (skb->ip_summed != CHECKSUM_PARTIAL)
988 		return 0;
989 
990 	cso = skb_checksum_start_offset(skb);
991 	if (cso & 1)
992 		return -EINVAL;
993 
994 	css = cso + skb->csum_offset;
995 	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
996 	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
997 	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
998 
999 	return 0;
1000 }
1001 
1002 static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
1003 {
1004 	struct alx_tx_queue *txq = &alx->txq;
1005 	struct alx_txd *tpd, *first_tpd;
1006 	dma_addr_t dma;
1007 	int maplen, f, first_idx = txq->write_idx;
1008 
1009 	first_tpd = &txq->tpd[txq->write_idx];
1010 	tpd = first_tpd;
1011 
1012 	maplen = skb_headlen(skb);
1013 	dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
1014 			     DMA_TO_DEVICE);
1015 	if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1016 		goto err_dma;
1017 
1018 	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1019 	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1020 
1021 	tpd->adrl.addr = cpu_to_le64(dma);
1022 	tpd->len = cpu_to_le16(maplen);
1023 
1024 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1025 		struct skb_frag_struct *frag;
1026 
1027 		frag = &skb_shinfo(skb)->frags[f];
1028 
1029 		if (++txq->write_idx == alx->tx_ringsz)
1030 			txq->write_idx = 0;
1031 		tpd = &txq->tpd[txq->write_idx];
1032 
1033 		tpd->word1 = first_tpd->word1;
1034 
1035 		maplen = skb_frag_size(frag);
1036 		dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
1037 				       maplen, DMA_TO_DEVICE);
1038 		if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1039 			goto err_dma;
1040 		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1041 		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1042 
1043 		tpd->adrl.addr = cpu_to_le64(dma);
1044 		tpd->len = cpu_to_le16(maplen);
1045 	}
1046 
1047 	/* last TPD, set EOP flag and store skb */
1048 	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1049 	txq->bufs[txq->write_idx].skb = skb;
1050 
1051 	if (++txq->write_idx == alx->tx_ringsz)
1052 		txq->write_idx = 0;
1053 
1054 	return 0;
1055 
1056 err_dma:
1057 	f = first_idx;
1058 	while (f != txq->write_idx) {
1059 		alx_free_txbuf(alx, f);
1060 		if (++f == alx->tx_ringsz)
1061 			f = 0;
1062 	}
1063 	return -ENOMEM;
1064 }
1065 
1066 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1067 				  struct net_device *netdev)
1068 {
1069 	struct alx_priv *alx = netdev_priv(netdev);
1070 	struct alx_tx_queue *txq = &alx->txq;
1071 	struct alx_txd *first;
1072 	int tpdreq = skb_shinfo(skb)->nr_frags + 1;
1073 
1074 	if (alx_tpd_avail(alx) < tpdreq) {
1075 		netif_stop_queue(alx->dev);
1076 		goto drop;
1077 	}
1078 
1079 	first = &txq->tpd[txq->write_idx];
1080 	memset(first, 0, sizeof(*first));
1081 
1082 	if (alx_tx_csum(skb, first))
1083 		goto drop;
1084 
1085 	if (alx_map_tx_skb(alx, skb) < 0)
1086 		goto drop;
1087 
1088 	netdev_sent_queue(alx->dev, skb->len);
1089 
1090 	/* flush updates before updating hardware */
1091 	wmb();
1092 	alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
1093 
1094 	if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
1095 		netif_stop_queue(alx->dev);
1096 
1097 	return NETDEV_TX_OK;
1098 
1099 drop:
1100 	dev_kfree_skb(skb);
1101 	return NETDEV_TX_OK;
1102 }
1103 
1104 static void alx_tx_timeout(struct net_device *dev)
1105 {
1106 	struct alx_priv *alx = netdev_priv(dev);
1107 
1108 	alx_schedule_reset(alx);
1109 }
1110 
1111 static int alx_mdio_read(struct net_device *netdev,
1112 			 int prtad, int devad, u16 addr)
1113 {
1114 	struct alx_priv *alx = netdev_priv(netdev);
1115 	struct alx_hw *hw = &alx->hw;
1116 	u16 val;
1117 	int err;
1118 
1119 	if (prtad != hw->mdio.prtad)
1120 		return -EINVAL;
1121 
1122 	if (devad == MDIO_DEVAD_NONE)
1123 		err = alx_read_phy_reg(hw, addr, &val);
1124 	else
1125 		err = alx_read_phy_ext(hw, devad, addr, &val);
1126 
1127 	if (err)
1128 		return err;
1129 	return val;
1130 }
1131 
1132 static int alx_mdio_write(struct net_device *netdev,
1133 			  int prtad, int devad, u16 addr, u16 val)
1134 {
1135 	struct alx_priv *alx = netdev_priv(netdev);
1136 	struct alx_hw *hw = &alx->hw;
1137 
1138 	if (prtad != hw->mdio.prtad)
1139 		return -EINVAL;
1140 
1141 	if (devad == MDIO_DEVAD_NONE)
1142 		return alx_write_phy_reg(hw, addr, val);
1143 
1144 	return alx_write_phy_ext(hw, devad, addr, val);
1145 }
1146 
1147 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1148 {
1149 	struct alx_priv *alx = netdev_priv(netdev);
1150 
1151 	if (!netif_running(netdev))
1152 		return -EAGAIN;
1153 
1154 	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1155 }
1156 
1157 #ifdef CONFIG_NET_POLL_CONTROLLER
1158 static void alx_poll_controller(struct net_device *netdev)
1159 {
1160 	struct alx_priv *alx = netdev_priv(netdev);
1161 
1162 	if (alx->msi)
1163 		alx_intr_msi(0, alx);
1164 	else
1165 		alx_intr_legacy(0, alx);
1166 }
1167 #endif
1168 
1169 static const struct net_device_ops alx_netdev_ops = {
1170 	.ndo_open               = alx_open,
1171 	.ndo_stop               = alx_stop,
1172 	.ndo_start_xmit         = alx_start_xmit,
1173 	.ndo_set_rx_mode        = alx_set_rx_mode,
1174 	.ndo_validate_addr      = eth_validate_addr,
1175 	.ndo_set_mac_address    = alx_set_mac_address,
1176 	.ndo_change_mtu         = alx_change_mtu,
1177 	.ndo_do_ioctl           = alx_ioctl,
1178 	.ndo_tx_timeout         = alx_tx_timeout,
1179 	.ndo_fix_features	= alx_fix_features,
1180 #ifdef CONFIG_NET_POLL_CONTROLLER
1181 	.ndo_poll_controller    = alx_poll_controller,
1182 #endif
1183 };
1184 
1185 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1186 {
1187 	struct net_device *netdev;
1188 	struct alx_priv *alx;
1189 	struct alx_hw *hw;
1190 	bool phy_configured;
1191 	int bars, err;
1192 
1193 	err = pci_enable_device_mem(pdev);
1194 	if (err)
1195 		return err;
1196 
1197 	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1198 	 * shared register for the high 32 bits, so only a single, aligned,
1199 	 * 4 GB physical address range can be used for descriptors.
1200 	 */
1201 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
1202 	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1203 		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1204 	} else {
1205 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1206 		if (err) {
1207 			err = dma_set_coherent_mask(&pdev->dev,
1208 						    DMA_BIT_MASK(32));
1209 			if (err) {
1210 				dev_err(&pdev->dev,
1211 					"No usable DMA config, aborting\n");
1212 				goto out_pci_disable;
1213 			}
1214 		}
1215 	}
1216 
1217 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1218 	err = pci_request_selected_regions(pdev, bars, alx_drv_name);
1219 	if (err) {
1220 		dev_err(&pdev->dev,
1221 			"pci_request_selected_regions failed(bars:%d)\n", bars);
1222 		goto out_pci_disable;
1223 	}
1224 
1225 	pci_enable_pcie_error_reporting(pdev);
1226 	pci_set_master(pdev);
1227 
1228 	if (!pdev->pm_cap) {
1229 		dev_err(&pdev->dev,
1230 			"Can't find power management capability, aborting\n");
1231 		err = -EIO;
1232 		goto out_pci_release;
1233 	}
1234 
1235 	netdev = alloc_etherdev(sizeof(*alx));
1236 	if (!netdev) {
1237 		err = -ENOMEM;
1238 		goto out_pci_release;
1239 	}
1240 
1241 	SET_NETDEV_DEV(netdev, &pdev->dev);
1242 	alx = netdev_priv(netdev);
1243 	spin_lock_init(&alx->hw.mdio_lock);
1244 	spin_lock_init(&alx->irq_lock);
1245 	alx->dev = netdev;
1246 	alx->hw.pdev = pdev;
1247 	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1248 			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1249 	hw = &alx->hw;
1250 	pci_set_drvdata(pdev, alx);
1251 
1252 	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1253 	if (!hw->hw_addr) {
1254 		dev_err(&pdev->dev, "cannot map device registers\n");
1255 		err = -EIO;
1256 		goto out_free_netdev;
1257 	}
1258 
1259 	netdev->netdev_ops = &alx_netdev_ops;
1260 	SET_ETHTOOL_OPS(netdev, &alx_ethtool_ops);
1261 	netdev->irq = pdev->irq;
1262 	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1263 
1264 	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1265 		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1266 
1267 	err = alx_init_sw(alx);
1268 	if (err) {
1269 		dev_err(&pdev->dev, "net device private data init failed\n");
1270 		goto out_unmap;
1271 	}
1272 
1273 	alx_reset_pcie(hw);
1274 
1275 	phy_configured = alx_phy_configured(hw);
1276 
1277 	if (!phy_configured)
1278 		alx_reset_phy(hw);
1279 
1280 	err = alx_reset_mac(hw);
1281 	if (err) {
1282 		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1283 		goto out_unmap;
1284 	}
1285 
1286 	/* setup link to put it in a known good starting state */
1287 	if (!phy_configured) {
1288 		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1289 		if (err) {
1290 			dev_err(&pdev->dev,
1291 				"failed to configure PHY speed/duplex (err=%d)\n",
1292 				err);
1293 			goto out_unmap;
1294 		}
1295 	}
1296 
1297 	netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
1298 
1299 	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1300 		dev_warn(&pdev->dev,
1301 			 "Invalid permanent address programmed, using random one\n");
1302 		eth_hw_addr_random(netdev);
1303 		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1304 	}
1305 
1306 	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1307 	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1308 	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1309 
1310 	hw->mdio.prtad = 0;
1311 	hw->mdio.mmds = 0;
1312 	hw->mdio.dev = netdev;
1313 	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1314 				MDIO_SUPPORTS_C22 |
1315 				MDIO_EMULATE_C22;
1316 	hw->mdio.mdio_read = alx_mdio_read;
1317 	hw->mdio.mdio_write = alx_mdio_write;
1318 
1319 	if (!alx_get_phy_info(hw)) {
1320 		dev_err(&pdev->dev, "failed to identify PHY\n");
1321 		err = -EIO;
1322 		goto out_unmap;
1323 	}
1324 
1325 	INIT_WORK(&alx->link_check_wk, alx_link_check);
1326 	INIT_WORK(&alx->reset_wk, alx_reset);
1327 	netif_carrier_off(netdev);
1328 
1329 	err = register_netdev(netdev);
1330 	if (err) {
1331 		dev_err(&pdev->dev, "register netdevice failed\n");
1332 		goto out_unmap;
1333 	}
1334 
1335 	netdev_info(netdev,
1336 		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1337 		    netdev->dev_addr);
1338 
1339 	return 0;
1340 
1341 out_unmap:
1342 	iounmap(hw->hw_addr);
1343 out_free_netdev:
1344 	free_netdev(netdev);
1345 out_pci_release:
1346 	pci_release_selected_regions(pdev, bars);
1347 out_pci_disable:
1348 	pci_disable_device(pdev);
1349 	return err;
1350 }
1351 
1352 static void alx_remove(struct pci_dev *pdev)
1353 {
1354 	struct alx_priv *alx = pci_get_drvdata(pdev);
1355 	struct alx_hw *hw = &alx->hw;
1356 
1357 	cancel_work_sync(&alx->link_check_wk);
1358 	cancel_work_sync(&alx->reset_wk);
1359 
1360 	/* restore permanent mac address */
1361 	alx_set_macaddr(hw, hw->perm_addr);
1362 
1363 	unregister_netdev(alx->dev);
1364 	iounmap(hw->hw_addr);
1365 	pci_release_selected_regions(pdev,
1366 				     pci_select_bars(pdev, IORESOURCE_MEM));
1367 
1368 	pci_disable_pcie_error_reporting(pdev);
1369 	pci_disable_device(pdev);
1370 	pci_set_drvdata(pdev, NULL);
1371 
1372 	free_netdev(alx->dev);
1373 }
1374 
1375 #ifdef CONFIG_PM_SLEEP
1376 static int alx_suspend(struct device *dev)
1377 {
1378 	struct pci_dev *pdev = to_pci_dev(dev);
1379 	struct alx_priv *alx = pci_get_drvdata(pdev);
1380 
1381 	if (!netif_running(alx->dev))
1382 		return 0;
1383 	netif_device_detach(alx->dev);
1384 	__alx_stop(alx);
1385 	return 0;
1386 }
1387 
1388 static int alx_resume(struct device *dev)
1389 {
1390 	struct pci_dev *pdev = to_pci_dev(dev);
1391 	struct alx_priv *alx = pci_get_drvdata(pdev);
1392 
1393 	if (!netif_running(alx->dev))
1394 		return 0;
1395 	netif_device_attach(alx->dev);
1396 	return __alx_open(alx, true);
1397 }
1398 
1399 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1400 #define ALX_PM_OPS      (&alx_pm_ops)
1401 #else
1402 #define ALX_PM_OPS      NULL
1403 #endif
1404 
1405 
1406 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1407 					       pci_channel_state_t state)
1408 {
1409 	struct alx_priv *alx = pci_get_drvdata(pdev);
1410 	struct net_device *netdev = alx->dev;
1411 	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1412 
1413 	dev_info(&pdev->dev, "pci error detected\n");
1414 
1415 	rtnl_lock();
1416 
1417 	if (netif_running(netdev)) {
1418 		netif_device_detach(netdev);
1419 		alx_halt(alx);
1420 	}
1421 
1422 	if (state == pci_channel_io_perm_failure)
1423 		rc = PCI_ERS_RESULT_DISCONNECT;
1424 	else
1425 		pci_disable_device(pdev);
1426 
1427 	rtnl_unlock();
1428 
1429 	return rc;
1430 }
1431 
1432 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1433 {
1434 	struct alx_priv *alx = pci_get_drvdata(pdev);
1435 	struct alx_hw *hw = &alx->hw;
1436 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1437 
1438 	dev_info(&pdev->dev, "pci error slot reset\n");
1439 
1440 	rtnl_lock();
1441 
1442 	if (pci_enable_device(pdev)) {
1443 		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1444 		goto out;
1445 	}
1446 
1447 	pci_set_master(pdev);
1448 
1449 	alx_reset_pcie(hw);
1450 	if (!alx_reset_mac(hw))
1451 		rc = PCI_ERS_RESULT_RECOVERED;
1452 out:
1453 	pci_cleanup_aer_uncorrect_error_status(pdev);
1454 
1455 	rtnl_unlock();
1456 
1457 	return rc;
1458 }
1459 
1460 static void alx_pci_error_resume(struct pci_dev *pdev)
1461 {
1462 	struct alx_priv *alx = pci_get_drvdata(pdev);
1463 	struct net_device *netdev = alx->dev;
1464 
1465 	dev_info(&pdev->dev, "pci error resume\n");
1466 
1467 	rtnl_lock();
1468 
1469 	if (netif_running(netdev)) {
1470 		alx_activate(alx);
1471 		netif_device_attach(netdev);
1472 	}
1473 
1474 	rtnl_unlock();
1475 }
1476 
1477 static const struct pci_error_handlers alx_err_handlers = {
1478 	.error_detected = alx_pci_error_detected,
1479 	.slot_reset     = alx_pci_error_slot_reset,
1480 	.resume         = alx_pci_error_resume,
1481 };
1482 
1483 static DEFINE_PCI_DEVICE_TABLE(alx_pci_tbl) = {
1484 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1485 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1486 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1487 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1488 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
1489 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1490 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
1491 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
1492 	{}
1493 };
1494 
1495 static struct pci_driver alx_driver = {
1496 	.name        = alx_drv_name,
1497 	.id_table    = alx_pci_tbl,
1498 	.probe       = alx_probe,
1499 	.remove      = alx_remove,
1500 	.err_handler = &alx_err_handlers,
1501 	.driver.pm   = ALX_PM_OPS,
1502 };
1503 
1504 module_pci_driver(alx_driver);
1505 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
1506 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
1507 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
1508 MODULE_DESCRIPTION(
1509 	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
1510 MODULE_LICENSE("GPL");
1511