1 /* 2 * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * Driver for the ARC EMAC 10100 (hardware revision 5) 9 * 10 * Contributors: 11 * Amit Bhor 12 * Sameer Dhavale 13 * Vineet Gupta 14 */ 15 16 #include <linux/crc32.h> 17 #include <linux/etherdevice.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/module.h> 21 #include <linux/of_address.h> 22 #include <linux/of_irq.h> 23 #include <linux/of_mdio.h> 24 #include <linux/of_net.h> 25 #include <linux/of_platform.h> 26 27 #include "emac.h" 28 29 /** 30 * arc_emac_tx_avail - Return the number of available slots in the tx ring. 31 * @priv: Pointer to ARC EMAC private data structure. 32 * 33 * returns: the number of slots available for transmission in tx the ring. 34 */ 35 static inline int arc_emac_tx_avail(struct arc_emac_priv *priv) 36 { 37 return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM; 38 } 39 40 /** 41 * arc_emac_adjust_link - Adjust the PHY link duplex. 42 * @ndev: Pointer to the net_device structure. 43 * 44 * This function is called to change the duplex setting after auto negotiation 45 * is done by the PHY. 46 */ 47 static void arc_emac_adjust_link(struct net_device *ndev) 48 { 49 struct arc_emac_priv *priv = netdev_priv(ndev); 50 struct phy_device *phy_dev = ndev->phydev; 51 unsigned int reg, state_changed = 0; 52 53 if (priv->link != phy_dev->link) { 54 priv->link = phy_dev->link; 55 state_changed = 1; 56 } 57 58 if (priv->speed != phy_dev->speed) { 59 priv->speed = phy_dev->speed; 60 state_changed = 1; 61 if (priv->set_mac_speed) 62 priv->set_mac_speed(priv, priv->speed); 63 } 64 65 if (priv->duplex != phy_dev->duplex) { 66 reg = arc_reg_get(priv, R_CTRL); 67 68 if (phy_dev->duplex == DUPLEX_FULL) 69 reg |= ENFL_MASK; 70 else 71 reg &= ~ENFL_MASK; 72 73 arc_reg_set(priv, R_CTRL, reg); 74 priv->duplex = phy_dev->duplex; 75 state_changed = 1; 76 } 77 78 if (state_changed) 79 phy_print_status(phy_dev); 80 } 81 82 /** 83 * arc_emac_get_drvinfo - Get EMAC driver information. 84 * @ndev: Pointer to net_device structure. 85 * @info: Pointer to ethtool_drvinfo structure. 86 * 87 * This implements ethtool command for getting the driver information. 88 * Issue "ethtool -i ethX" under linux prompt to execute this function. 89 */ 90 static void arc_emac_get_drvinfo(struct net_device *ndev, 91 struct ethtool_drvinfo *info) 92 { 93 struct arc_emac_priv *priv = netdev_priv(ndev); 94 95 strlcpy(info->driver, priv->drv_name, sizeof(info->driver)); 96 strlcpy(info->version, priv->drv_version, sizeof(info->version)); 97 } 98 99 static const struct ethtool_ops arc_emac_ethtool_ops = { 100 .get_drvinfo = arc_emac_get_drvinfo, 101 .get_link = ethtool_op_get_link, 102 .get_link_ksettings = phy_ethtool_get_link_ksettings, 103 .set_link_ksettings = phy_ethtool_set_link_ksettings, 104 }; 105 106 #define FIRST_OR_LAST_MASK (FIRST_MASK | LAST_MASK) 107 108 /** 109 * arc_emac_tx_clean - clears processed by EMAC Tx BDs. 110 * @ndev: Pointer to the network device. 111 */ 112 static void arc_emac_tx_clean(struct net_device *ndev) 113 { 114 struct arc_emac_priv *priv = netdev_priv(ndev); 115 struct net_device_stats *stats = &ndev->stats; 116 unsigned int i; 117 118 for (i = 0; i < TX_BD_NUM; i++) { 119 unsigned int *txbd_dirty = &priv->txbd_dirty; 120 struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty]; 121 struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty]; 122 struct sk_buff *skb = tx_buff->skb; 123 unsigned int info = le32_to_cpu(txbd->info); 124 125 if ((info & FOR_EMAC) || !txbd->data || !skb) 126 break; 127 128 if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) { 129 stats->tx_errors++; 130 stats->tx_dropped++; 131 132 if (info & DEFR) 133 stats->tx_carrier_errors++; 134 135 if (info & LTCL) 136 stats->collisions++; 137 138 if (info & UFLO) 139 stats->tx_fifo_errors++; 140 } else if (likely(info & FIRST_OR_LAST_MASK)) { 141 stats->tx_packets++; 142 stats->tx_bytes += skb->len; 143 } 144 145 dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr), 146 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE); 147 148 /* return the sk_buff to system */ 149 dev_kfree_skb_irq(skb); 150 151 txbd->data = 0; 152 txbd->info = 0; 153 tx_buff->skb = NULL; 154 155 *txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM; 156 } 157 158 /* Ensure that txbd_dirty is visible to tx() before checking 159 * for queue stopped. 160 */ 161 smp_mb(); 162 163 if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv)) 164 netif_wake_queue(ndev); 165 } 166 167 /** 168 * arc_emac_rx - processing of Rx packets. 169 * @ndev: Pointer to the network device. 170 * @budget: How many BDs to process on 1 call. 171 * 172 * returns: Number of processed BDs 173 * 174 * Iterate through Rx BDs and deliver received packages to upper layer. 175 */ 176 static int arc_emac_rx(struct net_device *ndev, int budget) 177 { 178 struct arc_emac_priv *priv = netdev_priv(ndev); 179 unsigned int work_done; 180 181 for (work_done = 0; work_done < budget; work_done++) { 182 unsigned int *last_rx_bd = &priv->last_rx_bd; 183 struct net_device_stats *stats = &ndev->stats; 184 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd]; 185 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd]; 186 unsigned int pktlen, info = le32_to_cpu(rxbd->info); 187 struct sk_buff *skb; 188 dma_addr_t addr; 189 190 if (unlikely((info & OWN_MASK) == FOR_EMAC)) 191 break; 192 193 /* Make a note that we saw a packet at this BD. 194 * So next time, driver starts from this + 1 195 */ 196 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM; 197 198 if (unlikely((info & FIRST_OR_LAST_MASK) != 199 FIRST_OR_LAST_MASK)) { 200 /* We pre-allocate buffers of MTU size so incoming 201 * packets won't be split/chained. 202 */ 203 if (net_ratelimit()) 204 netdev_err(ndev, "incomplete packet received\n"); 205 206 /* Return ownership to EMAC */ 207 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); 208 stats->rx_errors++; 209 stats->rx_length_errors++; 210 continue; 211 } 212 213 pktlen = info & LEN_MASK; 214 stats->rx_packets++; 215 stats->rx_bytes += pktlen; 216 skb = rx_buff->skb; 217 skb_put(skb, pktlen); 218 skb->dev = ndev; 219 skb->protocol = eth_type_trans(skb, ndev); 220 221 dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr), 222 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE); 223 224 /* Prepare the BD for next cycle */ 225 rx_buff->skb = netdev_alloc_skb_ip_align(ndev, 226 EMAC_BUFFER_SIZE); 227 if (unlikely(!rx_buff->skb)) { 228 stats->rx_errors++; 229 /* Because receive_skb is below, increment rx_dropped */ 230 stats->rx_dropped++; 231 continue; 232 } 233 234 /* receive_skb only if new skb was allocated to avoid holes */ 235 netif_receive_skb(skb); 236 237 addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data, 238 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE); 239 if (dma_mapping_error(&ndev->dev, addr)) { 240 if (net_ratelimit()) 241 netdev_err(ndev, "cannot dma map\n"); 242 dev_kfree_skb(rx_buff->skb); 243 stats->rx_errors++; 244 continue; 245 } 246 dma_unmap_addr_set(rx_buff, addr, addr); 247 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE); 248 249 rxbd->data = cpu_to_le32(addr); 250 251 /* Make sure pointer to data buffer is set */ 252 wmb(); 253 254 /* Return ownership to EMAC */ 255 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); 256 } 257 258 return work_done; 259 } 260 261 /** 262 * arc_emac_poll - NAPI poll handler. 263 * @napi: Pointer to napi_struct structure. 264 * @budget: How many BDs to process on 1 call. 265 * 266 * returns: Number of processed BDs 267 */ 268 static int arc_emac_poll(struct napi_struct *napi, int budget) 269 { 270 struct net_device *ndev = napi->dev; 271 struct arc_emac_priv *priv = netdev_priv(ndev); 272 unsigned int work_done; 273 274 arc_emac_tx_clean(ndev); 275 276 work_done = arc_emac_rx(ndev, budget); 277 if (work_done < budget) { 278 napi_complete_done(napi, work_done); 279 arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK); 280 } 281 282 return work_done; 283 } 284 285 /** 286 * arc_emac_intr - Global interrupt handler for EMAC. 287 * @irq: irq number. 288 * @dev_instance: device instance. 289 * 290 * returns: IRQ_HANDLED for all cases. 291 * 292 * ARC EMAC has only 1 interrupt line, and depending on bits raised in 293 * STATUS register we may tell what is a reason for interrupt to fire. 294 */ 295 static irqreturn_t arc_emac_intr(int irq, void *dev_instance) 296 { 297 struct net_device *ndev = dev_instance; 298 struct arc_emac_priv *priv = netdev_priv(ndev); 299 struct net_device_stats *stats = &ndev->stats; 300 unsigned int status; 301 302 status = arc_reg_get(priv, R_STATUS); 303 status &= ~MDIO_MASK; 304 305 /* Reset all flags except "MDIO complete" */ 306 arc_reg_set(priv, R_STATUS, status); 307 308 if (status & (RXINT_MASK | TXINT_MASK)) { 309 if (likely(napi_schedule_prep(&priv->napi))) { 310 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK); 311 __napi_schedule(&priv->napi); 312 } 313 } 314 315 if (status & ERR_MASK) { 316 /* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding 317 * 8-bit error counter overrun. 318 */ 319 320 if (status & MSER_MASK) { 321 stats->rx_missed_errors += 0x100; 322 stats->rx_errors += 0x100; 323 } 324 325 if (status & RXCR_MASK) { 326 stats->rx_crc_errors += 0x100; 327 stats->rx_errors += 0x100; 328 } 329 330 if (status & RXFR_MASK) { 331 stats->rx_frame_errors += 0x100; 332 stats->rx_errors += 0x100; 333 } 334 335 if (status & RXFL_MASK) { 336 stats->rx_over_errors += 0x100; 337 stats->rx_errors += 0x100; 338 } 339 } 340 341 return IRQ_HANDLED; 342 } 343 344 #ifdef CONFIG_NET_POLL_CONTROLLER 345 static void arc_emac_poll_controller(struct net_device *dev) 346 { 347 disable_irq(dev->irq); 348 arc_emac_intr(dev->irq, dev); 349 enable_irq(dev->irq); 350 } 351 #endif 352 353 /** 354 * arc_emac_open - Open the network device. 355 * @ndev: Pointer to the network device. 356 * 357 * returns: 0, on success or non-zero error value on failure. 358 * 359 * This function sets the MAC address, requests and enables an IRQ 360 * for the EMAC device and starts the Tx queue. 361 * It also connects to the phy device. 362 */ 363 static int arc_emac_open(struct net_device *ndev) 364 { 365 struct arc_emac_priv *priv = netdev_priv(ndev); 366 struct phy_device *phy_dev = ndev->phydev; 367 int i; 368 369 phy_dev->autoneg = AUTONEG_ENABLE; 370 phy_dev->speed = 0; 371 phy_dev->duplex = 0; 372 phy_dev->advertising &= phy_dev->supported; 373 374 priv->last_rx_bd = 0; 375 376 /* Allocate and set buffers for Rx BD's */ 377 for (i = 0; i < RX_BD_NUM; i++) { 378 dma_addr_t addr; 379 unsigned int *last_rx_bd = &priv->last_rx_bd; 380 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd]; 381 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd]; 382 383 rx_buff->skb = netdev_alloc_skb_ip_align(ndev, 384 EMAC_BUFFER_SIZE); 385 if (unlikely(!rx_buff->skb)) 386 return -ENOMEM; 387 388 addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data, 389 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE); 390 if (dma_mapping_error(&ndev->dev, addr)) { 391 netdev_err(ndev, "cannot dma map\n"); 392 dev_kfree_skb(rx_buff->skb); 393 return -ENOMEM; 394 } 395 dma_unmap_addr_set(rx_buff, addr, addr); 396 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE); 397 398 rxbd->data = cpu_to_le32(addr); 399 400 /* Make sure pointer to data buffer is set */ 401 wmb(); 402 403 /* Return ownership to EMAC */ 404 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); 405 406 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM; 407 } 408 409 priv->txbd_curr = 0; 410 priv->txbd_dirty = 0; 411 412 /* Clean Tx BD's */ 413 memset(priv->txbd, 0, TX_RING_SZ); 414 415 /* Initialize logical address filter */ 416 arc_reg_set(priv, R_LAFL, 0); 417 arc_reg_set(priv, R_LAFH, 0); 418 419 /* Set BD ring pointers for device side */ 420 arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma); 421 arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma); 422 423 /* Enable interrupts */ 424 arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK); 425 426 /* Set CONTROL */ 427 arc_reg_set(priv, R_CTRL, 428 (RX_BD_NUM << 24) | /* RX BD table length */ 429 (TX_BD_NUM << 16) | /* TX BD table length */ 430 TXRN_MASK | RXRN_MASK); 431 432 napi_enable(&priv->napi); 433 434 /* Enable EMAC */ 435 arc_reg_or(priv, R_CTRL, EN_MASK); 436 437 phy_start(ndev->phydev); 438 439 netif_start_queue(ndev); 440 441 return 0; 442 } 443 444 /** 445 * arc_emac_set_rx_mode - Change the receive filtering mode. 446 * @ndev: Pointer to the network device. 447 * 448 * This function enables/disables promiscuous or all-multicast mode 449 * and updates the multicast filtering list of the network device. 450 */ 451 static void arc_emac_set_rx_mode(struct net_device *ndev) 452 { 453 struct arc_emac_priv *priv = netdev_priv(ndev); 454 455 if (ndev->flags & IFF_PROMISC) { 456 arc_reg_or(priv, R_CTRL, PROM_MASK); 457 } else { 458 arc_reg_clr(priv, R_CTRL, PROM_MASK); 459 460 if (ndev->flags & IFF_ALLMULTI) { 461 arc_reg_set(priv, R_LAFL, ~0); 462 arc_reg_set(priv, R_LAFH, ~0); 463 } else if (ndev->flags & IFF_MULTICAST) { 464 struct netdev_hw_addr *ha; 465 unsigned int filter[2] = { 0, 0 }; 466 int bit; 467 468 netdev_for_each_mc_addr(ha, ndev) { 469 bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26; 470 filter[bit >> 5] |= 1 << (bit & 31); 471 } 472 473 arc_reg_set(priv, R_LAFL, filter[0]); 474 arc_reg_set(priv, R_LAFH, filter[1]); 475 } else { 476 arc_reg_set(priv, R_LAFL, 0); 477 arc_reg_set(priv, R_LAFH, 0); 478 } 479 } 480 } 481 482 /** 483 * arc_free_tx_queue - free skb from tx queue 484 * @ndev: Pointer to the network device. 485 * 486 * This function must be called while EMAC disable 487 */ 488 static void arc_free_tx_queue(struct net_device *ndev) 489 { 490 struct arc_emac_priv *priv = netdev_priv(ndev); 491 unsigned int i; 492 493 for (i = 0; i < TX_BD_NUM; i++) { 494 struct arc_emac_bd *txbd = &priv->txbd[i]; 495 struct buffer_state *tx_buff = &priv->tx_buff[i]; 496 497 if (tx_buff->skb) { 498 dma_unmap_single(&ndev->dev, 499 dma_unmap_addr(tx_buff, addr), 500 dma_unmap_len(tx_buff, len), 501 DMA_TO_DEVICE); 502 503 /* return the sk_buff to system */ 504 dev_kfree_skb_irq(tx_buff->skb); 505 } 506 507 txbd->info = 0; 508 txbd->data = 0; 509 tx_buff->skb = NULL; 510 } 511 } 512 513 /** 514 * arc_free_rx_queue - free skb from rx queue 515 * @ndev: Pointer to the network device. 516 * 517 * This function must be called while EMAC disable 518 */ 519 static void arc_free_rx_queue(struct net_device *ndev) 520 { 521 struct arc_emac_priv *priv = netdev_priv(ndev); 522 unsigned int i; 523 524 for (i = 0; i < RX_BD_NUM; i++) { 525 struct arc_emac_bd *rxbd = &priv->rxbd[i]; 526 struct buffer_state *rx_buff = &priv->rx_buff[i]; 527 528 if (rx_buff->skb) { 529 dma_unmap_single(&ndev->dev, 530 dma_unmap_addr(rx_buff, addr), 531 dma_unmap_len(rx_buff, len), 532 DMA_FROM_DEVICE); 533 534 /* return the sk_buff to system */ 535 dev_kfree_skb_irq(rx_buff->skb); 536 } 537 538 rxbd->info = 0; 539 rxbd->data = 0; 540 rx_buff->skb = NULL; 541 } 542 } 543 544 /** 545 * arc_emac_stop - Close the network device. 546 * @ndev: Pointer to the network device. 547 * 548 * This function stops the Tx queue, disables interrupts and frees the IRQ for 549 * the EMAC device. 550 * It also disconnects the PHY device associated with the EMAC device. 551 */ 552 static int arc_emac_stop(struct net_device *ndev) 553 { 554 struct arc_emac_priv *priv = netdev_priv(ndev); 555 556 napi_disable(&priv->napi); 557 netif_stop_queue(ndev); 558 559 phy_stop(ndev->phydev); 560 561 /* Disable interrupts */ 562 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK); 563 564 /* Disable EMAC */ 565 arc_reg_clr(priv, R_CTRL, EN_MASK); 566 567 /* Return the sk_buff to system */ 568 arc_free_tx_queue(ndev); 569 arc_free_rx_queue(ndev); 570 571 return 0; 572 } 573 574 /** 575 * arc_emac_stats - Get system network statistics. 576 * @ndev: Pointer to net_device structure. 577 * 578 * Returns the address of the device statistics structure. 579 * Statistics are updated in interrupt handler. 580 */ 581 static struct net_device_stats *arc_emac_stats(struct net_device *ndev) 582 { 583 struct arc_emac_priv *priv = netdev_priv(ndev); 584 struct net_device_stats *stats = &ndev->stats; 585 unsigned long miss, rxerr; 586 u8 rxcrc, rxfram, rxoflow; 587 588 rxerr = arc_reg_get(priv, R_RXERR); 589 miss = arc_reg_get(priv, R_MISS); 590 591 rxcrc = rxerr; 592 rxfram = rxerr >> 8; 593 rxoflow = rxerr >> 16; 594 595 stats->rx_errors += miss; 596 stats->rx_errors += rxcrc + rxfram + rxoflow; 597 598 stats->rx_over_errors += rxoflow; 599 stats->rx_frame_errors += rxfram; 600 stats->rx_crc_errors += rxcrc; 601 stats->rx_missed_errors += miss; 602 603 return stats; 604 } 605 606 /** 607 * arc_emac_tx - Starts the data transmission. 608 * @skb: sk_buff pointer that contains data to be Transmitted. 609 * @ndev: Pointer to net_device structure. 610 * 611 * returns: NETDEV_TX_OK, on success 612 * NETDEV_TX_BUSY, if any of the descriptors are not free. 613 * 614 * This function is invoked from upper layers to initiate transmission. 615 */ 616 static int arc_emac_tx(struct sk_buff *skb, struct net_device *ndev) 617 { 618 struct arc_emac_priv *priv = netdev_priv(ndev); 619 unsigned int len, *txbd_curr = &priv->txbd_curr; 620 struct net_device_stats *stats = &ndev->stats; 621 __le32 *info = &priv->txbd[*txbd_curr].info; 622 dma_addr_t addr; 623 624 if (skb_padto(skb, ETH_ZLEN)) 625 return NETDEV_TX_OK; 626 627 len = max_t(unsigned int, ETH_ZLEN, skb->len); 628 629 if (unlikely(!arc_emac_tx_avail(priv))) { 630 netif_stop_queue(ndev); 631 netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n"); 632 return NETDEV_TX_BUSY; 633 } 634 635 addr = dma_map_single(&ndev->dev, (void *)skb->data, len, 636 DMA_TO_DEVICE); 637 638 if (unlikely(dma_mapping_error(&ndev->dev, addr))) { 639 stats->tx_dropped++; 640 stats->tx_errors++; 641 dev_kfree_skb_any(skb); 642 return NETDEV_TX_OK; 643 } 644 dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr); 645 dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len); 646 647 priv->txbd[*txbd_curr].data = cpu_to_le32(addr); 648 649 /* Make sure pointer to data buffer is set */ 650 wmb(); 651 652 skb_tx_timestamp(skb); 653 654 *info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len); 655 656 /* Make sure info word is set */ 657 wmb(); 658 659 priv->tx_buff[*txbd_curr].skb = skb; 660 661 /* Increment index to point to the next BD */ 662 *txbd_curr = (*txbd_curr + 1) % TX_BD_NUM; 663 664 /* Ensure that tx_clean() sees the new txbd_curr before 665 * checking the queue status. This prevents an unneeded wake 666 * of the queue in tx_clean(). 667 */ 668 smp_mb(); 669 670 if (!arc_emac_tx_avail(priv)) { 671 netif_stop_queue(ndev); 672 /* Refresh tx_dirty */ 673 smp_mb(); 674 if (arc_emac_tx_avail(priv)) 675 netif_start_queue(ndev); 676 } 677 678 arc_reg_set(priv, R_STATUS, TXPL_MASK); 679 680 return NETDEV_TX_OK; 681 } 682 683 static void arc_emac_set_address_internal(struct net_device *ndev) 684 { 685 struct arc_emac_priv *priv = netdev_priv(ndev); 686 unsigned int addr_low, addr_hi; 687 688 addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]); 689 addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]); 690 691 arc_reg_set(priv, R_ADDRL, addr_low); 692 arc_reg_set(priv, R_ADDRH, addr_hi); 693 } 694 695 /** 696 * arc_emac_set_address - Set the MAC address for this device. 697 * @ndev: Pointer to net_device structure. 698 * @p: 6 byte Address to be written as MAC address. 699 * 700 * This function copies the HW address from the sockaddr structure to the 701 * net_device structure and updates the address in HW. 702 * 703 * returns: -EBUSY if the net device is busy or 0 if the address is set 704 * successfully. 705 */ 706 static int arc_emac_set_address(struct net_device *ndev, void *p) 707 { 708 struct sockaddr *addr = p; 709 710 if (netif_running(ndev)) 711 return -EBUSY; 712 713 if (!is_valid_ether_addr(addr->sa_data)) 714 return -EADDRNOTAVAIL; 715 716 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 717 718 arc_emac_set_address_internal(ndev); 719 720 return 0; 721 } 722 723 static int arc_emac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 724 { 725 if (!netif_running(dev)) 726 return -EINVAL; 727 728 if (!dev->phydev) 729 return -ENODEV; 730 731 return phy_mii_ioctl(dev->phydev, rq, cmd); 732 } 733 734 735 static const struct net_device_ops arc_emac_netdev_ops = { 736 .ndo_open = arc_emac_open, 737 .ndo_stop = arc_emac_stop, 738 .ndo_start_xmit = arc_emac_tx, 739 .ndo_set_mac_address = arc_emac_set_address, 740 .ndo_get_stats = arc_emac_stats, 741 .ndo_set_rx_mode = arc_emac_set_rx_mode, 742 .ndo_do_ioctl = arc_emac_ioctl, 743 #ifdef CONFIG_NET_POLL_CONTROLLER 744 .ndo_poll_controller = arc_emac_poll_controller, 745 #endif 746 }; 747 748 int arc_emac_probe(struct net_device *ndev, int interface) 749 { 750 struct device *dev = ndev->dev.parent; 751 struct resource res_regs; 752 struct device_node *phy_node; 753 struct phy_device *phydev = NULL; 754 struct arc_emac_priv *priv; 755 const char *mac_addr; 756 unsigned int id, clock_frequency, irq; 757 int err; 758 759 /* Get PHY from device tree */ 760 phy_node = of_parse_phandle(dev->of_node, "phy", 0); 761 if (!phy_node) { 762 dev_err(dev, "failed to retrieve phy description from device tree\n"); 763 return -ENODEV; 764 } 765 766 /* Get EMAC registers base address from device tree */ 767 err = of_address_to_resource(dev->of_node, 0, &res_regs); 768 if (err) { 769 dev_err(dev, "failed to retrieve registers base from device tree\n"); 770 err = -ENODEV; 771 goto out_put_node; 772 } 773 774 /* Get IRQ from device tree */ 775 irq = irq_of_parse_and_map(dev->of_node, 0); 776 if (!irq) { 777 dev_err(dev, "failed to retrieve <irq> value from device tree\n"); 778 err = -ENODEV; 779 goto out_put_node; 780 } 781 782 ndev->netdev_ops = &arc_emac_netdev_ops; 783 ndev->ethtool_ops = &arc_emac_ethtool_ops; 784 ndev->watchdog_timeo = TX_TIMEOUT; 785 786 priv = netdev_priv(ndev); 787 priv->dev = dev; 788 789 priv->regs = devm_ioremap_resource(dev, &res_regs); 790 if (IS_ERR(priv->regs)) { 791 err = PTR_ERR(priv->regs); 792 goto out_put_node; 793 } 794 795 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs); 796 797 if (priv->clk) { 798 err = clk_prepare_enable(priv->clk); 799 if (err) { 800 dev_err(dev, "failed to enable clock\n"); 801 goto out_put_node; 802 } 803 804 clock_frequency = clk_get_rate(priv->clk); 805 } else { 806 /* Get CPU clock frequency from device tree */ 807 if (of_property_read_u32(dev->of_node, "clock-frequency", 808 &clock_frequency)) { 809 dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n"); 810 err = -EINVAL; 811 goto out_put_node; 812 } 813 } 814 815 id = arc_reg_get(priv, R_ID); 816 817 /* Check for EMAC revision 5 or 7, magic number */ 818 if (!(id == 0x0005fd02 || id == 0x0007fd02)) { 819 dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id); 820 err = -ENODEV; 821 goto out_clken; 822 } 823 dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id); 824 825 /* Set poll rate so that it polls every 1 ms */ 826 arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000); 827 828 ndev->irq = irq; 829 dev_info(dev, "IRQ is %d\n", ndev->irq); 830 831 /* Register interrupt handler for device */ 832 err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0, 833 ndev->name, ndev); 834 if (err) { 835 dev_err(dev, "could not allocate IRQ\n"); 836 goto out_clken; 837 } 838 839 /* Get MAC address from device tree */ 840 mac_addr = of_get_mac_address(dev->of_node); 841 842 if (mac_addr) 843 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN); 844 else 845 eth_hw_addr_random(ndev); 846 847 arc_emac_set_address_internal(ndev); 848 dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr); 849 850 /* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */ 851 priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ, 852 &priv->rxbd_dma, GFP_KERNEL); 853 854 if (!priv->rxbd) { 855 dev_err(dev, "failed to allocate data buffers\n"); 856 err = -ENOMEM; 857 goto out_clken; 858 } 859 860 priv->txbd = priv->rxbd + RX_BD_NUM; 861 862 priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ; 863 dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n", 864 (unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma); 865 866 err = arc_mdio_probe(priv); 867 if (err) { 868 dev_err(dev, "failed to probe MII bus\n"); 869 goto out_clken; 870 } 871 872 phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0, 873 interface); 874 if (!phydev) { 875 dev_err(dev, "of_phy_connect() failed\n"); 876 err = -ENODEV; 877 goto out_mdio; 878 } 879 880 dev_info(dev, "connected to %s phy with id 0x%x\n", 881 phydev->drv->name, phydev->phy_id); 882 883 netif_napi_add(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT); 884 885 err = register_netdev(ndev); 886 if (err) { 887 dev_err(dev, "failed to register network device\n"); 888 goto out_netif_api; 889 } 890 891 of_node_put(phy_node); 892 return 0; 893 894 out_netif_api: 895 netif_napi_del(&priv->napi); 896 phy_disconnect(phydev); 897 out_mdio: 898 arc_mdio_remove(priv); 899 out_clken: 900 if (priv->clk) 901 clk_disable_unprepare(priv->clk); 902 out_put_node: 903 of_node_put(phy_node); 904 905 return err; 906 } 907 EXPORT_SYMBOL_GPL(arc_emac_probe); 908 909 int arc_emac_remove(struct net_device *ndev) 910 { 911 struct arc_emac_priv *priv = netdev_priv(ndev); 912 913 phy_disconnect(ndev->phydev); 914 arc_mdio_remove(priv); 915 unregister_netdev(ndev); 916 netif_napi_del(&priv->napi); 917 918 if (!IS_ERR(priv->clk)) 919 clk_disable_unprepare(priv->clk); 920 921 return 0; 922 } 923 EXPORT_SYMBOL_GPL(arc_emac_remove); 924 925 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>"); 926 MODULE_DESCRIPTION("ARC EMAC driver"); 927 MODULE_LICENSE("GPL"); 928