1 /* 2 * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * Driver for the ARC EMAC 10100 (hardware revision 5) 9 * 10 * Contributors: 11 * Amit Bhor 12 * Sameer Dhavale 13 * Vineet Gupta 14 */ 15 16 #include <linux/etherdevice.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/module.h> 20 #include <linux/of_address.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_mdio.h> 23 #include <linux/of_net.h> 24 #include <linux/of_platform.h> 25 26 #include "emac.h" 27 28 #define DRV_NAME "arc_emac" 29 #define DRV_VERSION "1.0" 30 31 /** 32 * arc_emac_adjust_link - Adjust the PHY link duplex. 33 * @ndev: Pointer to the net_device structure. 34 * 35 * This function is called to change the duplex setting after auto negotiation 36 * is done by the PHY. 37 */ 38 static void arc_emac_adjust_link(struct net_device *ndev) 39 { 40 struct arc_emac_priv *priv = netdev_priv(ndev); 41 struct phy_device *phy_dev = priv->phy_dev; 42 unsigned int reg, state_changed = 0; 43 44 if (priv->link != phy_dev->link) { 45 priv->link = phy_dev->link; 46 state_changed = 1; 47 } 48 49 if (priv->speed != phy_dev->speed) { 50 priv->speed = phy_dev->speed; 51 state_changed = 1; 52 } 53 54 if (priv->duplex != phy_dev->duplex) { 55 reg = arc_reg_get(priv, R_CTRL); 56 57 if (DUPLEX_FULL == phy_dev->duplex) 58 reg |= ENFL_MASK; 59 else 60 reg &= ~ENFL_MASK; 61 62 arc_reg_set(priv, R_CTRL, reg); 63 priv->duplex = phy_dev->duplex; 64 state_changed = 1; 65 } 66 67 if (state_changed) 68 phy_print_status(phy_dev); 69 } 70 71 /** 72 * arc_emac_get_settings - Get PHY settings. 73 * @ndev: Pointer to net_device structure. 74 * @cmd: Pointer to ethtool_cmd structure. 75 * 76 * This implements ethtool command for getting PHY settings. If PHY could 77 * not be found, the function returns -ENODEV. This function calls the 78 * relevant PHY ethtool API to get the PHY settings. 79 * Issue "ethtool ethX" under linux prompt to execute this function. 80 */ 81 static int arc_emac_get_settings(struct net_device *ndev, 82 struct ethtool_cmd *cmd) 83 { 84 struct arc_emac_priv *priv = netdev_priv(ndev); 85 86 return phy_ethtool_gset(priv->phy_dev, cmd); 87 } 88 89 /** 90 * arc_emac_set_settings - Set PHY settings as passed in the argument. 91 * @ndev: Pointer to net_device structure. 92 * @cmd: Pointer to ethtool_cmd structure. 93 * 94 * This implements ethtool command for setting various PHY settings. If PHY 95 * could not be found, the function returns -ENODEV. This function calls the 96 * relevant PHY ethtool API to set the PHY. 97 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this 98 * function. 99 */ 100 static int arc_emac_set_settings(struct net_device *ndev, 101 struct ethtool_cmd *cmd) 102 { 103 struct arc_emac_priv *priv = netdev_priv(ndev); 104 105 if (!capable(CAP_NET_ADMIN)) 106 return -EPERM; 107 108 return phy_ethtool_sset(priv->phy_dev, cmd); 109 } 110 111 /** 112 * arc_emac_get_drvinfo - Get EMAC driver information. 113 * @ndev: Pointer to net_device structure. 114 * @info: Pointer to ethtool_drvinfo structure. 115 * 116 * This implements ethtool command for getting the driver information. 117 * Issue "ethtool -i ethX" under linux prompt to execute this function. 118 */ 119 static void arc_emac_get_drvinfo(struct net_device *ndev, 120 struct ethtool_drvinfo *info) 121 { 122 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 123 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 124 } 125 126 static const struct ethtool_ops arc_emac_ethtool_ops = { 127 .get_settings = arc_emac_get_settings, 128 .set_settings = arc_emac_set_settings, 129 .get_drvinfo = arc_emac_get_drvinfo, 130 .get_link = ethtool_op_get_link, 131 }; 132 133 #define FIRST_OR_LAST_MASK (FIRST_MASK | LAST_MASK) 134 135 /** 136 * arc_emac_tx_clean - clears processed by EMAC Tx BDs. 137 * @ndev: Pointer to the network device. 138 */ 139 static void arc_emac_tx_clean(struct net_device *ndev) 140 { 141 struct arc_emac_priv *priv = netdev_priv(ndev); 142 struct net_device_stats *stats = &priv->stats; 143 unsigned int i; 144 145 for (i = 0; i < TX_BD_NUM; i++) { 146 unsigned int *txbd_dirty = &priv->txbd_dirty; 147 struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty]; 148 struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty]; 149 struct sk_buff *skb = tx_buff->skb; 150 unsigned int info = le32_to_cpu(txbd->info); 151 152 if ((info & FOR_EMAC) || !txbd->data) 153 break; 154 155 if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) { 156 stats->tx_errors++; 157 stats->tx_dropped++; 158 159 if (info & DEFR) 160 stats->tx_carrier_errors++; 161 162 if (info & LTCL) 163 stats->collisions++; 164 165 if (info & UFLO) 166 stats->tx_fifo_errors++; 167 } else if (likely(info & FIRST_OR_LAST_MASK)) { 168 stats->tx_packets++; 169 stats->tx_bytes += skb->len; 170 } 171 172 dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr), 173 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE); 174 175 /* return the sk_buff to system */ 176 dev_kfree_skb_irq(skb); 177 178 txbd->data = 0; 179 txbd->info = 0; 180 181 *txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM; 182 183 if (netif_queue_stopped(ndev)) 184 netif_wake_queue(ndev); 185 } 186 } 187 188 /** 189 * arc_emac_rx - processing of Rx packets. 190 * @ndev: Pointer to the network device. 191 * @budget: How many BDs to process on 1 call. 192 * 193 * returns: Number of processed BDs 194 * 195 * Iterate through Rx BDs and deliver received packages to upper layer. 196 */ 197 static int arc_emac_rx(struct net_device *ndev, int budget) 198 { 199 struct arc_emac_priv *priv = netdev_priv(ndev); 200 unsigned int work_done; 201 202 for (work_done = 0; work_done < budget; work_done++) { 203 unsigned int *last_rx_bd = &priv->last_rx_bd; 204 struct net_device_stats *stats = &priv->stats; 205 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd]; 206 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd]; 207 unsigned int pktlen, info = le32_to_cpu(rxbd->info); 208 struct sk_buff *skb; 209 dma_addr_t addr; 210 211 if (unlikely((info & OWN_MASK) == FOR_EMAC)) 212 break; 213 214 /* Make a note that we saw a packet at this BD. 215 * So next time, driver starts from this + 1 216 */ 217 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM; 218 219 if (unlikely((info & FIRST_OR_LAST_MASK) != 220 FIRST_OR_LAST_MASK)) { 221 /* We pre-allocate buffers of MTU size so incoming 222 * packets won't be split/chained. 223 */ 224 if (net_ratelimit()) 225 netdev_err(ndev, "incomplete packet received\n"); 226 227 /* Return ownership to EMAC */ 228 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); 229 stats->rx_errors++; 230 stats->rx_length_errors++; 231 continue; 232 } 233 234 pktlen = info & LEN_MASK; 235 stats->rx_packets++; 236 stats->rx_bytes += pktlen; 237 skb = rx_buff->skb; 238 skb_put(skb, pktlen); 239 skb->dev = ndev; 240 skb->protocol = eth_type_trans(skb, ndev); 241 242 dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr), 243 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE); 244 245 /* Prepare the BD for next cycle */ 246 rx_buff->skb = netdev_alloc_skb_ip_align(ndev, 247 EMAC_BUFFER_SIZE); 248 if (unlikely(!rx_buff->skb)) { 249 stats->rx_errors++; 250 /* Because receive_skb is below, increment rx_dropped */ 251 stats->rx_dropped++; 252 continue; 253 } 254 255 /* receive_skb only if new skb was allocated to avoid holes */ 256 netif_receive_skb(skb); 257 258 addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data, 259 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE); 260 if (dma_mapping_error(&ndev->dev, addr)) { 261 if (net_ratelimit()) 262 netdev_err(ndev, "cannot dma map\n"); 263 dev_kfree_skb(rx_buff->skb); 264 stats->rx_errors++; 265 continue; 266 } 267 dma_unmap_addr_set(rx_buff, addr, addr); 268 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE); 269 270 rxbd->data = cpu_to_le32(addr); 271 272 /* Make sure pointer to data buffer is set */ 273 wmb(); 274 275 /* Return ownership to EMAC */ 276 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); 277 } 278 279 return work_done; 280 } 281 282 /** 283 * arc_emac_poll - NAPI poll handler. 284 * @napi: Pointer to napi_struct structure. 285 * @budget: How many BDs to process on 1 call. 286 * 287 * returns: Number of processed BDs 288 */ 289 static int arc_emac_poll(struct napi_struct *napi, int budget) 290 { 291 struct net_device *ndev = napi->dev; 292 struct arc_emac_priv *priv = netdev_priv(ndev); 293 unsigned int work_done; 294 295 arc_emac_tx_clean(ndev); 296 297 work_done = arc_emac_rx(ndev, budget); 298 if (work_done < budget) { 299 napi_complete(napi); 300 arc_reg_or(priv, R_ENABLE, RXINT_MASK); 301 } 302 303 return work_done; 304 } 305 306 /** 307 * arc_emac_intr - Global interrupt handler for EMAC. 308 * @irq: irq number. 309 * @dev_instance: device instance. 310 * 311 * returns: IRQ_HANDLED for all cases. 312 * 313 * ARC EMAC has only 1 interrupt line, and depending on bits raised in 314 * STATUS register we may tell what is a reason for interrupt to fire. 315 */ 316 static irqreturn_t arc_emac_intr(int irq, void *dev_instance) 317 { 318 struct net_device *ndev = dev_instance; 319 struct arc_emac_priv *priv = netdev_priv(ndev); 320 struct net_device_stats *stats = &priv->stats; 321 unsigned int status; 322 323 status = arc_reg_get(priv, R_STATUS); 324 status &= ~MDIO_MASK; 325 326 /* Reset all flags except "MDIO complete" */ 327 arc_reg_set(priv, R_STATUS, status); 328 329 if (status & RXINT_MASK) { 330 if (likely(napi_schedule_prep(&priv->napi))) { 331 arc_reg_clr(priv, R_ENABLE, RXINT_MASK); 332 __napi_schedule(&priv->napi); 333 } 334 } 335 336 if (status & ERR_MASK) { 337 /* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding 338 * 8-bit error counter overrun. 339 */ 340 341 if (status & MSER_MASK) { 342 stats->rx_missed_errors += 0x100; 343 stats->rx_errors += 0x100; 344 } 345 346 if (status & RXCR_MASK) { 347 stats->rx_crc_errors += 0x100; 348 stats->rx_errors += 0x100; 349 } 350 351 if (status & RXFR_MASK) { 352 stats->rx_frame_errors += 0x100; 353 stats->rx_errors += 0x100; 354 } 355 356 if (status & RXFL_MASK) { 357 stats->rx_over_errors += 0x100; 358 stats->rx_errors += 0x100; 359 } 360 } 361 362 return IRQ_HANDLED; 363 } 364 365 /** 366 * arc_emac_open - Open the network device. 367 * @ndev: Pointer to the network device. 368 * 369 * returns: 0, on success or non-zero error value on failure. 370 * 371 * This function sets the MAC address, requests and enables an IRQ 372 * for the EMAC device and starts the Tx queue. 373 * It also connects to the phy device. 374 */ 375 static int arc_emac_open(struct net_device *ndev) 376 { 377 struct arc_emac_priv *priv = netdev_priv(ndev); 378 struct phy_device *phy_dev = priv->phy_dev; 379 int i; 380 381 phy_dev->autoneg = AUTONEG_ENABLE; 382 phy_dev->speed = 0; 383 phy_dev->duplex = 0; 384 phy_dev->advertising = phy_dev->supported; 385 386 if (priv->max_speed > 100) { 387 phy_dev->advertising &= PHY_GBIT_FEATURES; 388 } else if (priv->max_speed <= 100) { 389 phy_dev->advertising &= PHY_BASIC_FEATURES; 390 if (priv->max_speed <= 10) { 391 phy_dev->advertising &= ~SUPPORTED_100baseT_Half; 392 phy_dev->advertising &= ~SUPPORTED_100baseT_Full; 393 } 394 } 395 396 priv->last_rx_bd = 0; 397 398 /* Allocate and set buffers for Rx BD's */ 399 for (i = 0; i < RX_BD_NUM; i++) { 400 dma_addr_t addr; 401 unsigned int *last_rx_bd = &priv->last_rx_bd; 402 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd]; 403 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd]; 404 405 rx_buff->skb = netdev_alloc_skb_ip_align(ndev, 406 EMAC_BUFFER_SIZE); 407 if (unlikely(!rx_buff->skb)) 408 return -ENOMEM; 409 410 addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data, 411 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE); 412 if (dma_mapping_error(&ndev->dev, addr)) { 413 netdev_err(ndev, "cannot dma map\n"); 414 dev_kfree_skb(rx_buff->skb); 415 return -ENOMEM; 416 } 417 dma_unmap_addr_set(rx_buff, addr, addr); 418 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE); 419 420 rxbd->data = cpu_to_le32(addr); 421 422 /* Make sure pointer to data buffer is set */ 423 wmb(); 424 425 /* Return ownership to EMAC */ 426 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); 427 428 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM; 429 } 430 431 /* Clean Tx BD's */ 432 memset(priv->txbd, 0, TX_RING_SZ); 433 434 /* Initialize logical address filter */ 435 arc_reg_set(priv, R_LAFL, 0); 436 arc_reg_set(priv, R_LAFH, 0); 437 438 /* Set BD ring pointers for device side */ 439 arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma); 440 arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma); 441 442 /* Enable interrupts */ 443 arc_reg_set(priv, R_ENABLE, RXINT_MASK | ERR_MASK); 444 445 /* Set CONTROL */ 446 arc_reg_set(priv, R_CTRL, 447 (RX_BD_NUM << 24) | /* RX BD table length */ 448 (TX_BD_NUM << 16) | /* TX BD table length */ 449 TXRN_MASK | RXRN_MASK); 450 451 napi_enable(&priv->napi); 452 453 /* Enable EMAC */ 454 arc_reg_or(priv, R_CTRL, EN_MASK); 455 456 phy_start_aneg(priv->phy_dev); 457 458 netif_start_queue(ndev); 459 460 return 0; 461 } 462 463 /** 464 * arc_emac_stop - Close the network device. 465 * @ndev: Pointer to the network device. 466 * 467 * This function stops the Tx queue, disables interrupts and frees the IRQ for 468 * the EMAC device. 469 * It also disconnects the PHY device associated with the EMAC device. 470 */ 471 static int arc_emac_stop(struct net_device *ndev) 472 { 473 struct arc_emac_priv *priv = netdev_priv(ndev); 474 475 napi_disable(&priv->napi); 476 netif_stop_queue(ndev); 477 478 /* Disable interrupts */ 479 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | ERR_MASK); 480 481 /* Disable EMAC */ 482 arc_reg_clr(priv, R_CTRL, EN_MASK); 483 484 return 0; 485 } 486 487 /** 488 * arc_emac_stats - Get system network statistics. 489 * @ndev: Pointer to net_device structure. 490 * 491 * Returns the address of the device statistics structure. 492 * Statistics are updated in interrupt handler. 493 */ 494 static struct net_device_stats *arc_emac_stats(struct net_device *ndev) 495 { 496 struct arc_emac_priv *priv = netdev_priv(ndev); 497 struct net_device_stats *stats = &priv->stats; 498 unsigned long miss, rxerr; 499 u8 rxcrc, rxfram, rxoflow; 500 501 rxerr = arc_reg_get(priv, R_RXERR); 502 miss = arc_reg_get(priv, R_MISS); 503 504 rxcrc = rxerr; 505 rxfram = rxerr >> 8; 506 rxoflow = rxerr >> 16; 507 508 stats->rx_errors += miss; 509 stats->rx_errors += rxcrc + rxfram + rxoflow; 510 511 stats->rx_over_errors += rxoflow; 512 stats->rx_frame_errors += rxfram; 513 stats->rx_crc_errors += rxcrc; 514 stats->rx_missed_errors += miss; 515 516 return stats; 517 } 518 519 /** 520 * arc_emac_tx - Starts the data transmission. 521 * @skb: sk_buff pointer that contains data to be Transmitted. 522 * @ndev: Pointer to net_device structure. 523 * 524 * returns: NETDEV_TX_OK, on success 525 * NETDEV_TX_BUSY, if any of the descriptors are not free. 526 * 527 * This function is invoked from upper layers to initiate transmission. 528 */ 529 static int arc_emac_tx(struct sk_buff *skb, struct net_device *ndev) 530 { 531 struct arc_emac_priv *priv = netdev_priv(ndev); 532 unsigned int len, *txbd_curr = &priv->txbd_curr; 533 struct net_device_stats *stats = &priv->stats; 534 __le32 *info = &priv->txbd[*txbd_curr].info; 535 dma_addr_t addr; 536 537 if (skb_padto(skb, ETH_ZLEN)) 538 return NETDEV_TX_OK; 539 540 len = max_t(unsigned int, ETH_ZLEN, skb->len); 541 542 /* EMAC still holds this buffer in its possession. 543 * CPU must not modify this buffer descriptor 544 */ 545 if (unlikely((le32_to_cpu(*info) & OWN_MASK) == FOR_EMAC)) { 546 netif_stop_queue(ndev); 547 return NETDEV_TX_BUSY; 548 } 549 550 addr = dma_map_single(&ndev->dev, (void *)skb->data, len, 551 DMA_TO_DEVICE); 552 553 if (unlikely(dma_mapping_error(&ndev->dev, addr))) { 554 stats->tx_dropped++; 555 stats->tx_errors++; 556 dev_kfree_skb(skb); 557 return NETDEV_TX_OK; 558 } 559 dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr); 560 dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len); 561 562 priv->tx_buff[*txbd_curr].skb = skb; 563 priv->txbd[*txbd_curr].data = cpu_to_le32(addr); 564 565 /* Make sure pointer to data buffer is set */ 566 wmb(); 567 568 *info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len); 569 570 /* Increment index to point to the next BD */ 571 *txbd_curr = (*txbd_curr + 1) % TX_BD_NUM; 572 573 /* Get "info" of the next BD */ 574 info = &priv->txbd[*txbd_curr].info; 575 576 /* Check if if Tx BD ring is full - next BD is still owned by EMAC */ 577 if (unlikely((le32_to_cpu(*info) & OWN_MASK) == FOR_EMAC)) 578 netif_stop_queue(ndev); 579 580 arc_reg_set(priv, R_STATUS, TXPL_MASK); 581 582 skb_tx_timestamp(skb); 583 584 return NETDEV_TX_OK; 585 } 586 587 /** 588 * arc_emac_set_address - Set the MAC address for this device. 589 * @ndev: Pointer to net_device structure. 590 * @p: 6 byte Address to be written as MAC address. 591 * 592 * This function copies the HW address from the sockaddr structure to the 593 * net_device structure and updates the address in HW. 594 * 595 * returns: -EBUSY if the net device is busy or 0 if the address is set 596 * successfully. 597 */ 598 static int arc_emac_set_address(struct net_device *ndev, void *p) 599 { 600 struct arc_emac_priv *priv = netdev_priv(ndev); 601 struct sockaddr *addr = p; 602 unsigned int addr_low, addr_hi; 603 604 if (netif_running(ndev)) 605 return -EBUSY; 606 607 if (!is_valid_ether_addr(addr->sa_data)) 608 return -EADDRNOTAVAIL; 609 610 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 611 612 addr_low = le32_to_cpu(*(__le32 *) &ndev->dev_addr[0]); 613 addr_hi = le16_to_cpu(*(__le16 *) &ndev->dev_addr[4]); 614 615 arc_reg_set(priv, R_ADDRL, addr_low); 616 arc_reg_set(priv, R_ADDRH, addr_hi); 617 618 return 0; 619 } 620 621 static const struct net_device_ops arc_emac_netdev_ops = { 622 .ndo_open = arc_emac_open, 623 .ndo_stop = arc_emac_stop, 624 .ndo_start_xmit = arc_emac_tx, 625 .ndo_set_mac_address = arc_emac_set_address, 626 .ndo_get_stats = arc_emac_stats, 627 }; 628 629 static int arc_emac_probe(struct platform_device *pdev) 630 { 631 struct resource res_regs; 632 struct device_node *phy_node; 633 struct arc_emac_priv *priv; 634 struct net_device *ndev; 635 const char *mac_addr; 636 unsigned int id, clock_frequency, irq; 637 int err; 638 639 if (!pdev->dev.of_node) 640 return -ENODEV; 641 642 /* Get PHY from device tree */ 643 phy_node = of_parse_phandle(pdev->dev.of_node, "phy", 0); 644 if (!phy_node) { 645 dev_err(&pdev->dev, "failed to retrieve phy description from device tree\n"); 646 return -ENODEV; 647 } 648 649 /* Get EMAC registers base address from device tree */ 650 err = of_address_to_resource(pdev->dev.of_node, 0, &res_regs); 651 if (err) { 652 dev_err(&pdev->dev, "failed to retrieve registers base from device tree\n"); 653 return -ENODEV; 654 } 655 656 /* Get CPU clock frequency from device tree */ 657 if (of_property_read_u32(pdev->dev.of_node, "clock-frequency", 658 &clock_frequency)) { 659 dev_err(&pdev->dev, "failed to retrieve <clock-frequency> from device tree\n"); 660 return -EINVAL; 661 } 662 663 /* Get IRQ from device tree */ 664 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 665 if (!irq) { 666 dev_err(&pdev->dev, "failed to retrieve <irq> value from device tree\n"); 667 return -ENODEV; 668 } 669 670 ndev = alloc_etherdev(sizeof(struct arc_emac_priv)); 671 if (!ndev) 672 return -ENOMEM; 673 674 platform_set_drvdata(pdev, ndev); 675 SET_NETDEV_DEV(ndev, &pdev->dev); 676 677 ndev->netdev_ops = &arc_emac_netdev_ops; 678 ndev->ethtool_ops = &arc_emac_ethtool_ops; 679 ndev->watchdog_timeo = TX_TIMEOUT; 680 /* FIXME :: no multicast support yet */ 681 ndev->flags &= ~IFF_MULTICAST; 682 683 priv = netdev_priv(ndev); 684 priv->dev = &pdev->dev; 685 priv->ndev = ndev; 686 687 priv->regs = devm_ioremap_resource(&pdev->dev, &res_regs); 688 if (IS_ERR(priv->regs)) { 689 err = PTR_ERR(priv->regs); 690 goto out; 691 } 692 dev_dbg(&pdev->dev, "Registers base address is 0x%p\n", priv->regs); 693 694 id = arc_reg_get(priv, R_ID); 695 696 /* Check for EMAC revision 5 or 7, magic number */ 697 if (!(id == 0x0005fd02 || id == 0x0007fd02)) { 698 dev_err(&pdev->dev, "ARC EMAC not detected, id=0x%x\n", id); 699 err = -ENODEV; 700 goto out; 701 } 702 dev_info(&pdev->dev, "ARC EMAC detected with id: 0x%x\n", id); 703 704 /* Set poll rate so that it polls every 1 ms */ 705 arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000); 706 707 /* Get max speed of operation from device tree */ 708 if (of_property_read_u32(pdev->dev.of_node, "max-speed", 709 &priv->max_speed)) { 710 dev_err(&pdev->dev, "failed to retrieve <max-speed> from device tree\n"); 711 err = -EINVAL; 712 goto out; 713 } 714 715 ndev->irq = irq; 716 dev_info(&pdev->dev, "IRQ is %d\n", ndev->irq); 717 718 /* Register interrupt handler for device */ 719 err = devm_request_irq(&pdev->dev, ndev->irq, arc_emac_intr, 0, 720 ndev->name, ndev); 721 if (err) { 722 dev_err(&pdev->dev, "could not allocate IRQ\n"); 723 goto out; 724 } 725 726 /* Get MAC address from device tree */ 727 mac_addr = of_get_mac_address(pdev->dev.of_node); 728 729 if (mac_addr) 730 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN); 731 else 732 eth_hw_addr_random(ndev); 733 734 dev_info(&pdev->dev, "MAC address is now %pM\n", ndev->dev_addr); 735 736 /* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */ 737 priv->rxbd = dmam_alloc_coherent(&pdev->dev, RX_RING_SZ + TX_RING_SZ, 738 &priv->rxbd_dma, GFP_KERNEL); 739 740 if (!priv->rxbd) { 741 dev_err(&pdev->dev, "failed to allocate data buffers\n"); 742 err = -ENOMEM; 743 goto out; 744 } 745 746 priv->txbd = priv->rxbd + RX_BD_NUM; 747 748 priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ; 749 dev_dbg(&pdev->dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n", 750 (unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma); 751 752 err = arc_mdio_probe(pdev, priv); 753 if (err) { 754 dev_err(&pdev->dev, "failed to probe MII bus\n"); 755 goto out; 756 } 757 758 priv->phy_dev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0, 759 PHY_INTERFACE_MODE_MII); 760 if (!priv->phy_dev) { 761 dev_err(&pdev->dev, "of_phy_connect() failed\n"); 762 err = -ENODEV; 763 goto out; 764 } 765 766 dev_info(&pdev->dev, "connected to %s phy with id 0x%x\n", 767 priv->phy_dev->drv->name, priv->phy_dev->phy_id); 768 769 netif_napi_add(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT); 770 771 err = register_netdev(ndev); 772 if (err) { 773 netif_napi_del(&priv->napi); 774 dev_err(&pdev->dev, "failed to register network device\n"); 775 goto out; 776 } 777 778 return 0; 779 780 out: 781 free_netdev(ndev); 782 return err; 783 } 784 785 static int arc_emac_remove(struct platform_device *pdev) 786 { 787 struct net_device *ndev = platform_get_drvdata(pdev); 788 struct arc_emac_priv *priv = netdev_priv(ndev); 789 790 phy_disconnect(priv->phy_dev); 791 priv->phy_dev = NULL; 792 arc_mdio_remove(priv); 793 unregister_netdev(ndev); 794 netif_napi_del(&priv->napi); 795 free_netdev(ndev); 796 797 return 0; 798 } 799 800 static const struct of_device_id arc_emac_dt_ids[] = { 801 { .compatible = "snps,arc-emac" }, 802 { /* Sentinel */ } 803 }; 804 MODULE_DEVICE_TABLE(of, arc_emac_dt_ids); 805 806 static struct platform_driver arc_emac_driver = { 807 .probe = arc_emac_probe, 808 .remove = arc_emac_remove, 809 .driver = { 810 .name = DRV_NAME, 811 .owner = THIS_MODULE, 812 .of_match_table = arc_emac_dt_ids, 813 }, 814 }; 815 816 module_platform_driver(arc_emac_driver); 817 818 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>"); 819 MODULE_DESCRIPTION("ARC EMAC driver"); 820 MODULE_LICENSE("GPL"); 821