1 /*
2  * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * Driver for the ARC EMAC 10100 (hardware revision 5)
9  *
10  * Contributors:
11  *		Amit Bhor
12  *		Sameer Dhavale
13  *		Vineet Gupta
14  */
15 
16 #include <linux/crc32.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/of_platform.h>
26 
27 #include "emac.h"
28 
29 /**
30  * arc_emac_tx_avail - Return the number of available slots in the tx ring.
31  * @priv: Pointer to ARC EMAC private data structure.
32  *
33  * returns: the number of slots available for transmission in tx the ring.
34  */
35 static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
36 {
37 	return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
38 }
39 
40 /**
41  * arc_emac_adjust_link - Adjust the PHY link duplex.
42  * @ndev:	Pointer to the net_device structure.
43  *
44  * This function is called to change the duplex setting after auto negotiation
45  * is done by the PHY.
46  */
47 static void arc_emac_adjust_link(struct net_device *ndev)
48 {
49 	struct arc_emac_priv *priv = netdev_priv(ndev);
50 	struct phy_device *phy_dev = priv->phy_dev;
51 	unsigned int reg, state_changed = 0;
52 
53 	if (priv->link != phy_dev->link) {
54 		priv->link = phy_dev->link;
55 		state_changed = 1;
56 	}
57 
58 	if (priv->speed != phy_dev->speed) {
59 		priv->speed = phy_dev->speed;
60 		state_changed = 1;
61 		if (priv->set_mac_speed)
62 			priv->set_mac_speed(priv, priv->speed);
63 	}
64 
65 	if (priv->duplex != phy_dev->duplex) {
66 		reg = arc_reg_get(priv, R_CTRL);
67 
68 		if (phy_dev->duplex == DUPLEX_FULL)
69 			reg |= ENFL_MASK;
70 		else
71 			reg &= ~ENFL_MASK;
72 
73 		arc_reg_set(priv, R_CTRL, reg);
74 		priv->duplex = phy_dev->duplex;
75 		state_changed = 1;
76 	}
77 
78 	if (state_changed)
79 		phy_print_status(phy_dev);
80 }
81 
82 /**
83  * arc_emac_get_settings - Get PHY settings.
84  * @ndev:	Pointer to net_device structure.
85  * @cmd:	Pointer to ethtool_cmd structure.
86  *
87  * This implements ethtool command for getting PHY settings. If PHY could
88  * not be found, the function returns -ENODEV. This function calls the
89  * relevant PHY ethtool API to get the PHY settings.
90  * Issue "ethtool ethX" under linux prompt to execute this function.
91  */
92 static int arc_emac_get_settings(struct net_device *ndev,
93 				 struct ethtool_cmd *cmd)
94 {
95 	struct arc_emac_priv *priv = netdev_priv(ndev);
96 
97 	return phy_ethtool_gset(priv->phy_dev, cmd);
98 }
99 
100 /**
101  * arc_emac_set_settings - Set PHY settings as passed in the argument.
102  * @ndev:	Pointer to net_device structure.
103  * @cmd:	Pointer to ethtool_cmd structure.
104  *
105  * This implements ethtool command for setting various PHY settings. If PHY
106  * could not be found, the function returns -ENODEV. This function calls the
107  * relevant PHY ethtool API to set the PHY.
108  * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
109  * function.
110  */
111 static int arc_emac_set_settings(struct net_device *ndev,
112 				 struct ethtool_cmd *cmd)
113 {
114 	struct arc_emac_priv *priv = netdev_priv(ndev);
115 
116 	if (!capable(CAP_NET_ADMIN))
117 		return -EPERM;
118 
119 	return phy_ethtool_sset(priv->phy_dev, cmd);
120 }
121 
122 /**
123  * arc_emac_get_drvinfo - Get EMAC driver information.
124  * @ndev:	Pointer to net_device structure.
125  * @info:	Pointer to ethtool_drvinfo structure.
126  *
127  * This implements ethtool command for getting the driver information.
128  * Issue "ethtool -i ethX" under linux prompt to execute this function.
129  */
130 static void arc_emac_get_drvinfo(struct net_device *ndev,
131 				 struct ethtool_drvinfo *info)
132 {
133 	struct arc_emac_priv *priv = netdev_priv(ndev);
134 
135 	strlcpy(info->driver, priv->drv_name, sizeof(info->driver));
136 	strlcpy(info->version, priv->drv_version, sizeof(info->version));
137 }
138 
139 static const struct ethtool_ops arc_emac_ethtool_ops = {
140 	.get_settings	= arc_emac_get_settings,
141 	.set_settings	= arc_emac_set_settings,
142 	.get_drvinfo	= arc_emac_get_drvinfo,
143 	.get_link	= ethtool_op_get_link,
144 };
145 
146 #define FIRST_OR_LAST_MASK	(FIRST_MASK | LAST_MASK)
147 
148 /**
149  * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
150  * @ndev:	Pointer to the network device.
151  */
152 static void arc_emac_tx_clean(struct net_device *ndev)
153 {
154 	struct arc_emac_priv *priv = netdev_priv(ndev);
155 	struct net_device_stats *stats = &ndev->stats;
156 	unsigned int i;
157 
158 	for (i = 0; i < TX_BD_NUM; i++) {
159 		unsigned int *txbd_dirty = &priv->txbd_dirty;
160 		struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
161 		struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
162 		struct sk_buff *skb = tx_buff->skb;
163 		unsigned int info = le32_to_cpu(txbd->info);
164 
165 		if ((info & FOR_EMAC) || !txbd->data || !skb)
166 			break;
167 
168 		if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
169 			stats->tx_errors++;
170 			stats->tx_dropped++;
171 
172 			if (info & DEFR)
173 				stats->tx_carrier_errors++;
174 
175 			if (info & LTCL)
176 				stats->collisions++;
177 
178 			if (info & UFLO)
179 				stats->tx_fifo_errors++;
180 		} else if (likely(info & FIRST_OR_LAST_MASK)) {
181 			stats->tx_packets++;
182 			stats->tx_bytes += skb->len;
183 		}
184 
185 		dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr),
186 				 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
187 
188 		/* return the sk_buff to system */
189 		dev_kfree_skb_irq(skb);
190 
191 		txbd->data = 0;
192 		txbd->info = 0;
193 		tx_buff->skb = NULL;
194 
195 		*txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
196 	}
197 
198 	/* Ensure that txbd_dirty is visible to tx() before checking
199 	 * for queue stopped.
200 	 */
201 	smp_mb();
202 
203 	if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
204 		netif_wake_queue(ndev);
205 }
206 
207 /**
208  * arc_emac_rx - processing of Rx packets.
209  * @ndev:	Pointer to the network device.
210  * @budget:	How many BDs to process on 1 call.
211  *
212  * returns:	Number of processed BDs
213  *
214  * Iterate through Rx BDs and deliver received packages to upper layer.
215  */
216 static int arc_emac_rx(struct net_device *ndev, int budget)
217 {
218 	struct arc_emac_priv *priv = netdev_priv(ndev);
219 	unsigned int work_done;
220 
221 	for (work_done = 0; work_done < budget; work_done++) {
222 		unsigned int *last_rx_bd = &priv->last_rx_bd;
223 		struct net_device_stats *stats = &ndev->stats;
224 		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
225 		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
226 		unsigned int pktlen, info = le32_to_cpu(rxbd->info);
227 		struct sk_buff *skb;
228 		dma_addr_t addr;
229 
230 		if (unlikely((info & OWN_MASK) == FOR_EMAC))
231 			break;
232 
233 		/* Make a note that we saw a packet at this BD.
234 		 * So next time, driver starts from this + 1
235 		 */
236 		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
237 
238 		if (unlikely((info & FIRST_OR_LAST_MASK) !=
239 			     FIRST_OR_LAST_MASK)) {
240 			/* We pre-allocate buffers of MTU size so incoming
241 			 * packets won't be split/chained.
242 			 */
243 			if (net_ratelimit())
244 				netdev_err(ndev, "incomplete packet received\n");
245 
246 			/* Return ownership to EMAC */
247 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
248 			stats->rx_errors++;
249 			stats->rx_length_errors++;
250 			continue;
251 		}
252 
253 		pktlen = info & LEN_MASK;
254 		stats->rx_packets++;
255 		stats->rx_bytes += pktlen;
256 		skb = rx_buff->skb;
257 		skb_put(skb, pktlen);
258 		skb->dev = ndev;
259 		skb->protocol = eth_type_trans(skb, ndev);
260 
261 		dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr),
262 				 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
263 
264 		/* Prepare the BD for next cycle */
265 		rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
266 							 EMAC_BUFFER_SIZE);
267 		if (unlikely(!rx_buff->skb)) {
268 			stats->rx_errors++;
269 			/* Because receive_skb is below, increment rx_dropped */
270 			stats->rx_dropped++;
271 			continue;
272 		}
273 
274 		/* receive_skb only if new skb was allocated to avoid holes */
275 		netif_receive_skb(skb);
276 
277 		addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
278 				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
279 		if (dma_mapping_error(&ndev->dev, addr)) {
280 			if (net_ratelimit())
281 				netdev_err(ndev, "cannot dma map\n");
282 			dev_kfree_skb(rx_buff->skb);
283 			stats->rx_errors++;
284 			continue;
285 		}
286 		dma_unmap_addr_set(rx_buff, addr, addr);
287 		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
288 
289 		rxbd->data = cpu_to_le32(addr);
290 
291 		/* Make sure pointer to data buffer is set */
292 		wmb();
293 
294 		/* Return ownership to EMAC */
295 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
296 	}
297 
298 	return work_done;
299 }
300 
301 /**
302  * arc_emac_poll - NAPI poll handler.
303  * @napi:	Pointer to napi_struct structure.
304  * @budget:	How many BDs to process on 1 call.
305  *
306  * returns:	Number of processed BDs
307  */
308 static int arc_emac_poll(struct napi_struct *napi, int budget)
309 {
310 	struct net_device *ndev = napi->dev;
311 	struct arc_emac_priv *priv = netdev_priv(ndev);
312 	unsigned int work_done;
313 
314 	arc_emac_tx_clean(ndev);
315 
316 	work_done = arc_emac_rx(ndev, budget);
317 	if (work_done < budget) {
318 		napi_complete(napi);
319 		arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
320 	}
321 
322 	return work_done;
323 }
324 
325 /**
326  * arc_emac_intr - Global interrupt handler for EMAC.
327  * @irq:		irq number.
328  * @dev_instance:	device instance.
329  *
330  * returns: IRQ_HANDLED for all cases.
331  *
332  * ARC EMAC has only 1 interrupt line, and depending on bits raised in
333  * STATUS register we may tell what is a reason for interrupt to fire.
334  */
335 static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
336 {
337 	struct net_device *ndev = dev_instance;
338 	struct arc_emac_priv *priv = netdev_priv(ndev);
339 	struct net_device_stats *stats = &ndev->stats;
340 	unsigned int status;
341 
342 	status = arc_reg_get(priv, R_STATUS);
343 	status &= ~MDIO_MASK;
344 
345 	/* Reset all flags except "MDIO complete" */
346 	arc_reg_set(priv, R_STATUS, status);
347 
348 	if (status & (RXINT_MASK | TXINT_MASK)) {
349 		if (likely(napi_schedule_prep(&priv->napi))) {
350 			arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
351 			__napi_schedule(&priv->napi);
352 		}
353 	}
354 
355 	if (status & ERR_MASK) {
356 		/* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
357 		 * 8-bit error counter overrun.
358 		 */
359 
360 		if (status & MSER_MASK) {
361 			stats->rx_missed_errors += 0x100;
362 			stats->rx_errors += 0x100;
363 		}
364 
365 		if (status & RXCR_MASK) {
366 			stats->rx_crc_errors += 0x100;
367 			stats->rx_errors += 0x100;
368 		}
369 
370 		if (status & RXFR_MASK) {
371 			stats->rx_frame_errors += 0x100;
372 			stats->rx_errors += 0x100;
373 		}
374 
375 		if (status & RXFL_MASK) {
376 			stats->rx_over_errors += 0x100;
377 			stats->rx_errors += 0x100;
378 		}
379 	}
380 
381 	return IRQ_HANDLED;
382 }
383 
384 #ifdef CONFIG_NET_POLL_CONTROLLER
385 static void arc_emac_poll_controller(struct net_device *dev)
386 {
387 	disable_irq(dev->irq);
388 	arc_emac_intr(dev->irq, dev);
389 	enable_irq(dev->irq);
390 }
391 #endif
392 
393 /**
394  * arc_emac_open - Open the network device.
395  * @ndev:	Pointer to the network device.
396  *
397  * returns: 0, on success or non-zero error value on failure.
398  *
399  * This function sets the MAC address, requests and enables an IRQ
400  * for the EMAC device and starts the Tx queue.
401  * It also connects to the phy device.
402  */
403 static int arc_emac_open(struct net_device *ndev)
404 {
405 	struct arc_emac_priv *priv = netdev_priv(ndev);
406 	struct phy_device *phy_dev = priv->phy_dev;
407 	int i;
408 
409 	phy_dev->autoneg = AUTONEG_ENABLE;
410 	phy_dev->speed = 0;
411 	phy_dev->duplex = 0;
412 	phy_dev->advertising &= phy_dev->supported;
413 
414 	priv->last_rx_bd = 0;
415 
416 	/* Allocate and set buffers for Rx BD's */
417 	for (i = 0; i < RX_BD_NUM; i++) {
418 		dma_addr_t addr;
419 		unsigned int *last_rx_bd = &priv->last_rx_bd;
420 		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
421 		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
422 
423 		rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
424 							 EMAC_BUFFER_SIZE);
425 		if (unlikely(!rx_buff->skb))
426 			return -ENOMEM;
427 
428 		addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
429 				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
430 		if (dma_mapping_error(&ndev->dev, addr)) {
431 			netdev_err(ndev, "cannot dma map\n");
432 			dev_kfree_skb(rx_buff->skb);
433 			return -ENOMEM;
434 		}
435 		dma_unmap_addr_set(rx_buff, addr, addr);
436 		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
437 
438 		rxbd->data = cpu_to_le32(addr);
439 
440 		/* Make sure pointer to data buffer is set */
441 		wmb();
442 
443 		/* Return ownership to EMAC */
444 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
445 
446 		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
447 	}
448 
449 	priv->txbd_curr = 0;
450 	priv->txbd_dirty = 0;
451 
452 	/* Clean Tx BD's */
453 	memset(priv->txbd, 0, TX_RING_SZ);
454 
455 	/* Initialize logical address filter */
456 	arc_reg_set(priv, R_LAFL, 0);
457 	arc_reg_set(priv, R_LAFH, 0);
458 
459 	/* Set BD ring pointers for device side */
460 	arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
461 	arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
462 
463 	/* Enable interrupts */
464 	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
465 
466 	/* Set CONTROL */
467 	arc_reg_set(priv, R_CTRL,
468 		    (RX_BD_NUM << 24) |	/* RX BD table length */
469 		    (TX_BD_NUM << 16) |	/* TX BD table length */
470 		    TXRN_MASK | RXRN_MASK);
471 
472 	napi_enable(&priv->napi);
473 
474 	/* Enable EMAC */
475 	arc_reg_or(priv, R_CTRL, EN_MASK);
476 
477 	phy_start_aneg(priv->phy_dev);
478 
479 	netif_start_queue(ndev);
480 
481 	return 0;
482 }
483 
484 /**
485  * arc_emac_set_rx_mode - Change the receive filtering mode.
486  * @ndev:	Pointer to the network device.
487  *
488  * This function enables/disables promiscuous or all-multicast mode
489  * and updates the multicast filtering list of the network device.
490  */
491 static void arc_emac_set_rx_mode(struct net_device *ndev)
492 {
493 	struct arc_emac_priv *priv = netdev_priv(ndev);
494 
495 	if (ndev->flags & IFF_PROMISC) {
496 		arc_reg_or(priv, R_CTRL, PROM_MASK);
497 	} else {
498 		arc_reg_clr(priv, R_CTRL, PROM_MASK);
499 
500 		if (ndev->flags & IFF_ALLMULTI) {
501 			arc_reg_set(priv, R_LAFL, ~0);
502 			arc_reg_set(priv, R_LAFH, ~0);
503 		} else {
504 			struct netdev_hw_addr *ha;
505 			unsigned int filter[2] = { 0, 0 };
506 			int bit;
507 
508 			netdev_for_each_mc_addr(ha, ndev) {
509 				bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
510 				filter[bit >> 5] |= 1 << (bit & 31);
511 			}
512 
513 			arc_reg_set(priv, R_LAFL, filter[0]);
514 			arc_reg_set(priv, R_LAFH, filter[1]);
515 		}
516 	}
517 }
518 
519 /**
520  * arc_free_tx_queue - free skb from tx queue
521  * @ndev:	Pointer to the network device.
522  *
523  * This function must be called while EMAC disable
524  */
525 static void arc_free_tx_queue(struct net_device *ndev)
526 {
527 	struct arc_emac_priv *priv = netdev_priv(ndev);
528 	unsigned int i;
529 
530 	for (i = 0; i < TX_BD_NUM; i++) {
531 		struct arc_emac_bd *txbd = &priv->txbd[i];
532 		struct buffer_state *tx_buff = &priv->tx_buff[i];
533 
534 		if (tx_buff->skb) {
535 			dma_unmap_single(&ndev->dev,
536 					 dma_unmap_addr(tx_buff, addr),
537 					 dma_unmap_len(tx_buff, len),
538 					 DMA_TO_DEVICE);
539 
540 			/* return the sk_buff to system */
541 			dev_kfree_skb_irq(tx_buff->skb);
542 		}
543 
544 		txbd->info = 0;
545 		txbd->data = 0;
546 		tx_buff->skb = NULL;
547 	}
548 }
549 
550 /**
551  * arc_free_rx_queue - free skb from rx queue
552  * @ndev:	Pointer to the network device.
553  *
554  * This function must be called while EMAC disable
555  */
556 static void arc_free_rx_queue(struct net_device *ndev)
557 {
558 	struct arc_emac_priv *priv = netdev_priv(ndev);
559 	unsigned int i;
560 
561 	for (i = 0; i < RX_BD_NUM; i++) {
562 		struct arc_emac_bd *rxbd = &priv->rxbd[i];
563 		struct buffer_state *rx_buff = &priv->rx_buff[i];
564 
565 		if (rx_buff->skb) {
566 			dma_unmap_single(&ndev->dev,
567 					 dma_unmap_addr(rx_buff, addr),
568 					 dma_unmap_len(rx_buff, len),
569 					 DMA_FROM_DEVICE);
570 
571 			/* return the sk_buff to system */
572 			dev_kfree_skb_irq(rx_buff->skb);
573 		}
574 
575 		rxbd->info = 0;
576 		rxbd->data = 0;
577 		rx_buff->skb = NULL;
578 	}
579 }
580 
581 /**
582  * arc_emac_stop - Close the network device.
583  * @ndev:	Pointer to the network device.
584  *
585  * This function stops the Tx queue, disables interrupts and frees the IRQ for
586  * the EMAC device.
587  * It also disconnects the PHY device associated with the EMAC device.
588  */
589 static int arc_emac_stop(struct net_device *ndev)
590 {
591 	struct arc_emac_priv *priv = netdev_priv(ndev);
592 
593 	napi_disable(&priv->napi);
594 	netif_stop_queue(ndev);
595 
596 	/* Disable interrupts */
597 	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
598 
599 	/* Disable EMAC */
600 	arc_reg_clr(priv, R_CTRL, EN_MASK);
601 
602 	/* Return the sk_buff to system */
603 	arc_free_tx_queue(ndev);
604 	arc_free_rx_queue(ndev);
605 
606 	return 0;
607 }
608 
609 /**
610  * arc_emac_stats - Get system network statistics.
611  * @ndev:	Pointer to net_device structure.
612  *
613  * Returns the address of the device statistics structure.
614  * Statistics are updated in interrupt handler.
615  */
616 static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
617 {
618 	struct arc_emac_priv *priv = netdev_priv(ndev);
619 	struct net_device_stats *stats = &ndev->stats;
620 	unsigned long miss, rxerr;
621 	u8 rxcrc, rxfram, rxoflow;
622 
623 	rxerr = arc_reg_get(priv, R_RXERR);
624 	miss = arc_reg_get(priv, R_MISS);
625 
626 	rxcrc = rxerr;
627 	rxfram = rxerr >> 8;
628 	rxoflow = rxerr >> 16;
629 
630 	stats->rx_errors += miss;
631 	stats->rx_errors += rxcrc + rxfram + rxoflow;
632 
633 	stats->rx_over_errors += rxoflow;
634 	stats->rx_frame_errors += rxfram;
635 	stats->rx_crc_errors += rxcrc;
636 	stats->rx_missed_errors += miss;
637 
638 	return stats;
639 }
640 
641 /**
642  * arc_emac_tx - Starts the data transmission.
643  * @skb:	sk_buff pointer that contains data to be Transmitted.
644  * @ndev:	Pointer to net_device structure.
645  *
646  * returns: NETDEV_TX_OK, on success
647  *		NETDEV_TX_BUSY, if any of the descriptors are not free.
648  *
649  * This function is invoked from upper layers to initiate transmission.
650  */
651 static int arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
652 {
653 	struct arc_emac_priv *priv = netdev_priv(ndev);
654 	unsigned int len, *txbd_curr = &priv->txbd_curr;
655 	struct net_device_stats *stats = &ndev->stats;
656 	__le32 *info = &priv->txbd[*txbd_curr].info;
657 	dma_addr_t addr;
658 
659 	if (skb_padto(skb, ETH_ZLEN))
660 		return NETDEV_TX_OK;
661 
662 	len = max_t(unsigned int, ETH_ZLEN, skb->len);
663 
664 	if (unlikely(!arc_emac_tx_avail(priv))) {
665 		netif_stop_queue(ndev);
666 		netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
667 		return NETDEV_TX_BUSY;
668 	}
669 
670 	addr = dma_map_single(&ndev->dev, (void *)skb->data, len,
671 			      DMA_TO_DEVICE);
672 
673 	if (unlikely(dma_mapping_error(&ndev->dev, addr))) {
674 		stats->tx_dropped++;
675 		stats->tx_errors++;
676 		dev_kfree_skb(skb);
677 		return NETDEV_TX_OK;
678 	}
679 	dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
680 	dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
681 
682 	priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
683 
684 	/* Make sure pointer to data buffer is set */
685 	wmb();
686 
687 	skb_tx_timestamp(skb);
688 
689 	*info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
690 
691 	/* Make sure info word is set */
692 	wmb();
693 
694 	priv->tx_buff[*txbd_curr].skb = skb;
695 
696 	/* Increment index to point to the next BD */
697 	*txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
698 
699 	/* Ensure that tx_clean() sees the new txbd_curr before
700 	 * checking the queue status. This prevents an unneeded wake
701 	 * of the queue in tx_clean().
702 	 */
703 	smp_mb();
704 
705 	if (!arc_emac_tx_avail(priv)) {
706 		netif_stop_queue(ndev);
707 		/* Refresh tx_dirty */
708 		smp_mb();
709 		if (arc_emac_tx_avail(priv))
710 			netif_start_queue(ndev);
711 	}
712 
713 	arc_reg_set(priv, R_STATUS, TXPL_MASK);
714 
715 	return NETDEV_TX_OK;
716 }
717 
718 static void arc_emac_set_address_internal(struct net_device *ndev)
719 {
720 	struct arc_emac_priv *priv = netdev_priv(ndev);
721 	unsigned int addr_low, addr_hi;
722 
723 	addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
724 	addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
725 
726 	arc_reg_set(priv, R_ADDRL, addr_low);
727 	arc_reg_set(priv, R_ADDRH, addr_hi);
728 }
729 
730 /**
731  * arc_emac_set_address - Set the MAC address for this device.
732  * @ndev:	Pointer to net_device structure.
733  * @p:		6 byte Address to be written as MAC address.
734  *
735  * This function copies the HW address from the sockaddr structure to the
736  * net_device structure and updates the address in HW.
737  *
738  * returns:	-EBUSY if the net device is busy or 0 if the address is set
739  *		successfully.
740  */
741 static int arc_emac_set_address(struct net_device *ndev, void *p)
742 {
743 	struct sockaddr *addr = p;
744 
745 	if (netif_running(ndev))
746 		return -EBUSY;
747 
748 	if (!is_valid_ether_addr(addr->sa_data))
749 		return -EADDRNOTAVAIL;
750 
751 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
752 
753 	arc_emac_set_address_internal(ndev);
754 
755 	return 0;
756 }
757 
758 static const struct net_device_ops arc_emac_netdev_ops = {
759 	.ndo_open		= arc_emac_open,
760 	.ndo_stop		= arc_emac_stop,
761 	.ndo_start_xmit		= arc_emac_tx,
762 	.ndo_set_mac_address	= arc_emac_set_address,
763 	.ndo_get_stats		= arc_emac_stats,
764 	.ndo_set_rx_mode	= arc_emac_set_rx_mode,
765 #ifdef CONFIG_NET_POLL_CONTROLLER
766 	.ndo_poll_controller	= arc_emac_poll_controller,
767 #endif
768 };
769 
770 int arc_emac_probe(struct net_device *ndev, int interface)
771 {
772 	struct device *dev = ndev->dev.parent;
773 	struct resource res_regs;
774 	struct device_node *phy_node;
775 	struct arc_emac_priv *priv;
776 	const char *mac_addr;
777 	unsigned int id, clock_frequency, irq;
778 	int err;
779 
780 	/* Get PHY from device tree */
781 	phy_node = of_parse_phandle(dev->of_node, "phy", 0);
782 	if (!phy_node) {
783 		dev_err(dev, "failed to retrieve phy description from device tree\n");
784 		return -ENODEV;
785 	}
786 
787 	/* Get EMAC registers base address from device tree */
788 	err = of_address_to_resource(dev->of_node, 0, &res_regs);
789 	if (err) {
790 		dev_err(dev, "failed to retrieve registers base from device tree\n");
791 		return -ENODEV;
792 	}
793 
794 	/* Get IRQ from device tree */
795 	irq = irq_of_parse_and_map(dev->of_node, 0);
796 	if (!irq) {
797 		dev_err(dev, "failed to retrieve <irq> value from device tree\n");
798 		return -ENODEV;
799 	}
800 
801 	ndev->netdev_ops = &arc_emac_netdev_ops;
802 	ndev->ethtool_ops = &arc_emac_ethtool_ops;
803 	ndev->watchdog_timeo = TX_TIMEOUT;
804 	/* FIXME :: no multicast support yet */
805 	ndev->flags &= ~IFF_MULTICAST;
806 
807 	priv = netdev_priv(ndev);
808 	priv->dev = dev;
809 
810 	priv->regs = devm_ioremap_resource(dev, &res_regs);
811 	if (IS_ERR(priv->regs))
812 		return PTR_ERR(priv->regs);
813 
814 	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
815 
816 	if (priv->clk) {
817 		err = clk_prepare_enable(priv->clk);
818 		if (err) {
819 			dev_err(dev, "failed to enable clock\n");
820 			return err;
821 		}
822 
823 		clock_frequency = clk_get_rate(priv->clk);
824 	} else {
825 		/* Get CPU clock frequency from device tree */
826 		if (of_property_read_u32(dev->of_node, "clock-frequency",
827 					 &clock_frequency)) {
828 			dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
829 			return -EINVAL;
830 		}
831 	}
832 
833 	id = arc_reg_get(priv, R_ID);
834 
835 	/* Check for EMAC revision 5 or 7, magic number */
836 	if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
837 		dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
838 		err = -ENODEV;
839 		goto out_clken;
840 	}
841 	dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
842 
843 	/* Set poll rate so that it polls every 1 ms */
844 	arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
845 
846 	ndev->irq = irq;
847 	dev_info(dev, "IRQ is %d\n", ndev->irq);
848 
849 	/* Register interrupt handler for device */
850 	err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
851 			       ndev->name, ndev);
852 	if (err) {
853 		dev_err(dev, "could not allocate IRQ\n");
854 		goto out_clken;
855 	}
856 
857 	/* Get MAC address from device tree */
858 	mac_addr = of_get_mac_address(dev->of_node);
859 
860 	if (mac_addr)
861 		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
862 	else
863 		eth_hw_addr_random(ndev);
864 
865 	arc_emac_set_address_internal(ndev);
866 	dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
867 
868 	/* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
869 	priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
870 					 &priv->rxbd_dma, GFP_KERNEL);
871 
872 	if (!priv->rxbd) {
873 		dev_err(dev, "failed to allocate data buffers\n");
874 		err = -ENOMEM;
875 		goto out_clken;
876 	}
877 
878 	priv->txbd = priv->rxbd + RX_BD_NUM;
879 
880 	priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
881 	dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
882 		(unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
883 
884 	err = arc_mdio_probe(priv);
885 	if (err) {
886 		dev_err(dev, "failed to probe MII bus\n");
887 		goto out_clken;
888 	}
889 
890 	priv->phy_dev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
891 				       interface);
892 	if (!priv->phy_dev) {
893 		dev_err(dev, "of_phy_connect() failed\n");
894 		err = -ENODEV;
895 		goto out_mdio;
896 	}
897 
898 	dev_info(dev, "connected to %s phy with id 0x%x\n",
899 		 priv->phy_dev->drv->name, priv->phy_dev->phy_id);
900 
901 	netif_napi_add(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT);
902 
903 	err = register_netdev(ndev);
904 	if (err) {
905 		dev_err(dev, "failed to register network device\n");
906 		goto out_netif_api;
907 	}
908 
909 	return 0;
910 
911 out_netif_api:
912 	netif_napi_del(&priv->napi);
913 	phy_disconnect(priv->phy_dev);
914 	priv->phy_dev = NULL;
915 out_mdio:
916 	arc_mdio_remove(priv);
917 out_clken:
918 	if (priv->clk)
919 		clk_disable_unprepare(priv->clk);
920 	return err;
921 }
922 EXPORT_SYMBOL_GPL(arc_emac_probe);
923 
924 int arc_emac_remove(struct net_device *ndev)
925 {
926 	struct arc_emac_priv *priv = netdev_priv(ndev);
927 
928 	phy_disconnect(priv->phy_dev);
929 	priv->phy_dev = NULL;
930 	arc_mdio_remove(priv);
931 	unregister_netdev(ndev);
932 	netif_napi_del(&priv->napi);
933 
934 	if (!IS_ERR(priv->clk))
935 		clk_disable_unprepare(priv->clk);
936 
937 	return 0;
938 }
939 EXPORT_SYMBOL_GPL(arc_emac_remove);
940 
941 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
942 MODULE_DESCRIPTION("ARC EMAC driver");
943 MODULE_LICENSE("GPL");
944