1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
4 *
5 * Driver for the ARC EMAC 10100 (hardware revision 5)
6 *
7 * Contributors:
8 * Amit Bhor
9 * Sameer Dhavale
10 * Vineet Gupta
11 */
12
13 #include <linux/crc32.h>
14 #include <linux/etherdevice.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_mdio.h>
22 #include <linux/of_net.h>
23
24 #include "emac.h"
25
26 static void arc_emac_restart(struct net_device *ndev);
27
28 /**
29 * arc_emac_tx_avail - Return the number of available slots in the tx ring.
30 * @priv: Pointer to ARC EMAC private data structure.
31 *
32 * returns: the number of slots available for transmission in tx the ring.
33 */
arc_emac_tx_avail(struct arc_emac_priv * priv)34 static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
35 {
36 return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
37 }
38
39 /**
40 * arc_emac_adjust_link - Adjust the PHY link duplex.
41 * @ndev: Pointer to the net_device structure.
42 *
43 * This function is called to change the duplex setting after auto negotiation
44 * is done by the PHY.
45 */
arc_emac_adjust_link(struct net_device * ndev)46 static void arc_emac_adjust_link(struct net_device *ndev)
47 {
48 struct arc_emac_priv *priv = netdev_priv(ndev);
49 struct phy_device *phy_dev = ndev->phydev;
50 unsigned int reg, state_changed = 0;
51
52 if (priv->link != phy_dev->link) {
53 priv->link = phy_dev->link;
54 state_changed = 1;
55 }
56
57 if (priv->speed != phy_dev->speed) {
58 priv->speed = phy_dev->speed;
59 state_changed = 1;
60 if (priv->set_mac_speed)
61 priv->set_mac_speed(priv, priv->speed);
62 }
63
64 if (priv->duplex != phy_dev->duplex) {
65 reg = arc_reg_get(priv, R_CTRL);
66
67 if (phy_dev->duplex == DUPLEX_FULL)
68 reg |= ENFL_MASK;
69 else
70 reg &= ~ENFL_MASK;
71
72 arc_reg_set(priv, R_CTRL, reg);
73 priv->duplex = phy_dev->duplex;
74 state_changed = 1;
75 }
76
77 if (state_changed)
78 phy_print_status(phy_dev);
79 }
80
81 /**
82 * arc_emac_get_drvinfo - Get EMAC driver information.
83 * @ndev: Pointer to net_device structure.
84 * @info: Pointer to ethtool_drvinfo structure.
85 *
86 * This implements ethtool command for getting the driver information.
87 * Issue "ethtool -i ethX" under linux prompt to execute this function.
88 */
arc_emac_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)89 static void arc_emac_get_drvinfo(struct net_device *ndev,
90 struct ethtool_drvinfo *info)
91 {
92 struct arc_emac_priv *priv = netdev_priv(ndev);
93
94 strscpy(info->driver, priv->drv_name, sizeof(info->driver));
95 }
96
97 static const struct ethtool_ops arc_emac_ethtool_ops = {
98 .get_drvinfo = arc_emac_get_drvinfo,
99 .get_link = ethtool_op_get_link,
100 .get_link_ksettings = phy_ethtool_get_link_ksettings,
101 .set_link_ksettings = phy_ethtool_set_link_ksettings,
102 };
103
104 #define FIRST_OR_LAST_MASK (FIRST_MASK | LAST_MASK)
105
106 /**
107 * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
108 * @ndev: Pointer to the network device.
109 */
arc_emac_tx_clean(struct net_device * ndev)110 static void arc_emac_tx_clean(struct net_device *ndev)
111 {
112 struct arc_emac_priv *priv = netdev_priv(ndev);
113 struct net_device_stats *stats = &ndev->stats;
114 unsigned int i;
115
116 for (i = 0; i < TX_BD_NUM; i++) {
117 unsigned int *txbd_dirty = &priv->txbd_dirty;
118 struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
119 struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
120 struct sk_buff *skb = tx_buff->skb;
121 unsigned int info = le32_to_cpu(txbd->info);
122
123 if ((info & FOR_EMAC) || !txbd->data || !skb)
124 break;
125
126 if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
127 stats->tx_errors++;
128 stats->tx_dropped++;
129
130 if (info & DEFR)
131 stats->tx_carrier_errors++;
132
133 if (info & LTCL)
134 stats->collisions++;
135
136 if (info & UFLO)
137 stats->tx_fifo_errors++;
138 } else if (likely(info & FIRST_OR_LAST_MASK)) {
139 stats->tx_packets++;
140 stats->tx_bytes += skb->len;
141 }
142
143 dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr),
144 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
145
146 /* return the sk_buff to system */
147 dev_consume_skb_irq(skb);
148
149 txbd->data = 0;
150 txbd->info = 0;
151 tx_buff->skb = NULL;
152
153 *txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
154 }
155
156 /* Ensure that txbd_dirty is visible to tx() before checking
157 * for queue stopped.
158 */
159 smp_mb();
160
161 if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
162 netif_wake_queue(ndev);
163 }
164
165 /**
166 * arc_emac_rx - processing of Rx packets.
167 * @ndev: Pointer to the network device.
168 * @budget: How many BDs to process on 1 call.
169 *
170 * returns: Number of processed BDs
171 *
172 * Iterate through Rx BDs and deliver received packages to upper layer.
173 */
arc_emac_rx(struct net_device * ndev,int budget)174 static int arc_emac_rx(struct net_device *ndev, int budget)
175 {
176 struct arc_emac_priv *priv = netdev_priv(ndev);
177 unsigned int work_done;
178
179 for (work_done = 0; work_done < budget; work_done++) {
180 unsigned int *last_rx_bd = &priv->last_rx_bd;
181 struct net_device_stats *stats = &ndev->stats;
182 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
183 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
184 unsigned int pktlen, info = le32_to_cpu(rxbd->info);
185 struct sk_buff *skb;
186 dma_addr_t addr;
187
188 if (unlikely((info & OWN_MASK) == FOR_EMAC))
189 break;
190
191 /* Make a note that we saw a packet at this BD.
192 * So next time, driver starts from this + 1
193 */
194 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
195
196 if (unlikely((info & FIRST_OR_LAST_MASK) !=
197 FIRST_OR_LAST_MASK)) {
198 /* We pre-allocate buffers of MTU size so incoming
199 * packets won't be split/chained.
200 */
201 if (net_ratelimit())
202 netdev_err(ndev, "incomplete packet received\n");
203
204 /* Return ownership to EMAC */
205 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
206 stats->rx_errors++;
207 stats->rx_length_errors++;
208 continue;
209 }
210
211 /* Prepare the BD for next cycle. netif_receive_skb()
212 * only if new skb was allocated and mapped to avoid holes
213 * in the RX fifo.
214 */
215 skb = netdev_alloc_skb_ip_align(ndev, EMAC_BUFFER_SIZE);
216 if (unlikely(!skb)) {
217 if (net_ratelimit())
218 netdev_err(ndev, "cannot allocate skb\n");
219 /* Return ownership to EMAC */
220 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
221 stats->rx_errors++;
222 stats->rx_dropped++;
223 continue;
224 }
225
226 addr = dma_map_single(&ndev->dev, (void *)skb->data,
227 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
228 if (dma_mapping_error(&ndev->dev, addr)) {
229 if (net_ratelimit())
230 netdev_err(ndev, "cannot map dma buffer\n");
231 dev_kfree_skb(skb);
232 /* Return ownership to EMAC */
233 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
234 stats->rx_errors++;
235 stats->rx_dropped++;
236 continue;
237 }
238
239 /* unmap previosly mapped skb */
240 dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr),
241 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
242
243 pktlen = info & LEN_MASK;
244 stats->rx_packets++;
245 stats->rx_bytes += pktlen;
246 skb_put(rx_buff->skb, pktlen);
247 rx_buff->skb->dev = ndev;
248 rx_buff->skb->protocol = eth_type_trans(rx_buff->skb, ndev);
249
250 netif_receive_skb(rx_buff->skb);
251
252 rx_buff->skb = skb;
253 dma_unmap_addr_set(rx_buff, addr, addr);
254 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
255
256 rxbd->data = cpu_to_le32(addr);
257
258 /* Make sure pointer to data buffer is set */
259 wmb();
260
261 /* Return ownership to EMAC */
262 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
263 }
264
265 return work_done;
266 }
267
268 /**
269 * arc_emac_rx_miss_handle - handle R_MISS register
270 * @ndev: Pointer to the net_device structure.
271 */
arc_emac_rx_miss_handle(struct net_device * ndev)272 static void arc_emac_rx_miss_handle(struct net_device *ndev)
273 {
274 struct arc_emac_priv *priv = netdev_priv(ndev);
275 struct net_device_stats *stats = &ndev->stats;
276 unsigned int miss;
277
278 miss = arc_reg_get(priv, R_MISS);
279 if (miss) {
280 stats->rx_errors += miss;
281 stats->rx_missed_errors += miss;
282 priv->rx_missed_errors += miss;
283 }
284 }
285
286 /**
287 * arc_emac_rx_stall_check - check RX stall
288 * @ndev: Pointer to the net_device structure.
289 * @budget: How many BDs requested to process on 1 call.
290 * @work_done: How many BDs processed
291 *
292 * Under certain conditions EMAC stop reception of incoming packets and
293 * continuously increment R_MISS register instead of saving data into
294 * provided buffer. This function detect that condition and restart
295 * EMAC.
296 */
arc_emac_rx_stall_check(struct net_device * ndev,int budget,unsigned int work_done)297 static void arc_emac_rx_stall_check(struct net_device *ndev,
298 int budget, unsigned int work_done)
299 {
300 struct arc_emac_priv *priv = netdev_priv(ndev);
301 struct arc_emac_bd *rxbd;
302
303 if (work_done)
304 priv->rx_missed_errors = 0;
305
306 if (priv->rx_missed_errors && budget) {
307 rxbd = &priv->rxbd[priv->last_rx_bd];
308 if (le32_to_cpu(rxbd->info) & FOR_EMAC) {
309 arc_emac_restart(ndev);
310 priv->rx_missed_errors = 0;
311 }
312 }
313 }
314
315 /**
316 * arc_emac_poll - NAPI poll handler.
317 * @napi: Pointer to napi_struct structure.
318 * @budget: How many BDs to process on 1 call.
319 *
320 * returns: Number of processed BDs
321 */
arc_emac_poll(struct napi_struct * napi,int budget)322 static int arc_emac_poll(struct napi_struct *napi, int budget)
323 {
324 struct net_device *ndev = napi->dev;
325 struct arc_emac_priv *priv = netdev_priv(ndev);
326 unsigned int work_done;
327
328 arc_emac_tx_clean(ndev);
329 arc_emac_rx_miss_handle(ndev);
330
331 work_done = arc_emac_rx(ndev, budget);
332 if (work_done < budget) {
333 napi_complete_done(napi, work_done);
334 arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
335 }
336
337 arc_emac_rx_stall_check(ndev, budget, work_done);
338
339 return work_done;
340 }
341
342 /**
343 * arc_emac_intr - Global interrupt handler for EMAC.
344 * @irq: irq number.
345 * @dev_instance: device instance.
346 *
347 * returns: IRQ_HANDLED for all cases.
348 *
349 * ARC EMAC has only 1 interrupt line, and depending on bits raised in
350 * STATUS register we may tell what is a reason for interrupt to fire.
351 */
arc_emac_intr(int irq,void * dev_instance)352 static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
353 {
354 struct net_device *ndev = dev_instance;
355 struct arc_emac_priv *priv = netdev_priv(ndev);
356 struct net_device_stats *stats = &ndev->stats;
357 unsigned int status;
358
359 status = arc_reg_get(priv, R_STATUS);
360 status &= ~MDIO_MASK;
361
362 /* Reset all flags except "MDIO complete" */
363 arc_reg_set(priv, R_STATUS, status);
364
365 if (status & (RXINT_MASK | TXINT_MASK)) {
366 if (likely(napi_schedule_prep(&priv->napi))) {
367 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
368 __napi_schedule(&priv->napi);
369 }
370 }
371
372 if (status & ERR_MASK) {
373 /* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
374 * 8-bit error counter overrun.
375 */
376
377 if (status & MSER_MASK) {
378 stats->rx_missed_errors += 0x100;
379 stats->rx_errors += 0x100;
380 priv->rx_missed_errors += 0x100;
381 napi_schedule(&priv->napi);
382 }
383
384 if (status & RXCR_MASK) {
385 stats->rx_crc_errors += 0x100;
386 stats->rx_errors += 0x100;
387 }
388
389 if (status & RXFR_MASK) {
390 stats->rx_frame_errors += 0x100;
391 stats->rx_errors += 0x100;
392 }
393
394 if (status & RXFL_MASK) {
395 stats->rx_over_errors += 0x100;
396 stats->rx_errors += 0x100;
397 }
398 }
399
400 return IRQ_HANDLED;
401 }
402
403 #ifdef CONFIG_NET_POLL_CONTROLLER
arc_emac_poll_controller(struct net_device * dev)404 static void arc_emac_poll_controller(struct net_device *dev)
405 {
406 disable_irq(dev->irq);
407 arc_emac_intr(dev->irq, dev);
408 enable_irq(dev->irq);
409 }
410 #endif
411
412 /**
413 * arc_emac_open - Open the network device.
414 * @ndev: Pointer to the network device.
415 *
416 * returns: 0, on success or non-zero error value on failure.
417 *
418 * This function sets the MAC address, requests and enables an IRQ
419 * for the EMAC device and starts the Tx queue.
420 * It also connects to the phy device.
421 */
arc_emac_open(struct net_device * ndev)422 static int arc_emac_open(struct net_device *ndev)
423 {
424 struct arc_emac_priv *priv = netdev_priv(ndev);
425 struct phy_device *phy_dev = ndev->phydev;
426 int i;
427
428 phy_dev->autoneg = AUTONEG_ENABLE;
429 phy_dev->speed = 0;
430 phy_dev->duplex = 0;
431 linkmode_and(phy_dev->advertising, phy_dev->advertising,
432 phy_dev->supported);
433
434 priv->last_rx_bd = 0;
435
436 /* Allocate and set buffers for Rx BD's */
437 for (i = 0; i < RX_BD_NUM; i++) {
438 dma_addr_t addr;
439 unsigned int *last_rx_bd = &priv->last_rx_bd;
440 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
441 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
442
443 rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
444 EMAC_BUFFER_SIZE);
445 if (unlikely(!rx_buff->skb))
446 return -ENOMEM;
447
448 addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
449 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
450 if (dma_mapping_error(&ndev->dev, addr)) {
451 netdev_err(ndev, "cannot dma map\n");
452 dev_kfree_skb(rx_buff->skb);
453 return -ENOMEM;
454 }
455 dma_unmap_addr_set(rx_buff, addr, addr);
456 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
457
458 rxbd->data = cpu_to_le32(addr);
459
460 /* Make sure pointer to data buffer is set */
461 wmb();
462
463 /* Return ownership to EMAC */
464 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
465
466 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
467 }
468
469 priv->txbd_curr = 0;
470 priv->txbd_dirty = 0;
471
472 /* Clean Tx BD's */
473 memset(priv->txbd, 0, TX_RING_SZ);
474
475 /* Initialize logical address filter */
476 arc_reg_set(priv, R_LAFL, 0);
477 arc_reg_set(priv, R_LAFH, 0);
478
479 /* Set BD ring pointers for device side */
480 arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
481 arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
482
483 /* Enable interrupts */
484 arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
485
486 /* Set CONTROL */
487 arc_reg_set(priv, R_CTRL,
488 (RX_BD_NUM << 24) | /* RX BD table length */
489 (TX_BD_NUM << 16) | /* TX BD table length */
490 TXRN_MASK | RXRN_MASK);
491
492 napi_enable(&priv->napi);
493
494 /* Enable EMAC */
495 arc_reg_or(priv, R_CTRL, EN_MASK);
496
497 phy_start(ndev->phydev);
498
499 netif_start_queue(ndev);
500
501 return 0;
502 }
503
504 /**
505 * arc_emac_set_rx_mode - Change the receive filtering mode.
506 * @ndev: Pointer to the network device.
507 *
508 * This function enables/disables promiscuous or all-multicast mode
509 * and updates the multicast filtering list of the network device.
510 */
arc_emac_set_rx_mode(struct net_device * ndev)511 static void arc_emac_set_rx_mode(struct net_device *ndev)
512 {
513 struct arc_emac_priv *priv = netdev_priv(ndev);
514
515 if (ndev->flags & IFF_PROMISC) {
516 arc_reg_or(priv, R_CTRL, PROM_MASK);
517 } else {
518 arc_reg_clr(priv, R_CTRL, PROM_MASK);
519
520 if (ndev->flags & IFF_ALLMULTI) {
521 arc_reg_set(priv, R_LAFL, ~0);
522 arc_reg_set(priv, R_LAFH, ~0);
523 } else if (ndev->flags & IFF_MULTICAST) {
524 struct netdev_hw_addr *ha;
525 unsigned int filter[2] = { 0, 0 };
526 int bit;
527
528 netdev_for_each_mc_addr(ha, ndev) {
529 bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
530 filter[bit >> 5] |= 1 << (bit & 31);
531 }
532
533 arc_reg_set(priv, R_LAFL, filter[0]);
534 arc_reg_set(priv, R_LAFH, filter[1]);
535 } else {
536 arc_reg_set(priv, R_LAFL, 0);
537 arc_reg_set(priv, R_LAFH, 0);
538 }
539 }
540 }
541
542 /**
543 * arc_free_tx_queue - free skb from tx queue
544 * @ndev: Pointer to the network device.
545 *
546 * This function must be called while EMAC disable
547 */
arc_free_tx_queue(struct net_device * ndev)548 static void arc_free_tx_queue(struct net_device *ndev)
549 {
550 struct arc_emac_priv *priv = netdev_priv(ndev);
551 unsigned int i;
552
553 for (i = 0; i < TX_BD_NUM; i++) {
554 struct arc_emac_bd *txbd = &priv->txbd[i];
555 struct buffer_state *tx_buff = &priv->tx_buff[i];
556
557 if (tx_buff->skb) {
558 dma_unmap_single(&ndev->dev,
559 dma_unmap_addr(tx_buff, addr),
560 dma_unmap_len(tx_buff, len),
561 DMA_TO_DEVICE);
562
563 /* return the sk_buff to system */
564 dev_kfree_skb_irq(tx_buff->skb);
565 }
566
567 txbd->info = 0;
568 txbd->data = 0;
569 tx_buff->skb = NULL;
570 }
571 }
572
573 /**
574 * arc_free_rx_queue - free skb from rx queue
575 * @ndev: Pointer to the network device.
576 *
577 * This function must be called while EMAC disable
578 */
arc_free_rx_queue(struct net_device * ndev)579 static void arc_free_rx_queue(struct net_device *ndev)
580 {
581 struct arc_emac_priv *priv = netdev_priv(ndev);
582 unsigned int i;
583
584 for (i = 0; i < RX_BD_NUM; i++) {
585 struct arc_emac_bd *rxbd = &priv->rxbd[i];
586 struct buffer_state *rx_buff = &priv->rx_buff[i];
587
588 if (rx_buff->skb) {
589 dma_unmap_single(&ndev->dev,
590 dma_unmap_addr(rx_buff, addr),
591 dma_unmap_len(rx_buff, len),
592 DMA_FROM_DEVICE);
593
594 /* return the sk_buff to system */
595 dev_kfree_skb_irq(rx_buff->skb);
596 }
597
598 rxbd->info = 0;
599 rxbd->data = 0;
600 rx_buff->skb = NULL;
601 }
602 }
603
604 /**
605 * arc_emac_stop - Close the network device.
606 * @ndev: Pointer to the network device.
607 *
608 * This function stops the Tx queue, disables interrupts and frees the IRQ for
609 * the EMAC device.
610 * It also disconnects the PHY device associated with the EMAC device.
611 */
arc_emac_stop(struct net_device * ndev)612 static int arc_emac_stop(struct net_device *ndev)
613 {
614 struct arc_emac_priv *priv = netdev_priv(ndev);
615
616 napi_disable(&priv->napi);
617 netif_stop_queue(ndev);
618
619 phy_stop(ndev->phydev);
620
621 /* Disable interrupts */
622 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
623
624 /* Disable EMAC */
625 arc_reg_clr(priv, R_CTRL, EN_MASK);
626
627 /* Return the sk_buff to system */
628 arc_free_tx_queue(ndev);
629 arc_free_rx_queue(ndev);
630
631 return 0;
632 }
633
634 /**
635 * arc_emac_stats - Get system network statistics.
636 * @ndev: Pointer to net_device structure.
637 *
638 * Returns the address of the device statistics structure.
639 * Statistics are updated in interrupt handler.
640 */
arc_emac_stats(struct net_device * ndev)641 static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
642 {
643 struct arc_emac_priv *priv = netdev_priv(ndev);
644 struct net_device_stats *stats = &ndev->stats;
645 unsigned long miss, rxerr;
646 u8 rxcrc, rxfram, rxoflow;
647
648 rxerr = arc_reg_get(priv, R_RXERR);
649 miss = arc_reg_get(priv, R_MISS);
650
651 rxcrc = rxerr;
652 rxfram = rxerr >> 8;
653 rxoflow = rxerr >> 16;
654
655 stats->rx_errors += miss;
656 stats->rx_errors += rxcrc + rxfram + rxoflow;
657
658 stats->rx_over_errors += rxoflow;
659 stats->rx_frame_errors += rxfram;
660 stats->rx_crc_errors += rxcrc;
661 stats->rx_missed_errors += miss;
662
663 return stats;
664 }
665
666 /**
667 * arc_emac_tx - Starts the data transmission.
668 * @skb: sk_buff pointer that contains data to be Transmitted.
669 * @ndev: Pointer to net_device structure.
670 *
671 * returns: NETDEV_TX_OK, on success
672 * NETDEV_TX_BUSY, if any of the descriptors are not free.
673 *
674 * This function is invoked from upper layers to initiate transmission.
675 */
arc_emac_tx(struct sk_buff * skb,struct net_device * ndev)676 static netdev_tx_t arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
677 {
678 struct arc_emac_priv *priv = netdev_priv(ndev);
679 unsigned int len, *txbd_curr = &priv->txbd_curr;
680 struct net_device_stats *stats = &ndev->stats;
681 __le32 *info = &priv->txbd[*txbd_curr].info;
682 dma_addr_t addr;
683
684 if (skb_padto(skb, ETH_ZLEN))
685 return NETDEV_TX_OK;
686
687 len = max_t(unsigned int, ETH_ZLEN, skb->len);
688
689 if (unlikely(!arc_emac_tx_avail(priv))) {
690 netif_stop_queue(ndev);
691 netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
692 return NETDEV_TX_BUSY;
693 }
694
695 addr = dma_map_single(&ndev->dev, (void *)skb->data, len,
696 DMA_TO_DEVICE);
697
698 if (unlikely(dma_mapping_error(&ndev->dev, addr))) {
699 stats->tx_dropped++;
700 stats->tx_errors++;
701 dev_kfree_skb_any(skb);
702 return NETDEV_TX_OK;
703 }
704 dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
705 dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
706
707 priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
708
709 /* Make sure pointer to data buffer is set */
710 wmb();
711
712 skb_tx_timestamp(skb);
713
714 *info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
715
716 /* Make sure info word is set */
717 wmb();
718
719 priv->tx_buff[*txbd_curr].skb = skb;
720
721 /* Increment index to point to the next BD */
722 *txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
723
724 /* Ensure that tx_clean() sees the new txbd_curr before
725 * checking the queue status. This prevents an unneeded wake
726 * of the queue in tx_clean().
727 */
728 smp_mb();
729
730 if (!arc_emac_tx_avail(priv)) {
731 netif_stop_queue(ndev);
732 /* Refresh tx_dirty */
733 smp_mb();
734 if (arc_emac_tx_avail(priv))
735 netif_start_queue(ndev);
736 }
737
738 arc_reg_set(priv, R_STATUS, TXPL_MASK);
739
740 return NETDEV_TX_OK;
741 }
742
arc_emac_set_address_internal(struct net_device * ndev)743 static void arc_emac_set_address_internal(struct net_device *ndev)
744 {
745 struct arc_emac_priv *priv = netdev_priv(ndev);
746 unsigned int addr_low, addr_hi;
747
748 addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
749 addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
750
751 arc_reg_set(priv, R_ADDRL, addr_low);
752 arc_reg_set(priv, R_ADDRH, addr_hi);
753 }
754
755 /**
756 * arc_emac_set_address - Set the MAC address for this device.
757 * @ndev: Pointer to net_device structure.
758 * @p: 6 byte Address to be written as MAC address.
759 *
760 * This function copies the HW address from the sockaddr structure to the
761 * net_device structure and updates the address in HW.
762 *
763 * returns: -EBUSY if the net device is busy or 0 if the address is set
764 * successfully.
765 */
arc_emac_set_address(struct net_device * ndev,void * p)766 static int arc_emac_set_address(struct net_device *ndev, void *p)
767 {
768 struct sockaddr *addr = p;
769
770 if (netif_running(ndev))
771 return -EBUSY;
772
773 if (!is_valid_ether_addr(addr->sa_data))
774 return -EADDRNOTAVAIL;
775
776 eth_hw_addr_set(ndev, addr->sa_data);
777
778 arc_emac_set_address_internal(ndev);
779
780 return 0;
781 }
782
783 /**
784 * arc_emac_restart - Restart EMAC
785 * @ndev: Pointer to net_device structure.
786 *
787 * This function do hardware reset of EMAC in order to restore
788 * network packets reception.
789 */
arc_emac_restart(struct net_device * ndev)790 static void arc_emac_restart(struct net_device *ndev)
791 {
792 struct arc_emac_priv *priv = netdev_priv(ndev);
793 struct net_device_stats *stats = &ndev->stats;
794 int i;
795
796 if (net_ratelimit())
797 netdev_warn(ndev, "restarting stalled EMAC\n");
798
799 netif_stop_queue(ndev);
800
801 /* Disable interrupts */
802 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
803
804 /* Disable EMAC */
805 arc_reg_clr(priv, R_CTRL, EN_MASK);
806
807 /* Return the sk_buff to system */
808 arc_free_tx_queue(ndev);
809
810 /* Clean Tx BD's */
811 priv->txbd_curr = 0;
812 priv->txbd_dirty = 0;
813 memset(priv->txbd, 0, TX_RING_SZ);
814
815 for (i = 0; i < RX_BD_NUM; i++) {
816 struct arc_emac_bd *rxbd = &priv->rxbd[i];
817 unsigned int info = le32_to_cpu(rxbd->info);
818
819 if (!(info & FOR_EMAC)) {
820 stats->rx_errors++;
821 stats->rx_dropped++;
822 }
823 /* Return ownership to EMAC */
824 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
825 }
826 priv->last_rx_bd = 0;
827
828 /* Make sure info is visible to EMAC before enable */
829 wmb();
830
831 /* Enable interrupts */
832 arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
833
834 /* Enable EMAC */
835 arc_reg_or(priv, R_CTRL, EN_MASK);
836
837 netif_start_queue(ndev);
838 }
839
840 static const struct net_device_ops arc_emac_netdev_ops = {
841 .ndo_open = arc_emac_open,
842 .ndo_stop = arc_emac_stop,
843 .ndo_start_xmit = arc_emac_tx,
844 .ndo_set_mac_address = arc_emac_set_address,
845 .ndo_get_stats = arc_emac_stats,
846 .ndo_set_rx_mode = arc_emac_set_rx_mode,
847 .ndo_eth_ioctl = phy_do_ioctl_running,
848 #ifdef CONFIG_NET_POLL_CONTROLLER
849 .ndo_poll_controller = arc_emac_poll_controller,
850 #endif
851 };
852
arc_emac_probe(struct net_device * ndev,int interface)853 int arc_emac_probe(struct net_device *ndev, int interface)
854 {
855 struct device *dev = ndev->dev.parent;
856 struct resource res_regs;
857 struct device_node *phy_node;
858 struct phy_device *phydev = NULL;
859 struct arc_emac_priv *priv;
860 unsigned int id, clock_frequency, irq;
861 int err;
862
863 /* Get PHY from device tree */
864 phy_node = of_parse_phandle(dev->of_node, "phy", 0);
865 if (!phy_node) {
866 dev_err(dev, "failed to retrieve phy description from device tree\n");
867 return -ENODEV;
868 }
869
870 /* Get EMAC registers base address from device tree */
871 err = of_address_to_resource(dev->of_node, 0, &res_regs);
872 if (err) {
873 dev_err(dev, "failed to retrieve registers base from device tree\n");
874 err = -ENODEV;
875 goto out_put_node;
876 }
877
878 /* Get IRQ from device tree */
879 irq = irq_of_parse_and_map(dev->of_node, 0);
880 if (!irq) {
881 dev_err(dev, "failed to retrieve <irq> value from device tree\n");
882 err = -ENODEV;
883 goto out_put_node;
884 }
885
886 ndev->netdev_ops = &arc_emac_netdev_ops;
887 ndev->ethtool_ops = &arc_emac_ethtool_ops;
888 ndev->watchdog_timeo = TX_TIMEOUT;
889
890 priv = netdev_priv(ndev);
891 priv->dev = dev;
892
893 priv->regs = devm_ioremap_resource(dev, &res_regs);
894 if (IS_ERR(priv->regs)) {
895 err = PTR_ERR(priv->regs);
896 goto out_put_node;
897 }
898
899 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
900
901 if (priv->clk) {
902 err = clk_prepare_enable(priv->clk);
903 if (err) {
904 dev_err(dev, "failed to enable clock\n");
905 goto out_put_node;
906 }
907
908 clock_frequency = clk_get_rate(priv->clk);
909 } else {
910 /* Get CPU clock frequency from device tree */
911 if (of_property_read_u32(dev->of_node, "clock-frequency",
912 &clock_frequency)) {
913 dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
914 err = -EINVAL;
915 goto out_put_node;
916 }
917 }
918
919 id = arc_reg_get(priv, R_ID);
920
921 /* Check for EMAC revision 5 or 7, magic number */
922 if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
923 dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
924 err = -ENODEV;
925 goto out_clken;
926 }
927 dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
928
929 /* Set poll rate so that it polls every 1 ms */
930 arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
931
932 ndev->irq = irq;
933 dev_info(dev, "IRQ is %d\n", ndev->irq);
934
935 /* Register interrupt handler for device */
936 err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
937 ndev->name, ndev);
938 if (err) {
939 dev_err(dev, "could not allocate IRQ\n");
940 goto out_clken;
941 }
942
943 /* Get MAC address from device tree */
944 err = of_get_ethdev_address(dev->of_node, ndev);
945 if (err)
946 eth_hw_addr_random(ndev);
947
948 arc_emac_set_address_internal(ndev);
949 dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
950
951 /* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
952 priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
953 &priv->rxbd_dma, GFP_KERNEL);
954
955 if (!priv->rxbd) {
956 dev_err(dev, "failed to allocate data buffers\n");
957 err = -ENOMEM;
958 goto out_clken;
959 }
960
961 priv->txbd = priv->rxbd + RX_BD_NUM;
962
963 priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
964 dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
965 (unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
966
967 err = arc_mdio_probe(priv);
968 if (err) {
969 dev_err(dev, "failed to probe MII bus\n");
970 goto out_clken;
971 }
972
973 phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
974 interface);
975 if (!phydev) {
976 dev_err(dev, "of_phy_connect() failed\n");
977 err = -ENODEV;
978 goto out_mdio;
979 }
980
981 dev_info(dev, "connected to %s phy with id 0x%x\n",
982 phydev->drv->name, phydev->phy_id);
983
984 netif_napi_add_weight(ndev, &priv->napi, arc_emac_poll,
985 ARC_EMAC_NAPI_WEIGHT);
986
987 err = register_netdev(ndev);
988 if (err) {
989 dev_err(dev, "failed to register network device\n");
990 goto out_netif_api;
991 }
992
993 of_node_put(phy_node);
994 return 0;
995
996 out_netif_api:
997 netif_napi_del(&priv->napi);
998 phy_disconnect(phydev);
999 out_mdio:
1000 arc_mdio_remove(priv);
1001 out_clken:
1002 if (priv->clk)
1003 clk_disable_unprepare(priv->clk);
1004 out_put_node:
1005 of_node_put(phy_node);
1006
1007 return err;
1008 }
1009 EXPORT_SYMBOL_GPL(arc_emac_probe);
1010
arc_emac_remove(struct net_device * ndev)1011 void arc_emac_remove(struct net_device *ndev)
1012 {
1013 struct arc_emac_priv *priv = netdev_priv(ndev);
1014
1015 phy_disconnect(ndev->phydev);
1016 arc_mdio_remove(priv);
1017 unregister_netdev(ndev);
1018 netif_napi_del(&priv->napi);
1019
1020 if (!IS_ERR(priv->clk))
1021 clk_disable_unprepare(priv->clk);
1022 }
1023 EXPORT_SYMBOL_GPL(arc_emac_remove);
1024
1025 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
1026 MODULE_DESCRIPTION("ARC EMAC driver");
1027 MODULE_LICENSE("GPL");
1028