1 /* 2 * Driver for the Macintosh 68K onboard MACE controller with PSC 3 * driven DMA. The MACE driver code is derived from mace.c. The 4 * Mac68k theory of operation is courtesy of the MacBSD wizards. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * Copyright (C) 1996 Paul Mackerras. 12 * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> 13 * 14 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver 15 * 16 * Copyright (C) 2007 Finn Thain 17 * 18 * Converted to DMA API, converted to unified driver model, 19 * sync'd some routines with mace.c and fixed various bugs. 20 */ 21 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/crc32.h> 30 #include <linux/bitrev.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/platform_device.h> 33 #include <linux/gfp.h> 34 #include <linux/interrupt.h> 35 #include <asm/io.h> 36 #include <asm/macints.h> 37 #include <asm/mac_psc.h> 38 #include <asm/page.h> 39 #include "mace.h" 40 41 static char mac_mace_string[] = "macmace"; 42 43 #define N_TX_BUFF_ORDER 0 44 #define N_TX_RING (1 << N_TX_BUFF_ORDER) 45 #define N_RX_BUFF_ORDER 3 46 #define N_RX_RING (1 << N_RX_BUFF_ORDER) 47 48 #define TX_TIMEOUT HZ 49 50 #define MACE_BUFF_SIZE 0x800 51 52 /* Chip rev needs workaround on HW & multicast addr change */ 53 #define BROKEN_ADDRCHG_REV 0x0941 54 55 /* The MACE is simply wired down on a Mac68K box */ 56 57 #define MACE_BASE (void *)(0x50F1C000) 58 #define MACE_PROM (void *)(0x50F08001) 59 60 struct mace_data { 61 volatile struct mace *mace; 62 unsigned char *tx_ring; 63 dma_addr_t tx_ring_phys; 64 unsigned char *rx_ring; 65 dma_addr_t rx_ring_phys; 66 int dma_intr; 67 int rx_slot, rx_tail; 68 int tx_slot, tx_sloti, tx_count; 69 int chipid; 70 struct device *device; 71 }; 72 73 struct mace_frame { 74 u8 rcvcnt; 75 u8 pad1; 76 u8 rcvsts; 77 u8 pad2; 78 u8 rntpc; 79 u8 pad3; 80 u8 rcvcc; 81 u8 pad4; 82 u32 pad5; 83 u32 pad6; 84 u8 data[1]; 85 /* And frame continues.. */ 86 }; 87 88 #define PRIV_BYTES sizeof(struct mace_data) 89 90 static int mace_open(struct net_device *dev); 91 static int mace_close(struct net_device *dev); 92 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev); 93 static void mace_set_multicast(struct net_device *dev); 94 static int mace_set_address(struct net_device *dev, void *addr); 95 static void mace_reset(struct net_device *dev); 96 static irqreturn_t mace_interrupt(int irq, void *dev_id); 97 static irqreturn_t mace_dma_intr(int irq, void *dev_id); 98 static void mace_tx_timeout(struct net_device *dev); 99 static void __mace_set_address(struct net_device *dev, void *addr); 100 101 /* 102 * Load a receive DMA channel with a base address and ring length 103 */ 104 105 static void mace_load_rxdma_base(struct net_device *dev, int set) 106 { 107 struct mace_data *mp = netdev_priv(dev); 108 109 psc_write_word(PSC_ENETRD_CMD + set, 0x0100); 110 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys); 111 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING); 112 psc_write_word(PSC_ENETRD_CMD + set, 0x9800); 113 mp->rx_tail = 0; 114 } 115 116 /* 117 * Reset the receive DMA subsystem 118 */ 119 120 static void mace_rxdma_reset(struct net_device *dev) 121 { 122 struct mace_data *mp = netdev_priv(dev); 123 volatile struct mace *mace = mp->mace; 124 u8 maccc = mace->maccc; 125 126 mace->maccc = maccc & ~ENRCV; 127 128 psc_write_word(PSC_ENETRD_CTL, 0x8800); 129 mace_load_rxdma_base(dev, 0x00); 130 psc_write_word(PSC_ENETRD_CTL, 0x0400); 131 132 psc_write_word(PSC_ENETRD_CTL, 0x8800); 133 mace_load_rxdma_base(dev, 0x10); 134 psc_write_word(PSC_ENETRD_CTL, 0x0400); 135 136 mace->maccc = maccc; 137 mp->rx_slot = 0; 138 139 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800); 140 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800); 141 } 142 143 /* 144 * Reset the transmit DMA subsystem 145 */ 146 147 static void mace_txdma_reset(struct net_device *dev) 148 { 149 struct mace_data *mp = netdev_priv(dev); 150 volatile struct mace *mace = mp->mace; 151 u8 maccc; 152 153 psc_write_word(PSC_ENETWR_CTL, 0x8800); 154 155 maccc = mace->maccc; 156 mace->maccc = maccc & ~ENXMT; 157 158 mp->tx_slot = mp->tx_sloti = 0; 159 mp->tx_count = N_TX_RING; 160 161 psc_write_word(PSC_ENETWR_CTL, 0x0400); 162 mace->maccc = maccc; 163 } 164 165 /* 166 * Disable DMA 167 */ 168 169 static void mace_dma_off(struct net_device *dev) 170 { 171 psc_write_word(PSC_ENETRD_CTL, 0x8800); 172 psc_write_word(PSC_ENETRD_CTL, 0x1000); 173 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100); 174 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100); 175 176 psc_write_word(PSC_ENETWR_CTL, 0x8800); 177 psc_write_word(PSC_ENETWR_CTL, 0x1000); 178 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100); 179 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100); 180 } 181 182 static const struct net_device_ops mace_netdev_ops = { 183 .ndo_open = mace_open, 184 .ndo_stop = mace_close, 185 .ndo_start_xmit = mace_xmit_start, 186 .ndo_tx_timeout = mace_tx_timeout, 187 .ndo_set_rx_mode = mace_set_multicast, 188 .ndo_set_mac_address = mace_set_address, 189 .ndo_change_mtu = eth_change_mtu, 190 .ndo_validate_addr = eth_validate_addr, 191 }; 192 193 /* 194 * Not really much of a probe. The hardware table tells us if this 195 * model of Macintrash has a MACE (AV macintoshes) 196 */ 197 198 static int mace_probe(struct platform_device *pdev) 199 { 200 int j; 201 struct mace_data *mp; 202 unsigned char *addr; 203 struct net_device *dev; 204 unsigned char checksum = 0; 205 int err; 206 207 dev = alloc_etherdev(PRIV_BYTES); 208 if (!dev) 209 return -ENOMEM; 210 211 mp = netdev_priv(dev); 212 213 mp->device = &pdev->dev; 214 SET_NETDEV_DEV(dev, &pdev->dev); 215 216 dev->base_addr = (u32)MACE_BASE; 217 mp->mace = MACE_BASE; 218 219 dev->irq = IRQ_MAC_MACE; 220 mp->dma_intr = IRQ_MAC_MACE_DMA; 221 222 mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo; 223 224 /* 225 * The PROM contains 8 bytes which total 0xFF when XOR'd 226 * together. Due to the usual peculiar apple brain damage 227 * the bytes are spaced out in a strange boundary and the 228 * bits are reversed. 229 */ 230 231 addr = MACE_PROM; 232 233 for (j = 0; j < 6; ++j) { 234 u8 v = bitrev8(addr[j<<4]); 235 checksum ^= v; 236 dev->dev_addr[j] = v; 237 } 238 for (; j < 8; ++j) { 239 checksum ^= bitrev8(addr[j<<4]); 240 } 241 242 if (checksum != 0xFF) { 243 free_netdev(dev); 244 return -ENODEV; 245 } 246 247 dev->netdev_ops = &mace_netdev_ops; 248 dev->watchdog_timeo = TX_TIMEOUT; 249 250 printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n", 251 dev->name, dev->dev_addr); 252 253 err = register_netdev(dev); 254 if (!err) 255 return 0; 256 257 free_netdev(dev); 258 return err; 259 } 260 261 /* 262 * Reset the chip. 263 */ 264 265 static void mace_reset(struct net_device *dev) 266 { 267 struct mace_data *mp = netdev_priv(dev); 268 volatile struct mace *mb = mp->mace; 269 int i; 270 271 /* soft-reset the chip */ 272 i = 200; 273 while (--i) { 274 mb->biucc = SWRST; 275 if (mb->biucc & SWRST) { 276 udelay(10); 277 continue; 278 } 279 break; 280 } 281 if (!i) { 282 printk(KERN_ERR "macmace: cannot reset chip!\n"); 283 return; 284 } 285 286 mb->maccc = 0; /* turn off tx, rx */ 287 mb->imr = 0xFF; /* disable all intrs for now */ 288 i = mb->ir; 289 290 mb->biucc = XMTSP_64; 291 mb->utr = RTRD; 292 mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU; 293 294 mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */ 295 mb->rcvfc = 0; 296 297 /* load up the hardware address */ 298 __mace_set_address(dev, dev->dev_addr); 299 300 /* clear the multicast filter */ 301 if (mp->chipid == BROKEN_ADDRCHG_REV) 302 mb->iac = LOGADDR; 303 else { 304 mb->iac = ADDRCHG | LOGADDR; 305 while ((mb->iac & ADDRCHG) != 0) 306 ; 307 } 308 for (i = 0; i < 8; ++i) 309 mb->ladrf = 0; 310 311 /* done changing address */ 312 if (mp->chipid != BROKEN_ADDRCHG_REV) 313 mb->iac = 0; 314 315 mb->plscc = PORTSEL_AUI; 316 } 317 318 /* 319 * Load the address on a mace controller. 320 */ 321 322 static void __mace_set_address(struct net_device *dev, void *addr) 323 { 324 struct mace_data *mp = netdev_priv(dev); 325 volatile struct mace *mb = mp->mace; 326 unsigned char *p = addr; 327 int i; 328 329 /* load up the hardware address */ 330 if (mp->chipid == BROKEN_ADDRCHG_REV) 331 mb->iac = PHYADDR; 332 else { 333 mb->iac = ADDRCHG | PHYADDR; 334 while ((mb->iac & ADDRCHG) != 0) 335 ; 336 } 337 for (i = 0; i < 6; ++i) 338 mb->padr = dev->dev_addr[i] = p[i]; 339 if (mp->chipid != BROKEN_ADDRCHG_REV) 340 mb->iac = 0; 341 } 342 343 static int mace_set_address(struct net_device *dev, void *addr) 344 { 345 struct mace_data *mp = netdev_priv(dev); 346 volatile struct mace *mb = mp->mace; 347 unsigned long flags; 348 u8 maccc; 349 350 local_irq_save(flags); 351 352 maccc = mb->maccc; 353 354 __mace_set_address(dev, addr); 355 356 mb->maccc = maccc; 357 358 local_irq_restore(flags); 359 360 return 0; 361 } 362 363 /* 364 * Open the Macintosh MACE. Most of this is playing with the DMA 365 * engine. The ethernet chip is quite friendly. 366 */ 367 368 static int mace_open(struct net_device *dev) 369 { 370 struct mace_data *mp = netdev_priv(dev); 371 volatile struct mace *mb = mp->mace; 372 373 /* reset the chip */ 374 mace_reset(dev); 375 376 if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) { 377 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq); 378 return -EAGAIN; 379 } 380 if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) { 381 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr); 382 free_irq(dev->irq, dev); 383 return -EAGAIN; 384 } 385 386 /* Allocate the DMA ring buffers */ 387 388 mp->tx_ring = dma_alloc_coherent(mp->device, 389 N_TX_RING * MACE_BUFF_SIZE, 390 &mp->tx_ring_phys, GFP_KERNEL); 391 if (mp->tx_ring == NULL) 392 goto out1; 393 394 mp->rx_ring = dma_alloc_coherent(mp->device, 395 N_RX_RING * MACE_BUFF_SIZE, 396 &mp->rx_ring_phys, GFP_KERNEL); 397 if (mp->rx_ring == NULL) 398 goto out2; 399 400 mace_dma_off(dev); 401 402 /* Not sure what these do */ 403 404 psc_write_word(PSC_ENETWR_CTL, 0x9000); 405 psc_write_word(PSC_ENETRD_CTL, 0x9000); 406 psc_write_word(PSC_ENETWR_CTL, 0x0400); 407 psc_write_word(PSC_ENETRD_CTL, 0x0400); 408 409 mace_rxdma_reset(dev); 410 mace_txdma_reset(dev); 411 412 /* turn it on! */ 413 mb->maccc = ENXMT | ENRCV; 414 /* enable all interrupts except receive interrupts */ 415 mb->imr = RCVINT; 416 return 0; 417 418 out2: 419 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE, 420 mp->tx_ring, mp->tx_ring_phys); 421 out1: 422 free_irq(dev->irq, dev); 423 free_irq(mp->dma_intr, dev); 424 return -ENOMEM; 425 } 426 427 /* 428 * Shut down the mace and its interrupt channel 429 */ 430 431 static int mace_close(struct net_device *dev) 432 { 433 struct mace_data *mp = netdev_priv(dev); 434 volatile struct mace *mb = mp->mace; 435 436 mb->maccc = 0; /* disable rx and tx */ 437 mb->imr = 0xFF; /* disable all irqs */ 438 mace_dma_off(dev); /* disable rx and tx dma */ 439 440 return 0; 441 } 442 443 /* 444 * Transmit a frame 445 */ 446 447 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev) 448 { 449 struct mace_data *mp = netdev_priv(dev); 450 unsigned long flags; 451 452 /* Stop the queue since there's only the one buffer */ 453 454 local_irq_save(flags); 455 netif_stop_queue(dev); 456 if (!mp->tx_count) { 457 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n"); 458 local_irq_restore(flags); 459 return NETDEV_TX_BUSY; 460 } 461 mp->tx_count--; 462 local_irq_restore(flags); 463 464 dev->stats.tx_packets++; 465 dev->stats.tx_bytes += skb->len; 466 467 /* We need to copy into our xmit buffer to take care of alignment and caching issues */ 468 skb_copy_from_linear_data(skb, mp->tx_ring, skb->len); 469 470 /* load the Tx DMA and fire it off */ 471 472 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys); 473 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len); 474 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800); 475 476 mp->tx_slot ^= 0x10; 477 478 dev_kfree_skb(skb); 479 480 return NETDEV_TX_OK; 481 } 482 483 static void mace_set_multicast(struct net_device *dev) 484 { 485 struct mace_data *mp = netdev_priv(dev); 486 volatile struct mace *mb = mp->mace; 487 int i; 488 u32 crc; 489 u8 maccc; 490 unsigned long flags; 491 492 local_irq_save(flags); 493 maccc = mb->maccc; 494 mb->maccc &= ~PROM; 495 496 if (dev->flags & IFF_PROMISC) { 497 mb->maccc |= PROM; 498 } else { 499 unsigned char multicast_filter[8]; 500 struct netdev_hw_addr *ha; 501 502 if (dev->flags & IFF_ALLMULTI) { 503 for (i = 0; i < 8; i++) { 504 multicast_filter[i] = 0xFF; 505 } 506 } else { 507 for (i = 0; i < 8; i++) 508 multicast_filter[i] = 0; 509 netdev_for_each_mc_addr(ha, dev) { 510 crc = ether_crc_le(6, ha->addr); 511 /* bit number in multicast_filter */ 512 i = crc >> 26; 513 multicast_filter[i >> 3] |= 1 << (i & 7); 514 } 515 } 516 517 if (mp->chipid == BROKEN_ADDRCHG_REV) 518 mb->iac = LOGADDR; 519 else { 520 mb->iac = ADDRCHG | LOGADDR; 521 while ((mb->iac & ADDRCHG) != 0) 522 ; 523 } 524 for (i = 0; i < 8; ++i) 525 mb->ladrf = multicast_filter[i]; 526 if (mp->chipid != BROKEN_ADDRCHG_REV) 527 mb->iac = 0; 528 } 529 530 mb->maccc = maccc; 531 local_irq_restore(flags); 532 } 533 534 static void mace_handle_misc_intrs(struct net_device *dev, int intr) 535 { 536 struct mace_data *mp = netdev_priv(dev); 537 volatile struct mace *mb = mp->mace; 538 static int mace_babbles, mace_jabbers; 539 540 if (intr & MPCO) 541 dev->stats.rx_missed_errors += 256; 542 dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */ 543 if (intr & RNTPCO) 544 dev->stats.rx_length_errors += 256; 545 dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */ 546 if (intr & CERR) 547 ++dev->stats.tx_heartbeat_errors; 548 if (intr & BABBLE) 549 if (mace_babbles++ < 4) 550 printk(KERN_DEBUG "macmace: babbling transmitter\n"); 551 if (intr & JABBER) 552 if (mace_jabbers++ < 4) 553 printk(KERN_DEBUG "macmace: jabbering transceiver\n"); 554 } 555 556 static irqreturn_t mace_interrupt(int irq, void *dev_id) 557 { 558 struct net_device *dev = (struct net_device *) dev_id; 559 struct mace_data *mp = netdev_priv(dev); 560 volatile struct mace *mb = mp->mace; 561 int intr, fs; 562 unsigned long flags; 563 564 /* don't want the dma interrupt handler to fire */ 565 local_irq_save(flags); 566 567 intr = mb->ir; /* read interrupt register */ 568 mace_handle_misc_intrs(dev, intr); 569 570 if (intr & XMTINT) { 571 fs = mb->xmtfs; 572 if ((fs & XMTSV) == 0) { 573 printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs); 574 mace_reset(dev); 575 /* 576 * XXX mace likes to hang the machine after a xmtfs error. 577 * This is hard to reproduce, reseting *may* help 578 */ 579 } 580 /* dma should have finished */ 581 if (!mp->tx_count) { 582 printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs); 583 } 584 /* Update stats */ 585 if (fs & (UFLO|LCOL|LCAR|RTRY)) { 586 ++dev->stats.tx_errors; 587 if (fs & LCAR) 588 ++dev->stats.tx_carrier_errors; 589 else if (fs & (UFLO|LCOL|RTRY)) { 590 ++dev->stats.tx_aborted_errors; 591 if (mb->xmtfs & UFLO) { 592 printk(KERN_ERR "%s: DMA underrun.\n", dev->name); 593 dev->stats.tx_fifo_errors++; 594 mace_txdma_reset(dev); 595 } 596 } 597 } 598 } 599 600 if (mp->tx_count) 601 netif_wake_queue(dev); 602 603 local_irq_restore(flags); 604 605 return IRQ_HANDLED; 606 } 607 608 static void mace_tx_timeout(struct net_device *dev) 609 { 610 struct mace_data *mp = netdev_priv(dev); 611 volatile struct mace *mb = mp->mace; 612 unsigned long flags; 613 614 local_irq_save(flags); 615 616 /* turn off both tx and rx and reset the chip */ 617 mb->maccc = 0; 618 printk(KERN_ERR "macmace: transmit timeout - resetting\n"); 619 mace_txdma_reset(dev); 620 mace_reset(dev); 621 622 /* restart rx dma */ 623 mace_rxdma_reset(dev); 624 625 mp->tx_count = N_TX_RING; 626 netif_wake_queue(dev); 627 628 /* turn it on! */ 629 mb->maccc = ENXMT | ENRCV; 630 /* enable all interrupts except receive interrupts */ 631 mb->imr = RCVINT; 632 633 local_irq_restore(flags); 634 } 635 636 /* 637 * Handle a newly arrived frame 638 */ 639 640 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf) 641 { 642 struct sk_buff *skb; 643 unsigned int frame_status = mf->rcvsts; 644 645 if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) { 646 dev->stats.rx_errors++; 647 if (frame_status & RS_OFLO) { 648 printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name); 649 dev->stats.rx_fifo_errors++; 650 } 651 if (frame_status & RS_CLSN) 652 dev->stats.collisions++; 653 if (frame_status & RS_FRAMERR) 654 dev->stats.rx_frame_errors++; 655 if (frame_status & RS_FCSERR) 656 dev->stats.rx_crc_errors++; 657 } else { 658 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 ); 659 660 skb = netdev_alloc_skb(dev, frame_length + 2); 661 if (!skb) { 662 dev->stats.rx_dropped++; 663 return; 664 } 665 skb_reserve(skb, 2); 666 memcpy(skb_put(skb, frame_length), mf->data, frame_length); 667 668 skb->protocol = eth_type_trans(skb, dev); 669 netif_rx(skb); 670 dev->stats.rx_packets++; 671 dev->stats.rx_bytes += frame_length; 672 } 673 } 674 675 /* 676 * The PSC has passed us a DMA interrupt event. 677 */ 678 679 static irqreturn_t mace_dma_intr(int irq, void *dev_id) 680 { 681 struct net_device *dev = (struct net_device *) dev_id; 682 struct mace_data *mp = netdev_priv(dev); 683 int left, head; 684 u16 status; 685 u32 baka; 686 687 /* Not sure what this does */ 688 689 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY)); 690 if (!(baka & 0x60000000)) return IRQ_NONE; 691 692 /* 693 * Process the read queue 694 */ 695 696 status = psc_read_word(PSC_ENETRD_CTL); 697 698 if (status & 0x2000) { 699 mace_rxdma_reset(dev); 700 } else if (status & 0x0100) { 701 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100); 702 703 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot); 704 head = N_RX_RING - left; 705 706 /* Loop through the ring buffer and process new packages */ 707 708 while (mp->rx_tail < head) { 709 mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring 710 + (mp->rx_tail * MACE_BUFF_SIZE))); 711 mp->rx_tail++; 712 } 713 714 /* If we're out of buffers in this ring then switch to */ 715 /* the other set, otherwise just reactivate this one. */ 716 717 if (!left) { 718 mace_load_rxdma_base(dev, mp->rx_slot); 719 mp->rx_slot ^= 0x10; 720 } else { 721 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800); 722 } 723 } 724 725 /* 726 * Process the write queue 727 */ 728 729 status = psc_read_word(PSC_ENETWR_CTL); 730 731 if (status & 0x2000) { 732 mace_txdma_reset(dev); 733 } else if (status & 0x0100) { 734 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100); 735 mp->tx_sloti ^= 0x10; 736 mp->tx_count++; 737 } 738 return IRQ_HANDLED; 739 } 740 741 MODULE_LICENSE("GPL"); 742 MODULE_DESCRIPTION("Macintosh MACE ethernet driver"); 743 MODULE_ALIAS("platform:macmace"); 744 745 static int mac_mace_device_remove(struct platform_device *pdev) 746 { 747 struct net_device *dev = platform_get_drvdata(pdev); 748 struct mace_data *mp = netdev_priv(dev); 749 750 unregister_netdev(dev); 751 752 free_irq(dev->irq, dev); 753 free_irq(IRQ_MAC_MACE_DMA, dev); 754 755 dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE, 756 mp->rx_ring, mp->rx_ring_phys); 757 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE, 758 mp->tx_ring, mp->tx_ring_phys); 759 760 free_netdev(dev); 761 762 return 0; 763 } 764 765 static struct platform_driver mac_mace_driver = { 766 .probe = mace_probe, 767 .remove = mac_mace_device_remove, 768 .driver = { 769 .name = mac_mace_string, 770 .owner = THIS_MODULE, 771 }, 772 }; 773 774 static int __init mac_mace_init_module(void) 775 { 776 if (!MACH_IS_MAC) 777 return -ENODEV; 778 779 return platform_driver_register(&mac_mace_driver); 780 } 781 782 static void __exit mac_mace_cleanup_module(void) 783 { 784 platform_driver_unregister(&mac_mace_driver); 785 } 786 787 module_init(mac_mace_init_module); 788 module_exit(mac_mace_cleanup_module); 789