1 /*
2  *	Driver for the Macintosh 68K onboard MACE controller with PSC
3  *	driven DMA. The MACE driver code is derived from mace.c. The
4  *	Mac68k theory of operation is courtesy of the MacBSD wizards.
5  *
6  *	This program is free software; you can redistribute it and/or
7  *	modify it under the terms of the GNU General Public License
8  *	as published by the Free Software Foundation; either version
9  *	2 of the License, or (at your option) any later version.
10  *
11  *	Copyright (C) 1996 Paul Mackerras.
12  *	Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
13  *
14  *	Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
15  *
16  *	Copyright (C) 2007 Finn Thain
17  *
18  *	Converted to DMA API, converted to unified driver model,
19  *	sync'd some routines with mace.c and fixed various bugs.
20  */
21 
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/crc32.h>
30 #include <linux/bitrev.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/platform_device.h>
33 #include <linux/gfp.h>
34 #include <linux/interrupt.h>
35 #include <asm/io.h>
36 #include <asm/macints.h>
37 #include <asm/mac_psc.h>
38 #include <asm/page.h>
39 #include "mace.h"
40 
41 static char mac_mace_string[] = "macmace";
42 
43 #define N_TX_BUFF_ORDER	0
44 #define N_TX_RING	(1 << N_TX_BUFF_ORDER)
45 #define N_RX_BUFF_ORDER	3
46 #define N_RX_RING	(1 << N_RX_BUFF_ORDER)
47 
48 #define TX_TIMEOUT	HZ
49 
50 #define MACE_BUFF_SIZE	0x800
51 
52 /* Chip rev needs workaround on HW & multicast addr change */
53 #define BROKEN_ADDRCHG_REV	0x0941
54 
55 /* The MACE is simply wired down on a Mac68K box */
56 
57 #define MACE_BASE	(void *)(0x50F1C000)
58 #define MACE_PROM	(void *)(0x50F08001)
59 
60 struct mace_data {
61 	volatile struct mace *mace;
62 	unsigned char *tx_ring;
63 	dma_addr_t tx_ring_phys;
64 	unsigned char *rx_ring;
65 	dma_addr_t rx_ring_phys;
66 	int dma_intr;
67 	int rx_slot, rx_tail;
68 	int tx_slot, tx_sloti, tx_count;
69 	int chipid;
70 	struct device *device;
71 };
72 
73 struct mace_frame {
74 	u8	rcvcnt;
75 	u8	pad1;
76 	u8	rcvsts;
77 	u8	pad2;
78 	u8	rntpc;
79 	u8	pad3;
80 	u8	rcvcc;
81 	u8	pad4;
82 	u32	pad5;
83 	u32	pad6;
84 	u8	data[1];
85 	/* And frame continues.. */
86 };
87 
88 #define PRIV_BYTES	sizeof(struct mace_data)
89 
90 static int mace_open(struct net_device *dev);
91 static int mace_close(struct net_device *dev);
92 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
93 static void mace_set_multicast(struct net_device *dev);
94 static int mace_set_address(struct net_device *dev, void *addr);
95 static void mace_reset(struct net_device *dev);
96 static irqreturn_t mace_interrupt(int irq, void *dev_id);
97 static irqreturn_t mace_dma_intr(int irq, void *dev_id);
98 static void mace_tx_timeout(struct net_device *dev);
99 static void __mace_set_address(struct net_device *dev, void *addr);
100 
101 /*
102  * Load a receive DMA channel with a base address and ring length
103  */
104 
105 static void mace_load_rxdma_base(struct net_device *dev, int set)
106 {
107 	struct mace_data *mp = netdev_priv(dev);
108 
109 	psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
110 	psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
111 	psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
112 	psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
113 	mp->rx_tail = 0;
114 }
115 
116 /*
117  * Reset the receive DMA subsystem
118  */
119 
120 static void mace_rxdma_reset(struct net_device *dev)
121 {
122 	struct mace_data *mp = netdev_priv(dev);
123 	volatile struct mace *mace = mp->mace;
124 	u8 maccc = mace->maccc;
125 
126 	mace->maccc = maccc & ~ENRCV;
127 
128 	psc_write_word(PSC_ENETRD_CTL, 0x8800);
129 	mace_load_rxdma_base(dev, 0x00);
130 	psc_write_word(PSC_ENETRD_CTL, 0x0400);
131 
132 	psc_write_word(PSC_ENETRD_CTL, 0x8800);
133 	mace_load_rxdma_base(dev, 0x10);
134 	psc_write_word(PSC_ENETRD_CTL, 0x0400);
135 
136 	mace->maccc = maccc;
137 	mp->rx_slot = 0;
138 
139 	psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
140 	psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
141 }
142 
143 /*
144  * Reset the transmit DMA subsystem
145  */
146 
147 static void mace_txdma_reset(struct net_device *dev)
148 {
149 	struct mace_data *mp = netdev_priv(dev);
150 	volatile struct mace *mace = mp->mace;
151 	u8 maccc;
152 
153 	psc_write_word(PSC_ENETWR_CTL, 0x8800);
154 
155 	maccc = mace->maccc;
156 	mace->maccc = maccc & ~ENXMT;
157 
158 	mp->tx_slot = mp->tx_sloti = 0;
159 	mp->tx_count = N_TX_RING;
160 
161 	psc_write_word(PSC_ENETWR_CTL, 0x0400);
162 	mace->maccc = maccc;
163 }
164 
165 /*
166  * Disable DMA
167  */
168 
169 static void mace_dma_off(struct net_device *dev)
170 {
171 	psc_write_word(PSC_ENETRD_CTL, 0x8800);
172 	psc_write_word(PSC_ENETRD_CTL, 0x1000);
173 	psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
174 	psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
175 
176 	psc_write_word(PSC_ENETWR_CTL, 0x8800);
177 	psc_write_word(PSC_ENETWR_CTL, 0x1000);
178 	psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
179 	psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
180 }
181 
182 static const struct net_device_ops mace_netdev_ops = {
183 	.ndo_open		= mace_open,
184 	.ndo_stop		= mace_close,
185 	.ndo_start_xmit		= mace_xmit_start,
186 	.ndo_tx_timeout		= mace_tx_timeout,
187 	.ndo_set_rx_mode	= mace_set_multicast,
188 	.ndo_set_mac_address	= mace_set_address,
189 	.ndo_validate_addr	= eth_validate_addr,
190 };
191 
192 /*
193  * Not really much of a probe. The hardware table tells us if this
194  * model of Macintrash has a MACE (AV macintoshes)
195  */
196 
197 static int mace_probe(struct platform_device *pdev)
198 {
199 	int j;
200 	struct mace_data *mp;
201 	unsigned char *addr;
202 	struct net_device *dev;
203 	unsigned char checksum = 0;
204 	int err;
205 
206 	dev = alloc_etherdev(PRIV_BYTES);
207 	if (!dev)
208 		return -ENOMEM;
209 
210 	mp = netdev_priv(dev);
211 
212 	mp->device = &pdev->dev;
213 	platform_set_drvdata(pdev, dev);
214 	SET_NETDEV_DEV(dev, &pdev->dev);
215 
216 	dev->base_addr = (u32)MACE_BASE;
217 	mp->mace = MACE_BASE;
218 
219 	dev->irq = IRQ_MAC_MACE;
220 	mp->dma_intr = IRQ_MAC_MACE_DMA;
221 
222 	mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
223 
224 	/*
225 	 * The PROM contains 8 bytes which total 0xFF when XOR'd
226 	 * together. Due to the usual peculiar apple brain damage
227 	 * the bytes are spaced out in a strange boundary and the
228 	 * bits are reversed.
229 	 */
230 
231 	addr = MACE_PROM;
232 
233 	for (j = 0; j < 6; ++j) {
234 		u8 v = bitrev8(addr[j<<4]);
235 		checksum ^= v;
236 		dev->dev_addr[j] = v;
237 	}
238 	for (; j < 8; ++j) {
239 		checksum ^= bitrev8(addr[j<<4]);
240 	}
241 
242 	if (checksum != 0xFF) {
243 		free_netdev(dev);
244 		return -ENODEV;
245 	}
246 
247 	dev->netdev_ops		= &mace_netdev_ops;
248 	dev->watchdog_timeo	= TX_TIMEOUT;
249 
250 	printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
251 	       dev->name, dev->dev_addr);
252 
253 	err = register_netdev(dev);
254 	if (!err)
255 		return 0;
256 
257 	free_netdev(dev);
258 	return err;
259 }
260 
261 /*
262  * Reset the chip.
263  */
264 
265 static void mace_reset(struct net_device *dev)
266 {
267 	struct mace_data *mp = netdev_priv(dev);
268 	volatile struct mace *mb = mp->mace;
269 	int i;
270 
271 	/* soft-reset the chip */
272 	i = 200;
273 	while (--i) {
274 		mb->biucc = SWRST;
275 		if (mb->biucc & SWRST) {
276 			udelay(10);
277 			continue;
278 		}
279 		break;
280 	}
281 	if (!i) {
282 		printk(KERN_ERR "macmace: cannot reset chip!\n");
283 		return;
284 	}
285 
286 	mb->maccc = 0;	/* turn off tx, rx */
287 	mb->imr = 0xFF;	/* disable all intrs for now */
288 	i = mb->ir;
289 
290 	mb->biucc = XMTSP_64;
291 	mb->utr = RTRD;
292 	mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
293 
294 	mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
295 	mb->rcvfc = 0;
296 
297 	/* load up the hardware address */
298 	__mace_set_address(dev, dev->dev_addr);
299 
300 	/* clear the multicast filter */
301 	if (mp->chipid == BROKEN_ADDRCHG_REV)
302 		mb->iac = LOGADDR;
303 	else {
304 		mb->iac = ADDRCHG | LOGADDR;
305 		while ((mb->iac & ADDRCHG) != 0)
306 			;
307 	}
308 	for (i = 0; i < 8; ++i)
309 		mb->ladrf = 0;
310 
311 	/* done changing address */
312 	if (mp->chipid != BROKEN_ADDRCHG_REV)
313 		mb->iac = 0;
314 
315 	mb->plscc = PORTSEL_AUI;
316 }
317 
318 /*
319  * Load the address on a mace controller.
320  */
321 
322 static void __mace_set_address(struct net_device *dev, void *addr)
323 {
324 	struct mace_data *mp = netdev_priv(dev);
325 	volatile struct mace *mb = mp->mace;
326 	unsigned char *p = addr;
327 	int i;
328 
329 	/* load up the hardware address */
330 	if (mp->chipid == BROKEN_ADDRCHG_REV)
331 		mb->iac = PHYADDR;
332 	else {
333 		mb->iac = ADDRCHG | PHYADDR;
334 		while ((mb->iac & ADDRCHG) != 0)
335 			;
336 	}
337 	for (i = 0; i < 6; ++i)
338 		mb->padr = dev->dev_addr[i] = p[i];
339 	if (mp->chipid != BROKEN_ADDRCHG_REV)
340 		mb->iac = 0;
341 }
342 
343 static int mace_set_address(struct net_device *dev, void *addr)
344 {
345 	struct mace_data *mp = netdev_priv(dev);
346 	volatile struct mace *mb = mp->mace;
347 	unsigned long flags;
348 	u8 maccc;
349 
350 	local_irq_save(flags);
351 
352 	maccc = mb->maccc;
353 
354 	__mace_set_address(dev, addr);
355 
356 	mb->maccc = maccc;
357 
358 	local_irq_restore(flags);
359 
360 	return 0;
361 }
362 
363 /*
364  * Open the Macintosh MACE. Most of this is playing with the DMA
365  * engine. The ethernet chip is quite friendly.
366  */
367 
368 static int mace_open(struct net_device *dev)
369 {
370 	struct mace_data *mp = netdev_priv(dev);
371 	volatile struct mace *mb = mp->mace;
372 
373 	/* reset the chip */
374 	mace_reset(dev);
375 
376 	if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
377 		printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
378 		return -EAGAIN;
379 	}
380 	if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
381 		printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
382 		free_irq(dev->irq, dev);
383 		return -EAGAIN;
384 	}
385 
386 	/* Allocate the DMA ring buffers */
387 
388 	mp->tx_ring = dma_alloc_coherent(mp->device,
389 					 N_TX_RING * MACE_BUFF_SIZE,
390 					 &mp->tx_ring_phys, GFP_KERNEL);
391 	if (mp->tx_ring == NULL)
392 		goto out1;
393 
394 	mp->rx_ring = dma_alloc_coherent(mp->device,
395 					 N_RX_RING * MACE_BUFF_SIZE,
396 					 &mp->rx_ring_phys, GFP_KERNEL);
397 	if (mp->rx_ring == NULL)
398 		goto out2;
399 
400 	mace_dma_off(dev);
401 
402 	/* Not sure what these do */
403 
404 	psc_write_word(PSC_ENETWR_CTL, 0x9000);
405 	psc_write_word(PSC_ENETRD_CTL, 0x9000);
406 	psc_write_word(PSC_ENETWR_CTL, 0x0400);
407 	psc_write_word(PSC_ENETRD_CTL, 0x0400);
408 
409 	mace_rxdma_reset(dev);
410 	mace_txdma_reset(dev);
411 
412 	/* turn it on! */
413 	mb->maccc = ENXMT | ENRCV;
414 	/* enable all interrupts except receive interrupts */
415 	mb->imr = RCVINT;
416 	return 0;
417 
418 out2:
419 	dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
420 	                  mp->tx_ring, mp->tx_ring_phys);
421 out1:
422 	free_irq(dev->irq, dev);
423 	free_irq(mp->dma_intr, dev);
424 	return -ENOMEM;
425 }
426 
427 /*
428  * Shut down the mace and its interrupt channel
429  */
430 
431 static int mace_close(struct net_device *dev)
432 {
433 	struct mace_data *mp = netdev_priv(dev);
434 	volatile struct mace *mb = mp->mace;
435 
436 	mb->maccc = 0;		/* disable rx and tx	 */
437 	mb->imr = 0xFF;		/* disable all irqs	 */
438 	mace_dma_off(dev);	/* disable rx and tx dma */
439 
440 	return 0;
441 }
442 
443 /*
444  * Transmit a frame
445  */
446 
447 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
448 {
449 	struct mace_data *mp = netdev_priv(dev);
450 	unsigned long flags;
451 
452 	/* Stop the queue since there's only the one buffer */
453 
454 	local_irq_save(flags);
455 	netif_stop_queue(dev);
456 	if (!mp->tx_count) {
457 		printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
458 		local_irq_restore(flags);
459 		return NETDEV_TX_BUSY;
460 	}
461 	mp->tx_count--;
462 	local_irq_restore(flags);
463 
464 	dev->stats.tx_packets++;
465 	dev->stats.tx_bytes += skb->len;
466 
467 	/* We need to copy into our xmit buffer to take care of alignment and caching issues */
468 	skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
469 
470 	/* load the Tx DMA and fire it off */
471 
472 	psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32)  mp->tx_ring_phys);
473 	psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
474 	psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
475 
476 	mp->tx_slot ^= 0x10;
477 
478 	dev_kfree_skb(skb);
479 
480 	return NETDEV_TX_OK;
481 }
482 
483 static void mace_set_multicast(struct net_device *dev)
484 {
485 	struct mace_data *mp = netdev_priv(dev);
486 	volatile struct mace *mb = mp->mace;
487 	int i;
488 	u32 crc;
489 	u8 maccc;
490 	unsigned long flags;
491 
492 	local_irq_save(flags);
493 	maccc = mb->maccc;
494 	mb->maccc &= ~PROM;
495 
496 	if (dev->flags & IFF_PROMISC) {
497 		mb->maccc |= PROM;
498 	} else {
499 		unsigned char multicast_filter[8];
500 		struct netdev_hw_addr *ha;
501 
502 		if (dev->flags & IFF_ALLMULTI) {
503 			for (i = 0; i < 8; i++) {
504 				multicast_filter[i] = 0xFF;
505 			}
506 		} else {
507 			for (i = 0; i < 8; i++)
508 				multicast_filter[i] = 0;
509 			netdev_for_each_mc_addr(ha, dev) {
510 				crc = ether_crc_le(6, ha->addr);
511 				/* bit number in multicast_filter */
512 				i = crc >> 26;
513 				multicast_filter[i >> 3] |= 1 << (i & 7);
514 			}
515 		}
516 
517 		if (mp->chipid == BROKEN_ADDRCHG_REV)
518 			mb->iac = LOGADDR;
519 		else {
520 			mb->iac = ADDRCHG | LOGADDR;
521 			while ((mb->iac & ADDRCHG) != 0)
522 				;
523 		}
524 		for (i = 0; i < 8; ++i)
525 			mb->ladrf = multicast_filter[i];
526 		if (mp->chipid != BROKEN_ADDRCHG_REV)
527 			mb->iac = 0;
528 	}
529 
530 	mb->maccc = maccc;
531 	local_irq_restore(flags);
532 }
533 
534 static void mace_handle_misc_intrs(struct net_device *dev, int intr)
535 {
536 	struct mace_data *mp = netdev_priv(dev);
537 	volatile struct mace *mb = mp->mace;
538 	static int mace_babbles, mace_jabbers;
539 
540 	if (intr & MPCO)
541 		dev->stats.rx_missed_errors += 256;
542 	dev->stats.rx_missed_errors += mb->mpc;   /* reading clears it */
543 	if (intr & RNTPCO)
544 		dev->stats.rx_length_errors += 256;
545 	dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
546 	if (intr & CERR)
547 		++dev->stats.tx_heartbeat_errors;
548 	if (intr & BABBLE)
549 		if (mace_babbles++ < 4)
550 			printk(KERN_DEBUG "macmace: babbling transmitter\n");
551 	if (intr & JABBER)
552 		if (mace_jabbers++ < 4)
553 			printk(KERN_DEBUG "macmace: jabbering transceiver\n");
554 }
555 
556 static irqreturn_t mace_interrupt(int irq, void *dev_id)
557 {
558 	struct net_device *dev = (struct net_device *) dev_id;
559 	struct mace_data *mp = netdev_priv(dev);
560 	volatile struct mace *mb = mp->mace;
561 	int intr, fs;
562 	unsigned long flags;
563 
564 	/* don't want the dma interrupt handler to fire */
565 	local_irq_save(flags);
566 
567 	intr = mb->ir; /* read interrupt register */
568 	mace_handle_misc_intrs(dev, intr);
569 
570 	if (intr & XMTINT) {
571 		fs = mb->xmtfs;
572 		if ((fs & XMTSV) == 0) {
573 			printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
574 			mace_reset(dev);
575 			/*
576 			 * XXX mace likes to hang the machine after a xmtfs error.
577 			 * This is hard to reproduce, resetting *may* help
578 			 */
579 		}
580 		/* dma should have finished */
581 		if (!mp->tx_count) {
582 			printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
583 		}
584 		/* Update stats */
585 		if (fs & (UFLO|LCOL|LCAR|RTRY)) {
586 			++dev->stats.tx_errors;
587 			if (fs & LCAR)
588 				++dev->stats.tx_carrier_errors;
589 			else if (fs & (UFLO|LCOL|RTRY)) {
590 				++dev->stats.tx_aborted_errors;
591 				if (mb->xmtfs & UFLO) {
592 					printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
593 					dev->stats.tx_fifo_errors++;
594 					mace_txdma_reset(dev);
595 				}
596 			}
597 		}
598 	}
599 
600 	if (mp->tx_count)
601 		netif_wake_queue(dev);
602 
603 	local_irq_restore(flags);
604 
605 	return IRQ_HANDLED;
606 }
607 
608 static void mace_tx_timeout(struct net_device *dev)
609 {
610 	struct mace_data *mp = netdev_priv(dev);
611 	volatile struct mace *mb = mp->mace;
612 	unsigned long flags;
613 
614 	local_irq_save(flags);
615 
616 	/* turn off both tx and rx and reset the chip */
617 	mb->maccc = 0;
618 	printk(KERN_ERR "macmace: transmit timeout - resetting\n");
619 	mace_txdma_reset(dev);
620 	mace_reset(dev);
621 
622 	/* restart rx dma */
623 	mace_rxdma_reset(dev);
624 
625 	mp->tx_count = N_TX_RING;
626 	netif_wake_queue(dev);
627 
628 	/* turn it on! */
629 	mb->maccc = ENXMT | ENRCV;
630 	/* enable all interrupts except receive interrupts */
631 	mb->imr = RCVINT;
632 
633 	local_irq_restore(flags);
634 }
635 
636 /*
637  * Handle a newly arrived frame
638  */
639 
640 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
641 {
642 	struct sk_buff *skb;
643 	unsigned int frame_status = mf->rcvsts;
644 
645 	if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
646 		dev->stats.rx_errors++;
647 		if (frame_status & RS_OFLO) {
648 			printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
649 			dev->stats.rx_fifo_errors++;
650 		}
651 		if (frame_status & RS_CLSN)
652 			dev->stats.collisions++;
653 		if (frame_status & RS_FRAMERR)
654 			dev->stats.rx_frame_errors++;
655 		if (frame_status & RS_FCSERR)
656 			dev->stats.rx_crc_errors++;
657 	} else {
658 		unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
659 
660 		skb = netdev_alloc_skb(dev, frame_length + 2);
661 		if (!skb) {
662 			dev->stats.rx_dropped++;
663 			return;
664 		}
665 		skb_reserve(skb, 2);
666 		skb_put_data(skb, mf->data, frame_length);
667 
668 		skb->protocol = eth_type_trans(skb, dev);
669 		netif_rx(skb);
670 		dev->stats.rx_packets++;
671 		dev->stats.rx_bytes += frame_length;
672 	}
673 }
674 
675 /*
676  * The PSC has passed us a DMA interrupt event.
677  */
678 
679 static irqreturn_t mace_dma_intr(int irq, void *dev_id)
680 {
681 	struct net_device *dev = (struct net_device *) dev_id;
682 	struct mace_data *mp = netdev_priv(dev);
683 	int left, head;
684 	u16 status;
685 	u32 baka;
686 
687 	/* Not sure what this does */
688 
689 	while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
690 	if (!(baka & 0x60000000)) return IRQ_NONE;
691 
692 	/*
693 	 * Process the read queue
694 	 */
695 
696 	status = psc_read_word(PSC_ENETRD_CTL);
697 
698 	if (status & 0x2000) {
699 		mace_rxdma_reset(dev);
700 	} else if (status & 0x0100) {
701 		psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
702 
703 		left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
704 		head = N_RX_RING - left;
705 
706 		/* Loop through the ring buffer and process new packages */
707 
708 		while (mp->rx_tail < head) {
709 			mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
710 				+ (mp->rx_tail * MACE_BUFF_SIZE)));
711 			mp->rx_tail++;
712 		}
713 
714 		/* If we're out of buffers in this ring then switch to */
715 		/* the other set, otherwise just reactivate this one.  */
716 
717 		if (!left) {
718 			mace_load_rxdma_base(dev, mp->rx_slot);
719 			mp->rx_slot ^= 0x10;
720 		} else {
721 			psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
722 		}
723 	}
724 
725 	/*
726 	 * Process the write queue
727 	 */
728 
729 	status = psc_read_word(PSC_ENETWR_CTL);
730 
731 	if (status & 0x2000) {
732 		mace_txdma_reset(dev);
733 	} else if (status & 0x0100) {
734 		psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
735 		mp->tx_sloti ^= 0x10;
736 		mp->tx_count++;
737 	}
738 	return IRQ_HANDLED;
739 }
740 
741 MODULE_LICENSE("GPL");
742 MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
743 MODULE_ALIAS("platform:macmace");
744 
745 static int mac_mace_device_remove(struct platform_device *pdev)
746 {
747 	struct net_device *dev = platform_get_drvdata(pdev);
748 	struct mace_data *mp = netdev_priv(dev);
749 
750 	unregister_netdev(dev);
751 
752 	free_irq(dev->irq, dev);
753 	free_irq(IRQ_MAC_MACE_DMA, dev);
754 
755 	dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
756 	                  mp->rx_ring, mp->rx_ring_phys);
757 	dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
758 	                  mp->tx_ring, mp->tx_ring_phys);
759 
760 	free_netdev(dev);
761 
762 	return 0;
763 }
764 
765 static struct platform_driver mac_mace_driver = {
766 	.probe  = mace_probe,
767 	.remove = mac_mace_device_remove,
768 	.driver	= {
769 		.name	= mac_mace_string,
770 	},
771 };
772 
773 static int __init mac_mace_init_module(void)
774 {
775 	if (!MACH_IS_MAC)
776 		return -ENODEV;
777 
778 	return platform_driver_register(&mac_mace_driver);
779 }
780 
781 static void __exit mac_mace_cleanup_module(void)
782 {
783 	platform_driver_unregister(&mac_mace_driver);
784 }
785 
786 module_init(mac_mace_init_module);
787 module_exit(mac_mace_cleanup_module);
788