xref: /openbmc/linux/drivers/net/ethernet/apple/mace.c (revision e58e871b)
1 /*
2  * Network device driver for the MACE ethernet controller on
3  * Apple Powermacs.  Assumes it's under a DBDMA controller.
4  *
5  * Copyright (C) 1996 Paul Mackerras.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/crc32.h>
18 #include <linux/spinlock.h>
19 #include <linux/bitrev.h>
20 #include <linux/slab.h>
21 #include <asm/prom.h>
22 #include <asm/dbdma.h>
23 #include <asm/io.h>
24 #include <asm/pgtable.h>
25 #include <asm/macio.h>
26 
27 #include "mace.h"
28 
29 static int port_aaui = -1;
30 
31 #define N_RX_RING	8
32 #define N_TX_RING	6
33 #define MAX_TX_ACTIVE	1
34 #define NCMDS_TX	1	/* dma commands per element in tx ring */
35 #define RX_BUFLEN	(ETH_FRAME_LEN + 8)
36 #define TX_TIMEOUT	HZ	/* 1 second */
37 
38 /* Chip rev needs workaround on HW & multicast addr change */
39 #define BROKEN_ADDRCHG_REV	0x0941
40 
41 /* Bits in transmit DMA status */
42 #define TX_DMA_ERR	0x80
43 
44 struct mace_data {
45     volatile struct mace __iomem *mace;
46     volatile struct dbdma_regs __iomem *tx_dma;
47     int tx_dma_intr;
48     volatile struct dbdma_regs __iomem *rx_dma;
49     int rx_dma_intr;
50     volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
51     volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
52     struct sk_buff *rx_bufs[N_RX_RING];
53     int rx_fill;
54     int rx_empty;
55     struct sk_buff *tx_bufs[N_TX_RING];
56     int tx_fill;
57     int tx_empty;
58     unsigned char maccc;
59     unsigned char tx_fullup;
60     unsigned char tx_active;
61     unsigned char tx_bad_runt;
62     struct timer_list tx_timeout;
63     int timeout_active;
64     int port_aaui;
65     int chipid;
66     struct macio_dev *mdev;
67     spinlock_t lock;
68 };
69 
70 /*
71  * Number of bytes of private data per MACE: allow enough for
72  * the rx and tx dma commands plus a branch dma command each,
73  * and another 16 bytes to allow us to align the dma command
74  * buffers on a 16 byte boundary.
75  */
76 #define PRIV_BYTES	(sizeof(struct mace_data) \
77 	+ (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
78 
79 static int mace_open(struct net_device *dev);
80 static int mace_close(struct net_device *dev);
81 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
82 static void mace_set_multicast(struct net_device *dev);
83 static void mace_reset(struct net_device *dev);
84 static int mace_set_address(struct net_device *dev, void *addr);
85 static irqreturn_t mace_interrupt(int irq, void *dev_id);
86 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
87 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
88 static void mace_set_timeout(struct net_device *dev);
89 static void mace_tx_timeout(unsigned long data);
90 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
91 static inline void mace_clean_rings(struct mace_data *mp);
92 static void __mace_set_address(struct net_device *dev, void *addr);
93 
94 /*
95  * If we can't get a skbuff when we need it, we use this area for DMA.
96  */
97 static unsigned char *dummy_buf;
98 
99 static const struct net_device_ops mace_netdev_ops = {
100 	.ndo_open		= mace_open,
101 	.ndo_stop		= mace_close,
102 	.ndo_start_xmit		= mace_xmit_start,
103 	.ndo_set_rx_mode	= mace_set_multicast,
104 	.ndo_set_mac_address	= mace_set_address,
105 	.ndo_validate_addr	= eth_validate_addr,
106 };
107 
108 static int mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
109 {
110 	struct device_node *mace = macio_get_of_node(mdev);
111 	struct net_device *dev;
112 	struct mace_data *mp;
113 	const unsigned char *addr;
114 	int j, rev, rc = -EBUSY;
115 
116 	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
117 		printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
118 		       mace->full_name);
119 		return -ENODEV;
120 	}
121 
122 	addr = of_get_property(mace, "mac-address", NULL);
123 	if (addr == NULL) {
124 		addr = of_get_property(mace, "local-mac-address", NULL);
125 		if (addr == NULL) {
126 			printk(KERN_ERR "Can't get mac-address for MACE %s\n",
127 			       mace->full_name);
128 			return -ENODEV;
129 		}
130 	}
131 
132 	/*
133 	 * lazy allocate the driver-wide dummy buffer. (Note that we
134 	 * never have more than one MACE in the system anyway)
135 	 */
136 	if (dummy_buf == NULL) {
137 		dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
138 		if (dummy_buf == NULL)
139 			return -ENOMEM;
140 	}
141 
142 	if (macio_request_resources(mdev, "mace")) {
143 		printk(KERN_ERR "MACE: can't request IO resources !\n");
144 		return -EBUSY;
145 	}
146 
147 	dev = alloc_etherdev(PRIV_BYTES);
148 	if (!dev) {
149 		rc = -ENOMEM;
150 		goto err_release;
151 	}
152 	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
153 
154 	mp = netdev_priv(dev);
155 	mp->mdev = mdev;
156 	macio_set_drvdata(mdev, dev);
157 
158 	dev->base_addr = macio_resource_start(mdev, 0);
159 	mp->mace = ioremap(dev->base_addr, 0x1000);
160 	if (mp->mace == NULL) {
161 		printk(KERN_ERR "MACE: can't map IO resources !\n");
162 		rc = -ENOMEM;
163 		goto err_free;
164 	}
165 	dev->irq = macio_irq(mdev, 0);
166 
167 	rev = addr[0] == 0 && addr[1] == 0xA0;
168 	for (j = 0; j < 6; ++j) {
169 		dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
170 	}
171 	mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
172 			in_8(&mp->mace->chipid_lo);
173 
174 
175 	mp = netdev_priv(dev);
176 	mp->maccc = ENXMT | ENRCV;
177 
178 	mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
179 	if (mp->tx_dma == NULL) {
180 		printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
181 		rc = -ENOMEM;
182 		goto err_unmap_io;
183 	}
184 	mp->tx_dma_intr = macio_irq(mdev, 1);
185 
186 	mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
187 	if (mp->rx_dma == NULL) {
188 		printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
189 		rc = -ENOMEM;
190 		goto err_unmap_tx_dma;
191 	}
192 	mp->rx_dma_intr = macio_irq(mdev, 2);
193 
194 	mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
195 	mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
196 
197 	memset((char *) mp->tx_cmds, 0,
198 	       (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
199 	init_timer(&mp->tx_timeout);
200 	spin_lock_init(&mp->lock);
201 	mp->timeout_active = 0;
202 
203 	if (port_aaui >= 0)
204 		mp->port_aaui = port_aaui;
205 	else {
206 		/* Apple Network Server uses the AAUI port */
207 		if (of_machine_is_compatible("AAPL,ShinerESB"))
208 			mp->port_aaui = 1;
209 		else {
210 #ifdef CONFIG_MACE_AAUI_PORT
211 			mp->port_aaui = 1;
212 #else
213 			mp->port_aaui = 0;
214 #endif
215 		}
216 	}
217 
218 	dev->netdev_ops = &mace_netdev_ops;
219 
220 	/*
221 	 * Most of what is below could be moved to mace_open()
222 	 */
223 	mace_reset(dev);
224 
225 	rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
226 	if (rc) {
227 		printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
228 		goto err_unmap_rx_dma;
229 	}
230 	rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
231 	if (rc) {
232 		printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
233 		goto err_free_irq;
234 	}
235 	rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
236 	if (rc) {
237 		printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
238 		goto err_free_tx_irq;
239 	}
240 
241 	rc = register_netdev(dev);
242 	if (rc) {
243 		printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
244 		goto err_free_rx_irq;
245 	}
246 
247 	printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
248 	       dev->name, dev->dev_addr,
249 	       mp->chipid >> 8, mp->chipid & 0xff);
250 
251 	return 0;
252 
253  err_free_rx_irq:
254 	free_irq(macio_irq(mdev, 2), dev);
255  err_free_tx_irq:
256 	free_irq(macio_irq(mdev, 1), dev);
257  err_free_irq:
258 	free_irq(macio_irq(mdev, 0), dev);
259  err_unmap_rx_dma:
260 	iounmap(mp->rx_dma);
261  err_unmap_tx_dma:
262 	iounmap(mp->tx_dma);
263  err_unmap_io:
264 	iounmap(mp->mace);
265  err_free:
266 	free_netdev(dev);
267  err_release:
268 	macio_release_resources(mdev);
269 
270 	return rc;
271 }
272 
273 static int mace_remove(struct macio_dev *mdev)
274 {
275 	struct net_device *dev = macio_get_drvdata(mdev);
276 	struct mace_data *mp;
277 
278 	BUG_ON(dev == NULL);
279 
280 	macio_set_drvdata(mdev, NULL);
281 
282 	mp = netdev_priv(dev);
283 
284 	unregister_netdev(dev);
285 
286 	free_irq(dev->irq, dev);
287 	free_irq(mp->tx_dma_intr, dev);
288 	free_irq(mp->rx_dma_intr, dev);
289 
290 	iounmap(mp->rx_dma);
291 	iounmap(mp->tx_dma);
292 	iounmap(mp->mace);
293 
294 	free_netdev(dev);
295 
296 	macio_release_resources(mdev);
297 
298 	return 0;
299 }
300 
301 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
302 {
303     int i;
304 
305     out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
306 
307     /*
308      * Yes this looks peculiar, but apparently it needs to be this
309      * way on some machines.
310      */
311     for (i = 200; i > 0; --i)
312 	if (le32_to_cpu(dma->control) & RUN)
313 	    udelay(1);
314 }
315 
316 static void mace_reset(struct net_device *dev)
317 {
318     struct mace_data *mp = netdev_priv(dev);
319     volatile struct mace __iomem *mb = mp->mace;
320     int i;
321 
322     /* soft-reset the chip */
323     i = 200;
324     while (--i) {
325 	out_8(&mb->biucc, SWRST);
326 	if (in_8(&mb->biucc) & SWRST) {
327 	    udelay(10);
328 	    continue;
329 	}
330 	break;
331     }
332     if (!i) {
333 	printk(KERN_ERR "mace: cannot reset chip!\n");
334 	return;
335     }
336 
337     out_8(&mb->imr, 0xff);	/* disable all intrs for now */
338     i = in_8(&mb->ir);
339     out_8(&mb->maccc, 0);	/* turn off tx, rx */
340 
341     out_8(&mb->biucc, XMTSP_64);
342     out_8(&mb->utr, RTRD);
343     out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
344     out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
345     out_8(&mb->rcvfc, 0);
346 
347     /* load up the hardware address */
348     __mace_set_address(dev, dev->dev_addr);
349 
350     /* clear the multicast filter */
351     if (mp->chipid == BROKEN_ADDRCHG_REV)
352 	out_8(&mb->iac, LOGADDR);
353     else {
354 	out_8(&mb->iac, ADDRCHG | LOGADDR);
355 	while ((in_8(&mb->iac) & ADDRCHG) != 0)
356 		;
357     }
358     for (i = 0; i < 8; ++i)
359 	out_8(&mb->ladrf, 0);
360 
361     /* done changing address */
362     if (mp->chipid != BROKEN_ADDRCHG_REV)
363 	out_8(&mb->iac, 0);
364 
365     if (mp->port_aaui)
366     	out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
367     else
368     	out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
369 }
370 
371 static void __mace_set_address(struct net_device *dev, void *addr)
372 {
373     struct mace_data *mp = netdev_priv(dev);
374     volatile struct mace __iomem *mb = mp->mace;
375     unsigned char *p = addr;
376     int i;
377 
378     /* load up the hardware address */
379     if (mp->chipid == BROKEN_ADDRCHG_REV)
380     	out_8(&mb->iac, PHYADDR);
381     else {
382     	out_8(&mb->iac, ADDRCHG | PHYADDR);
383 	while ((in_8(&mb->iac) & ADDRCHG) != 0)
384 	    ;
385     }
386     for (i = 0; i < 6; ++i)
387 	out_8(&mb->padr, dev->dev_addr[i] = p[i]);
388     if (mp->chipid != BROKEN_ADDRCHG_REV)
389         out_8(&mb->iac, 0);
390 }
391 
392 static int mace_set_address(struct net_device *dev, void *addr)
393 {
394     struct mace_data *mp = netdev_priv(dev);
395     volatile struct mace __iomem *mb = mp->mace;
396     unsigned long flags;
397 
398     spin_lock_irqsave(&mp->lock, flags);
399 
400     __mace_set_address(dev, addr);
401 
402     /* note: setting ADDRCHG clears ENRCV */
403     out_8(&mb->maccc, mp->maccc);
404 
405     spin_unlock_irqrestore(&mp->lock, flags);
406     return 0;
407 }
408 
409 static inline void mace_clean_rings(struct mace_data *mp)
410 {
411     int i;
412 
413     /* free some skb's */
414     for (i = 0; i < N_RX_RING; ++i) {
415 	if (mp->rx_bufs[i] != NULL) {
416 	    dev_kfree_skb(mp->rx_bufs[i]);
417 	    mp->rx_bufs[i] = NULL;
418 	}
419     }
420     for (i = mp->tx_empty; i != mp->tx_fill; ) {
421 	dev_kfree_skb(mp->tx_bufs[i]);
422 	if (++i >= N_TX_RING)
423 	    i = 0;
424     }
425 }
426 
427 static int mace_open(struct net_device *dev)
428 {
429     struct mace_data *mp = netdev_priv(dev);
430     volatile struct mace __iomem *mb = mp->mace;
431     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
432     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
433     volatile struct dbdma_cmd *cp;
434     int i;
435     struct sk_buff *skb;
436     unsigned char *data;
437 
438     /* reset the chip */
439     mace_reset(dev);
440 
441     /* initialize list of sk_buffs for receiving and set up recv dma */
442     mace_clean_rings(mp);
443     memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
444     cp = mp->rx_cmds;
445     for (i = 0; i < N_RX_RING - 1; ++i) {
446 	skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
447 	if (!skb) {
448 	    data = dummy_buf;
449 	} else {
450 	    skb_reserve(skb, 2);	/* so IP header lands on 4-byte bdry */
451 	    data = skb->data;
452 	}
453 	mp->rx_bufs[i] = skb;
454 	cp->req_count = cpu_to_le16(RX_BUFLEN);
455 	cp->command = cpu_to_le16(INPUT_LAST + INTR_ALWAYS);
456 	cp->phy_addr = cpu_to_le32(virt_to_bus(data));
457 	cp->xfer_status = 0;
458 	++cp;
459     }
460     mp->rx_bufs[i] = NULL;
461     cp->command = cpu_to_le16(DBDMA_STOP);
462     mp->rx_fill = i;
463     mp->rx_empty = 0;
464 
465     /* Put a branch back to the beginning of the receive command list */
466     ++cp;
467     cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
468     cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->rx_cmds));
469 
470     /* start rx dma */
471     out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
472     out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
473     out_le32(&rd->control, (RUN << 16) | RUN);
474 
475     /* put a branch at the end of the tx command list */
476     cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
477     cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
478     cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->tx_cmds));
479 
480     /* reset tx dma */
481     out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
482     out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
483     mp->tx_fill = 0;
484     mp->tx_empty = 0;
485     mp->tx_fullup = 0;
486     mp->tx_active = 0;
487     mp->tx_bad_runt = 0;
488 
489     /* turn it on! */
490     out_8(&mb->maccc, mp->maccc);
491     /* enable all interrupts except receive interrupts */
492     out_8(&mb->imr, RCVINT);
493 
494     return 0;
495 }
496 
497 static int mace_close(struct net_device *dev)
498 {
499     struct mace_data *mp = netdev_priv(dev);
500     volatile struct mace __iomem *mb = mp->mace;
501     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
502     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
503 
504     /* disable rx and tx */
505     out_8(&mb->maccc, 0);
506     out_8(&mb->imr, 0xff);		/* disable all intrs */
507 
508     /* disable rx and tx dma */
509     rd->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
510     td->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
511 
512     mace_clean_rings(mp);
513 
514     return 0;
515 }
516 
517 static inline void mace_set_timeout(struct net_device *dev)
518 {
519     struct mace_data *mp = netdev_priv(dev);
520 
521     if (mp->timeout_active)
522 	del_timer(&mp->tx_timeout);
523     mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
524     mp->tx_timeout.function = mace_tx_timeout;
525     mp->tx_timeout.data = (unsigned long) dev;
526     add_timer(&mp->tx_timeout);
527     mp->timeout_active = 1;
528 }
529 
530 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
531 {
532     struct mace_data *mp = netdev_priv(dev);
533     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
534     volatile struct dbdma_cmd *cp, *np;
535     unsigned long flags;
536     int fill, next, len;
537 
538     /* see if there's a free slot in the tx ring */
539     spin_lock_irqsave(&mp->lock, flags);
540     fill = mp->tx_fill;
541     next = fill + 1;
542     if (next >= N_TX_RING)
543 	next = 0;
544     if (next == mp->tx_empty) {
545 	netif_stop_queue(dev);
546 	mp->tx_fullup = 1;
547 	spin_unlock_irqrestore(&mp->lock, flags);
548 	return NETDEV_TX_BUSY;		/* can't take it at the moment */
549     }
550     spin_unlock_irqrestore(&mp->lock, flags);
551 
552     /* partially fill in the dma command block */
553     len = skb->len;
554     if (len > ETH_FRAME_LEN) {
555 	printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
556 	len = ETH_FRAME_LEN;
557     }
558     mp->tx_bufs[fill] = skb;
559     cp = mp->tx_cmds + NCMDS_TX * fill;
560     cp->req_count = cpu_to_le16(len);
561     cp->phy_addr = cpu_to_le32(virt_to_bus(skb->data));
562 
563     np = mp->tx_cmds + NCMDS_TX * next;
564     out_le16(&np->command, DBDMA_STOP);
565 
566     /* poke the tx dma channel */
567     spin_lock_irqsave(&mp->lock, flags);
568     mp->tx_fill = next;
569     if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
570 	out_le16(&cp->xfer_status, 0);
571 	out_le16(&cp->command, OUTPUT_LAST);
572 	out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
573 	++mp->tx_active;
574 	mace_set_timeout(dev);
575     }
576     if (++next >= N_TX_RING)
577 	next = 0;
578     if (next == mp->tx_empty)
579 	netif_stop_queue(dev);
580     spin_unlock_irqrestore(&mp->lock, flags);
581 
582     return NETDEV_TX_OK;
583 }
584 
585 static void mace_set_multicast(struct net_device *dev)
586 {
587     struct mace_data *mp = netdev_priv(dev);
588     volatile struct mace __iomem *mb = mp->mace;
589     int i;
590     u32 crc;
591     unsigned long flags;
592 
593     spin_lock_irqsave(&mp->lock, flags);
594     mp->maccc &= ~PROM;
595     if (dev->flags & IFF_PROMISC) {
596 	mp->maccc |= PROM;
597     } else {
598 	unsigned char multicast_filter[8];
599 	struct netdev_hw_addr *ha;
600 
601 	if (dev->flags & IFF_ALLMULTI) {
602 	    for (i = 0; i < 8; i++)
603 		multicast_filter[i] = 0xff;
604 	} else {
605 	    for (i = 0; i < 8; i++)
606 		multicast_filter[i] = 0;
607 	    netdev_for_each_mc_addr(ha, dev) {
608 	        crc = ether_crc_le(6, ha->addr);
609 		i = crc >> 26;	/* bit number in multicast_filter */
610 		multicast_filter[i >> 3] |= 1 << (i & 7);
611 	    }
612 	}
613 #if 0
614 	printk("Multicast filter :");
615 	for (i = 0; i < 8; i++)
616 	    printk("%02x ", multicast_filter[i]);
617 	printk("\n");
618 #endif
619 
620 	if (mp->chipid == BROKEN_ADDRCHG_REV)
621 	    out_8(&mb->iac, LOGADDR);
622 	else {
623 	    out_8(&mb->iac, ADDRCHG | LOGADDR);
624 	    while ((in_8(&mb->iac) & ADDRCHG) != 0)
625 		;
626 	}
627 	for (i = 0; i < 8; ++i)
628 	    out_8(&mb->ladrf, multicast_filter[i]);
629 	if (mp->chipid != BROKEN_ADDRCHG_REV)
630 	    out_8(&mb->iac, 0);
631     }
632     /* reset maccc */
633     out_8(&mb->maccc, mp->maccc);
634     spin_unlock_irqrestore(&mp->lock, flags);
635 }
636 
637 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
638 {
639     volatile struct mace __iomem *mb = mp->mace;
640     static int mace_babbles, mace_jabbers;
641 
642     if (intr & MPCO)
643 	dev->stats.rx_missed_errors += 256;
644     dev->stats.rx_missed_errors += in_8(&mb->mpc);   /* reading clears it */
645     if (intr & RNTPCO)
646 	dev->stats.rx_length_errors += 256;
647     dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
648     if (intr & CERR)
649 	++dev->stats.tx_heartbeat_errors;
650     if (intr & BABBLE)
651 	if (mace_babbles++ < 4)
652 	    printk(KERN_DEBUG "mace: babbling transmitter\n");
653     if (intr & JABBER)
654 	if (mace_jabbers++ < 4)
655 	    printk(KERN_DEBUG "mace: jabbering transceiver\n");
656 }
657 
658 static irqreturn_t mace_interrupt(int irq, void *dev_id)
659 {
660     struct net_device *dev = (struct net_device *) dev_id;
661     struct mace_data *mp = netdev_priv(dev);
662     volatile struct mace __iomem *mb = mp->mace;
663     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
664     volatile struct dbdma_cmd *cp;
665     int intr, fs, i, stat, x;
666     int xcount, dstat;
667     unsigned long flags;
668     /* static int mace_last_fs, mace_last_xcount; */
669 
670     spin_lock_irqsave(&mp->lock, flags);
671     intr = in_8(&mb->ir);		/* read interrupt register */
672     in_8(&mb->xmtrc);			/* get retries */
673     mace_handle_misc_intrs(mp, intr, dev);
674 
675     i = mp->tx_empty;
676     while (in_8(&mb->pr) & XMTSV) {
677 	del_timer(&mp->tx_timeout);
678 	mp->timeout_active = 0;
679 	/*
680 	 * Clear any interrupt indication associated with this status
681 	 * word.  This appears to unlatch any error indication from
682 	 * the DMA controller.
683 	 */
684 	intr = in_8(&mb->ir);
685 	if (intr != 0)
686 	    mace_handle_misc_intrs(mp, intr, dev);
687 	if (mp->tx_bad_runt) {
688 	    fs = in_8(&mb->xmtfs);
689 	    mp->tx_bad_runt = 0;
690 	    out_8(&mb->xmtfc, AUTO_PAD_XMIT);
691 	    continue;
692 	}
693 	dstat = le32_to_cpu(td->status);
694 	/* stop DMA controller */
695 	out_le32(&td->control, RUN << 16);
696 	/*
697 	 * xcount is the number of complete frames which have been
698 	 * written to the fifo but for which status has not been read.
699 	 */
700 	xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
701 	if (xcount == 0 || (dstat & DEAD)) {
702 	    /*
703 	     * If a packet was aborted before the DMA controller has
704 	     * finished transferring it, it seems that there are 2 bytes
705 	     * which are stuck in some buffer somewhere.  These will get
706 	     * transmitted as soon as we read the frame status (which
707 	     * reenables the transmit data transfer request).  Turning
708 	     * off the DMA controller and/or resetting the MACE doesn't
709 	     * help.  So we disable auto-padding and FCS transmission
710 	     * so the two bytes will only be a runt packet which should
711 	     * be ignored by other stations.
712 	     */
713 	    out_8(&mb->xmtfc, DXMTFCS);
714 	}
715 	fs = in_8(&mb->xmtfs);
716 	if ((fs & XMTSV) == 0) {
717 	    printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
718 		   fs, xcount, dstat);
719 	    mace_reset(dev);
720 		/*
721 		 * XXX mace likes to hang the machine after a xmtfs error.
722 		 * This is hard to reproduce, resetting *may* help
723 		 */
724 	}
725 	cp = mp->tx_cmds + NCMDS_TX * i;
726 	stat = le16_to_cpu(cp->xfer_status);
727 	if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
728 	    /*
729 	     * Check whether there were in fact 2 bytes written to
730 	     * the transmit FIFO.
731 	     */
732 	    udelay(1);
733 	    x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
734 	    if (x != 0) {
735 		/* there were two bytes with an end-of-packet indication */
736 		mp->tx_bad_runt = 1;
737 		mace_set_timeout(dev);
738 	    } else {
739 		/*
740 		 * Either there weren't the two bytes buffered up, or they
741 		 * didn't have an end-of-packet indication.
742 		 * We flush the transmit FIFO just in case (by setting the
743 		 * XMTFWU bit with the transmitter disabled).
744 		 */
745 		out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
746 		out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
747 		udelay(1);
748 		out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
749 		out_8(&mb->xmtfc, AUTO_PAD_XMIT);
750 	    }
751 	}
752 	/* dma should have finished */
753 	if (i == mp->tx_fill) {
754 	    printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
755 		   fs, xcount, dstat);
756 	    continue;
757 	}
758 	/* Update stats */
759 	if (fs & (UFLO|LCOL|LCAR|RTRY)) {
760 	    ++dev->stats.tx_errors;
761 	    if (fs & LCAR)
762 		++dev->stats.tx_carrier_errors;
763 	    if (fs & (UFLO|LCOL|RTRY))
764 		++dev->stats.tx_aborted_errors;
765 	} else {
766 	    dev->stats.tx_bytes += mp->tx_bufs[i]->len;
767 	    ++dev->stats.tx_packets;
768 	}
769 	dev_kfree_skb_irq(mp->tx_bufs[i]);
770 	--mp->tx_active;
771 	if (++i >= N_TX_RING)
772 	    i = 0;
773 #if 0
774 	mace_last_fs = fs;
775 	mace_last_xcount = xcount;
776 #endif
777     }
778 
779     if (i != mp->tx_empty) {
780 	mp->tx_fullup = 0;
781 	netif_wake_queue(dev);
782     }
783     mp->tx_empty = i;
784     i += mp->tx_active;
785     if (i >= N_TX_RING)
786 	i -= N_TX_RING;
787     if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
788 	do {
789 	    /* set up the next one */
790 	    cp = mp->tx_cmds + NCMDS_TX * i;
791 	    out_le16(&cp->xfer_status, 0);
792 	    out_le16(&cp->command, OUTPUT_LAST);
793 	    ++mp->tx_active;
794 	    if (++i >= N_TX_RING)
795 		i = 0;
796 	} while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
797 	out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
798 	mace_set_timeout(dev);
799     }
800     spin_unlock_irqrestore(&mp->lock, flags);
801     return IRQ_HANDLED;
802 }
803 
804 static void mace_tx_timeout(unsigned long data)
805 {
806     struct net_device *dev = (struct net_device *) data;
807     struct mace_data *mp = netdev_priv(dev);
808     volatile struct mace __iomem *mb = mp->mace;
809     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
810     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
811     volatile struct dbdma_cmd *cp;
812     unsigned long flags;
813     int i;
814 
815     spin_lock_irqsave(&mp->lock, flags);
816     mp->timeout_active = 0;
817     if (mp->tx_active == 0 && !mp->tx_bad_runt)
818 	goto out;
819 
820     /* update various counters */
821     mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
822 
823     cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
824 
825     /* turn off both tx and rx and reset the chip */
826     out_8(&mb->maccc, 0);
827     printk(KERN_ERR "mace: transmit timeout - resetting\n");
828     dbdma_reset(td);
829     mace_reset(dev);
830 
831     /* restart rx dma */
832     cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
833     dbdma_reset(rd);
834     out_le16(&cp->xfer_status, 0);
835     out_le32(&rd->cmdptr, virt_to_bus(cp));
836     out_le32(&rd->control, (RUN << 16) | RUN);
837 
838     /* fix up the transmit side */
839     i = mp->tx_empty;
840     mp->tx_active = 0;
841     ++dev->stats.tx_errors;
842     if (mp->tx_bad_runt) {
843 	mp->tx_bad_runt = 0;
844     } else if (i != mp->tx_fill) {
845 	dev_kfree_skb(mp->tx_bufs[i]);
846 	if (++i >= N_TX_RING)
847 	    i = 0;
848 	mp->tx_empty = i;
849     }
850     mp->tx_fullup = 0;
851     netif_wake_queue(dev);
852     if (i != mp->tx_fill) {
853 	cp = mp->tx_cmds + NCMDS_TX * i;
854 	out_le16(&cp->xfer_status, 0);
855 	out_le16(&cp->command, OUTPUT_LAST);
856 	out_le32(&td->cmdptr, virt_to_bus(cp));
857 	out_le32(&td->control, (RUN << 16) | RUN);
858 	++mp->tx_active;
859 	mace_set_timeout(dev);
860     }
861 
862     /* turn it back on */
863     out_8(&mb->imr, RCVINT);
864     out_8(&mb->maccc, mp->maccc);
865 
866 out:
867     spin_unlock_irqrestore(&mp->lock, flags);
868 }
869 
870 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
871 {
872 	return IRQ_HANDLED;
873 }
874 
875 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
876 {
877     struct net_device *dev = (struct net_device *) dev_id;
878     struct mace_data *mp = netdev_priv(dev);
879     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
880     volatile struct dbdma_cmd *cp, *np;
881     int i, nb, stat, next;
882     struct sk_buff *skb;
883     unsigned frame_status;
884     static int mace_lost_status;
885     unsigned char *data;
886     unsigned long flags;
887 
888     spin_lock_irqsave(&mp->lock, flags);
889     for (i = mp->rx_empty; i != mp->rx_fill; ) {
890 	cp = mp->rx_cmds + i;
891 	stat = le16_to_cpu(cp->xfer_status);
892 	if ((stat & ACTIVE) == 0) {
893 	    next = i + 1;
894 	    if (next >= N_RX_RING)
895 		next = 0;
896 	    np = mp->rx_cmds + next;
897 	    if (next != mp->rx_fill &&
898 		(le16_to_cpu(np->xfer_status) & ACTIVE) != 0) {
899 		printk(KERN_DEBUG "mace: lost a status word\n");
900 		++mace_lost_status;
901 	    } else
902 		break;
903 	}
904 	nb = le16_to_cpu(cp->req_count) - le16_to_cpu(cp->res_count);
905 	out_le16(&cp->command, DBDMA_STOP);
906 	/* got a packet, have a look at it */
907 	skb = mp->rx_bufs[i];
908 	if (!skb) {
909 	    ++dev->stats.rx_dropped;
910 	} else if (nb > 8) {
911 	    data = skb->data;
912 	    frame_status = (data[nb-3] << 8) + data[nb-4];
913 	    if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
914 		++dev->stats.rx_errors;
915 		if (frame_status & RS_OFLO)
916 		    ++dev->stats.rx_over_errors;
917 		if (frame_status & RS_FRAMERR)
918 		    ++dev->stats.rx_frame_errors;
919 		if (frame_status & RS_FCSERR)
920 		    ++dev->stats.rx_crc_errors;
921 	    } else {
922 		/* Mace feature AUTO_STRIP_RCV is on by default, dropping the
923 		 * FCS on frames with 802.3 headers. This means that Ethernet
924 		 * frames have 8 extra octets at the end, while 802.3 frames
925 		 * have only 4. We need to correctly account for this. */
926 		if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
927 		    nb -= 4;
928 		else	/* Ethernet header; mace includes FCS */
929 		    nb -= 8;
930 		skb_put(skb, nb);
931 		skb->protocol = eth_type_trans(skb, dev);
932 		dev->stats.rx_bytes += skb->len;
933 		netif_rx(skb);
934 		mp->rx_bufs[i] = NULL;
935 		++dev->stats.rx_packets;
936 	    }
937 	} else {
938 	    ++dev->stats.rx_errors;
939 	    ++dev->stats.rx_length_errors;
940 	}
941 
942 	/* advance to next */
943 	if (++i >= N_RX_RING)
944 	    i = 0;
945     }
946     mp->rx_empty = i;
947 
948     i = mp->rx_fill;
949     for (;;) {
950 	next = i + 1;
951 	if (next >= N_RX_RING)
952 	    next = 0;
953 	if (next == mp->rx_empty)
954 	    break;
955 	cp = mp->rx_cmds + i;
956 	skb = mp->rx_bufs[i];
957 	if (!skb) {
958 	    skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
959 	    if (skb) {
960 		skb_reserve(skb, 2);
961 		mp->rx_bufs[i] = skb;
962 	    }
963 	}
964 	cp->req_count = cpu_to_le16(RX_BUFLEN);
965 	data = skb? skb->data: dummy_buf;
966 	cp->phy_addr = cpu_to_le32(virt_to_bus(data));
967 	out_le16(&cp->xfer_status, 0);
968 	out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
969 #if 0
970 	if ((le32_to_cpu(rd->status) & ACTIVE) != 0) {
971 	    out_le32(&rd->control, (PAUSE << 16) | PAUSE);
972 	    while ((in_le32(&rd->status) & ACTIVE) != 0)
973 		;
974 	}
975 #endif
976 	i = next;
977     }
978     if (i != mp->rx_fill) {
979 	out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
980 	mp->rx_fill = i;
981     }
982     spin_unlock_irqrestore(&mp->lock, flags);
983     return IRQ_HANDLED;
984 }
985 
986 static const struct of_device_id mace_match[] =
987 {
988 	{
989 	.name 		= "mace",
990 	},
991 	{},
992 };
993 MODULE_DEVICE_TABLE (of, mace_match);
994 
995 static struct macio_driver mace_driver =
996 {
997 	.driver = {
998 		.name 		= "mace",
999 		.owner		= THIS_MODULE,
1000 		.of_match_table	= mace_match,
1001 	},
1002 	.probe		= mace_probe,
1003 	.remove		= mace_remove,
1004 };
1005 
1006 
1007 static int __init mace_init(void)
1008 {
1009 	return macio_register_driver(&mace_driver);
1010 }
1011 
1012 static void __exit mace_cleanup(void)
1013 {
1014 	macio_unregister_driver(&mace_driver);
1015 
1016 	kfree(dummy_buf);
1017 	dummy_buf = NULL;
1018 }
1019 
1020 MODULE_AUTHOR("Paul Mackerras");
1021 MODULE_DESCRIPTION("PowerMac MACE driver.");
1022 module_param(port_aaui, int, 0);
1023 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1024 MODULE_LICENSE("GPL");
1025 
1026 module_init(mace_init);
1027 module_exit(mace_cleanup);
1028