1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Network device driver for the MACE ethernet controller on 4 * Apple Powermacs. Assumes it's under a DBDMA controller. 5 * 6 * Copyright (C) 1996 Paul Mackerras. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/kernel.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/delay.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/crc32.h> 19 #include <linux/spinlock.h> 20 #include <linux/bitrev.h> 21 #include <linux/slab.h> 22 #include <linux/pgtable.h> 23 #include <asm/dbdma.h> 24 #include <asm/io.h> 25 #include <asm/macio.h> 26 27 #include "mace.h" 28 29 static int port_aaui = -1; 30 31 #define N_RX_RING 8 32 #define N_TX_RING 6 33 #define MAX_TX_ACTIVE 1 34 #define NCMDS_TX 1 /* dma commands per element in tx ring */ 35 #define RX_BUFLEN (ETH_FRAME_LEN + 8) 36 #define TX_TIMEOUT HZ /* 1 second */ 37 38 /* Chip rev needs workaround on HW & multicast addr change */ 39 #define BROKEN_ADDRCHG_REV 0x0941 40 41 /* Bits in transmit DMA status */ 42 #define TX_DMA_ERR 0x80 43 44 struct mace_data { 45 volatile struct mace __iomem *mace; 46 volatile struct dbdma_regs __iomem *tx_dma; 47 int tx_dma_intr; 48 volatile struct dbdma_regs __iomem *rx_dma; 49 int rx_dma_intr; 50 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */ 51 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */ 52 struct sk_buff *rx_bufs[N_RX_RING]; 53 int rx_fill; 54 int rx_empty; 55 struct sk_buff *tx_bufs[N_TX_RING]; 56 int tx_fill; 57 int tx_empty; 58 unsigned char maccc; 59 unsigned char tx_fullup; 60 unsigned char tx_active; 61 unsigned char tx_bad_runt; 62 struct timer_list tx_timeout; 63 int timeout_active; 64 int port_aaui; 65 int chipid; 66 struct macio_dev *mdev; 67 spinlock_t lock; 68 }; 69 70 /* 71 * Number of bytes of private data per MACE: allow enough for 72 * the rx and tx dma commands plus a branch dma command each, 73 * and another 16 bytes to allow us to align the dma command 74 * buffers on a 16 byte boundary. 75 */ 76 #define PRIV_BYTES (sizeof(struct mace_data) \ 77 + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd)) 78 79 static int mace_open(struct net_device *dev); 80 static int mace_close(struct net_device *dev); 81 static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev); 82 static void mace_set_multicast(struct net_device *dev); 83 static void mace_reset(struct net_device *dev); 84 static int mace_set_address(struct net_device *dev, void *addr); 85 static irqreturn_t mace_interrupt(int irq, void *dev_id); 86 static irqreturn_t mace_txdma_intr(int irq, void *dev_id); 87 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id); 88 static void mace_set_timeout(struct net_device *dev); 89 static void mace_tx_timeout(struct timer_list *t); 90 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma); 91 static inline void mace_clean_rings(struct mace_data *mp); 92 static void __mace_set_address(struct net_device *dev, const void *addr); 93 94 /* 95 * If we can't get a skbuff when we need it, we use this area for DMA. 96 */ 97 static unsigned char *dummy_buf; 98 99 static const struct net_device_ops mace_netdev_ops = { 100 .ndo_open = mace_open, 101 .ndo_stop = mace_close, 102 .ndo_start_xmit = mace_xmit_start, 103 .ndo_set_rx_mode = mace_set_multicast, 104 .ndo_set_mac_address = mace_set_address, 105 .ndo_validate_addr = eth_validate_addr, 106 }; 107 108 static int mace_probe(struct macio_dev *mdev, const struct of_device_id *match) 109 { 110 struct device_node *mace = macio_get_of_node(mdev); 111 struct net_device *dev; 112 struct mace_data *mp; 113 const unsigned char *addr; 114 u8 macaddr[ETH_ALEN]; 115 int j, rev, rc = -EBUSY; 116 117 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) { 118 printk(KERN_ERR "can't use MACE %pOF: need 3 addrs and 3 irqs\n", 119 mace); 120 return -ENODEV; 121 } 122 123 addr = of_get_property(mace, "mac-address", NULL); 124 if (addr == NULL) { 125 addr = of_get_property(mace, "local-mac-address", NULL); 126 if (addr == NULL) { 127 printk(KERN_ERR "Can't get mac-address for MACE %pOF\n", 128 mace); 129 return -ENODEV; 130 } 131 } 132 133 /* 134 * lazy allocate the driver-wide dummy buffer. (Note that we 135 * never have more than one MACE in the system anyway) 136 */ 137 if (dummy_buf == NULL) { 138 dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL); 139 if (dummy_buf == NULL) 140 return -ENOMEM; 141 } 142 143 if (macio_request_resources(mdev, "mace")) { 144 printk(KERN_ERR "MACE: can't request IO resources !\n"); 145 return -EBUSY; 146 } 147 148 dev = alloc_etherdev(PRIV_BYTES); 149 if (!dev) { 150 rc = -ENOMEM; 151 goto err_release; 152 } 153 SET_NETDEV_DEV(dev, &mdev->ofdev.dev); 154 155 mp = netdev_priv(dev); 156 mp->mdev = mdev; 157 macio_set_drvdata(mdev, dev); 158 159 dev->base_addr = macio_resource_start(mdev, 0); 160 mp->mace = ioremap(dev->base_addr, 0x1000); 161 if (mp->mace == NULL) { 162 printk(KERN_ERR "MACE: can't map IO resources !\n"); 163 rc = -ENOMEM; 164 goto err_free; 165 } 166 dev->irq = macio_irq(mdev, 0); 167 168 rev = addr[0] == 0 && addr[1] == 0xA0; 169 for (j = 0; j < 6; ++j) { 170 macaddr[j] = rev ? bitrev8(addr[j]): addr[j]; 171 } 172 eth_hw_addr_set(dev, macaddr); 173 mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) | 174 in_8(&mp->mace->chipid_lo); 175 176 177 mp = netdev_priv(dev); 178 mp->maccc = ENXMT | ENRCV; 179 180 mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000); 181 if (mp->tx_dma == NULL) { 182 printk(KERN_ERR "MACE: can't map TX DMA resources !\n"); 183 rc = -ENOMEM; 184 goto err_unmap_io; 185 } 186 mp->tx_dma_intr = macio_irq(mdev, 1); 187 188 mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000); 189 if (mp->rx_dma == NULL) { 190 printk(KERN_ERR "MACE: can't map RX DMA resources !\n"); 191 rc = -ENOMEM; 192 goto err_unmap_tx_dma; 193 } 194 mp->rx_dma_intr = macio_irq(mdev, 2); 195 196 mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1); 197 mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1; 198 199 memset((char *) mp->tx_cmds, 0, 200 (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd)); 201 timer_setup(&mp->tx_timeout, mace_tx_timeout, 0); 202 spin_lock_init(&mp->lock); 203 mp->timeout_active = 0; 204 205 if (port_aaui >= 0) 206 mp->port_aaui = port_aaui; 207 else { 208 /* Apple Network Server uses the AAUI port */ 209 if (of_machine_is_compatible("AAPL,ShinerESB")) 210 mp->port_aaui = 1; 211 else { 212 #ifdef CONFIG_MACE_AAUI_PORT 213 mp->port_aaui = 1; 214 #else 215 mp->port_aaui = 0; 216 #endif 217 } 218 } 219 220 dev->netdev_ops = &mace_netdev_ops; 221 222 /* 223 * Most of what is below could be moved to mace_open() 224 */ 225 mace_reset(dev); 226 227 rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev); 228 if (rc) { 229 printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq); 230 goto err_unmap_rx_dma; 231 } 232 rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev); 233 if (rc) { 234 printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr); 235 goto err_free_irq; 236 } 237 rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev); 238 if (rc) { 239 printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr); 240 goto err_free_tx_irq; 241 } 242 243 rc = register_netdev(dev); 244 if (rc) { 245 printk(KERN_ERR "MACE: Cannot register net device, aborting.\n"); 246 goto err_free_rx_irq; 247 } 248 249 printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n", 250 dev->name, dev->dev_addr, 251 mp->chipid >> 8, mp->chipid & 0xff); 252 253 return 0; 254 255 err_free_rx_irq: 256 free_irq(macio_irq(mdev, 2), dev); 257 err_free_tx_irq: 258 free_irq(macio_irq(mdev, 1), dev); 259 err_free_irq: 260 free_irq(macio_irq(mdev, 0), dev); 261 err_unmap_rx_dma: 262 iounmap(mp->rx_dma); 263 err_unmap_tx_dma: 264 iounmap(mp->tx_dma); 265 err_unmap_io: 266 iounmap(mp->mace); 267 err_free: 268 free_netdev(dev); 269 err_release: 270 macio_release_resources(mdev); 271 272 return rc; 273 } 274 275 static int mace_remove(struct macio_dev *mdev) 276 { 277 struct net_device *dev = macio_get_drvdata(mdev); 278 struct mace_data *mp; 279 280 BUG_ON(dev == NULL); 281 282 macio_set_drvdata(mdev, NULL); 283 284 mp = netdev_priv(dev); 285 286 unregister_netdev(dev); 287 288 free_irq(dev->irq, dev); 289 free_irq(mp->tx_dma_intr, dev); 290 free_irq(mp->rx_dma_intr, dev); 291 292 iounmap(mp->rx_dma); 293 iounmap(mp->tx_dma); 294 iounmap(mp->mace); 295 296 free_netdev(dev); 297 298 macio_release_resources(mdev); 299 300 return 0; 301 } 302 303 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma) 304 { 305 int i; 306 307 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16); 308 309 /* 310 * Yes this looks peculiar, but apparently it needs to be this 311 * way on some machines. 312 */ 313 for (i = 200; i > 0; --i) 314 if (le32_to_cpu(dma->control) & RUN) 315 udelay(1); 316 } 317 318 static void mace_reset(struct net_device *dev) 319 { 320 struct mace_data *mp = netdev_priv(dev); 321 volatile struct mace __iomem *mb = mp->mace; 322 int i; 323 324 /* soft-reset the chip */ 325 i = 200; 326 while (--i) { 327 out_8(&mb->biucc, SWRST); 328 if (in_8(&mb->biucc) & SWRST) { 329 udelay(10); 330 continue; 331 } 332 break; 333 } 334 if (!i) { 335 printk(KERN_ERR "mace: cannot reset chip!\n"); 336 return; 337 } 338 339 out_8(&mb->imr, 0xff); /* disable all intrs for now */ 340 i = in_8(&mb->ir); 341 out_8(&mb->maccc, 0); /* turn off tx, rx */ 342 343 out_8(&mb->biucc, XMTSP_64); 344 out_8(&mb->utr, RTRD); 345 out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST); 346 out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */ 347 out_8(&mb->rcvfc, 0); 348 349 /* load up the hardware address */ 350 __mace_set_address(dev, dev->dev_addr); 351 352 /* clear the multicast filter */ 353 if (mp->chipid == BROKEN_ADDRCHG_REV) 354 out_8(&mb->iac, LOGADDR); 355 else { 356 out_8(&mb->iac, ADDRCHG | LOGADDR); 357 while ((in_8(&mb->iac) & ADDRCHG) != 0) 358 ; 359 } 360 for (i = 0; i < 8; ++i) 361 out_8(&mb->ladrf, 0); 362 363 /* done changing address */ 364 if (mp->chipid != BROKEN_ADDRCHG_REV) 365 out_8(&mb->iac, 0); 366 367 if (mp->port_aaui) 368 out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO); 369 else 370 out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO); 371 } 372 373 static void __mace_set_address(struct net_device *dev, const void *addr) 374 { 375 struct mace_data *mp = netdev_priv(dev); 376 volatile struct mace __iomem *mb = mp->mace; 377 const unsigned char *p = addr; 378 u8 macaddr[ETH_ALEN]; 379 int i; 380 381 /* load up the hardware address */ 382 if (mp->chipid == BROKEN_ADDRCHG_REV) 383 out_8(&mb->iac, PHYADDR); 384 else { 385 out_8(&mb->iac, ADDRCHG | PHYADDR); 386 while ((in_8(&mb->iac) & ADDRCHG) != 0) 387 ; 388 } 389 for (i = 0; i < 6; ++i) 390 out_8(&mb->padr, macaddr[i] = p[i]); 391 392 eth_hw_addr_set(dev, macaddr); 393 394 if (mp->chipid != BROKEN_ADDRCHG_REV) 395 out_8(&mb->iac, 0); 396 } 397 398 static int mace_set_address(struct net_device *dev, void *addr) 399 { 400 struct mace_data *mp = netdev_priv(dev); 401 volatile struct mace __iomem *mb = mp->mace; 402 unsigned long flags; 403 404 spin_lock_irqsave(&mp->lock, flags); 405 406 __mace_set_address(dev, addr); 407 408 /* note: setting ADDRCHG clears ENRCV */ 409 out_8(&mb->maccc, mp->maccc); 410 411 spin_unlock_irqrestore(&mp->lock, flags); 412 return 0; 413 } 414 415 static inline void mace_clean_rings(struct mace_data *mp) 416 { 417 int i; 418 419 /* free some skb's */ 420 for (i = 0; i < N_RX_RING; ++i) { 421 if (mp->rx_bufs[i] != NULL) { 422 dev_kfree_skb(mp->rx_bufs[i]); 423 mp->rx_bufs[i] = NULL; 424 } 425 } 426 for (i = mp->tx_empty; i != mp->tx_fill; ) { 427 dev_kfree_skb(mp->tx_bufs[i]); 428 if (++i >= N_TX_RING) 429 i = 0; 430 } 431 } 432 433 static int mace_open(struct net_device *dev) 434 { 435 struct mace_data *mp = netdev_priv(dev); 436 volatile struct mace __iomem *mb = mp->mace; 437 volatile struct dbdma_regs __iomem *rd = mp->rx_dma; 438 volatile struct dbdma_regs __iomem *td = mp->tx_dma; 439 volatile struct dbdma_cmd *cp; 440 int i; 441 struct sk_buff *skb; 442 unsigned char *data; 443 444 /* reset the chip */ 445 mace_reset(dev); 446 447 /* initialize list of sk_buffs for receiving and set up recv dma */ 448 mace_clean_rings(mp); 449 memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd)); 450 cp = mp->rx_cmds; 451 for (i = 0; i < N_RX_RING - 1; ++i) { 452 skb = netdev_alloc_skb(dev, RX_BUFLEN + 2); 453 if (!skb) { 454 data = dummy_buf; 455 } else { 456 skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */ 457 data = skb->data; 458 } 459 mp->rx_bufs[i] = skb; 460 cp->req_count = cpu_to_le16(RX_BUFLEN); 461 cp->command = cpu_to_le16(INPUT_LAST + INTR_ALWAYS); 462 cp->phy_addr = cpu_to_le32(virt_to_bus(data)); 463 cp->xfer_status = 0; 464 ++cp; 465 } 466 mp->rx_bufs[i] = NULL; 467 cp->command = cpu_to_le16(DBDMA_STOP); 468 mp->rx_fill = i; 469 mp->rx_empty = 0; 470 471 /* Put a branch back to the beginning of the receive command list */ 472 ++cp; 473 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS); 474 cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->rx_cmds)); 475 476 /* start rx dma */ 477 out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ 478 out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds)); 479 out_le32(&rd->control, (RUN << 16) | RUN); 480 481 /* put a branch at the end of the tx command list */ 482 cp = mp->tx_cmds + NCMDS_TX * N_TX_RING; 483 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS); 484 cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->tx_cmds)); 485 486 /* reset tx dma */ 487 out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); 488 out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds)); 489 mp->tx_fill = 0; 490 mp->tx_empty = 0; 491 mp->tx_fullup = 0; 492 mp->tx_active = 0; 493 mp->tx_bad_runt = 0; 494 495 /* turn it on! */ 496 out_8(&mb->maccc, mp->maccc); 497 /* enable all interrupts except receive interrupts */ 498 out_8(&mb->imr, RCVINT); 499 500 return 0; 501 } 502 503 static int mace_close(struct net_device *dev) 504 { 505 struct mace_data *mp = netdev_priv(dev); 506 volatile struct mace __iomem *mb = mp->mace; 507 volatile struct dbdma_regs __iomem *rd = mp->rx_dma; 508 volatile struct dbdma_regs __iomem *td = mp->tx_dma; 509 510 /* disable rx and tx */ 511 out_8(&mb->maccc, 0); 512 out_8(&mb->imr, 0xff); /* disable all intrs */ 513 514 /* disable rx and tx dma */ 515 rd->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ 516 td->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ 517 518 mace_clean_rings(mp); 519 520 return 0; 521 } 522 523 static inline void mace_set_timeout(struct net_device *dev) 524 { 525 struct mace_data *mp = netdev_priv(dev); 526 527 if (mp->timeout_active) 528 del_timer(&mp->tx_timeout); 529 mp->tx_timeout.expires = jiffies + TX_TIMEOUT; 530 add_timer(&mp->tx_timeout); 531 mp->timeout_active = 1; 532 } 533 534 static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev) 535 { 536 struct mace_data *mp = netdev_priv(dev); 537 volatile struct dbdma_regs __iomem *td = mp->tx_dma; 538 volatile struct dbdma_cmd *cp, *np; 539 unsigned long flags; 540 int fill, next, len; 541 542 /* see if there's a free slot in the tx ring */ 543 spin_lock_irqsave(&mp->lock, flags); 544 fill = mp->tx_fill; 545 next = fill + 1; 546 if (next >= N_TX_RING) 547 next = 0; 548 if (next == mp->tx_empty) { 549 netif_stop_queue(dev); 550 mp->tx_fullup = 1; 551 spin_unlock_irqrestore(&mp->lock, flags); 552 return NETDEV_TX_BUSY; /* can't take it at the moment */ 553 } 554 spin_unlock_irqrestore(&mp->lock, flags); 555 556 /* partially fill in the dma command block */ 557 len = skb->len; 558 if (len > ETH_FRAME_LEN) { 559 printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len); 560 len = ETH_FRAME_LEN; 561 } 562 mp->tx_bufs[fill] = skb; 563 cp = mp->tx_cmds + NCMDS_TX * fill; 564 cp->req_count = cpu_to_le16(len); 565 cp->phy_addr = cpu_to_le32(virt_to_bus(skb->data)); 566 567 np = mp->tx_cmds + NCMDS_TX * next; 568 out_le16(&np->command, DBDMA_STOP); 569 570 /* poke the tx dma channel */ 571 spin_lock_irqsave(&mp->lock, flags); 572 mp->tx_fill = next; 573 if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) { 574 out_le16(&cp->xfer_status, 0); 575 out_le16(&cp->command, OUTPUT_LAST); 576 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); 577 ++mp->tx_active; 578 mace_set_timeout(dev); 579 } 580 if (++next >= N_TX_RING) 581 next = 0; 582 if (next == mp->tx_empty) 583 netif_stop_queue(dev); 584 spin_unlock_irqrestore(&mp->lock, flags); 585 586 return NETDEV_TX_OK; 587 } 588 589 static void mace_set_multicast(struct net_device *dev) 590 { 591 struct mace_data *mp = netdev_priv(dev); 592 volatile struct mace __iomem *mb = mp->mace; 593 int i; 594 u32 crc; 595 unsigned long flags; 596 597 spin_lock_irqsave(&mp->lock, flags); 598 mp->maccc &= ~PROM; 599 if (dev->flags & IFF_PROMISC) { 600 mp->maccc |= PROM; 601 } else { 602 unsigned char multicast_filter[8]; 603 struct netdev_hw_addr *ha; 604 605 if (dev->flags & IFF_ALLMULTI) { 606 for (i = 0; i < 8; i++) 607 multicast_filter[i] = 0xff; 608 } else { 609 for (i = 0; i < 8; i++) 610 multicast_filter[i] = 0; 611 netdev_for_each_mc_addr(ha, dev) { 612 crc = ether_crc_le(6, ha->addr); 613 i = crc >> 26; /* bit number in multicast_filter */ 614 multicast_filter[i >> 3] |= 1 << (i & 7); 615 } 616 } 617 #if 0 618 printk("Multicast filter :"); 619 for (i = 0; i < 8; i++) 620 printk("%02x ", multicast_filter[i]); 621 printk("\n"); 622 #endif 623 624 if (mp->chipid == BROKEN_ADDRCHG_REV) 625 out_8(&mb->iac, LOGADDR); 626 else { 627 out_8(&mb->iac, ADDRCHG | LOGADDR); 628 while ((in_8(&mb->iac) & ADDRCHG) != 0) 629 ; 630 } 631 for (i = 0; i < 8; ++i) 632 out_8(&mb->ladrf, multicast_filter[i]); 633 if (mp->chipid != BROKEN_ADDRCHG_REV) 634 out_8(&mb->iac, 0); 635 } 636 /* reset maccc */ 637 out_8(&mb->maccc, mp->maccc); 638 spin_unlock_irqrestore(&mp->lock, flags); 639 } 640 641 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev) 642 { 643 volatile struct mace __iomem *mb = mp->mace; 644 static int mace_babbles, mace_jabbers; 645 646 if (intr & MPCO) 647 dev->stats.rx_missed_errors += 256; 648 dev->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */ 649 if (intr & RNTPCO) 650 dev->stats.rx_length_errors += 256; 651 dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */ 652 if (intr & CERR) 653 ++dev->stats.tx_heartbeat_errors; 654 if (intr & BABBLE) 655 if (mace_babbles++ < 4) 656 printk(KERN_DEBUG "mace: babbling transmitter\n"); 657 if (intr & JABBER) 658 if (mace_jabbers++ < 4) 659 printk(KERN_DEBUG "mace: jabbering transceiver\n"); 660 } 661 662 static irqreturn_t mace_interrupt(int irq, void *dev_id) 663 { 664 struct net_device *dev = (struct net_device *) dev_id; 665 struct mace_data *mp = netdev_priv(dev); 666 volatile struct mace __iomem *mb = mp->mace; 667 volatile struct dbdma_regs __iomem *td = mp->tx_dma; 668 volatile struct dbdma_cmd *cp; 669 int intr, fs, i, stat, x; 670 int xcount, dstat; 671 unsigned long flags; 672 /* static int mace_last_fs, mace_last_xcount; */ 673 674 spin_lock_irqsave(&mp->lock, flags); 675 intr = in_8(&mb->ir); /* read interrupt register */ 676 in_8(&mb->xmtrc); /* get retries */ 677 mace_handle_misc_intrs(mp, intr, dev); 678 679 i = mp->tx_empty; 680 while (in_8(&mb->pr) & XMTSV) { 681 del_timer(&mp->tx_timeout); 682 mp->timeout_active = 0; 683 /* 684 * Clear any interrupt indication associated with this status 685 * word. This appears to unlatch any error indication from 686 * the DMA controller. 687 */ 688 intr = in_8(&mb->ir); 689 if (intr != 0) 690 mace_handle_misc_intrs(mp, intr, dev); 691 if (mp->tx_bad_runt) { 692 fs = in_8(&mb->xmtfs); 693 mp->tx_bad_runt = 0; 694 out_8(&mb->xmtfc, AUTO_PAD_XMIT); 695 continue; 696 } 697 dstat = le32_to_cpu(td->status); 698 /* stop DMA controller */ 699 out_le32(&td->control, RUN << 16); 700 /* 701 * xcount is the number of complete frames which have been 702 * written to the fifo but for which status has not been read. 703 */ 704 xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK; 705 if (xcount == 0 || (dstat & DEAD)) { 706 /* 707 * If a packet was aborted before the DMA controller has 708 * finished transferring it, it seems that there are 2 bytes 709 * which are stuck in some buffer somewhere. These will get 710 * transmitted as soon as we read the frame status (which 711 * reenables the transmit data transfer request). Turning 712 * off the DMA controller and/or resetting the MACE doesn't 713 * help. So we disable auto-padding and FCS transmission 714 * so the two bytes will only be a runt packet which should 715 * be ignored by other stations. 716 */ 717 out_8(&mb->xmtfc, DXMTFCS); 718 } 719 fs = in_8(&mb->xmtfs); 720 if ((fs & XMTSV) == 0) { 721 printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n", 722 fs, xcount, dstat); 723 mace_reset(dev); 724 /* 725 * XXX mace likes to hang the machine after a xmtfs error. 726 * This is hard to reproduce, resetting *may* help 727 */ 728 } 729 cp = mp->tx_cmds + NCMDS_TX * i; 730 stat = le16_to_cpu(cp->xfer_status); 731 if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) { 732 /* 733 * Check whether there were in fact 2 bytes written to 734 * the transmit FIFO. 735 */ 736 udelay(1); 737 x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK; 738 if (x != 0) { 739 /* there were two bytes with an end-of-packet indication */ 740 mp->tx_bad_runt = 1; 741 mace_set_timeout(dev); 742 } else { 743 /* 744 * Either there weren't the two bytes buffered up, or they 745 * didn't have an end-of-packet indication. 746 * We flush the transmit FIFO just in case (by setting the 747 * XMTFWU bit with the transmitter disabled). 748 */ 749 out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT); 750 out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU); 751 udelay(1); 752 out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT); 753 out_8(&mb->xmtfc, AUTO_PAD_XMIT); 754 } 755 } 756 /* dma should have finished */ 757 if (i == mp->tx_fill) { 758 printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n", 759 fs, xcount, dstat); 760 continue; 761 } 762 /* Update stats */ 763 if (fs & (UFLO|LCOL|LCAR|RTRY)) { 764 ++dev->stats.tx_errors; 765 if (fs & LCAR) 766 ++dev->stats.tx_carrier_errors; 767 if (fs & (UFLO|LCOL|RTRY)) 768 ++dev->stats.tx_aborted_errors; 769 } else { 770 dev->stats.tx_bytes += mp->tx_bufs[i]->len; 771 ++dev->stats.tx_packets; 772 } 773 dev_consume_skb_irq(mp->tx_bufs[i]); 774 --mp->tx_active; 775 if (++i >= N_TX_RING) 776 i = 0; 777 #if 0 778 mace_last_fs = fs; 779 mace_last_xcount = xcount; 780 #endif 781 } 782 783 if (i != mp->tx_empty) { 784 mp->tx_fullup = 0; 785 netif_wake_queue(dev); 786 } 787 mp->tx_empty = i; 788 i += mp->tx_active; 789 if (i >= N_TX_RING) 790 i -= N_TX_RING; 791 if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) { 792 do { 793 /* set up the next one */ 794 cp = mp->tx_cmds + NCMDS_TX * i; 795 out_le16(&cp->xfer_status, 0); 796 out_le16(&cp->command, OUTPUT_LAST); 797 ++mp->tx_active; 798 if (++i >= N_TX_RING) 799 i = 0; 800 } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE); 801 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); 802 mace_set_timeout(dev); 803 } 804 spin_unlock_irqrestore(&mp->lock, flags); 805 return IRQ_HANDLED; 806 } 807 808 static void mace_tx_timeout(struct timer_list *t) 809 { 810 struct mace_data *mp = from_timer(mp, t, tx_timeout); 811 struct net_device *dev = macio_get_drvdata(mp->mdev); 812 volatile struct mace __iomem *mb = mp->mace; 813 volatile struct dbdma_regs __iomem *td = mp->tx_dma; 814 volatile struct dbdma_regs __iomem *rd = mp->rx_dma; 815 volatile struct dbdma_cmd *cp; 816 unsigned long flags; 817 int i; 818 819 spin_lock_irqsave(&mp->lock, flags); 820 mp->timeout_active = 0; 821 if (mp->tx_active == 0 && !mp->tx_bad_runt) 822 goto out; 823 824 /* update various counters */ 825 mace_handle_misc_intrs(mp, in_8(&mb->ir), dev); 826 827 cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty; 828 829 /* turn off both tx and rx and reset the chip */ 830 out_8(&mb->maccc, 0); 831 printk(KERN_ERR "mace: transmit timeout - resetting\n"); 832 dbdma_reset(td); 833 mace_reset(dev); 834 835 /* restart rx dma */ 836 cp = bus_to_virt(le32_to_cpu(rd->cmdptr)); 837 dbdma_reset(rd); 838 out_le16(&cp->xfer_status, 0); 839 out_le32(&rd->cmdptr, virt_to_bus(cp)); 840 out_le32(&rd->control, (RUN << 16) | RUN); 841 842 /* fix up the transmit side */ 843 i = mp->tx_empty; 844 mp->tx_active = 0; 845 ++dev->stats.tx_errors; 846 if (mp->tx_bad_runt) { 847 mp->tx_bad_runt = 0; 848 } else if (i != mp->tx_fill) { 849 dev_kfree_skb_irq(mp->tx_bufs[i]); 850 if (++i >= N_TX_RING) 851 i = 0; 852 mp->tx_empty = i; 853 } 854 mp->tx_fullup = 0; 855 netif_wake_queue(dev); 856 if (i != mp->tx_fill) { 857 cp = mp->tx_cmds + NCMDS_TX * i; 858 out_le16(&cp->xfer_status, 0); 859 out_le16(&cp->command, OUTPUT_LAST); 860 out_le32(&td->cmdptr, virt_to_bus(cp)); 861 out_le32(&td->control, (RUN << 16) | RUN); 862 ++mp->tx_active; 863 mace_set_timeout(dev); 864 } 865 866 /* turn it back on */ 867 out_8(&mb->imr, RCVINT); 868 out_8(&mb->maccc, mp->maccc); 869 870 out: 871 spin_unlock_irqrestore(&mp->lock, flags); 872 } 873 874 static irqreturn_t mace_txdma_intr(int irq, void *dev_id) 875 { 876 return IRQ_HANDLED; 877 } 878 879 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id) 880 { 881 struct net_device *dev = (struct net_device *) dev_id; 882 struct mace_data *mp = netdev_priv(dev); 883 volatile struct dbdma_regs __iomem *rd = mp->rx_dma; 884 volatile struct dbdma_cmd *cp, *np; 885 int i, nb, stat, next; 886 struct sk_buff *skb; 887 unsigned frame_status; 888 static int mace_lost_status; 889 unsigned char *data; 890 unsigned long flags; 891 892 spin_lock_irqsave(&mp->lock, flags); 893 for (i = mp->rx_empty; i != mp->rx_fill; ) { 894 cp = mp->rx_cmds + i; 895 stat = le16_to_cpu(cp->xfer_status); 896 if ((stat & ACTIVE) == 0) { 897 next = i + 1; 898 if (next >= N_RX_RING) 899 next = 0; 900 np = mp->rx_cmds + next; 901 if (next != mp->rx_fill && 902 (le16_to_cpu(np->xfer_status) & ACTIVE) != 0) { 903 printk(KERN_DEBUG "mace: lost a status word\n"); 904 ++mace_lost_status; 905 } else 906 break; 907 } 908 nb = le16_to_cpu(cp->req_count) - le16_to_cpu(cp->res_count); 909 out_le16(&cp->command, DBDMA_STOP); 910 /* got a packet, have a look at it */ 911 skb = mp->rx_bufs[i]; 912 if (!skb) { 913 ++dev->stats.rx_dropped; 914 } else if (nb > 8) { 915 data = skb->data; 916 frame_status = (data[nb-3] << 8) + data[nb-4]; 917 if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) { 918 ++dev->stats.rx_errors; 919 if (frame_status & RS_OFLO) 920 ++dev->stats.rx_over_errors; 921 if (frame_status & RS_FRAMERR) 922 ++dev->stats.rx_frame_errors; 923 if (frame_status & RS_FCSERR) 924 ++dev->stats.rx_crc_errors; 925 } else { 926 /* Mace feature AUTO_STRIP_RCV is on by default, dropping the 927 * FCS on frames with 802.3 headers. This means that Ethernet 928 * frames have 8 extra octets at the end, while 802.3 frames 929 * have only 4. We need to correctly account for this. */ 930 if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */ 931 nb -= 4; 932 else /* Ethernet header; mace includes FCS */ 933 nb -= 8; 934 skb_put(skb, nb); 935 skb->protocol = eth_type_trans(skb, dev); 936 dev->stats.rx_bytes += skb->len; 937 netif_rx(skb); 938 mp->rx_bufs[i] = NULL; 939 ++dev->stats.rx_packets; 940 } 941 } else { 942 ++dev->stats.rx_errors; 943 ++dev->stats.rx_length_errors; 944 } 945 946 /* advance to next */ 947 if (++i >= N_RX_RING) 948 i = 0; 949 } 950 mp->rx_empty = i; 951 952 i = mp->rx_fill; 953 for (;;) { 954 next = i + 1; 955 if (next >= N_RX_RING) 956 next = 0; 957 if (next == mp->rx_empty) 958 break; 959 cp = mp->rx_cmds + i; 960 skb = mp->rx_bufs[i]; 961 if (!skb) { 962 skb = netdev_alloc_skb(dev, RX_BUFLEN + 2); 963 if (skb) { 964 skb_reserve(skb, 2); 965 mp->rx_bufs[i] = skb; 966 } 967 } 968 cp->req_count = cpu_to_le16(RX_BUFLEN); 969 data = skb? skb->data: dummy_buf; 970 cp->phy_addr = cpu_to_le32(virt_to_bus(data)); 971 out_le16(&cp->xfer_status, 0); 972 out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS); 973 #if 0 974 if ((le32_to_cpu(rd->status) & ACTIVE) != 0) { 975 out_le32(&rd->control, (PAUSE << 16) | PAUSE); 976 while ((in_le32(&rd->status) & ACTIVE) != 0) 977 ; 978 } 979 #endif 980 i = next; 981 } 982 if (i != mp->rx_fill) { 983 out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE)); 984 mp->rx_fill = i; 985 } 986 spin_unlock_irqrestore(&mp->lock, flags); 987 return IRQ_HANDLED; 988 } 989 990 static const struct of_device_id mace_match[] = 991 { 992 { 993 .name = "mace", 994 }, 995 {}, 996 }; 997 MODULE_DEVICE_TABLE (of, mace_match); 998 999 static struct macio_driver mace_driver = 1000 { 1001 .driver = { 1002 .name = "mace", 1003 .owner = THIS_MODULE, 1004 .of_match_table = mace_match, 1005 }, 1006 .probe = mace_probe, 1007 .remove = mace_remove, 1008 }; 1009 1010 1011 static int __init mace_init(void) 1012 { 1013 return macio_register_driver(&mace_driver); 1014 } 1015 1016 static void __exit mace_cleanup(void) 1017 { 1018 macio_unregister_driver(&mace_driver); 1019 1020 kfree(dummy_buf); 1021 dummy_buf = NULL; 1022 } 1023 1024 MODULE_AUTHOR("Paul Mackerras"); 1025 MODULE_DESCRIPTION("PowerMac MACE driver."); 1026 module_param(port_aaui, int, 0); 1027 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)"); 1028 MODULE_LICENSE("GPL"); 1029 1030 module_init(mace_init); 1031 module_exit(mace_cleanup); 1032