xref: /openbmc/linux/drivers/net/ethernet/apple/mace.c (revision 5e2421ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Network device driver for the MACE ethernet controller on
4  * Apple Powermacs.  Assumes it's under a DBDMA controller.
5  *
6  * Copyright (C) 1996 Paul Mackerras.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/crc32.h>
19 #include <linux/spinlock.h>
20 #include <linux/bitrev.h>
21 #include <linux/slab.h>
22 #include <linux/pgtable.h>
23 #include <asm/prom.h>
24 #include <asm/dbdma.h>
25 #include <asm/io.h>
26 #include <asm/macio.h>
27 
28 #include "mace.h"
29 
30 static int port_aaui = -1;
31 
32 #define N_RX_RING	8
33 #define N_TX_RING	6
34 #define MAX_TX_ACTIVE	1
35 #define NCMDS_TX	1	/* dma commands per element in tx ring */
36 #define RX_BUFLEN	(ETH_FRAME_LEN + 8)
37 #define TX_TIMEOUT	HZ	/* 1 second */
38 
39 /* Chip rev needs workaround on HW & multicast addr change */
40 #define BROKEN_ADDRCHG_REV	0x0941
41 
42 /* Bits in transmit DMA status */
43 #define TX_DMA_ERR	0x80
44 
45 struct mace_data {
46     volatile struct mace __iomem *mace;
47     volatile struct dbdma_regs __iomem *tx_dma;
48     int tx_dma_intr;
49     volatile struct dbdma_regs __iomem *rx_dma;
50     int rx_dma_intr;
51     volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
52     volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
53     struct sk_buff *rx_bufs[N_RX_RING];
54     int rx_fill;
55     int rx_empty;
56     struct sk_buff *tx_bufs[N_TX_RING];
57     int tx_fill;
58     int tx_empty;
59     unsigned char maccc;
60     unsigned char tx_fullup;
61     unsigned char tx_active;
62     unsigned char tx_bad_runt;
63     struct timer_list tx_timeout;
64     int timeout_active;
65     int port_aaui;
66     int chipid;
67     struct macio_dev *mdev;
68     spinlock_t lock;
69 };
70 
71 /*
72  * Number of bytes of private data per MACE: allow enough for
73  * the rx and tx dma commands plus a branch dma command each,
74  * and another 16 bytes to allow us to align the dma command
75  * buffers on a 16 byte boundary.
76  */
77 #define PRIV_BYTES	(sizeof(struct mace_data) \
78 	+ (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
79 
80 static int mace_open(struct net_device *dev);
81 static int mace_close(struct net_device *dev);
82 static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
83 static void mace_set_multicast(struct net_device *dev);
84 static void mace_reset(struct net_device *dev);
85 static int mace_set_address(struct net_device *dev, void *addr);
86 static irqreturn_t mace_interrupt(int irq, void *dev_id);
87 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
88 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
89 static void mace_set_timeout(struct net_device *dev);
90 static void mace_tx_timeout(struct timer_list *t);
91 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
92 static inline void mace_clean_rings(struct mace_data *mp);
93 static void __mace_set_address(struct net_device *dev, const void *addr);
94 
95 /*
96  * If we can't get a skbuff when we need it, we use this area for DMA.
97  */
98 static unsigned char *dummy_buf;
99 
100 static const struct net_device_ops mace_netdev_ops = {
101 	.ndo_open		= mace_open,
102 	.ndo_stop		= mace_close,
103 	.ndo_start_xmit		= mace_xmit_start,
104 	.ndo_set_rx_mode	= mace_set_multicast,
105 	.ndo_set_mac_address	= mace_set_address,
106 	.ndo_validate_addr	= eth_validate_addr,
107 };
108 
109 static int mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
110 {
111 	struct device_node *mace = macio_get_of_node(mdev);
112 	struct net_device *dev;
113 	struct mace_data *mp;
114 	const unsigned char *addr;
115 	u8 macaddr[ETH_ALEN];
116 	int j, rev, rc = -EBUSY;
117 
118 	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
119 		printk(KERN_ERR "can't use MACE %pOF: need 3 addrs and 3 irqs\n",
120 		       mace);
121 		return -ENODEV;
122 	}
123 
124 	addr = of_get_property(mace, "mac-address", NULL);
125 	if (addr == NULL) {
126 		addr = of_get_property(mace, "local-mac-address", NULL);
127 		if (addr == NULL) {
128 			printk(KERN_ERR "Can't get mac-address for MACE %pOF\n",
129 			       mace);
130 			return -ENODEV;
131 		}
132 	}
133 
134 	/*
135 	 * lazy allocate the driver-wide dummy buffer. (Note that we
136 	 * never have more than one MACE in the system anyway)
137 	 */
138 	if (dummy_buf == NULL) {
139 		dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
140 		if (dummy_buf == NULL)
141 			return -ENOMEM;
142 	}
143 
144 	if (macio_request_resources(mdev, "mace")) {
145 		printk(KERN_ERR "MACE: can't request IO resources !\n");
146 		return -EBUSY;
147 	}
148 
149 	dev = alloc_etherdev(PRIV_BYTES);
150 	if (!dev) {
151 		rc = -ENOMEM;
152 		goto err_release;
153 	}
154 	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
155 
156 	mp = netdev_priv(dev);
157 	mp->mdev = mdev;
158 	macio_set_drvdata(mdev, dev);
159 
160 	dev->base_addr = macio_resource_start(mdev, 0);
161 	mp->mace = ioremap(dev->base_addr, 0x1000);
162 	if (mp->mace == NULL) {
163 		printk(KERN_ERR "MACE: can't map IO resources !\n");
164 		rc = -ENOMEM;
165 		goto err_free;
166 	}
167 	dev->irq = macio_irq(mdev, 0);
168 
169 	rev = addr[0] == 0 && addr[1] == 0xA0;
170 	for (j = 0; j < 6; ++j) {
171 		macaddr[j] = rev ? bitrev8(addr[j]): addr[j];
172 	}
173 	eth_hw_addr_set(dev, macaddr);
174 	mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
175 			in_8(&mp->mace->chipid_lo);
176 
177 
178 	mp = netdev_priv(dev);
179 	mp->maccc = ENXMT | ENRCV;
180 
181 	mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
182 	if (mp->tx_dma == NULL) {
183 		printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
184 		rc = -ENOMEM;
185 		goto err_unmap_io;
186 	}
187 	mp->tx_dma_intr = macio_irq(mdev, 1);
188 
189 	mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
190 	if (mp->rx_dma == NULL) {
191 		printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
192 		rc = -ENOMEM;
193 		goto err_unmap_tx_dma;
194 	}
195 	mp->rx_dma_intr = macio_irq(mdev, 2);
196 
197 	mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
198 	mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
199 
200 	memset((char *) mp->tx_cmds, 0,
201 	       (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
202 	timer_setup(&mp->tx_timeout, mace_tx_timeout, 0);
203 	spin_lock_init(&mp->lock);
204 	mp->timeout_active = 0;
205 
206 	if (port_aaui >= 0)
207 		mp->port_aaui = port_aaui;
208 	else {
209 		/* Apple Network Server uses the AAUI port */
210 		if (of_machine_is_compatible("AAPL,ShinerESB"))
211 			mp->port_aaui = 1;
212 		else {
213 #ifdef CONFIG_MACE_AAUI_PORT
214 			mp->port_aaui = 1;
215 #else
216 			mp->port_aaui = 0;
217 #endif
218 		}
219 	}
220 
221 	dev->netdev_ops = &mace_netdev_ops;
222 
223 	/*
224 	 * Most of what is below could be moved to mace_open()
225 	 */
226 	mace_reset(dev);
227 
228 	rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
229 	if (rc) {
230 		printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
231 		goto err_unmap_rx_dma;
232 	}
233 	rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
234 	if (rc) {
235 		printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
236 		goto err_free_irq;
237 	}
238 	rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
239 	if (rc) {
240 		printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
241 		goto err_free_tx_irq;
242 	}
243 
244 	rc = register_netdev(dev);
245 	if (rc) {
246 		printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
247 		goto err_free_rx_irq;
248 	}
249 
250 	printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
251 	       dev->name, dev->dev_addr,
252 	       mp->chipid >> 8, mp->chipid & 0xff);
253 
254 	return 0;
255 
256  err_free_rx_irq:
257 	free_irq(macio_irq(mdev, 2), dev);
258  err_free_tx_irq:
259 	free_irq(macio_irq(mdev, 1), dev);
260  err_free_irq:
261 	free_irq(macio_irq(mdev, 0), dev);
262  err_unmap_rx_dma:
263 	iounmap(mp->rx_dma);
264  err_unmap_tx_dma:
265 	iounmap(mp->tx_dma);
266  err_unmap_io:
267 	iounmap(mp->mace);
268  err_free:
269 	free_netdev(dev);
270  err_release:
271 	macio_release_resources(mdev);
272 
273 	return rc;
274 }
275 
276 static int mace_remove(struct macio_dev *mdev)
277 {
278 	struct net_device *dev = macio_get_drvdata(mdev);
279 	struct mace_data *mp;
280 
281 	BUG_ON(dev == NULL);
282 
283 	macio_set_drvdata(mdev, NULL);
284 
285 	mp = netdev_priv(dev);
286 
287 	unregister_netdev(dev);
288 
289 	free_irq(dev->irq, dev);
290 	free_irq(mp->tx_dma_intr, dev);
291 	free_irq(mp->rx_dma_intr, dev);
292 
293 	iounmap(mp->rx_dma);
294 	iounmap(mp->tx_dma);
295 	iounmap(mp->mace);
296 
297 	free_netdev(dev);
298 
299 	macio_release_resources(mdev);
300 
301 	return 0;
302 }
303 
304 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
305 {
306     int i;
307 
308     out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
309 
310     /*
311      * Yes this looks peculiar, but apparently it needs to be this
312      * way on some machines.
313      */
314     for (i = 200; i > 0; --i)
315 	if (le32_to_cpu(dma->control) & RUN)
316 	    udelay(1);
317 }
318 
319 static void mace_reset(struct net_device *dev)
320 {
321     struct mace_data *mp = netdev_priv(dev);
322     volatile struct mace __iomem *mb = mp->mace;
323     int i;
324 
325     /* soft-reset the chip */
326     i = 200;
327     while (--i) {
328 	out_8(&mb->biucc, SWRST);
329 	if (in_8(&mb->biucc) & SWRST) {
330 	    udelay(10);
331 	    continue;
332 	}
333 	break;
334     }
335     if (!i) {
336 	printk(KERN_ERR "mace: cannot reset chip!\n");
337 	return;
338     }
339 
340     out_8(&mb->imr, 0xff);	/* disable all intrs for now */
341     i = in_8(&mb->ir);
342     out_8(&mb->maccc, 0);	/* turn off tx, rx */
343 
344     out_8(&mb->biucc, XMTSP_64);
345     out_8(&mb->utr, RTRD);
346     out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
347     out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
348     out_8(&mb->rcvfc, 0);
349 
350     /* load up the hardware address */
351     __mace_set_address(dev, dev->dev_addr);
352 
353     /* clear the multicast filter */
354     if (mp->chipid == BROKEN_ADDRCHG_REV)
355 	out_8(&mb->iac, LOGADDR);
356     else {
357 	out_8(&mb->iac, ADDRCHG | LOGADDR);
358 	while ((in_8(&mb->iac) & ADDRCHG) != 0)
359 		;
360     }
361     for (i = 0; i < 8; ++i)
362 	out_8(&mb->ladrf, 0);
363 
364     /* done changing address */
365     if (mp->chipid != BROKEN_ADDRCHG_REV)
366 	out_8(&mb->iac, 0);
367 
368     if (mp->port_aaui)
369 	out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
370     else
371 	out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
372 }
373 
374 static void __mace_set_address(struct net_device *dev, const void *addr)
375 {
376     struct mace_data *mp = netdev_priv(dev);
377     volatile struct mace __iomem *mb = mp->mace;
378     const unsigned char *p = addr;
379     u8 macaddr[ETH_ALEN];
380     int i;
381 
382     /* load up the hardware address */
383     if (mp->chipid == BROKEN_ADDRCHG_REV)
384 	out_8(&mb->iac, PHYADDR);
385     else {
386 	out_8(&mb->iac, ADDRCHG | PHYADDR);
387 	while ((in_8(&mb->iac) & ADDRCHG) != 0)
388 	    ;
389     }
390     for (i = 0; i < 6; ++i)
391         out_8(&mb->padr, macaddr[i] = p[i]);
392 
393     eth_hw_addr_set(dev, macaddr);
394 
395     if (mp->chipid != BROKEN_ADDRCHG_REV)
396         out_8(&mb->iac, 0);
397 }
398 
399 static int mace_set_address(struct net_device *dev, void *addr)
400 {
401     struct mace_data *mp = netdev_priv(dev);
402     volatile struct mace __iomem *mb = mp->mace;
403     unsigned long flags;
404 
405     spin_lock_irqsave(&mp->lock, flags);
406 
407     __mace_set_address(dev, addr);
408 
409     /* note: setting ADDRCHG clears ENRCV */
410     out_8(&mb->maccc, mp->maccc);
411 
412     spin_unlock_irqrestore(&mp->lock, flags);
413     return 0;
414 }
415 
416 static inline void mace_clean_rings(struct mace_data *mp)
417 {
418     int i;
419 
420     /* free some skb's */
421     for (i = 0; i < N_RX_RING; ++i) {
422 	if (mp->rx_bufs[i] != NULL) {
423 	    dev_kfree_skb(mp->rx_bufs[i]);
424 	    mp->rx_bufs[i] = NULL;
425 	}
426     }
427     for (i = mp->tx_empty; i != mp->tx_fill; ) {
428 	dev_kfree_skb(mp->tx_bufs[i]);
429 	if (++i >= N_TX_RING)
430 	    i = 0;
431     }
432 }
433 
434 static int mace_open(struct net_device *dev)
435 {
436     struct mace_data *mp = netdev_priv(dev);
437     volatile struct mace __iomem *mb = mp->mace;
438     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
439     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
440     volatile struct dbdma_cmd *cp;
441     int i;
442     struct sk_buff *skb;
443     unsigned char *data;
444 
445     /* reset the chip */
446     mace_reset(dev);
447 
448     /* initialize list of sk_buffs for receiving and set up recv dma */
449     mace_clean_rings(mp);
450     memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
451     cp = mp->rx_cmds;
452     for (i = 0; i < N_RX_RING - 1; ++i) {
453 	skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
454 	if (!skb) {
455 	    data = dummy_buf;
456 	} else {
457 	    skb_reserve(skb, 2);	/* so IP header lands on 4-byte bdry */
458 	    data = skb->data;
459 	}
460 	mp->rx_bufs[i] = skb;
461 	cp->req_count = cpu_to_le16(RX_BUFLEN);
462 	cp->command = cpu_to_le16(INPUT_LAST + INTR_ALWAYS);
463 	cp->phy_addr = cpu_to_le32(virt_to_bus(data));
464 	cp->xfer_status = 0;
465 	++cp;
466     }
467     mp->rx_bufs[i] = NULL;
468     cp->command = cpu_to_le16(DBDMA_STOP);
469     mp->rx_fill = i;
470     mp->rx_empty = 0;
471 
472     /* Put a branch back to the beginning of the receive command list */
473     ++cp;
474     cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
475     cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->rx_cmds));
476 
477     /* start rx dma */
478     out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
479     out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
480     out_le32(&rd->control, (RUN << 16) | RUN);
481 
482     /* put a branch at the end of the tx command list */
483     cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
484     cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
485     cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->tx_cmds));
486 
487     /* reset tx dma */
488     out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
489     out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
490     mp->tx_fill = 0;
491     mp->tx_empty = 0;
492     mp->tx_fullup = 0;
493     mp->tx_active = 0;
494     mp->tx_bad_runt = 0;
495 
496     /* turn it on! */
497     out_8(&mb->maccc, mp->maccc);
498     /* enable all interrupts except receive interrupts */
499     out_8(&mb->imr, RCVINT);
500 
501     return 0;
502 }
503 
504 static int mace_close(struct net_device *dev)
505 {
506     struct mace_data *mp = netdev_priv(dev);
507     volatile struct mace __iomem *mb = mp->mace;
508     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
509     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
510 
511     /* disable rx and tx */
512     out_8(&mb->maccc, 0);
513     out_8(&mb->imr, 0xff);		/* disable all intrs */
514 
515     /* disable rx and tx dma */
516     rd->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
517     td->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
518 
519     mace_clean_rings(mp);
520 
521     return 0;
522 }
523 
524 static inline void mace_set_timeout(struct net_device *dev)
525 {
526     struct mace_data *mp = netdev_priv(dev);
527 
528     if (mp->timeout_active)
529 	del_timer(&mp->tx_timeout);
530     mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
531     add_timer(&mp->tx_timeout);
532     mp->timeout_active = 1;
533 }
534 
535 static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
536 {
537     struct mace_data *mp = netdev_priv(dev);
538     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
539     volatile struct dbdma_cmd *cp, *np;
540     unsigned long flags;
541     int fill, next, len;
542 
543     /* see if there's a free slot in the tx ring */
544     spin_lock_irqsave(&mp->lock, flags);
545     fill = mp->tx_fill;
546     next = fill + 1;
547     if (next >= N_TX_RING)
548 	next = 0;
549     if (next == mp->tx_empty) {
550 	netif_stop_queue(dev);
551 	mp->tx_fullup = 1;
552 	spin_unlock_irqrestore(&mp->lock, flags);
553 	return NETDEV_TX_BUSY;		/* can't take it at the moment */
554     }
555     spin_unlock_irqrestore(&mp->lock, flags);
556 
557     /* partially fill in the dma command block */
558     len = skb->len;
559     if (len > ETH_FRAME_LEN) {
560 	printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
561 	len = ETH_FRAME_LEN;
562     }
563     mp->tx_bufs[fill] = skb;
564     cp = mp->tx_cmds + NCMDS_TX * fill;
565     cp->req_count = cpu_to_le16(len);
566     cp->phy_addr = cpu_to_le32(virt_to_bus(skb->data));
567 
568     np = mp->tx_cmds + NCMDS_TX * next;
569     out_le16(&np->command, DBDMA_STOP);
570 
571     /* poke the tx dma channel */
572     spin_lock_irqsave(&mp->lock, flags);
573     mp->tx_fill = next;
574     if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
575 	out_le16(&cp->xfer_status, 0);
576 	out_le16(&cp->command, OUTPUT_LAST);
577 	out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
578 	++mp->tx_active;
579 	mace_set_timeout(dev);
580     }
581     if (++next >= N_TX_RING)
582 	next = 0;
583     if (next == mp->tx_empty)
584 	netif_stop_queue(dev);
585     spin_unlock_irqrestore(&mp->lock, flags);
586 
587     return NETDEV_TX_OK;
588 }
589 
590 static void mace_set_multicast(struct net_device *dev)
591 {
592     struct mace_data *mp = netdev_priv(dev);
593     volatile struct mace __iomem *mb = mp->mace;
594     int i;
595     u32 crc;
596     unsigned long flags;
597 
598     spin_lock_irqsave(&mp->lock, flags);
599     mp->maccc &= ~PROM;
600     if (dev->flags & IFF_PROMISC) {
601 	mp->maccc |= PROM;
602     } else {
603 	unsigned char multicast_filter[8];
604 	struct netdev_hw_addr *ha;
605 
606 	if (dev->flags & IFF_ALLMULTI) {
607 	    for (i = 0; i < 8; i++)
608 		multicast_filter[i] = 0xff;
609 	} else {
610 	    for (i = 0; i < 8; i++)
611 		multicast_filter[i] = 0;
612 	    netdev_for_each_mc_addr(ha, dev) {
613 	        crc = ether_crc_le(6, ha->addr);
614 		i = crc >> 26;	/* bit number in multicast_filter */
615 		multicast_filter[i >> 3] |= 1 << (i & 7);
616 	    }
617 	}
618 #if 0
619 	printk("Multicast filter :");
620 	for (i = 0; i < 8; i++)
621 	    printk("%02x ", multicast_filter[i]);
622 	printk("\n");
623 #endif
624 
625 	if (mp->chipid == BROKEN_ADDRCHG_REV)
626 	    out_8(&mb->iac, LOGADDR);
627 	else {
628 	    out_8(&mb->iac, ADDRCHG | LOGADDR);
629 	    while ((in_8(&mb->iac) & ADDRCHG) != 0)
630 		;
631 	}
632 	for (i = 0; i < 8; ++i)
633 	    out_8(&mb->ladrf, multicast_filter[i]);
634 	if (mp->chipid != BROKEN_ADDRCHG_REV)
635 	    out_8(&mb->iac, 0);
636     }
637     /* reset maccc */
638     out_8(&mb->maccc, mp->maccc);
639     spin_unlock_irqrestore(&mp->lock, flags);
640 }
641 
642 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
643 {
644     volatile struct mace __iomem *mb = mp->mace;
645     static int mace_babbles, mace_jabbers;
646 
647     if (intr & MPCO)
648 	dev->stats.rx_missed_errors += 256;
649     dev->stats.rx_missed_errors += in_8(&mb->mpc);   /* reading clears it */
650     if (intr & RNTPCO)
651 	dev->stats.rx_length_errors += 256;
652     dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
653     if (intr & CERR)
654 	++dev->stats.tx_heartbeat_errors;
655     if (intr & BABBLE)
656 	if (mace_babbles++ < 4)
657 	    printk(KERN_DEBUG "mace: babbling transmitter\n");
658     if (intr & JABBER)
659 	if (mace_jabbers++ < 4)
660 	    printk(KERN_DEBUG "mace: jabbering transceiver\n");
661 }
662 
663 static irqreturn_t mace_interrupt(int irq, void *dev_id)
664 {
665     struct net_device *dev = (struct net_device *) dev_id;
666     struct mace_data *mp = netdev_priv(dev);
667     volatile struct mace __iomem *mb = mp->mace;
668     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
669     volatile struct dbdma_cmd *cp;
670     int intr, fs, i, stat, x;
671     int xcount, dstat;
672     unsigned long flags;
673     /* static int mace_last_fs, mace_last_xcount; */
674 
675     spin_lock_irqsave(&mp->lock, flags);
676     intr = in_8(&mb->ir);		/* read interrupt register */
677     in_8(&mb->xmtrc);			/* get retries */
678     mace_handle_misc_intrs(mp, intr, dev);
679 
680     i = mp->tx_empty;
681     while (in_8(&mb->pr) & XMTSV) {
682 	del_timer(&mp->tx_timeout);
683 	mp->timeout_active = 0;
684 	/*
685 	 * Clear any interrupt indication associated with this status
686 	 * word.  This appears to unlatch any error indication from
687 	 * the DMA controller.
688 	 */
689 	intr = in_8(&mb->ir);
690 	if (intr != 0)
691 	    mace_handle_misc_intrs(mp, intr, dev);
692 	if (mp->tx_bad_runt) {
693 	    fs = in_8(&mb->xmtfs);
694 	    mp->tx_bad_runt = 0;
695 	    out_8(&mb->xmtfc, AUTO_PAD_XMIT);
696 	    continue;
697 	}
698 	dstat = le32_to_cpu(td->status);
699 	/* stop DMA controller */
700 	out_le32(&td->control, RUN << 16);
701 	/*
702 	 * xcount is the number of complete frames which have been
703 	 * written to the fifo but for which status has not been read.
704 	 */
705 	xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
706 	if (xcount == 0 || (dstat & DEAD)) {
707 	    /*
708 	     * If a packet was aborted before the DMA controller has
709 	     * finished transferring it, it seems that there are 2 bytes
710 	     * which are stuck in some buffer somewhere.  These will get
711 	     * transmitted as soon as we read the frame status (which
712 	     * reenables the transmit data transfer request).  Turning
713 	     * off the DMA controller and/or resetting the MACE doesn't
714 	     * help.  So we disable auto-padding and FCS transmission
715 	     * so the two bytes will only be a runt packet which should
716 	     * be ignored by other stations.
717 	     */
718 	    out_8(&mb->xmtfc, DXMTFCS);
719 	}
720 	fs = in_8(&mb->xmtfs);
721 	if ((fs & XMTSV) == 0) {
722 	    printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
723 		   fs, xcount, dstat);
724 	    mace_reset(dev);
725 		/*
726 		 * XXX mace likes to hang the machine after a xmtfs error.
727 		 * This is hard to reproduce, resetting *may* help
728 		 */
729 	}
730 	cp = mp->tx_cmds + NCMDS_TX * i;
731 	stat = le16_to_cpu(cp->xfer_status);
732 	if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
733 	    /*
734 	     * Check whether there were in fact 2 bytes written to
735 	     * the transmit FIFO.
736 	     */
737 	    udelay(1);
738 	    x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
739 	    if (x != 0) {
740 		/* there were two bytes with an end-of-packet indication */
741 		mp->tx_bad_runt = 1;
742 		mace_set_timeout(dev);
743 	    } else {
744 		/*
745 		 * Either there weren't the two bytes buffered up, or they
746 		 * didn't have an end-of-packet indication.
747 		 * We flush the transmit FIFO just in case (by setting the
748 		 * XMTFWU bit with the transmitter disabled).
749 		 */
750 		out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
751 		out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
752 		udelay(1);
753 		out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
754 		out_8(&mb->xmtfc, AUTO_PAD_XMIT);
755 	    }
756 	}
757 	/* dma should have finished */
758 	if (i == mp->tx_fill) {
759 	    printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
760 		   fs, xcount, dstat);
761 	    continue;
762 	}
763 	/* Update stats */
764 	if (fs & (UFLO|LCOL|LCAR|RTRY)) {
765 	    ++dev->stats.tx_errors;
766 	    if (fs & LCAR)
767 		++dev->stats.tx_carrier_errors;
768 	    if (fs & (UFLO|LCOL|RTRY))
769 		++dev->stats.tx_aborted_errors;
770 	} else {
771 	    dev->stats.tx_bytes += mp->tx_bufs[i]->len;
772 	    ++dev->stats.tx_packets;
773 	}
774 	dev_consume_skb_irq(mp->tx_bufs[i]);
775 	--mp->tx_active;
776 	if (++i >= N_TX_RING)
777 	    i = 0;
778 #if 0
779 	mace_last_fs = fs;
780 	mace_last_xcount = xcount;
781 #endif
782     }
783 
784     if (i != mp->tx_empty) {
785 	mp->tx_fullup = 0;
786 	netif_wake_queue(dev);
787     }
788     mp->tx_empty = i;
789     i += mp->tx_active;
790     if (i >= N_TX_RING)
791 	i -= N_TX_RING;
792     if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
793 	do {
794 	    /* set up the next one */
795 	    cp = mp->tx_cmds + NCMDS_TX * i;
796 	    out_le16(&cp->xfer_status, 0);
797 	    out_le16(&cp->command, OUTPUT_LAST);
798 	    ++mp->tx_active;
799 	    if (++i >= N_TX_RING)
800 		i = 0;
801 	} while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
802 	out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
803 	mace_set_timeout(dev);
804     }
805     spin_unlock_irqrestore(&mp->lock, flags);
806     return IRQ_HANDLED;
807 }
808 
809 static void mace_tx_timeout(struct timer_list *t)
810 {
811     struct mace_data *mp = from_timer(mp, t, tx_timeout);
812     struct net_device *dev = macio_get_drvdata(mp->mdev);
813     volatile struct mace __iomem *mb = mp->mace;
814     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
815     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
816     volatile struct dbdma_cmd *cp;
817     unsigned long flags;
818     int i;
819 
820     spin_lock_irqsave(&mp->lock, flags);
821     mp->timeout_active = 0;
822     if (mp->tx_active == 0 && !mp->tx_bad_runt)
823 	goto out;
824 
825     /* update various counters */
826     mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
827 
828     cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
829 
830     /* turn off both tx and rx and reset the chip */
831     out_8(&mb->maccc, 0);
832     printk(KERN_ERR "mace: transmit timeout - resetting\n");
833     dbdma_reset(td);
834     mace_reset(dev);
835 
836     /* restart rx dma */
837     cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
838     dbdma_reset(rd);
839     out_le16(&cp->xfer_status, 0);
840     out_le32(&rd->cmdptr, virt_to_bus(cp));
841     out_le32(&rd->control, (RUN << 16) | RUN);
842 
843     /* fix up the transmit side */
844     i = mp->tx_empty;
845     mp->tx_active = 0;
846     ++dev->stats.tx_errors;
847     if (mp->tx_bad_runt) {
848 	mp->tx_bad_runt = 0;
849     } else if (i != mp->tx_fill) {
850 	dev_kfree_skb(mp->tx_bufs[i]);
851 	if (++i >= N_TX_RING)
852 	    i = 0;
853 	mp->tx_empty = i;
854     }
855     mp->tx_fullup = 0;
856     netif_wake_queue(dev);
857     if (i != mp->tx_fill) {
858 	cp = mp->tx_cmds + NCMDS_TX * i;
859 	out_le16(&cp->xfer_status, 0);
860 	out_le16(&cp->command, OUTPUT_LAST);
861 	out_le32(&td->cmdptr, virt_to_bus(cp));
862 	out_le32(&td->control, (RUN << 16) | RUN);
863 	++mp->tx_active;
864 	mace_set_timeout(dev);
865     }
866 
867     /* turn it back on */
868     out_8(&mb->imr, RCVINT);
869     out_8(&mb->maccc, mp->maccc);
870 
871 out:
872     spin_unlock_irqrestore(&mp->lock, flags);
873 }
874 
875 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
876 {
877 	return IRQ_HANDLED;
878 }
879 
880 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
881 {
882     struct net_device *dev = (struct net_device *) dev_id;
883     struct mace_data *mp = netdev_priv(dev);
884     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
885     volatile struct dbdma_cmd *cp, *np;
886     int i, nb, stat, next;
887     struct sk_buff *skb;
888     unsigned frame_status;
889     static int mace_lost_status;
890     unsigned char *data;
891     unsigned long flags;
892 
893     spin_lock_irqsave(&mp->lock, flags);
894     for (i = mp->rx_empty; i != mp->rx_fill; ) {
895 	cp = mp->rx_cmds + i;
896 	stat = le16_to_cpu(cp->xfer_status);
897 	if ((stat & ACTIVE) == 0) {
898 	    next = i + 1;
899 	    if (next >= N_RX_RING)
900 		next = 0;
901 	    np = mp->rx_cmds + next;
902 	    if (next != mp->rx_fill &&
903 		(le16_to_cpu(np->xfer_status) & ACTIVE) != 0) {
904 		printk(KERN_DEBUG "mace: lost a status word\n");
905 		++mace_lost_status;
906 	    } else
907 		break;
908 	}
909 	nb = le16_to_cpu(cp->req_count) - le16_to_cpu(cp->res_count);
910 	out_le16(&cp->command, DBDMA_STOP);
911 	/* got a packet, have a look at it */
912 	skb = mp->rx_bufs[i];
913 	if (!skb) {
914 	    ++dev->stats.rx_dropped;
915 	} else if (nb > 8) {
916 	    data = skb->data;
917 	    frame_status = (data[nb-3] << 8) + data[nb-4];
918 	    if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
919 		++dev->stats.rx_errors;
920 		if (frame_status & RS_OFLO)
921 		    ++dev->stats.rx_over_errors;
922 		if (frame_status & RS_FRAMERR)
923 		    ++dev->stats.rx_frame_errors;
924 		if (frame_status & RS_FCSERR)
925 		    ++dev->stats.rx_crc_errors;
926 	    } else {
927 		/* Mace feature AUTO_STRIP_RCV is on by default, dropping the
928 		 * FCS on frames with 802.3 headers. This means that Ethernet
929 		 * frames have 8 extra octets at the end, while 802.3 frames
930 		 * have only 4. We need to correctly account for this. */
931 		if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
932 		    nb -= 4;
933 		else	/* Ethernet header; mace includes FCS */
934 		    nb -= 8;
935 		skb_put(skb, nb);
936 		skb->protocol = eth_type_trans(skb, dev);
937 		dev->stats.rx_bytes += skb->len;
938 		netif_rx(skb);
939 		mp->rx_bufs[i] = NULL;
940 		++dev->stats.rx_packets;
941 	    }
942 	} else {
943 	    ++dev->stats.rx_errors;
944 	    ++dev->stats.rx_length_errors;
945 	}
946 
947 	/* advance to next */
948 	if (++i >= N_RX_RING)
949 	    i = 0;
950     }
951     mp->rx_empty = i;
952 
953     i = mp->rx_fill;
954     for (;;) {
955 	next = i + 1;
956 	if (next >= N_RX_RING)
957 	    next = 0;
958 	if (next == mp->rx_empty)
959 	    break;
960 	cp = mp->rx_cmds + i;
961 	skb = mp->rx_bufs[i];
962 	if (!skb) {
963 	    skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
964 	    if (skb) {
965 		skb_reserve(skb, 2);
966 		mp->rx_bufs[i] = skb;
967 	    }
968 	}
969 	cp->req_count = cpu_to_le16(RX_BUFLEN);
970 	data = skb? skb->data: dummy_buf;
971 	cp->phy_addr = cpu_to_le32(virt_to_bus(data));
972 	out_le16(&cp->xfer_status, 0);
973 	out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
974 #if 0
975 	if ((le32_to_cpu(rd->status) & ACTIVE) != 0) {
976 	    out_le32(&rd->control, (PAUSE << 16) | PAUSE);
977 	    while ((in_le32(&rd->status) & ACTIVE) != 0)
978 		;
979 	}
980 #endif
981 	i = next;
982     }
983     if (i != mp->rx_fill) {
984 	out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
985 	mp->rx_fill = i;
986     }
987     spin_unlock_irqrestore(&mp->lock, flags);
988     return IRQ_HANDLED;
989 }
990 
991 static const struct of_device_id mace_match[] =
992 {
993 	{
994 	.name 		= "mace",
995 	},
996 	{},
997 };
998 MODULE_DEVICE_TABLE (of, mace_match);
999 
1000 static struct macio_driver mace_driver =
1001 {
1002 	.driver = {
1003 		.name 		= "mace",
1004 		.owner		= THIS_MODULE,
1005 		.of_match_table	= mace_match,
1006 	},
1007 	.probe		= mace_probe,
1008 	.remove		= mace_remove,
1009 };
1010 
1011 
1012 static int __init mace_init(void)
1013 {
1014 	return macio_register_driver(&mace_driver);
1015 }
1016 
1017 static void __exit mace_cleanup(void)
1018 {
1019 	macio_unregister_driver(&mace_driver);
1020 
1021 	kfree(dummy_buf);
1022 	dummy_buf = NULL;
1023 }
1024 
1025 MODULE_AUTHOR("Paul Mackerras");
1026 MODULE_DESCRIPTION("PowerMac MACE driver.");
1027 module_param(port_aaui, int, 0);
1028 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1029 MODULE_LICENSE("GPL");
1030 
1031 module_init(mace_init);
1032 module_exit(mace_cleanup);
1033