1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Network device driver for the MACE ethernet controller on 4 * Apple Powermacs. Assumes it's under a DBDMA controller. 5 * 6 * Copyright (C) 1996 Paul Mackerras. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/kernel.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/delay.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/crc32.h> 19 #include <linux/spinlock.h> 20 #include <linux/bitrev.h> 21 #include <linux/slab.h> 22 #include <asm/prom.h> 23 #include <asm/dbdma.h> 24 #include <asm/io.h> 25 #include <asm/pgtable.h> 26 #include <asm/macio.h> 27 28 #include "mace.h" 29 30 static int port_aaui = -1; 31 32 #define N_RX_RING 8 33 #define N_TX_RING 6 34 #define MAX_TX_ACTIVE 1 35 #define NCMDS_TX 1 /* dma commands per element in tx ring */ 36 #define RX_BUFLEN (ETH_FRAME_LEN + 8) 37 #define TX_TIMEOUT HZ /* 1 second */ 38 39 /* Chip rev needs workaround on HW & multicast addr change */ 40 #define BROKEN_ADDRCHG_REV 0x0941 41 42 /* Bits in transmit DMA status */ 43 #define TX_DMA_ERR 0x80 44 45 struct mace_data { 46 volatile struct mace __iomem *mace; 47 volatile struct dbdma_regs __iomem *tx_dma; 48 int tx_dma_intr; 49 volatile struct dbdma_regs __iomem *rx_dma; 50 int rx_dma_intr; 51 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */ 52 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */ 53 struct sk_buff *rx_bufs[N_RX_RING]; 54 int rx_fill; 55 int rx_empty; 56 struct sk_buff *tx_bufs[N_TX_RING]; 57 int tx_fill; 58 int tx_empty; 59 unsigned char maccc; 60 unsigned char tx_fullup; 61 unsigned char tx_active; 62 unsigned char tx_bad_runt; 63 struct timer_list tx_timeout; 64 int timeout_active; 65 int port_aaui; 66 int chipid; 67 struct macio_dev *mdev; 68 spinlock_t lock; 69 }; 70 71 /* 72 * Number of bytes of private data per MACE: allow enough for 73 * the rx and tx dma commands plus a branch dma command each, 74 * and another 16 bytes to allow us to align the dma command 75 * buffers on a 16 byte boundary. 76 */ 77 #define PRIV_BYTES (sizeof(struct mace_data) \ 78 + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd)) 79 80 static int mace_open(struct net_device *dev); 81 static int mace_close(struct net_device *dev); 82 static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev); 83 static void mace_set_multicast(struct net_device *dev); 84 static void mace_reset(struct net_device *dev); 85 static int mace_set_address(struct net_device *dev, void *addr); 86 static irqreturn_t mace_interrupt(int irq, void *dev_id); 87 static irqreturn_t mace_txdma_intr(int irq, void *dev_id); 88 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id); 89 static void mace_set_timeout(struct net_device *dev); 90 static void mace_tx_timeout(struct timer_list *t); 91 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma); 92 static inline void mace_clean_rings(struct mace_data *mp); 93 static void __mace_set_address(struct net_device *dev, void *addr); 94 95 /* 96 * If we can't get a skbuff when we need it, we use this area for DMA. 97 */ 98 static unsigned char *dummy_buf; 99 100 static const struct net_device_ops mace_netdev_ops = { 101 .ndo_open = mace_open, 102 .ndo_stop = mace_close, 103 .ndo_start_xmit = mace_xmit_start, 104 .ndo_set_rx_mode = mace_set_multicast, 105 .ndo_set_mac_address = mace_set_address, 106 .ndo_validate_addr = eth_validate_addr, 107 }; 108 109 static int mace_probe(struct macio_dev *mdev, const struct of_device_id *match) 110 { 111 struct device_node *mace = macio_get_of_node(mdev); 112 struct net_device *dev; 113 struct mace_data *mp; 114 const unsigned char *addr; 115 int j, rev, rc = -EBUSY; 116 117 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) { 118 printk(KERN_ERR "can't use MACE %pOF: need 3 addrs and 3 irqs\n", 119 mace); 120 return -ENODEV; 121 } 122 123 addr = of_get_property(mace, "mac-address", NULL); 124 if (addr == NULL) { 125 addr = of_get_property(mace, "local-mac-address", NULL); 126 if (addr == NULL) { 127 printk(KERN_ERR "Can't get mac-address for MACE %pOF\n", 128 mace); 129 return -ENODEV; 130 } 131 } 132 133 /* 134 * lazy allocate the driver-wide dummy buffer. (Note that we 135 * never have more than one MACE in the system anyway) 136 */ 137 if (dummy_buf == NULL) { 138 dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL); 139 if (dummy_buf == NULL) 140 return -ENOMEM; 141 } 142 143 if (macio_request_resources(mdev, "mace")) { 144 printk(KERN_ERR "MACE: can't request IO resources !\n"); 145 return -EBUSY; 146 } 147 148 dev = alloc_etherdev(PRIV_BYTES); 149 if (!dev) { 150 rc = -ENOMEM; 151 goto err_release; 152 } 153 SET_NETDEV_DEV(dev, &mdev->ofdev.dev); 154 155 mp = netdev_priv(dev); 156 mp->mdev = mdev; 157 macio_set_drvdata(mdev, dev); 158 159 dev->base_addr = macio_resource_start(mdev, 0); 160 mp->mace = ioremap(dev->base_addr, 0x1000); 161 if (mp->mace == NULL) { 162 printk(KERN_ERR "MACE: can't map IO resources !\n"); 163 rc = -ENOMEM; 164 goto err_free; 165 } 166 dev->irq = macio_irq(mdev, 0); 167 168 rev = addr[0] == 0 && addr[1] == 0xA0; 169 for (j = 0; j < 6; ++j) { 170 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j]; 171 } 172 mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) | 173 in_8(&mp->mace->chipid_lo); 174 175 176 mp = netdev_priv(dev); 177 mp->maccc = ENXMT | ENRCV; 178 179 mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000); 180 if (mp->tx_dma == NULL) { 181 printk(KERN_ERR "MACE: can't map TX DMA resources !\n"); 182 rc = -ENOMEM; 183 goto err_unmap_io; 184 } 185 mp->tx_dma_intr = macio_irq(mdev, 1); 186 187 mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000); 188 if (mp->rx_dma == NULL) { 189 printk(KERN_ERR "MACE: can't map RX DMA resources !\n"); 190 rc = -ENOMEM; 191 goto err_unmap_tx_dma; 192 } 193 mp->rx_dma_intr = macio_irq(mdev, 2); 194 195 mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1); 196 mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1; 197 198 memset((char *) mp->tx_cmds, 0, 199 (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd)); 200 timer_setup(&mp->tx_timeout, mace_tx_timeout, 0); 201 spin_lock_init(&mp->lock); 202 mp->timeout_active = 0; 203 204 if (port_aaui >= 0) 205 mp->port_aaui = port_aaui; 206 else { 207 /* Apple Network Server uses the AAUI port */ 208 if (of_machine_is_compatible("AAPL,ShinerESB")) 209 mp->port_aaui = 1; 210 else { 211 #ifdef CONFIG_MACE_AAUI_PORT 212 mp->port_aaui = 1; 213 #else 214 mp->port_aaui = 0; 215 #endif 216 } 217 } 218 219 dev->netdev_ops = &mace_netdev_ops; 220 221 /* 222 * Most of what is below could be moved to mace_open() 223 */ 224 mace_reset(dev); 225 226 rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev); 227 if (rc) { 228 printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq); 229 goto err_unmap_rx_dma; 230 } 231 rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev); 232 if (rc) { 233 printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr); 234 goto err_free_irq; 235 } 236 rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev); 237 if (rc) { 238 printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr); 239 goto err_free_tx_irq; 240 } 241 242 rc = register_netdev(dev); 243 if (rc) { 244 printk(KERN_ERR "MACE: Cannot register net device, aborting.\n"); 245 goto err_free_rx_irq; 246 } 247 248 printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n", 249 dev->name, dev->dev_addr, 250 mp->chipid >> 8, mp->chipid & 0xff); 251 252 return 0; 253 254 err_free_rx_irq: 255 free_irq(macio_irq(mdev, 2), dev); 256 err_free_tx_irq: 257 free_irq(macio_irq(mdev, 1), dev); 258 err_free_irq: 259 free_irq(macio_irq(mdev, 0), dev); 260 err_unmap_rx_dma: 261 iounmap(mp->rx_dma); 262 err_unmap_tx_dma: 263 iounmap(mp->tx_dma); 264 err_unmap_io: 265 iounmap(mp->mace); 266 err_free: 267 free_netdev(dev); 268 err_release: 269 macio_release_resources(mdev); 270 271 return rc; 272 } 273 274 static int mace_remove(struct macio_dev *mdev) 275 { 276 struct net_device *dev = macio_get_drvdata(mdev); 277 struct mace_data *mp; 278 279 BUG_ON(dev == NULL); 280 281 macio_set_drvdata(mdev, NULL); 282 283 mp = netdev_priv(dev); 284 285 unregister_netdev(dev); 286 287 free_irq(dev->irq, dev); 288 free_irq(mp->tx_dma_intr, dev); 289 free_irq(mp->rx_dma_intr, dev); 290 291 iounmap(mp->rx_dma); 292 iounmap(mp->tx_dma); 293 iounmap(mp->mace); 294 295 free_netdev(dev); 296 297 macio_release_resources(mdev); 298 299 return 0; 300 } 301 302 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma) 303 { 304 int i; 305 306 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16); 307 308 /* 309 * Yes this looks peculiar, but apparently it needs to be this 310 * way on some machines. 311 */ 312 for (i = 200; i > 0; --i) 313 if (le32_to_cpu(dma->control) & RUN) 314 udelay(1); 315 } 316 317 static void mace_reset(struct net_device *dev) 318 { 319 struct mace_data *mp = netdev_priv(dev); 320 volatile struct mace __iomem *mb = mp->mace; 321 int i; 322 323 /* soft-reset the chip */ 324 i = 200; 325 while (--i) { 326 out_8(&mb->biucc, SWRST); 327 if (in_8(&mb->biucc) & SWRST) { 328 udelay(10); 329 continue; 330 } 331 break; 332 } 333 if (!i) { 334 printk(KERN_ERR "mace: cannot reset chip!\n"); 335 return; 336 } 337 338 out_8(&mb->imr, 0xff); /* disable all intrs for now */ 339 i = in_8(&mb->ir); 340 out_8(&mb->maccc, 0); /* turn off tx, rx */ 341 342 out_8(&mb->biucc, XMTSP_64); 343 out_8(&mb->utr, RTRD); 344 out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST); 345 out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */ 346 out_8(&mb->rcvfc, 0); 347 348 /* load up the hardware address */ 349 __mace_set_address(dev, dev->dev_addr); 350 351 /* clear the multicast filter */ 352 if (mp->chipid == BROKEN_ADDRCHG_REV) 353 out_8(&mb->iac, LOGADDR); 354 else { 355 out_8(&mb->iac, ADDRCHG | LOGADDR); 356 while ((in_8(&mb->iac) & ADDRCHG) != 0) 357 ; 358 } 359 for (i = 0; i < 8; ++i) 360 out_8(&mb->ladrf, 0); 361 362 /* done changing address */ 363 if (mp->chipid != BROKEN_ADDRCHG_REV) 364 out_8(&mb->iac, 0); 365 366 if (mp->port_aaui) 367 out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO); 368 else 369 out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO); 370 } 371 372 static void __mace_set_address(struct net_device *dev, void *addr) 373 { 374 struct mace_data *mp = netdev_priv(dev); 375 volatile struct mace __iomem *mb = mp->mace; 376 unsigned char *p = addr; 377 int i; 378 379 /* load up the hardware address */ 380 if (mp->chipid == BROKEN_ADDRCHG_REV) 381 out_8(&mb->iac, PHYADDR); 382 else { 383 out_8(&mb->iac, ADDRCHG | PHYADDR); 384 while ((in_8(&mb->iac) & ADDRCHG) != 0) 385 ; 386 } 387 for (i = 0; i < 6; ++i) 388 out_8(&mb->padr, dev->dev_addr[i] = p[i]); 389 if (mp->chipid != BROKEN_ADDRCHG_REV) 390 out_8(&mb->iac, 0); 391 } 392 393 static int mace_set_address(struct net_device *dev, void *addr) 394 { 395 struct mace_data *mp = netdev_priv(dev); 396 volatile struct mace __iomem *mb = mp->mace; 397 unsigned long flags; 398 399 spin_lock_irqsave(&mp->lock, flags); 400 401 __mace_set_address(dev, addr); 402 403 /* note: setting ADDRCHG clears ENRCV */ 404 out_8(&mb->maccc, mp->maccc); 405 406 spin_unlock_irqrestore(&mp->lock, flags); 407 return 0; 408 } 409 410 static inline void mace_clean_rings(struct mace_data *mp) 411 { 412 int i; 413 414 /* free some skb's */ 415 for (i = 0; i < N_RX_RING; ++i) { 416 if (mp->rx_bufs[i] != NULL) { 417 dev_kfree_skb(mp->rx_bufs[i]); 418 mp->rx_bufs[i] = NULL; 419 } 420 } 421 for (i = mp->tx_empty; i != mp->tx_fill; ) { 422 dev_kfree_skb(mp->tx_bufs[i]); 423 if (++i >= N_TX_RING) 424 i = 0; 425 } 426 } 427 428 static int mace_open(struct net_device *dev) 429 { 430 struct mace_data *mp = netdev_priv(dev); 431 volatile struct mace __iomem *mb = mp->mace; 432 volatile struct dbdma_regs __iomem *rd = mp->rx_dma; 433 volatile struct dbdma_regs __iomem *td = mp->tx_dma; 434 volatile struct dbdma_cmd *cp; 435 int i; 436 struct sk_buff *skb; 437 unsigned char *data; 438 439 /* reset the chip */ 440 mace_reset(dev); 441 442 /* initialize list of sk_buffs for receiving and set up recv dma */ 443 mace_clean_rings(mp); 444 memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd)); 445 cp = mp->rx_cmds; 446 for (i = 0; i < N_RX_RING - 1; ++i) { 447 skb = netdev_alloc_skb(dev, RX_BUFLEN + 2); 448 if (!skb) { 449 data = dummy_buf; 450 } else { 451 skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */ 452 data = skb->data; 453 } 454 mp->rx_bufs[i] = skb; 455 cp->req_count = cpu_to_le16(RX_BUFLEN); 456 cp->command = cpu_to_le16(INPUT_LAST + INTR_ALWAYS); 457 cp->phy_addr = cpu_to_le32(virt_to_bus(data)); 458 cp->xfer_status = 0; 459 ++cp; 460 } 461 mp->rx_bufs[i] = NULL; 462 cp->command = cpu_to_le16(DBDMA_STOP); 463 mp->rx_fill = i; 464 mp->rx_empty = 0; 465 466 /* Put a branch back to the beginning of the receive command list */ 467 ++cp; 468 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS); 469 cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->rx_cmds)); 470 471 /* start rx dma */ 472 out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ 473 out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds)); 474 out_le32(&rd->control, (RUN << 16) | RUN); 475 476 /* put a branch at the end of the tx command list */ 477 cp = mp->tx_cmds + NCMDS_TX * N_TX_RING; 478 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS); 479 cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->tx_cmds)); 480 481 /* reset tx dma */ 482 out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); 483 out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds)); 484 mp->tx_fill = 0; 485 mp->tx_empty = 0; 486 mp->tx_fullup = 0; 487 mp->tx_active = 0; 488 mp->tx_bad_runt = 0; 489 490 /* turn it on! */ 491 out_8(&mb->maccc, mp->maccc); 492 /* enable all interrupts except receive interrupts */ 493 out_8(&mb->imr, RCVINT); 494 495 return 0; 496 } 497 498 static int mace_close(struct net_device *dev) 499 { 500 struct mace_data *mp = netdev_priv(dev); 501 volatile struct mace __iomem *mb = mp->mace; 502 volatile struct dbdma_regs __iomem *rd = mp->rx_dma; 503 volatile struct dbdma_regs __iomem *td = mp->tx_dma; 504 505 /* disable rx and tx */ 506 out_8(&mb->maccc, 0); 507 out_8(&mb->imr, 0xff); /* disable all intrs */ 508 509 /* disable rx and tx dma */ 510 rd->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ 511 td->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ 512 513 mace_clean_rings(mp); 514 515 return 0; 516 } 517 518 static inline void mace_set_timeout(struct net_device *dev) 519 { 520 struct mace_data *mp = netdev_priv(dev); 521 522 if (mp->timeout_active) 523 del_timer(&mp->tx_timeout); 524 mp->tx_timeout.expires = jiffies + TX_TIMEOUT; 525 add_timer(&mp->tx_timeout); 526 mp->timeout_active = 1; 527 } 528 529 static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev) 530 { 531 struct mace_data *mp = netdev_priv(dev); 532 volatile struct dbdma_regs __iomem *td = mp->tx_dma; 533 volatile struct dbdma_cmd *cp, *np; 534 unsigned long flags; 535 int fill, next, len; 536 537 /* see if there's a free slot in the tx ring */ 538 spin_lock_irqsave(&mp->lock, flags); 539 fill = mp->tx_fill; 540 next = fill + 1; 541 if (next >= N_TX_RING) 542 next = 0; 543 if (next == mp->tx_empty) { 544 netif_stop_queue(dev); 545 mp->tx_fullup = 1; 546 spin_unlock_irqrestore(&mp->lock, flags); 547 return NETDEV_TX_BUSY; /* can't take it at the moment */ 548 } 549 spin_unlock_irqrestore(&mp->lock, flags); 550 551 /* partially fill in the dma command block */ 552 len = skb->len; 553 if (len > ETH_FRAME_LEN) { 554 printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len); 555 len = ETH_FRAME_LEN; 556 } 557 mp->tx_bufs[fill] = skb; 558 cp = mp->tx_cmds + NCMDS_TX * fill; 559 cp->req_count = cpu_to_le16(len); 560 cp->phy_addr = cpu_to_le32(virt_to_bus(skb->data)); 561 562 np = mp->tx_cmds + NCMDS_TX * next; 563 out_le16(&np->command, DBDMA_STOP); 564 565 /* poke the tx dma channel */ 566 spin_lock_irqsave(&mp->lock, flags); 567 mp->tx_fill = next; 568 if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) { 569 out_le16(&cp->xfer_status, 0); 570 out_le16(&cp->command, OUTPUT_LAST); 571 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); 572 ++mp->tx_active; 573 mace_set_timeout(dev); 574 } 575 if (++next >= N_TX_RING) 576 next = 0; 577 if (next == mp->tx_empty) 578 netif_stop_queue(dev); 579 spin_unlock_irqrestore(&mp->lock, flags); 580 581 return NETDEV_TX_OK; 582 } 583 584 static void mace_set_multicast(struct net_device *dev) 585 { 586 struct mace_data *mp = netdev_priv(dev); 587 volatile struct mace __iomem *mb = mp->mace; 588 int i; 589 u32 crc; 590 unsigned long flags; 591 592 spin_lock_irqsave(&mp->lock, flags); 593 mp->maccc &= ~PROM; 594 if (dev->flags & IFF_PROMISC) { 595 mp->maccc |= PROM; 596 } else { 597 unsigned char multicast_filter[8]; 598 struct netdev_hw_addr *ha; 599 600 if (dev->flags & IFF_ALLMULTI) { 601 for (i = 0; i < 8; i++) 602 multicast_filter[i] = 0xff; 603 } else { 604 for (i = 0; i < 8; i++) 605 multicast_filter[i] = 0; 606 netdev_for_each_mc_addr(ha, dev) { 607 crc = ether_crc_le(6, ha->addr); 608 i = crc >> 26; /* bit number in multicast_filter */ 609 multicast_filter[i >> 3] |= 1 << (i & 7); 610 } 611 } 612 #if 0 613 printk("Multicast filter :"); 614 for (i = 0; i < 8; i++) 615 printk("%02x ", multicast_filter[i]); 616 printk("\n"); 617 #endif 618 619 if (mp->chipid == BROKEN_ADDRCHG_REV) 620 out_8(&mb->iac, LOGADDR); 621 else { 622 out_8(&mb->iac, ADDRCHG | LOGADDR); 623 while ((in_8(&mb->iac) & ADDRCHG) != 0) 624 ; 625 } 626 for (i = 0; i < 8; ++i) 627 out_8(&mb->ladrf, multicast_filter[i]); 628 if (mp->chipid != BROKEN_ADDRCHG_REV) 629 out_8(&mb->iac, 0); 630 } 631 /* reset maccc */ 632 out_8(&mb->maccc, mp->maccc); 633 spin_unlock_irqrestore(&mp->lock, flags); 634 } 635 636 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev) 637 { 638 volatile struct mace __iomem *mb = mp->mace; 639 static int mace_babbles, mace_jabbers; 640 641 if (intr & MPCO) 642 dev->stats.rx_missed_errors += 256; 643 dev->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */ 644 if (intr & RNTPCO) 645 dev->stats.rx_length_errors += 256; 646 dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */ 647 if (intr & CERR) 648 ++dev->stats.tx_heartbeat_errors; 649 if (intr & BABBLE) 650 if (mace_babbles++ < 4) 651 printk(KERN_DEBUG "mace: babbling transmitter\n"); 652 if (intr & JABBER) 653 if (mace_jabbers++ < 4) 654 printk(KERN_DEBUG "mace: jabbering transceiver\n"); 655 } 656 657 static irqreturn_t mace_interrupt(int irq, void *dev_id) 658 { 659 struct net_device *dev = (struct net_device *) dev_id; 660 struct mace_data *mp = netdev_priv(dev); 661 volatile struct mace __iomem *mb = mp->mace; 662 volatile struct dbdma_regs __iomem *td = mp->tx_dma; 663 volatile struct dbdma_cmd *cp; 664 int intr, fs, i, stat, x; 665 int xcount, dstat; 666 unsigned long flags; 667 /* static int mace_last_fs, mace_last_xcount; */ 668 669 spin_lock_irqsave(&mp->lock, flags); 670 intr = in_8(&mb->ir); /* read interrupt register */ 671 in_8(&mb->xmtrc); /* get retries */ 672 mace_handle_misc_intrs(mp, intr, dev); 673 674 i = mp->tx_empty; 675 while (in_8(&mb->pr) & XMTSV) { 676 del_timer(&mp->tx_timeout); 677 mp->timeout_active = 0; 678 /* 679 * Clear any interrupt indication associated with this status 680 * word. This appears to unlatch any error indication from 681 * the DMA controller. 682 */ 683 intr = in_8(&mb->ir); 684 if (intr != 0) 685 mace_handle_misc_intrs(mp, intr, dev); 686 if (mp->tx_bad_runt) { 687 fs = in_8(&mb->xmtfs); 688 mp->tx_bad_runt = 0; 689 out_8(&mb->xmtfc, AUTO_PAD_XMIT); 690 continue; 691 } 692 dstat = le32_to_cpu(td->status); 693 /* stop DMA controller */ 694 out_le32(&td->control, RUN << 16); 695 /* 696 * xcount is the number of complete frames which have been 697 * written to the fifo but for which status has not been read. 698 */ 699 xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK; 700 if (xcount == 0 || (dstat & DEAD)) { 701 /* 702 * If a packet was aborted before the DMA controller has 703 * finished transferring it, it seems that there are 2 bytes 704 * which are stuck in some buffer somewhere. These will get 705 * transmitted as soon as we read the frame status (which 706 * reenables the transmit data transfer request). Turning 707 * off the DMA controller and/or resetting the MACE doesn't 708 * help. So we disable auto-padding and FCS transmission 709 * so the two bytes will only be a runt packet which should 710 * be ignored by other stations. 711 */ 712 out_8(&mb->xmtfc, DXMTFCS); 713 } 714 fs = in_8(&mb->xmtfs); 715 if ((fs & XMTSV) == 0) { 716 printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n", 717 fs, xcount, dstat); 718 mace_reset(dev); 719 /* 720 * XXX mace likes to hang the machine after a xmtfs error. 721 * This is hard to reproduce, resetting *may* help 722 */ 723 } 724 cp = mp->tx_cmds + NCMDS_TX * i; 725 stat = le16_to_cpu(cp->xfer_status); 726 if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) { 727 /* 728 * Check whether there were in fact 2 bytes written to 729 * the transmit FIFO. 730 */ 731 udelay(1); 732 x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK; 733 if (x != 0) { 734 /* there were two bytes with an end-of-packet indication */ 735 mp->tx_bad_runt = 1; 736 mace_set_timeout(dev); 737 } else { 738 /* 739 * Either there weren't the two bytes buffered up, or they 740 * didn't have an end-of-packet indication. 741 * We flush the transmit FIFO just in case (by setting the 742 * XMTFWU bit with the transmitter disabled). 743 */ 744 out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT); 745 out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU); 746 udelay(1); 747 out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT); 748 out_8(&mb->xmtfc, AUTO_PAD_XMIT); 749 } 750 } 751 /* dma should have finished */ 752 if (i == mp->tx_fill) { 753 printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n", 754 fs, xcount, dstat); 755 continue; 756 } 757 /* Update stats */ 758 if (fs & (UFLO|LCOL|LCAR|RTRY)) { 759 ++dev->stats.tx_errors; 760 if (fs & LCAR) 761 ++dev->stats.tx_carrier_errors; 762 if (fs & (UFLO|LCOL|RTRY)) 763 ++dev->stats.tx_aborted_errors; 764 } else { 765 dev->stats.tx_bytes += mp->tx_bufs[i]->len; 766 ++dev->stats.tx_packets; 767 } 768 dev_consume_skb_irq(mp->tx_bufs[i]); 769 --mp->tx_active; 770 if (++i >= N_TX_RING) 771 i = 0; 772 #if 0 773 mace_last_fs = fs; 774 mace_last_xcount = xcount; 775 #endif 776 } 777 778 if (i != mp->tx_empty) { 779 mp->tx_fullup = 0; 780 netif_wake_queue(dev); 781 } 782 mp->tx_empty = i; 783 i += mp->tx_active; 784 if (i >= N_TX_RING) 785 i -= N_TX_RING; 786 if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) { 787 do { 788 /* set up the next one */ 789 cp = mp->tx_cmds + NCMDS_TX * i; 790 out_le16(&cp->xfer_status, 0); 791 out_le16(&cp->command, OUTPUT_LAST); 792 ++mp->tx_active; 793 if (++i >= N_TX_RING) 794 i = 0; 795 } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE); 796 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); 797 mace_set_timeout(dev); 798 } 799 spin_unlock_irqrestore(&mp->lock, flags); 800 return IRQ_HANDLED; 801 } 802 803 static void mace_tx_timeout(struct timer_list *t) 804 { 805 struct mace_data *mp = from_timer(mp, t, tx_timeout); 806 struct net_device *dev = macio_get_drvdata(mp->mdev); 807 volatile struct mace __iomem *mb = mp->mace; 808 volatile struct dbdma_regs __iomem *td = mp->tx_dma; 809 volatile struct dbdma_regs __iomem *rd = mp->rx_dma; 810 volatile struct dbdma_cmd *cp; 811 unsigned long flags; 812 int i; 813 814 spin_lock_irqsave(&mp->lock, flags); 815 mp->timeout_active = 0; 816 if (mp->tx_active == 0 && !mp->tx_bad_runt) 817 goto out; 818 819 /* update various counters */ 820 mace_handle_misc_intrs(mp, in_8(&mb->ir), dev); 821 822 cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty; 823 824 /* turn off both tx and rx and reset the chip */ 825 out_8(&mb->maccc, 0); 826 printk(KERN_ERR "mace: transmit timeout - resetting\n"); 827 dbdma_reset(td); 828 mace_reset(dev); 829 830 /* restart rx dma */ 831 cp = bus_to_virt(le32_to_cpu(rd->cmdptr)); 832 dbdma_reset(rd); 833 out_le16(&cp->xfer_status, 0); 834 out_le32(&rd->cmdptr, virt_to_bus(cp)); 835 out_le32(&rd->control, (RUN << 16) | RUN); 836 837 /* fix up the transmit side */ 838 i = mp->tx_empty; 839 mp->tx_active = 0; 840 ++dev->stats.tx_errors; 841 if (mp->tx_bad_runt) { 842 mp->tx_bad_runt = 0; 843 } else if (i != mp->tx_fill) { 844 dev_kfree_skb(mp->tx_bufs[i]); 845 if (++i >= N_TX_RING) 846 i = 0; 847 mp->tx_empty = i; 848 } 849 mp->tx_fullup = 0; 850 netif_wake_queue(dev); 851 if (i != mp->tx_fill) { 852 cp = mp->tx_cmds + NCMDS_TX * i; 853 out_le16(&cp->xfer_status, 0); 854 out_le16(&cp->command, OUTPUT_LAST); 855 out_le32(&td->cmdptr, virt_to_bus(cp)); 856 out_le32(&td->control, (RUN << 16) | RUN); 857 ++mp->tx_active; 858 mace_set_timeout(dev); 859 } 860 861 /* turn it back on */ 862 out_8(&mb->imr, RCVINT); 863 out_8(&mb->maccc, mp->maccc); 864 865 out: 866 spin_unlock_irqrestore(&mp->lock, flags); 867 } 868 869 static irqreturn_t mace_txdma_intr(int irq, void *dev_id) 870 { 871 return IRQ_HANDLED; 872 } 873 874 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id) 875 { 876 struct net_device *dev = (struct net_device *) dev_id; 877 struct mace_data *mp = netdev_priv(dev); 878 volatile struct dbdma_regs __iomem *rd = mp->rx_dma; 879 volatile struct dbdma_cmd *cp, *np; 880 int i, nb, stat, next; 881 struct sk_buff *skb; 882 unsigned frame_status; 883 static int mace_lost_status; 884 unsigned char *data; 885 unsigned long flags; 886 887 spin_lock_irqsave(&mp->lock, flags); 888 for (i = mp->rx_empty; i != mp->rx_fill; ) { 889 cp = mp->rx_cmds + i; 890 stat = le16_to_cpu(cp->xfer_status); 891 if ((stat & ACTIVE) == 0) { 892 next = i + 1; 893 if (next >= N_RX_RING) 894 next = 0; 895 np = mp->rx_cmds + next; 896 if (next != mp->rx_fill && 897 (le16_to_cpu(np->xfer_status) & ACTIVE) != 0) { 898 printk(KERN_DEBUG "mace: lost a status word\n"); 899 ++mace_lost_status; 900 } else 901 break; 902 } 903 nb = le16_to_cpu(cp->req_count) - le16_to_cpu(cp->res_count); 904 out_le16(&cp->command, DBDMA_STOP); 905 /* got a packet, have a look at it */ 906 skb = mp->rx_bufs[i]; 907 if (!skb) { 908 ++dev->stats.rx_dropped; 909 } else if (nb > 8) { 910 data = skb->data; 911 frame_status = (data[nb-3] << 8) + data[nb-4]; 912 if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) { 913 ++dev->stats.rx_errors; 914 if (frame_status & RS_OFLO) 915 ++dev->stats.rx_over_errors; 916 if (frame_status & RS_FRAMERR) 917 ++dev->stats.rx_frame_errors; 918 if (frame_status & RS_FCSERR) 919 ++dev->stats.rx_crc_errors; 920 } else { 921 /* Mace feature AUTO_STRIP_RCV is on by default, dropping the 922 * FCS on frames with 802.3 headers. This means that Ethernet 923 * frames have 8 extra octets at the end, while 802.3 frames 924 * have only 4. We need to correctly account for this. */ 925 if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */ 926 nb -= 4; 927 else /* Ethernet header; mace includes FCS */ 928 nb -= 8; 929 skb_put(skb, nb); 930 skb->protocol = eth_type_trans(skb, dev); 931 dev->stats.rx_bytes += skb->len; 932 netif_rx(skb); 933 mp->rx_bufs[i] = NULL; 934 ++dev->stats.rx_packets; 935 } 936 } else { 937 ++dev->stats.rx_errors; 938 ++dev->stats.rx_length_errors; 939 } 940 941 /* advance to next */ 942 if (++i >= N_RX_RING) 943 i = 0; 944 } 945 mp->rx_empty = i; 946 947 i = mp->rx_fill; 948 for (;;) { 949 next = i + 1; 950 if (next >= N_RX_RING) 951 next = 0; 952 if (next == mp->rx_empty) 953 break; 954 cp = mp->rx_cmds + i; 955 skb = mp->rx_bufs[i]; 956 if (!skb) { 957 skb = netdev_alloc_skb(dev, RX_BUFLEN + 2); 958 if (skb) { 959 skb_reserve(skb, 2); 960 mp->rx_bufs[i] = skb; 961 } 962 } 963 cp->req_count = cpu_to_le16(RX_BUFLEN); 964 data = skb? skb->data: dummy_buf; 965 cp->phy_addr = cpu_to_le32(virt_to_bus(data)); 966 out_le16(&cp->xfer_status, 0); 967 out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS); 968 #if 0 969 if ((le32_to_cpu(rd->status) & ACTIVE) != 0) { 970 out_le32(&rd->control, (PAUSE << 16) | PAUSE); 971 while ((in_le32(&rd->status) & ACTIVE) != 0) 972 ; 973 } 974 #endif 975 i = next; 976 } 977 if (i != mp->rx_fill) { 978 out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE)); 979 mp->rx_fill = i; 980 } 981 spin_unlock_irqrestore(&mp->lock, flags); 982 return IRQ_HANDLED; 983 } 984 985 static const struct of_device_id mace_match[] = 986 { 987 { 988 .name = "mace", 989 }, 990 {}, 991 }; 992 MODULE_DEVICE_TABLE (of, mace_match); 993 994 static struct macio_driver mace_driver = 995 { 996 .driver = { 997 .name = "mace", 998 .owner = THIS_MODULE, 999 .of_match_table = mace_match, 1000 }, 1001 .probe = mace_probe, 1002 .remove = mace_remove, 1003 }; 1004 1005 1006 static int __init mace_init(void) 1007 { 1008 return macio_register_driver(&mace_driver); 1009 } 1010 1011 static void __exit mace_cleanup(void) 1012 { 1013 macio_unregister_driver(&mace_driver); 1014 1015 kfree(dummy_buf); 1016 dummy_buf = NULL; 1017 } 1018 1019 MODULE_AUTHOR("Paul Mackerras"); 1020 MODULE_DESCRIPTION("PowerMac MACE driver."); 1021 module_param(port_aaui, int, 0); 1022 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)"); 1023 MODULE_LICENSE("GPL"); 1024 1025 module_init(mace_init); 1026 module_exit(mace_cleanup); 1027