1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Network device driver for the BMAC ethernet controller on
4 * Apple Powermacs. Assumes it's under a DBDMA controller.
5 *
6 * Copyright (C) 1998 Randy Gobbel.
7 *
8 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
9 * dynamic procfs inode.
10 */
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/delay.h>
17 #include <linux/string.h>
18 #include <linux/timer.h>
19 #include <linux/proc_fs.h>
20 #include <linux/init.h>
21 #include <linux/spinlock.h>
22 #include <linux/crc32.h>
23 #include <linux/crc32poly.h>
24 #include <linux/bitrev.h>
25 #include <linux/ethtool.h>
26 #include <linux/slab.h>
27 #include <linux/pgtable.h>
28 #include <asm/dbdma.h>
29 #include <asm/io.h>
30 #include <asm/page.h>
31 #include <asm/machdep.h>
32 #include <asm/pmac_feature.h>
33 #include <asm/macio.h>
34 #include <asm/irq.h>
35
36 #include "bmac.h"
37
38 #define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
39 #define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
40
41 /* switch to use multicast code lifted from sunhme driver */
42 #define SUNHME_MULTICAST
43
44 #define N_RX_RING 64
45 #define N_TX_RING 32
46 #define MAX_TX_ACTIVE 1
47 #define ETHERCRC 4
48 #define ETHERMINPACKET 64
49 #define ETHERMTU 1500
50 #define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
51 #define TX_TIMEOUT HZ /* 1 second */
52
53 /* Bits in transmit DMA status */
54 #define TX_DMA_ERR 0x80
55
56 #define XXDEBUG(args)
57
58 struct bmac_data {
59 /* volatile struct bmac *bmac; */
60 struct sk_buff_head *queue;
61 volatile struct dbdma_regs __iomem *tx_dma;
62 int tx_dma_intr;
63 volatile struct dbdma_regs __iomem *rx_dma;
64 int rx_dma_intr;
65 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
66 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
67 struct macio_dev *mdev;
68 int is_bmac_plus;
69 struct sk_buff *rx_bufs[N_RX_RING];
70 int rx_fill;
71 int rx_empty;
72 struct sk_buff *tx_bufs[N_TX_RING];
73 int tx_fill;
74 int tx_empty;
75 unsigned char tx_fullup;
76 struct timer_list tx_timeout;
77 int timeout_active;
78 int sleeping;
79 int opened;
80 unsigned short hash_use_count[64];
81 unsigned short hash_table_mask[4];
82 spinlock_t lock;
83 };
84
85 #if 0 /* Move that to ethtool */
86
87 typedef struct bmac_reg_entry {
88 char *name;
89 unsigned short reg_offset;
90 } bmac_reg_entry_t;
91
92 #define N_REG_ENTRIES 31
93
94 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
95 {"MEMADD", MEMADD},
96 {"MEMDATAHI", MEMDATAHI},
97 {"MEMDATALO", MEMDATALO},
98 {"TXPNTR", TXPNTR},
99 {"RXPNTR", RXPNTR},
100 {"IPG1", IPG1},
101 {"IPG2", IPG2},
102 {"ALIMIT", ALIMIT},
103 {"SLOT", SLOT},
104 {"PALEN", PALEN},
105 {"PAPAT", PAPAT},
106 {"TXSFD", TXSFD},
107 {"JAM", JAM},
108 {"TXCFG", TXCFG},
109 {"TXMAX", TXMAX},
110 {"TXMIN", TXMIN},
111 {"PAREG", PAREG},
112 {"DCNT", DCNT},
113 {"NCCNT", NCCNT},
114 {"NTCNT", NTCNT},
115 {"EXCNT", EXCNT},
116 {"LTCNT", LTCNT},
117 {"TXSM", TXSM},
118 {"RXCFG", RXCFG},
119 {"RXMAX", RXMAX},
120 {"RXMIN", RXMIN},
121 {"FRCNT", FRCNT},
122 {"AECNT", AECNT},
123 {"FECNT", FECNT},
124 {"RXSM", RXSM},
125 {"RXCV", RXCV}
126 };
127
128 #endif
129
130 static unsigned char *bmac_emergency_rxbuf;
131
132 /*
133 * Number of bytes of private data per BMAC: allow enough for
134 * the rx and tx dma commands plus a branch dma command each,
135 * and another 16 bytes to allow us to align the dma command
136 * buffers on a 16 byte boundary.
137 */
138 #define PRIV_BYTES (sizeof(struct bmac_data) \
139 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
140 + sizeof(struct sk_buff_head))
141
142 static int bmac_open(struct net_device *dev);
143 static int bmac_close(struct net_device *dev);
144 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
145 static void bmac_set_multicast(struct net_device *dev);
146 static void bmac_reset_and_enable(struct net_device *dev);
147 static void bmac_start_chip(struct net_device *dev);
148 static void bmac_init_chip(struct net_device *dev);
149 static void bmac_init_registers(struct net_device *dev);
150 static void bmac_enable_and_reset_chip(struct net_device *dev);
151 static int bmac_set_address(struct net_device *dev, void *addr);
152 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
153 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
154 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
155 static void bmac_set_timeout(struct net_device *dev);
156 static void bmac_tx_timeout(struct timer_list *t);
157 static netdev_tx_t bmac_output(struct sk_buff *skb, struct net_device *dev);
158 static void bmac_start(struct net_device *dev);
159
160 #define DBDMA_SET(x) ( ((x) | (x) << 16) )
161 #define DBDMA_CLEAR(x) ( (x) << 16)
162
163 static inline void
dbdma_st32(volatile __u32 __iomem * a,unsigned long x)164 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
165 {
166 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
167 }
168
169 static inline unsigned long
dbdma_ld32(volatile __u32 __iomem * a)170 dbdma_ld32(volatile __u32 __iomem *a)
171 {
172 __u32 swap;
173 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
174 return swap;
175 }
176
177 static void
dbdma_continue(volatile struct dbdma_regs __iomem * dmap)178 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
179 {
180 dbdma_st32(&dmap->control,
181 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
182 eieio();
183 }
184
185 static void
dbdma_reset(volatile struct dbdma_regs __iomem * dmap)186 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
187 {
188 dbdma_st32(&dmap->control,
189 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
190 eieio();
191 while (dbdma_ld32(&dmap->status) & RUN)
192 eieio();
193 }
194
195 static void
dbdma_setcmd(volatile struct dbdma_cmd * cp,unsigned short cmd,unsigned count,unsigned long addr,unsigned long cmd_dep)196 dbdma_setcmd(volatile struct dbdma_cmd *cp,
197 unsigned short cmd, unsigned count, unsigned long addr,
198 unsigned long cmd_dep)
199 {
200 out_le16(&cp->command, cmd);
201 out_le16(&cp->req_count, count);
202 out_le32(&cp->phy_addr, addr);
203 out_le32(&cp->cmd_dep, cmd_dep);
204 out_le16(&cp->xfer_status, 0);
205 out_le16(&cp->res_count, 0);
206 }
207
208 static inline
bmwrite(struct net_device * dev,unsigned long reg_offset,unsigned data)209 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
210 {
211 out_le16((void __iomem *)dev->base_addr + reg_offset, data);
212 }
213
214
215 static inline
bmread(struct net_device * dev,unsigned long reg_offset)216 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
217 {
218 return in_le16((void __iomem *)dev->base_addr + reg_offset);
219 }
220
221 static void
bmac_enable_and_reset_chip(struct net_device * dev)222 bmac_enable_and_reset_chip(struct net_device *dev)
223 {
224 struct bmac_data *bp = netdev_priv(dev);
225 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
226 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
227
228 if (rd)
229 dbdma_reset(rd);
230 if (td)
231 dbdma_reset(td);
232
233 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
234 }
235
236 #define MIFDELAY udelay(10)
237
238 static unsigned int
bmac_mif_readbits(struct net_device * dev,int nb)239 bmac_mif_readbits(struct net_device *dev, int nb)
240 {
241 unsigned int val = 0;
242
243 while (--nb >= 0) {
244 bmwrite(dev, MIFCSR, 0);
245 MIFDELAY;
246 if (bmread(dev, MIFCSR) & 8)
247 val |= 1 << nb;
248 bmwrite(dev, MIFCSR, 1);
249 MIFDELAY;
250 }
251 bmwrite(dev, MIFCSR, 0);
252 MIFDELAY;
253 bmwrite(dev, MIFCSR, 1);
254 MIFDELAY;
255 return val;
256 }
257
258 static void
bmac_mif_writebits(struct net_device * dev,unsigned int val,int nb)259 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
260 {
261 int b;
262
263 while (--nb >= 0) {
264 b = (val & (1 << nb))? 6: 4;
265 bmwrite(dev, MIFCSR, b);
266 MIFDELAY;
267 bmwrite(dev, MIFCSR, b|1);
268 MIFDELAY;
269 }
270 }
271
272 static unsigned int
bmac_mif_read(struct net_device * dev,unsigned int addr)273 bmac_mif_read(struct net_device *dev, unsigned int addr)
274 {
275 unsigned int val;
276
277 bmwrite(dev, MIFCSR, 4);
278 MIFDELAY;
279 bmac_mif_writebits(dev, ~0U, 32);
280 bmac_mif_writebits(dev, 6, 4);
281 bmac_mif_writebits(dev, addr, 10);
282 bmwrite(dev, MIFCSR, 2);
283 MIFDELAY;
284 bmwrite(dev, MIFCSR, 1);
285 MIFDELAY;
286 val = bmac_mif_readbits(dev, 17);
287 bmwrite(dev, MIFCSR, 4);
288 MIFDELAY;
289 return val;
290 }
291
292 static void
bmac_mif_write(struct net_device * dev,unsigned int addr,unsigned int val)293 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
294 {
295 bmwrite(dev, MIFCSR, 4);
296 MIFDELAY;
297 bmac_mif_writebits(dev, ~0U, 32);
298 bmac_mif_writebits(dev, 5, 4);
299 bmac_mif_writebits(dev, addr, 10);
300 bmac_mif_writebits(dev, 2, 2);
301 bmac_mif_writebits(dev, val, 16);
302 bmac_mif_writebits(dev, 3, 2);
303 }
304
305 static void
bmac_init_registers(struct net_device * dev)306 bmac_init_registers(struct net_device *dev)
307 {
308 struct bmac_data *bp = netdev_priv(dev);
309 volatile unsigned short regValue;
310 const unsigned short *pWord16;
311 int i;
312
313 /* XXDEBUG(("bmac: enter init_registers\n")); */
314
315 bmwrite(dev, RXRST, RxResetValue);
316 bmwrite(dev, TXRST, TxResetBit);
317
318 i = 100;
319 do {
320 --i;
321 udelay(10000);
322 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
323 } while ((regValue & TxResetBit) && i > 0);
324
325 if (!bp->is_bmac_plus) {
326 regValue = bmread(dev, XCVRIF);
327 regValue |= ClkBit | SerialMode | COLActiveLow;
328 bmwrite(dev, XCVRIF, regValue);
329 udelay(10000);
330 }
331
332 bmwrite(dev, RSEED, (unsigned short)0x1968);
333
334 regValue = bmread(dev, XIFC);
335 regValue |= TxOutputEnable;
336 bmwrite(dev, XIFC, regValue);
337
338 bmread(dev, PAREG);
339
340 /* set collision counters to 0 */
341 bmwrite(dev, NCCNT, 0);
342 bmwrite(dev, NTCNT, 0);
343 bmwrite(dev, EXCNT, 0);
344 bmwrite(dev, LTCNT, 0);
345
346 /* set rx counters to 0 */
347 bmwrite(dev, FRCNT, 0);
348 bmwrite(dev, LECNT, 0);
349 bmwrite(dev, AECNT, 0);
350 bmwrite(dev, FECNT, 0);
351 bmwrite(dev, RXCV, 0);
352
353 /* set tx fifo information */
354 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
355
356 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
357 bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
358
359 /* set rx fifo information */
360 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
361 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
362
363 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
364 bmread(dev, STATUS); /* read it just to clear it */
365
366 /* zero out the chip Hash Filter registers */
367 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
368 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
369 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
370 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
371 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
372
373 pWord16 = (const unsigned short *)dev->dev_addr;
374 bmwrite(dev, MADD0, *pWord16++);
375 bmwrite(dev, MADD1, *pWord16++);
376 bmwrite(dev, MADD2, *pWord16);
377
378 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
379
380 bmwrite(dev, INTDISABLE, EnableNormal);
381 }
382
383 #if 0
384 static void
385 bmac_disable_interrupts(struct net_device *dev)
386 {
387 bmwrite(dev, INTDISABLE, DisableAll);
388 }
389
390 static void
391 bmac_enable_interrupts(struct net_device *dev)
392 {
393 bmwrite(dev, INTDISABLE, EnableNormal);
394 }
395 #endif
396
397
398 static void
bmac_start_chip(struct net_device * dev)399 bmac_start_chip(struct net_device *dev)
400 {
401 struct bmac_data *bp = netdev_priv(dev);
402 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
403 unsigned short oldConfig;
404
405 /* enable rx dma channel */
406 dbdma_continue(rd);
407
408 oldConfig = bmread(dev, TXCFG);
409 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
410
411 /* turn on rx plus any other bits already on (promiscuous possibly) */
412 oldConfig = bmread(dev, RXCFG);
413 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
414 udelay(20000);
415 }
416
417 static void
bmac_init_phy(struct net_device * dev)418 bmac_init_phy(struct net_device *dev)
419 {
420 unsigned int addr;
421 struct bmac_data *bp = netdev_priv(dev);
422
423 printk(KERN_DEBUG "phy registers:");
424 for (addr = 0; addr < 32; ++addr) {
425 if ((addr & 7) == 0)
426 printk(KERN_DEBUG);
427 printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
428 }
429 printk(KERN_CONT "\n");
430
431 if (bp->is_bmac_plus) {
432 unsigned int capable, ctrl;
433
434 ctrl = bmac_mif_read(dev, 0);
435 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
436 if (bmac_mif_read(dev, 4) != capable ||
437 (ctrl & 0x1000) == 0) {
438 bmac_mif_write(dev, 4, capable);
439 bmac_mif_write(dev, 0, 0x1200);
440 } else
441 bmac_mif_write(dev, 0, 0x1000);
442 }
443 }
444
bmac_init_chip(struct net_device * dev)445 static void bmac_init_chip(struct net_device *dev)
446 {
447 bmac_init_phy(dev);
448 bmac_init_registers(dev);
449 }
450
451 #ifdef CONFIG_PM
bmac_suspend(struct macio_dev * mdev,pm_message_t state)452 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
453 {
454 struct net_device* dev = macio_get_drvdata(mdev);
455 struct bmac_data *bp = netdev_priv(dev);
456 unsigned long flags;
457 unsigned short config;
458 int i;
459
460 netif_device_detach(dev);
461 /* prolly should wait for dma to finish & turn off the chip */
462 spin_lock_irqsave(&bp->lock, flags);
463 if (bp->timeout_active) {
464 del_timer(&bp->tx_timeout);
465 bp->timeout_active = 0;
466 }
467 disable_irq(dev->irq);
468 disable_irq(bp->tx_dma_intr);
469 disable_irq(bp->rx_dma_intr);
470 bp->sleeping = 1;
471 spin_unlock_irqrestore(&bp->lock, flags);
472 if (bp->opened) {
473 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
474 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
475
476 config = bmread(dev, RXCFG);
477 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
478 config = bmread(dev, TXCFG);
479 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
480 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
481 /* disable rx and tx dma */
482 rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
483 td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
484 /* free some skb's */
485 for (i=0; i<N_RX_RING; i++) {
486 if (bp->rx_bufs[i] != NULL) {
487 dev_kfree_skb(bp->rx_bufs[i]);
488 bp->rx_bufs[i] = NULL;
489 }
490 }
491 for (i = 0; i<N_TX_RING; i++) {
492 if (bp->tx_bufs[i] != NULL) {
493 dev_kfree_skb(bp->tx_bufs[i]);
494 bp->tx_bufs[i] = NULL;
495 }
496 }
497 }
498 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
499 return 0;
500 }
501
bmac_resume(struct macio_dev * mdev)502 static int bmac_resume(struct macio_dev *mdev)
503 {
504 struct net_device* dev = macio_get_drvdata(mdev);
505 struct bmac_data *bp = netdev_priv(dev);
506
507 /* see if this is enough */
508 if (bp->opened)
509 bmac_reset_and_enable(dev);
510
511 enable_irq(dev->irq);
512 enable_irq(bp->tx_dma_intr);
513 enable_irq(bp->rx_dma_intr);
514 netif_device_attach(dev);
515
516 return 0;
517 }
518 #endif /* CONFIG_PM */
519
bmac_set_address(struct net_device * dev,void * addr)520 static int bmac_set_address(struct net_device *dev, void *addr)
521 {
522 struct bmac_data *bp = netdev_priv(dev);
523 const unsigned short *pWord16;
524 unsigned long flags;
525
526 XXDEBUG(("bmac: enter set_address\n"));
527 spin_lock_irqsave(&bp->lock, flags);
528
529 eth_hw_addr_set(dev, addr);
530
531 /* load up the hardware address */
532 pWord16 = (const unsigned short *)dev->dev_addr;
533 bmwrite(dev, MADD0, *pWord16++);
534 bmwrite(dev, MADD1, *pWord16++);
535 bmwrite(dev, MADD2, *pWord16);
536
537 spin_unlock_irqrestore(&bp->lock, flags);
538 XXDEBUG(("bmac: exit set_address\n"));
539 return 0;
540 }
541
bmac_set_timeout(struct net_device * dev)542 static inline void bmac_set_timeout(struct net_device *dev)
543 {
544 struct bmac_data *bp = netdev_priv(dev);
545 unsigned long flags;
546
547 spin_lock_irqsave(&bp->lock, flags);
548 if (bp->timeout_active)
549 del_timer(&bp->tx_timeout);
550 bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
551 add_timer(&bp->tx_timeout);
552 bp->timeout_active = 1;
553 spin_unlock_irqrestore(&bp->lock, flags);
554 }
555
556 static void
bmac_construct_xmt(struct sk_buff * skb,volatile struct dbdma_cmd * cp)557 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
558 {
559 void *vaddr;
560 unsigned long baddr;
561 unsigned long len;
562
563 len = skb->len;
564 vaddr = skb->data;
565 baddr = virt_to_bus(vaddr);
566
567 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
568 }
569
570 static void
bmac_construct_rxbuff(struct sk_buff * skb,volatile struct dbdma_cmd * cp)571 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
572 {
573 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
574
575 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
576 virt_to_bus(addr), 0);
577 }
578
579 static void
bmac_init_tx_ring(struct bmac_data * bp)580 bmac_init_tx_ring(struct bmac_data *bp)
581 {
582 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
583
584 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
585
586 bp->tx_empty = 0;
587 bp->tx_fill = 0;
588 bp->tx_fullup = 0;
589
590 /* put a branch at the end of the tx command list */
591 dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
592 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
593
594 /* reset tx dma */
595 dbdma_reset(td);
596 out_le32(&td->wait_sel, 0x00200020);
597 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
598 }
599
600 static int
bmac_init_rx_ring(struct net_device * dev)601 bmac_init_rx_ring(struct net_device *dev)
602 {
603 struct bmac_data *bp = netdev_priv(dev);
604 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
605 int i;
606 struct sk_buff *skb;
607
608 /* initialize list of sk_buffs for receiving and set up recv dma */
609 memset((char *)bp->rx_cmds, 0,
610 (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
611 for (i = 0; i < N_RX_RING; i++) {
612 if ((skb = bp->rx_bufs[i]) == NULL) {
613 bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
614 if (skb != NULL)
615 skb_reserve(skb, 2);
616 }
617 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
618 }
619
620 bp->rx_empty = 0;
621 bp->rx_fill = i;
622
623 /* Put a branch back to the beginning of the receive command list */
624 dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
625 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
626
627 /* start rx dma */
628 dbdma_reset(rd);
629 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
630
631 return 1;
632 }
633
634
bmac_transmit_packet(struct sk_buff * skb,struct net_device * dev)635 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
636 {
637 struct bmac_data *bp = netdev_priv(dev);
638 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
639 int i;
640
641 /* see if there's a free slot in the tx ring */
642 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
643 /* bp->tx_empty, bp->tx_fill)); */
644 i = bp->tx_fill + 1;
645 if (i >= N_TX_RING)
646 i = 0;
647 if (i == bp->tx_empty) {
648 netif_stop_queue(dev);
649 bp->tx_fullup = 1;
650 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
651 return -1; /* can't take it at the moment */
652 }
653
654 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
655
656 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
657
658 bp->tx_bufs[bp->tx_fill] = skb;
659 bp->tx_fill = i;
660
661 dev->stats.tx_bytes += skb->len;
662
663 dbdma_continue(td);
664
665 return 0;
666 }
667
668 static int rxintcount;
669
bmac_rxdma_intr(int irq,void * dev_id)670 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
671 {
672 struct net_device *dev = (struct net_device *) dev_id;
673 struct bmac_data *bp = netdev_priv(dev);
674 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
675 volatile struct dbdma_cmd *cp;
676 int i, nb, stat;
677 struct sk_buff *skb;
678 unsigned int residual;
679 int last;
680 unsigned long flags;
681
682 spin_lock_irqsave(&bp->lock, flags);
683
684 if (++rxintcount < 10) {
685 XXDEBUG(("bmac_rxdma_intr\n"));
686 }
687
688 last = -1;
689 i = bp->rx_empty;
690
691 while (1) {
692 cp = &bp->rx_cmds[i];
693 stat = le16_to_cpu(cp->xfer_status);
694 residual = le16_to_cpu(cp->res_count);
695 if ((stat & ACTIVE) == 0)
696 break;
697 nb = RX_BUFLEN - residual - 2;
698 if (nb < (ETHERMINPACKET - ETHERCRC)) {
699 skb = NULL;
700 dev->stats.rx_length_errors++;
701 dev->stats.rx_errors++;
702 } else {
703 skb = bp->rx_bufs[i];
704 bp->rx_bufs[i] = NULL;
705 }
706 if (skb != NULL) {
707 nb -= ETHERCRC;
708 skb_put(skb, nb);
709 skb->protocol = eth_type_trans(skb, dev);
710 netif_rx(skb);
711 ++dev->stats.rx_packets;
712 dev->stats.rx_bytes += nb;
713 } else {
714 ++dev->stats.rx_dropped;
715 }
716 if ((skb = bp->rx_bufs[i]) == NULL) {
717 bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
718 if (skb != NULL)
719 skb_reserve(bp->rx_bufs[i], 2);
720 }
721 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
722 cp->res_count = cpu_to_le16(0);
723 cp->xfer_status = cpu_to_le16(0);
724 last = i;
725 if (++i >= N_RX_RING) i = 0;
726 }
727
728 if (last != -1) {
729 bp->rx_fill = last;
730 bp->rx_empty = i;
731 }
732
733 dbdma_continue(rd);
734 spin_unlock_irqrestore(&bp->lock, flags);
735
736 if (rxintcount < 10) {
737 XXDEBUG(("bmac_rxdma_intr done\n"));
738 }
739 return IRQ_HANDLED;
740 }
741
742 static int txintcount;
743
bmac_txdma_intr(int irq,void * dev_id)744 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
745 {
746 struct net_device *dev = (struct net_device *) dev_id;
747 struct bmac_data *bp = netdev_priv(dev);
748 volatile struct dbdma_cmd *cp;
749 int stat;
750 unsigned long flags;
751
752 spin_lock_irqsave(&bp->lock, flags);
753
754 if (txintcount++ < 10) {
755 XXDEBUG(("bmac_txdma_intr\n"));
756 }
757
758 /* del_timer(&bp->tx_timeout); */
759 /* bp->timeout_active = 0; */
760
761 while (1) {
762 cp = &bp->tx_cmds[bp->tx_empty];
763 stat = le16_to_cpu(cp->xfer_status);
764 if (txintcount < 10) {
765 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
766 }
767 if (!(stat & ACTIVE)) {
768 /*
769 * status field might not have been filled by DBDMA
770 */
771 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
772 break;
773 }
774
775 if (bp->tx_bufs[bp->tx_empty]) {
776 ++dev->stats.tx_packets;
777 dev_consume_skb_irq(bp->tx_bufs[bp->tx_empty]);
778 }
779 bp->tx_bufs[bp->tx_empty] = NULL;
780 bp->tx_fullup = 0;
781 netif_wake_queue(dev);
782 if (++bp->tx_empty >= N_TX_RING)
783 bp->tx_empty = 0;
784 if (bp->tx_empty == bp->tx_fill)
785 break;
786 }
787
788 spin_unlock_irqrestore(&bp->lock, flags);
789
790 if (txintcount < 10) {
791 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
792 }
793
794 bmac_start(dev);
795 return IRQ_HANDLED;
796 }
797
798 #ifndef SUNHME_MULTICAST
799 /* Real fast bit-reversal algorithm, 6-bit values */
800 static int reverse6[64] = {
801 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
802 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
803 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
804 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
805 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
806 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
807 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
808 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
809 };
810
811 static unsigned int
crc416(unsigned int curval,unsigned short nxtval)812 crc416(unsigned int curval, unsigned short nxtval)
813 {
814 unsigned int counter, cur = curval, next = nxtval;
815 int high_crc_set, low_data_set;
816
817 /* Swap bytes */
818 next = ((next & 0x00FF) << 8) | (next >> 8);
819
820 /* Compute bit-by-bit */
821 for (counter = 0; counter < 16; ++counter) {
822 /* is high CRC bit set? */
823 if ((cur & 0x80000000) == 0) high_crc_set = 0;
824 else high_crc_set = 1;
825
826 cur = cur << 1;
827
828 if ((next & 0x0001) == 0) low_data_set = 0;
829 else low_data_set = 1;
830
831 next = next >> 1;
832
833 /* do the XOR */
834 if (high_crc_set ^ low_data_set) cur = cur ^ CRC32_POLY_BE;
835 }
836 return cur;
837 }
838
839 static unsigned int
bmac_crc(unsigned short * address)840 bmac_crc(unsigned short *address)
841 {
842 unsigned int newcrc;
843
844 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
845 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
846 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
847 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
848
849 return(newcrc);
850 }
851
852 /*
853 * Add requested mcast addr to BMac's hash table filter.
854 *
855 */
856
857 static void
bmac_addhash(struct bmac_data * bp,unsigned char * addr)858 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
859 {
860 unsigned int crc;
861 unsigned short mask;
862
863 if (!(*addr)) return;
864 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
865 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
866 if (bp->hash_use_count[crc]++) return; /* This bit is already set */
867 mask = crc % 16;
868 mask = (unsigned char)1 << mask;
869 bp->hash_use_count[crc/16] |= mask;
870 }
871
872 static void
bmac_removehash(struct bmac_data * bp,unsigned char * addr)873 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
874 {
875 unsigned int crc;
876 unsigned char mask;
877
878 /* Now, delete the address from the filter copy, as indicated */
879 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
880 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
881 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
882 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
883 mask = crc % 16;
884 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
885 bp->hash_table_mask[crc/16] &= mask;
886 }
887
888 /*
889 * Sync the adapter with the software copy of the multicast mask
890 * (logical address filter).
891 */
892
893 static void
bmac_rx_off(struct net_device * dev)894 bmac_rx_off(struct net_device *dev)
895 {
896 unsigned short rx_cfg;
897
898 rx_cfg = bmread(dev, RXCFG);
899 rx_cfg &= ~RxMACEnable;
900 bmwrite(dev, RXCFG, rx_cfg);
901 do {
902 rx_cfg = bmread(dev, RXCFG);
903 } while (rx_cfg & RxMACEnable);
904 }
905
906 unsigned short
bmac_rx_on(struct net_device * dev,int hash_enable,int promisc_enable)907 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
908 {
909 unsigned short rx_cfg;
910
911 rx_cfg = bmread(dev, RXCFG);
912 rx_cfg |= RxMACEnable;
913 if (hash_enable) rx_cfg |= RxHashFilterEnable;
914 else rx_cfg &= ~RxHashFilterEnable;
915 if (promisc_enable) rx_cfg |= RxPromiscEnable;
916 else rx_cfg &= ~RxPromiscEnable;
917 bmwrite(dev, RXRST, RxResetValue);
918 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
919 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
920 bmwrite(dev, RXCFG, rx_cfg );
921 return rx_cfg;
922 }
923
924 static void
bmac_update_hash_table_mask(struct net_device * dev,struct bmac_data * bp)925 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
926 {
927 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
928 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
929 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
930 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
931 }
932
933 #if 0
934 static void
935 bmac_add_multi(struct net_device *dev,
936 struct bmac_data *bp, unsigned char *addr)
937 {
938 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
939 bmac_addhash(bp, addr);
940 bmac_rx_off(dev);
941 bmac_update_hash_table_mask(dev, bp);
942 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
943 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
944 }
945
946 static void
947 bmac_remove_multi(struct net_device *dev,
948 struct bmac_data *bp, unsigned char *addr)
949 {
950 bmac_removehash(bp, addr);
951 bmac_rx_off(dev);
952 bmac_update_hash_table_mask(dev, bp);
953 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
954 }
955 #endif
956
957 /* Set or clear the multicast filter for this adaptor.
958 num_addrs == -1 Promiscuous mode, receive all packets
959 num_addrs == 0 Normal mode, clear multicast list
960 num_addrs > 0 Multicast mode, receive normal and MC packets, and do
961 best-effort filtering.
962 */
bmac_set_multicast(struct net_device * dev)963 static void bmac_set_multicast(struct net_device *dev)
964 {
965 struct netdev_hw_addr *ha;
966 struct bmac_data *bp = netdev_priv(dev);
967 int num_addrs = netdev_mc_count(dev);
968 unsigned short rx_cfg;
969 int i;
970
971 if (bp->sleeping)
972 return;
973
974 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
975
976 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
977 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
978 bmac_update_hash_table_mask(dev, bp);
979 rx_cfg = bmac_rx_on(dev, 1, 0);
980 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
981 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
982 rx_cfg = bmread(dev, RXCFG);
983 rx_cfg |= RxPromiscEnable;
984 bmwrite(dev, RXCFG, rx_cfg);
985 rx_cfg = bmac_rx_on(dev, 0, 1);
986 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
987 } else {
988 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
989 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
990 if (num_addrs == 0) {
991 rx_cfg = bmac_rx_on(dev, 0, 0);
992 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
993 } else {
994 netdev_for_each_mc_addr(ha, dev)
995 bmac_addhash(bp, ha->addr);
996 bmac_update_hash_table_mask(dev, bp);
997 rx_cfg = bmac_rx_on(dev, 1, 0);
998 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
999 }
1000 }
1001 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1002 }
1003 #else /* ifdef SUNHME_MULTICAST */
1004
1005 /* The version of set_multicast below was lifted from sunhme.c */
1006
bmac_set_multicast(struct net_device * dev)1007 static void bmac_set_multicast(struct net_device *dev)
1008 {
1009 struct netdev_hw_addr *ha;
1010 unsigned short rx_cfg;
1011 u32 crc;
1012
1013 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1014 bmwrite(dev, BHASH0, 0xffff);
1015 bmwrite(dev, BHASH1, 0xffff);
1016 bmwrite(dev, BHASH2, 0xffff);
1017 bmwrite(dev, BHASH3, 0xffff);
1018 } else if(dev->flags & IFF_PROMISC) {
1019 rx_cfg = bmread(dev, RXCFG);
1020 rx_cfg |= RxPromiscEnable;
1021 bmwrite(dev, RXCFG, rx_cfg);
1022 } else {
1023 u16 hash_table[4] = { 0 };
1024
1025 rx_cfg = bmread(dev, RXCFG);
1026 rx_cfg &= ~RxPromiscEnable;
1027 bmwrite(dev, RXCFG, rx_cfg);
1028
1029 netdev_for_each_mc_addr(ha, dev) {
1030 crc = ether_crc_le(6, ha->addr);
1031 crc >>= 26;
1032 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1033 }
1034 bmwrite(dev, BHASH0, hash_table[0]);
1035 bmwrite(dev, BHASH1, hash_table[1]);
1036 bmwrite(dev, BHASH2, hash_table[2]);
1037 bmwrite(dev, BHASH3, hash_table[3]);
1038 }
1039 }
1040 #endif /* SUNHME_MULTICAST */
1041
1042 static int miscintcount;
1043
bmac_misc_intr(int irq,void * dev_id)1044 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1045 {
1046 struct net_device *dev = (struct net_device *) dev_id;
1047 unsigned int status = bmread(dev, STATUS);
1048 if (miscintcount++ < 10) {
1049 XXDEBUG(("bmac_misc_intr\n"));
1050 }
1051 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1052 /* bmac_txdma_intr_inner(irq, dev_id); */
1053 /* if (status & FrameReceived) dev->stats.rx_dropped++; */
1054 if (status & RxErrorMask) dev->stats.rx_errors++;
1055 if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1056 if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1057 if (status & RxOverFlow) dev->stats.rx_over_errors++;
1058 if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1059
1060 /* if (status & FrameSent) dev->stats.tx_dropped++; */
1061 if (status & TxErrorMask) dev->stats.tx_errors++;
1062 if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1063 if (status & TxNormalCollExp) dev->stats.collisions++;
1064 return IRQ_HANDLED;
1065 }
1066
1067 /*
1068 * Procedure for reading EEPROM
1069 */
1070 #define SROMAddressLength 5
1071 #define DataInOn 0x0008
1072 #define DataInOff 0x0000
1073 #define Clk 0x0002
1074 #define ChipSelect 0x0001
1075 #define SDIShiftCount 3
1076 #define SD0ShiftCount 2
1077 #define DelayValue 1000 /* number of microseconds */
1078 #define SROMStartOffset 10 /* this is in words */
1079 #define SROMReadCount 3 /* number of words to read from SROM */
1080 #define SROMAddressBits 6
1081 #define EnetAddressOffset 20
1082
1083 static unsigned char
bmac_clock_out_bit(struct net_device * dev)1084 bmac_clock_out_bit(struct net_device *dev)
1085 {
1086 unsigned short data;
1087 unsigned short val;
1088
1089 bmwrite(dev, SROMCSR, ChipSelect | Clk);
1090 udelay(DelayValue);
1091
1092 data = bmread(dev, SROMCSR);
1093 udelay(DelayValue);
1094 val = (data >> SD0ShiftCount) & 1;
1095
1096 bmwrite(dev, SROMCSR, ChipSelect);
1097 udelay(DelayValue);
1098
1099 return val;
1100 }
1101
1102 static void
bmac_clock_in_bit(struct net_device * dev,unsigned int val)1103 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1104 {
1105 unsigned short data;
1106
1107 if (val != 0 && val != 1) return;
1108
1109 data = (val << SDIShiftCount);
1110 bmwrite(dev, SROMCSR, data | ChipSelect );
1111 udelay(DelayValue);
1112
1113 bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1114 udelay(DelayValue);
1115
1116 bmwrite(dev, SROMCSR, data | ChipSelect);
1117 udelay(DelayValue);
1118 }
1119
1120 static void
reset_and_select_srom(struct net_device * dev)1121 reset_and_select_srom(struct net_device *dev)
1122 {
1123 /* first reset */
1124 bmwrite(dev, SROMCSR, 0);
1125 udelay(DelayValue);
1126
1127 /* send it the read command (110) */
1128 bmac_clock_in_bit(dev, 1);
1129 bmac_clock_in_bit(dev, 1);
1130 bmac_clock_in_bit(dev, 0);
1131 }
1132
1133 static unsigned short
read_srom(struct net_device * dev,unsigned int addr,unsigned int addr_len)1134 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1135 {
1136 unsigned short data, val;
1137 int i;
1138
1139 /* send out the address we want to read from */
1140 for (i = 0; i < addr_len; i++) {
1141 val = addr >> (addr_len-i-1);
1142 bmac_clock_in_bit(dev, val & 1);
1143 }
1144
1145 /* Now read in the 16-bit data */
1146 data = 0;
1147 for (i = 0; i < 16; i++) {
1148 val = bmac_clock_out_bit(dev);
1149 data <<= 1;
1150 data |= val;
1151 }
1152 bmwrite(dev, SROMCSR, 0);
1153
1154 return data;
1155 }
1156
1157 /*
1158 * It looks like Cogent and SMC use different methods for calculating
1159 * checksums. What a pain..
1160 */
1161
1162 static int
bmac_verify_checksum(struct net_device * dev)1163 bmac_verify_checksum(struct net_device *dev)
1164 {
1165 unsigned short data, storedCS;
1166
1167 reset_and_select_srom(dev);
1168 data = read_srom(dev, 3, SROMAddressBits);
1169 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1170
1171 return 0;
1172 }
1173
1174
1175 static void
bmac_get_station_address(struct net_device * dev,unsigned char * ea)1176 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1177 {
1178 int i;
1179 unsigned short data;
1180
1181 for (i = 0; i < 3; i++)
1182 {
1183 reset_and_select_srom(dev);
1184 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1185 ea[2*i] = bitrev8(data & 0x0ff);
1186 ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1187 }
1188 }
1189
bmac_reset_and_enable(struct net_device * dev)1190 static void bmac_reset_and_enable(struct net_device *dev)
1191 {
1192 struct bmac_data *bp = netdev_priv(dev);
1193 unsigned long flags;
1194 struct sk_buff *skb;
1195 unsigned char *data;
1196
1197 spin_lock_irqsave(&bp->lock, flags);
1198 bmac_enable_and_reset_chip(dev);
1199 bmac_init_tx_ring(bp);
1200 bmac_init_rx_ring(dev);
1201 bmac_init_chip(dev);
1202 bmac_start_chip(dev);
1203 bmwrite(dev, INTDISABLE, EnableNormal);
1204 bp->sleeping = 0;
1205
1206 /*
1207 * It seems that the bmac can't receive until it's transmitted
1208 * a packet. So we give it a dummy packet to transmit.
1209 */
1210 skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1211 if (skb != NULL) {
1212 data = skb_put_zero(skb, ETHERMINPACKET);
1213 memcpy(data, dev->dev_addr, ETH_ALEN);
1214 memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1215 bmac_transmit_packet(skb, dev);
1216 }
1217 spin_unlock_irqrestore(&bp->lock, flags);
1218 }
1219
1220 static const struct ethtool_ops bmac_ethtool_ops = {
1221 .get_link = ethtool_op_get_link,
1222 };
1223
1224 static const struct net_device_ops bmac_netdev_ops = {
1225 .ndo_open = bmac_open,
1226 .ndo_stop = bmac_close,
1227 .ndo_start_xmit = bmac_output,
1228 .ndo_set_rx_mode = bmac_set_multicast,
1229 .ndo_set_mac_address = bmac_set_address,
1230 .ndo_validate_addr = eth_validate_addr,
1231 };
1232
bmac_probe(struct macio_dev * mdev,const struct of_device_id * match)1233 static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1234 {
1235 int j, rev, ret;
1236 struct bmac_data *bp;
1237 const unsigned char *prop_addr;
1238 unsigned char addr[6];
1239 u8 macaddr[6];
1240 struct net_device *dev;
1241 int is_bmac_plus = ((int)match->data) != 0;
1242
1243 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1244 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1245 return -ENODEV;
1246 }
1247 prop_addr = of_get_property(macio_get_of_node(mdev),
1248 "mac-address", NULL);
1249 if (prop_addr == NULL) {
1250 prop_addr = of_get_property(macio_get_of_node(mdev),
1251 "local-mac-address", NULL);
1252 if (prop_addr == NULL) {
1253 printk(KERN_ERR "BMAC: Can't get mac-address\n");
1254 return -ENODEV;
1255 }
1256 }
1257 memcpy(addr, prop_addr, sizeof(addr));
1258
1259 dev = alloc_etherdev(PRIV_BYTES);
1260 if (!dev)
1261 return -ENOMEM;
1262
1263 bp = netdev_priv(dev);
1264 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1265 macio_set_drvdata(mdev, dev);
1266
1267 bp->mdev = mdev;
1268 spin_lock_init(&bp->lock);
1269
1270 if (macio_request_resources(mdev, "bmac")) {
1271 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1272 goto out_free;
1273 }
1274
1275 dev->base_addr = (unsigned long)
1276 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1277 if (dev->base_addr == 0)
1278 goto out_release;
1279
1280 dev->irq = macio_irq(mdev, 0);
1281
1282 bmac_enable_and_reset_chip(dev);
1283 bmwrite(dev, INTDISABLE, DisableAll);
1284
1285 rev = addr[0] == 0 && addr[1] == 0xA0;
1286 for (j = 0; j < 6; ++j)
1287 macaddr[j] = rev ? bitrev8(addr[j]): addr[j];
1288
1289 eth_hw_addr_set(dev, macaddr);
1290
1291 /* Enable chip without interrupts for now */
1292 bmac_enable_and_reset_chip(dev);
1293 bmwrite(dev, INTDISABLE, DisableAll);
1294
1295 dev->netdev_ops = &bmac_netdev_ops;
1296 dev->ethtool_ops = &bmac_ethtool_ops;
1297
1298 bmac_get_station_address(dev, addr);
1299 if (bmac_verify_checksum(dev) != 0)
1300 goto err_out_iounmap;
1301
1302 bp->is_bmac_plus = is_bmac_plus;
1303 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1304 if (!bp->tx_dma)
1305 goto err_out_iounmap;
1306 bp->tx_dma_intr = macio_irq(mdev, 1);
1307 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1308 if (!bp->rx_dma)
1309 goto err_out_iounmap_tx;
1310 bp->rx_dma_intr = macio_irq(mdev, 2);
1311
1312 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1313 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1314
1315 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1316 skb_queue_head_init(bp->queue);
1317
1318 timer_setup(&bp->tx_timeout, bmac_tx_timeout, 0);
1319
1320 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1321 if (ret) {
1322 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1323 goto err_out_iounmap_rx;
1324 }
1325 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1326 if (ret) {
1327 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1328 goto err_out_irq0;
1329 }
1330 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1331 if (ret) {
1332 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1333 goto err_out_irq1;
1334 }
1335
1336 /* Mask chip interrupts and disable chip, will be
1337 * re-enabled on open()
1338 */
1339 disable_irq(dev->irq);
1340 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1341
1342 if (register_netdev(dev) != 0) {
1343 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1344 goto err_out_irq2;
1345 }
1346
1347 printk(KERN_INFO "%s: BMAC%s at %pM",
1348 dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1349 XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1350 printk("\n");
1351
1352 return 0;
1353
1354 err_out_irq2:
1355 free_irq(bp->rx_dma_intr, dev);
1356 err_out_irq1:
1357 free_irq(bp->tx_dma_intr, dev);
1358 err_out_irq0:
1359 free_irq(dev->irq, dev);
1360 err_out_iounmap_rx:
1361 iounmap(bp->rx_dma);
1362 err_out_iounmap_tx:
1363 iounmap(bp->tx_dma);
1364 err_out_iounmap:
1365 iounmap((void __iomem *)dev->base_addr);
1366 out_release:
1367 macio_release_resources(mdev);
1368 out_free:
1369 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1370 free_netdev(dev);
1371
1372 return -ENODEV;
1373 }
1374
bmac_open(struct net_device * dev)1375 static int bmac_open(struct net_device *dev)
1376 {
1377 struct bmac_data *bp = netdev_priv(dev);
1378 /* XXDEBUG(("bmac: enter open\n")); */
1379 /* reset the chip */
1380 bp->opened = 1;
1381 bmac_reset_and_enable(dev);
1382 enable_irq(dev->irq);
1383 return 0;
1384 }
1385
bmac_close(struct net_device * dev)1386 static int bmac_close(struct net_device *dev)
1387 {
1388 struct bmac_data *bp = netdev_priv(dev);
1389 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1390 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1391 unsigned short config;
1392 int i;
1393
1394 bp->sleeping = 1;
1395
1396 /* disable rx and tx */
1397 config = bmread(dev, RXCFG);
1398 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1399
1400 config = bmread(dev, TXCFG);
1401 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1402
1403 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1404
1405 /* disable rx and tx dma */
1406 rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1407 td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1408
1409 /* free some skb's */
1410 XXDEBUG(("bmac: free rx bufs\n"));
1411 for (i=0; i<N_RX_RING; i++) {
1412 if (bp->rx_bufs[i] != NULL) {
1413 dev_kfree_skb(bp->rx_bufs[i]);
1414 bp->rx_bufs[i] = NULL;
1415 }
1416 }
1417 XXDEBUG(("bmac: free tx bufs\n"));
1418 for (i = 0; i<N_TX_RING; i++) {
1419 if (bp->tx_bufs[i] != NULL) {
1420 dev_kfree_skb(bp->tx_bufs[i]);
1421 bp->tx_bufs[i] = NULL;
1422 }
1423 }
1424 XXDEBUG(("bmac: all bufs freed\n"));
1425
1426 bp->opened = 0;
1427 disable_irq(dev->irq);
1428 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1429
1430 return 0;
1431 }
1432
1433 static void
bmac_start(struct net_device * dev)1434 bmac_start(struct net_device *dev)
1435 {
1436 struct bmac_data *bp = netdev_priv(dev);
1437 int i;
1438 struct sk_buff *skb;
1439 unsigned long flags;
1440
1441 if (bp->sleeping)
1442 return;
1443
1444 spin_lock_irqsave(&bp->lock, flags);
1445 while (1) {
1446 i = bp->tx_fill + 1;
1447 if (i >= N_TX_RING)
1448 i = 0;
1449 if (i == bp->tx_empty)
1450 break;
1451 skb = skb_dequeue(bp->queue);
1452 if (skb == NULL)
1453 break;
1454 bmac_transmit_packet(skb, dev);
1455 }
1456 spin_unlock_irqrestore(&bp->lock, flags);
1457 }
1458
1459 static netdev_tx_t
bmac_output(struct sk_buff * skb,struct net_device * dev)1460 bmac_output(struct sk_buff *skb, struct net_device *dev)
1461 {
1462 struct bmac_data *bp = netdev_priv(dev);
1463 skb_queue_tail(bp->queue, skb);
1464 bmac_start(dev);
1465 return NETDEV_TX_OK;
1466 }
1467
bmac_tx_timeout(struct timer_list * t)1468 static void bmac_tx_timeout(struct timer_list *t)
1469 {
1470 struct bmac_data *bp = from_timer(bp, t, tx_timeout);
1471 struct net_device *dev = macio_get_drvdata(bp->mdev);
1472 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1473 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1474 volatile struct dbdma_cmd *cp;
1475 unsigned long flags;
1476 unsigned short config, oldConfig;
1477 int i;
1478
1479 XXDEBUG(("bmac: tx_timeout called\n"));
1480 spin_lock_irqsave(&bp->lock, flags);
1481 bp->timeout_active = 0;
1482
1483 /* update various counters */
1484 /* bmac_handle_misc_intrs(bp, 0); */
1485
1486 cp = &bp->tx_cmds[bp->tx_empty];
1487 /* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1488 /* le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1489 /* mb->pr, mb->xmtfs, mb->fifofc)); */
1490
1491 /* turn off both tx and rx and reset the chip */
1492 config = bmread(dev, RXCFG);
1493 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1494 config = bmread(dev, TXCFG);
1495 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1496 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1497 printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1498 bmac_enable_and_reset_chip(dev);
1499
1500 /* restart rx dma */
1501 cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1502 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1503 out_le16(&cp->xfer_status, 0);
1504 out_le32(&rd->cmdptr, virt_to_bus(cp));
1505 out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1506
1507 /* fix up the transmit side */
1508 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1509 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1510 i = bp->tx_empty;
1511 ++dev->stats.tx_errors;
1512 if (i != bp->tx_fill) {
1513 dev_kfree_skb_irq(bp->tx_bufs[i]);
1514 bp->tx_bufs[i] = NULL;
1515 if (++i >= N_TX_RING) i = 0;
1516 bp->tx_empty = i;
1517 }
1518 bp->tx_fullup = 0;
1519 netif_wake_queue(dev);
1520 if (i != bp->tx_fill) {
1521 cp = &bp->tx_cmds[i];
1522 out_le16(&cp->xfer_status, 0);
1523 out_le16(&cp->command, OUTPUT_LAST);
1524 out_le32(&td->cmdptr, virt_to_bus(cp));
1525 out_le32(&td->control, DBDMA_SET(RUN));
1526 /* bmac_set_timeout(dev); */
1527 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1528 }
1529
1530 /* turn it back on */
1531 oldConfig = bmread(dev, RXCFG);
1532 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1533 oldConfig = bmread(dev, TXCFG);
1534 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1535
1536 spin_unlock_irqrestore(&bp->lock, flags);
1537 }
1538
1539 #if 0
1540 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1541 {
1542 int i,*ip;
1543
1544 for (i=0;i< count;i++) {
1545 ip = (int*)(cp+i);
1546
1547 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1548 le32_to_cpup(ip+0),
1549 le32_to_cpup(ip+1),
1550 le32_to_cpup(ip+2),
1551 le32_to_cpup(ip+3));
1552 }
1553
1554 }
1555 #endif
1556
1557 #if 0
1558 static int
1559 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1560 {
1561 int len = 0;
1562 off_t pos = 0;
1563 off_t begin = 0;
1564 int i;
1565
1566 if (bmac_devs == NULL)
1567 return -ENOSYS;
1568
1569 len += sprintf(buffer, "BMAC counters & registers\n");
1570
1571 for (i = 0; i<N_REG_ENTRIES; i++) {
1572 len += sprintf(buffer + len, "%s: %#08x\n",
1573 reg_entries[i].name,
1574 bmread(bmac_devs, reg_entries[i].reg_offset));
1575 pos = begin + len;
1576
1577 if (pos < offset) {
1578 len = 0;
1579 begin = pos;
1580 }
1581
1582 if (pos > offset+length) break;
1583 }
1584
1585 *start = buffer + (offset - begin);
1586 len -= (offset - begin);
1587
1588 if (len > length) len = length;
1589
1590 return len;
1591 }
1592 #endif
1593
bmac_remove(struct macio_dev * mdev)1594 static int bmac_remove(struct macio_dev *mdev)
1595 {
1596 struct net_device *dev = macio_get_drvdata(mdev);
1597 struct bmac_data *bp = netdev_priv(dev);
1598
1599 unregister_netdev(dev);
1600
1601 free_irq(dev->irq, dev);
1602 free_irq(bp->tx_dma_intr, dev);
1603 free_irq(bp->rx_dma_intr, dev);
1604
1605 iounmap((void __iomem *)dev->base_addr);
1606 iounmap(bp->tx_dma);
1607 iounmap(bp->rx_dma);
1608
1609 macio_release_resources(mdev);
1610
1611 free_netdev(dev);
1612
1613 return 0;
1614 }
1615
1616 static const struct of_device_id bmac_match[] =
1617 {
1618 {
1619 .name = "bmac",
1620 .data = (void *)0,
1621 },
1622 {
1623 .type = "network",
1624 .compatible = "bmac+",
1625 .data = (void *)1,
1626 },
1627 {},
1628 };
1629 MODULE_DEVICE_TABLE (of, bmac_match);
1630
1631 static struct macio_driver bmac_driver =
1632 {
1633 .driver = {
1634 .name = "bmac",
1635 .owner = THIS_MODULE,
1636 .of_match_table = bmac_match,
1637 },
1638 .probe = bmac_probe,
1639 .remove = bmac_remove,
1640 #ifdef CONFIG_PM
1641 .suspend = bmac_suspend,
1642 .resume = bmac_resume,
1643 #endif
1644 };
1645
1646
bmac_init(void)1647 static int __init bmac_init(void)
1648 {
1649 if (bmac_emergency_rxbuf == NULL) {
1650 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1651 if (bmac_emergency_rxbuf == NULL)
1652 return -ENOMEM;
1653 }
1654
1655 return macio_register_driver(&bmac_driver);
1656 }
1657
bmac_exit(void)1658 static void __exit bmac_exit(void)
1659 {
1660 macio_unregister_driver(&bmac_driver);
1661
1662 kfree(bmac_emergency_rxbuf);
1663 bmac_emergency_rxbuf = NULL;
1664 }
1665
1666 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1667 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1668 MODULE_LICENSE("GPL");
1669
1670 module_init(bmac_init);
1671 module_exit(bmac_exit);
1672