1 /* 2 * AMD 10Gb Ethernet driver 3 * 4 * This file is available to you under your choice of the following two 5 * licenses: 6 * 7 * License 1: GPLv2 8 * 9 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. 10 * 11 * This file is free software; you may copy, redistribute and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation, either version 2 of the License, or (at 14 * your option) any later version. 15 * 16 * This file is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program. If not, see <http://www.gnu.org/licenses/>. 23 * 24 * This file incorporates work covered by the following copyright and 25 * permission notice: 26 * The Synopsys DWC ETHER XGMAC Software Driver and documentation 27 * (hereinafter "Software") is an unsupported proprietary work of Synopsys, 28 * Inc. unless otherwise expressly agreed to in writing between Synopsys 29 * and you. 30 * 31 * The Software IS NOT an item of Licensed Software or Licensed Product 32 * under any End User Software License Agreement or Agreement for Licensed 33 * Product with Synopsys or any supplement thereto. Permission is hereby 34 * granted, free of charge, to any person obtaining a copy of this software 35 * annotated with this license and the Software, to deal in the Software 36 * without restriction, including without limitation the rights to use, 37 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies 38 * of the Software, and to permit persons to whom the Software is furnished 39 * to do so, subject to the following conditions: 40 * 41 * The above copyright notice and this permission notice shall be included 42 * in all copies or substantial portions of the Software. 43 * 44 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" 45 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 46 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 47 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS 48 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 49 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 50 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 51 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 52 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 53 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 54 * THE POSSIBILITY OF SUCH DAMAGE. 55 * 56 * 57 * License 2: Modified BSD 58 * 59 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. 60 * All rights reserved. 61 * 62 * Redistribution and use in source and binary forms, with or without 63 * modification, are permitted provided that the following conditions are met: 64 * * Redistributions of source code must retain the above copyright 65 * notice, this list of conditions and the following disclaimer. 66 * * Redistributions in binary form must reproduce the above copyright 67 * notice, this list of conditions and the following disclaimer in the 68 * documentation and/or other materials provided with the distribution. 69 * * Neither the name of Advanced Micro Devices, Inc. nor the 70 * names of its contributors may be used to endorse or promote products 71 * derived from this software without specific prior written permission. 72 * 73 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 74 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 76 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY 77 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 78 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 80 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 81 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 82 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 83 * 84 * This file incorporates work covered by the following copyright and 85 * permission notice: 86 * The Synopsys DWC ETHER XGMAC Software Driver and documentation 87 * (hereinafter "Software") is an unsupported proprietary work of Synopsys, 88 * Inc. unless otherwise expressly agreed to in writing between Synopsys 89 * and you. 90 * 91 * The Software IS NOT an item of Licensed Software or Licensed Product 92 * under any End User Software License Agreement or Agreement for Licensed 93 * Product with Synopsys or any supplement thereto. Permission is hereby 94 * granted, free of charge, to any person obtaining a copy of this software 95 * annotated with this license and the Software, to deal in the Software 96 * without restriction, including without limitation the rights to use, 97 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies 98 * of the Software, and to permit persons to whom the Software is furnished 99 * to do so, subject to the following conditions: 100 * 101 * The above copyright notice and this permission notice shall be included 102 * in all copies or substantial portions of the Software. 103 * 104 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" 105 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 106 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 107 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS 108 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 109 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 110 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 111 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 112 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 113 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 114 * THE POSSIBILITY OF SUCH DAMAGE. 115 */ 116 117 #include <linux/module.h> 118 #include <linux/spinlock.h> 119 #include <linux/tcp.h> 120 #include <linux/if_vlan.h> 121 #include <linux/interrupt.h> 122 #include <linux/clk.h> 123 #include <linux/if_ether.h> 124 #include <linux/net_tstamp.h> 125 #include <linux/phy.h> 126 #include <net/vxlan.h> 127 128 #include "xgbe.h" 129 #include "xgbe-common.h" 130 131 static unsigned int ecc_sec_info_threshold = 10; 132 static unsigned int ecc_sec_warn_threshold = 10000; 133 static unsigned int ecc_sec_period = 600; 134 static unsigned int ecc_ded_threshold = 2; 135 static unsigned int ecc_ded_period = 600; 136 137 #ifdef CONFIG_AMD_XGBE_HAVE_ECC 138 /* Only expose the ECC parameters if supported */ 139 module_param(ecc_sec_info_threshold, uint, 0644); 140 MODULE_PARM_DESC(ecc_sec_info_threshold, 141 " ECC corrected error informational threshold setting"); 142 143 module_param(ecc_sec_warn_threshold, uint, 0644); 144 MODULE_PARM_DESC(ecc_sec_warn_threshold, 145 " ECC corrected error warning threshold setting"); 146 147 module_param(ecc_sec_period, uint, 0644); 148 MODULE_PARM_DESC(ecc_sec_period, " ECC corrected error period (in seconds)"); 149 150 module_param(ecc_ded_threshold, uint, 0644); 151 MODULE_PARM_DESC(ecc_ded_threshold, " ECC detected error threshold setting"); 152 153 module_param(ecc_ded_period, uint, 0644); 154 MODULE_PARM_DESC(ecc_ded_period, " ECC detected error period (in seconds)"); 155 #endif 156 157 static int xgbe_one_poll(struct napi_struct *, int); 158 static int xgbe_all_poll(struct napi_struct *, int); 159 static void xgbe_stop(struct xgbe_prv_data *); 160 161 static void *xgbe_alloc_node(size_t size, int node) 162 { 163 void *mem; 164 165 mem = kzalloc_node(size, GFP_KERNEL, node); 166 if (!mem) 167 mem = kzalloc(size, GFP_KERNEL); 168 169 return mem; 170 } 171 172 static void xgbe_free_channels(struct xgbe_prv_data *pdata) 173 { 174 unsigned int i; 175 176 for (i = 0; i < ARRAY_SIZE(pdata->channel); i++) { 177 if (!pdata->channel[i]) 178 continue; 179 180 kfree(pdata->channel[i]->rx_ring); 181 kfree(pdata->channel[i]->tx_ring); 182 kfree(pdata->channel[i]); 183 184 pdata->channel[i] = NULL; 185 } 186 187 pdata->channel_count = 0; 188 } 189 190 static int xgbe_alloc_channels(struct xgbe_prv_data *pdata) 191 { 192 struct xgbe_channel *channel; 193 struct xgbe_ring *ring; 194 unsigned int count, i; 195 unsigned int cpu; 196 int node; 197 198 count = max_t(unsigned int, pdata->tx_ring_count, pdata->rx_ring_count); 199 for (i = 0; i < count; i++) { 200 /* Attempt to use a CPU on the node the device is on */ 201 cpu = cpumask_local_spread(i, dev_to_node(pdata->dev)); 202 203 /* Set the allocation node based on the returned CPU */ 204 node = cpu_to_node(cpu); 205 206 channel = xgbe_alloc_node(sizeof(*channel), node); 207 if (!channel) 208 goto err_mem; 209 pdata->channel[i] = channel; 210 211 snprintf(channel->name, sizeof(channel->name), "channel-%u", i); 212 channel->pdata = pdata; 213 channel->queue_index = i; 214 channel->dma_regs = pdata->xgmac_regs + DMA_CH_BASE + 215 (DMA_CH_INC * i); 216 channel->node = node; 217 cpumask_set_cpu(cpu, &channel->affinity_mask); 218 219 if (pdata->per_channel_irq) 220 channel->dma_irq = pdata->channel_irq[i]; 221 222 if (i < pdata->tx_ring_count) { 223 ring = xgbe_alloc_node(sizeof(*ring), node); 224 if (!ring) 225 goto err_mem; 226 227 spin_lock_init(&ring->lock); 228 ring->node = node; 229 230 channel->tx_ring = ring; 231 } 232 233 if (i < pdata->rx_ring_count) { 234 ring = xgbe_alloc_node(sizeof(*ring), node); 235 if (!ring) 236 goto err_mem; 237 238 spin_lock_init(&ring->lock); 239 ring->node = node; 240 241 channel->rx_ring = ring; 242 } 243 244 netif_dbg(pdata, drv, pdata->netdev, 245 "%s: cpu=%u, node=%d\n", channel->name, cpu, node); 246 247 netif_dbg(pdata, drv, pdata->netdev, 248 "%s: dma_regs=%p, dma_irq=%d, tx=%p, rx=%p\n", 249 channel->name, channel->dma_regs, channel->dma_irq, 250 channel->tx_ring, channel->rx_ring); 251 } 252 253 pdata->channel_count = count; 254 255 return 0; 256 257 err_mem: 258 xgbe_free_channels(pdata); 259 260 return -ENOMEM; 261 } 262 263 static inline unsigned int xgbe_tx_avail_desc(struct xgbe_ring *ring) 264 { 265 return (ring->rdesc_count - (ring->cur - ring->dirty)); 266 } 267 268 static inline unsigned int xgbe_rx_dirty_desc(struct xgbe_ring *ring) 269 { 270 return (ring->cur - ring->dirty); 271 } 272 273 static int xgbe_maybe_stop_tx_queue(struct xgbe_channel *channel, 274 struct xgbe_ring *ring, unsigned int count) 275 { 276 struct xgbe_prv_data *pdata = channel->pdata; 277 278 if (count > xgbe_tx_avail_desc(ring)) { 279 netif_info(pdata, drv, pdata->netdev, 280 "Tx queue stopped, not enough descriptors available\n"); 281 netif_stop_subqueue(pdata->netdev, channel->queue_index); 282 ring->tx.queue_stopped = 1; 283 284 /* If we haven't notified the hardware because of xmit_more 285 * support, tell it now 286 */ 287 if (ring->tx.xmit_more) 288 pdata->hw_if.tx_start_xmit(channel, ring); 289 290 return NETDEV_TX_BUSY; 291 } 292 293 return 0; 294 } 295 296 static int xgbe_calc_rx_buf_size(struct net_device *netdev, unsigned int mtu) 297 { 298 unsigned int rx_buf_size; 299 300 rx_buf_size = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 301 rx_buf_size = clamp_val(rx_buf_size, XGBE_RX_MIN_BUF_SIZE, PAGE_SIZE); 302 303 rx_buf_size = (rx_buf_size + XGBE_RX_BUF_ALIGN - 1) & 304 ~(XGBE_RX_BUF_ALIGN - 1); 305 306 return rx_buf_size; 307 } 308 309 static void xgbe_enable_rx_tx_int(struct xgbe_prv_data *pdata, 310 struct xgbe_channel *channel) 311 { 312 struct xgbe_hw_if *hw_if = &pdata->hw_if; 313 enum xgbe_int int_id; 314 315 if (channel->tx_ring && channel->rx_ring) 316 int_id = XGMAC_INT_DMA_CH_SR_TI_RI; 317 else if (channel->tx_ring) 318 int_id = XGMAC_INT_DMA_CH_SR_TI; 319 else if (channel->rx_ring) 320 int_id = XGMAC_INT_DMA_CH_SR_RI; 321 else 322 return; 323 324 hw_if->enable_int(channel, int_id); 325 } 326 327 static void xgbe_enable_rx_tx_ints(struct xgbe_prv_data *pdata) 328 { 329 unsigned int i; 330 331 for (i = 0; i < pdata->channel_count; i++) 332 xgbe_enable_rx_tx_int(pdata, pdata->channel[i]); 333 } 334 335 static void xgbe_disable_rx_tx_int(struct xgbe_prv_data *pdata, 336 struct xgbe_channel *channel) 337 { 338 struct xgbe_hw_if *hw_if = &pdata->hw_if; 339 enum xgbe_int int_id; 340 341 if (channel->tx_ring && channel->rx_ring) 342 int_id = XGMAC_INT_DMA_CH_SR_TI_RI; 343 else if (channel->tx_ring) 344 int_id = XGMAC_INT_DMA_CH_SR_TI; 345 else if (channel->rx_ring) 346 int_id = XGMAC_INT_DMA_CH_SR_RI; 347 else 348 return; 349 350 hw_if->disable_int(channel, int_id); 351 } 352 353 static void xgbe_disable_rx_tx_ints(struct xgbe_prv_data *pdata) 354 { 355 unsigned int i; 356 357 for (i = 0; i < pdata->channel_count; i++) 358 xgbe_disable_rx_tx_int(pdata, pdata->channel[i]); 359 } 360 361 static bool xgbe_ecc_sec(struct xgbe_prv_data *pdata, unsigned long *period, 362 unsigned int *count, const char *area) 363 { 364 if (time_before(jiffies, *period)) { 365 (*count)++; 366 } else { 367 *period = jiffies + (ecc_sec_period * HZ); 368 *count = 1; 369 } 370 371 if (*count > ecc_sec_info_threshold) 372 dev_warn_once(pdata->dev, 373 "%s ECC corrected errors exceed informational threshold\n", 374 area); 375 376 if (*count > ecc_sec_warn_threshold) { 377 dev_warn_once(pdata->dev, 378 "%s ECC corrected errors exceed warning threshold\n", 379 area); 380 return true; 381 } 382 383 return false; 384 } 385 386 static bool xgbe_ecc_ded(struct xgbe_prv_data *pdata, unsigned long *period, 387 unsigned int *count, const char *area) 388 { 389 if (time_before(jiffies, *period)) { 390 (*count)++; 391 } else { 392 *period = jiffies + (ecc_ded_period * HZ); 393 *count = 1; 394 } 395 396 if (*count > ecc_ded_threshold) { 397 netdev_alert(pdata->netdev, 398 "%s ECC detected errors exceed threshold\n", 399 area); 400 return true; 401 } 402 403 return false; 404 } 405 406 static void xgbe_ecc_isr_task(struct tasklet_struct *t) 407 { 408 struct xgbe_prv_data *pdata = from_tasklet(pdata, t, tasklet_ecc); 409 unsigned int ecc_isr; 410 bool stop = false; 411 412 /* Mask status with only the interrupts we care about */ 413 ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR); 414 ecc_isr &= XP_IOREAD(pdata, XP_ECC_IER); 415 netif_dbg(pdata, intr, pdata->netdev, "ECC_ISR=%#010x\n", ecc_isr); 416 417 if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, TX_DED)) { 418 stop |= xgbe_ecc_ded(pdata, &pdata->tx_ded_period, 419 &pdata->tx_ded_count, "TX fifo"); 420 } 421 422 if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, RX_DED)) { 423 stop |= xgbe_ecc_ded(pdata, &pdata->rx_ded_period, 424 &pdata->rx_ded_count, "RX fifo"); 425 } 426 427 if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, DESC_DED)) { 428 stop |= xgbe_ecc_ded(pdata, &pdata->desc_ded_period, 429 &pdata->desc_ded_count, 430 "descriptor cache"); 431 } 432 433 if (stop) { 434 pdata->hw_if.disable_ecc_ded(pdata); 435 schedule_work(&pdata->stopdev_work); 436 goto out; 437 } 438 439 if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, TX_SEC)) { 440 if (xgbe_ecc_sec(pdata, &pdata->tx_sec_period, 441 &pdata->tx_sec_count, "TX fifo")) 442 pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_TX); 443 } 444 445 if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, RX_SEC)) 446 if (xgbe_ecc_sec(pdata, &pdata->rx_sec_period, 447 &pdata->rx_sec_count, "RX fifo")) 448 pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_RX); 449 450 if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, DESC_SEC)) 451 if (xgbe_ecc_sec(pdata, &pdata->desc_sec_period, 452 &pdata->desc_sec_count, "descriptor cache")) 453 pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_DESC); 454 455 out: 456 /* Clear all ECC interrupts */ 457 XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr); 458 459 /* Reissue interrupt if status is not clear */ 460 if (pdata->vdata->irq_reissue_support) 461 XP_IOWRITE(pdata, XP_INT_REISSUE_EN, 1 << 1); 462 } 463 464 static irqreturn_t xgbe_ecc_isr(int irq, void *data) 465 { 466 struct xgbe_prv_data *pdata = data; 467 468 if (pdata->isr_as_tasklet) 469 tasklet_schedule(&pdata->tasklet_ecc); 470 else 471 xgbe_ecc_isr_task(&pdata->tasklet_ecc); 472 473 return IRQ_HANDLED; 474 } 475 476 static void xgbe_isr_task(struct tasklet_struct *t) 477 { 478 struct xgbe_prv_data *pdata = from_tasklet(pdata, t, tasklet_dev); 479 struct xgbe_hw_if *hw_if = &pdata->hw_if; 480 struct xgbe_channel *channel; 481 unsigned int dma_isr, dma_ch_isr; 482 unsigned int mac_isr, mac_tssr, mac_mdioisr; 483 unsigned int i; 484 485 /* The DMA interrupt status register also reports MAC and MTL 486 * interrupts. So for polling mode, we just need to check for 487 * this register to be non-zero 488 */ 489 dma_isr = XGMAC_IOREAD(pdata, DMA_ISR); 490 if (!dma_isr) 491 goto isr_done; 492 493 netif_dbg(pdata, intr, pdata->netdev, "DMA_ISR=%#010x\n", dma_isr); 494 495 for (i = 0; i < pdata->channel_count; i++) { 496 if (!(dma_isr & (1 << i))) 497 continue; 498 499 channel = pdata->channel[i]; 500 501 dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR); 502 netif_dbg(pdata, intr, pdata->netdev, "DMA_CH%u_ISR=%#010x\n", 503 i, dma_ch_isr); 504 505 /* The TI or RI interrupt bits may still be set even if using 506 * per channel DMA interrupts. Check to be sure those are not 507 * enabled before using the private data napi structure. 508 */ 509 if (!pdata->per_channel_irq && 510 (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, TI) || 511 XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RI))) { 512 if (napi_schedule_prep(&pdata->napi)) { 513 /* Disable Tx and Rx interrupts */ 514 xgbe_disable_rx_tx_ints(pdata); 515 516 /* Turn on polling */ 517 __napi_schedule(&pdata->napi); 518 } 519 } else { 520 /* Don't clear Rx/Tx status if doing per channel DMA 521 * interrupts, these will be cleared by the ISR for 522 * per channel DMA interrupts. 523 */ 524 XGMAC_SET_BITS(dma_ch_isr, DMA_CH_SR, TI, 0); 525 XGMAC_SET_BITS(dma_ch_isr, DMA_CH_SR, RI, 0); 526 } 527 528 if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RBU)) 529 pdata->ext_stats.rx_buffer_unavailable++; 530 531 /* Restart the device on a Fatal Bus Error */ 532 if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, FBE)) 533 schedule_work(&pdata->restart_work); 534 535 /* Clear interrupt signals */ 536 XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr); 537 } 538 539 if (XGMAC_GET_BITS(dma_isr, DMA_ISR, MACIS)) { 540 mac_isr = XGMAC_IOREAD(pdata, MAC_ISR); 541 542 netif_dbg(pdata, intr, pdata->netdev, "MAC_ISR=%#010x\n", 543 mac_isr); 544 545 if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCTXIS)) 546 hw_if->tx_mmc_int(pdata); 547 548 if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCRXIS)) 549 hw_if->rx_mmc_int(pdata); 550 551 if (XGMAC_GET_BITS(mac_isr, MAC_ISR, TSIS)) { 552 mac_tssr = XGMAC_IOREAD(pdata, MAC_TSSR); 553 554 netif_dbg(pdata, intr, pdata->netdev, 555 "MAC_TSSR=%#010x\n", mac_tssr); 556 557 if (XGMAC_GET_BITS(mac_tssr, MAC_TSSR, TXTSC)) { 558 /* Read Tx Timestamp to clear interrupt */ 559 pdata->tx_tstamp = 560 hw_if->get_tx_tstamp(pdata); 561 queue_work(pdata->dev_workqueue, 562 &pdata->tx_tstamp_work); 563 } 564 } 565 566 if (XGMAC_GET_BITS(mac_isr, MAC_ISR, SMI)) { 567 mac_mdioisr = XGMAC_IOREAD(pdata, MAC_MDIOISR); 568 569 netif_dbg(pdata, intr, pdata->netdev, 570 "MAC_MDIOISR=%#010x\n", mac_mdioisr); 571 572 if (XGMAC_GET_BITS(mac_mdioisr, MAC_MDIOISR, 573 SNGLCOMPINT)) 574 complete(&pdata->mdio_complete); 575 } 576 } 577 578 isr_done: 579 /* If there is not a separate AN irq, handle it here */ 580 if (pdata->dev_irq == pdata->an_irq) 581 pdata->phy_if.an_isr(pdata); 582 583 /* If there is not a separate ECC irq, handle it here */ 584 if (pdata->vdata->ecc_support && (pdata->dev_irq == pdata->ecc_irq)) 585 xgbe_ecc_isr_task(&pdata->tasklet_ecc); 586 587 /* If there is not a separate I2C irq, handle it here */ 588 if (pdata->vdata->i2c_support && (pdata->dev_irq == pdata->i2c_irq)) 589 pdata->i2c_if.i2c_isr(pdata); 590 591 /* Reissue interrupt if status is not clear */ 592 if (pdata->vdata->irq_reissue_support) { 593 unsigned int reissue_mask; 594 595 reissue_mask = 1 << 0; 596 if (!pdata->per_channel_irq) 597 reissue_mask |= 0xffff << 4; 598 599 XP_IOWRITE(pdata, XP_INT_REISSUE_EN, reissue_mask); 600 } 601 } 602 603 static irqreturn_t xgbe_isr(int irq, void *data) 604 { 605 struct xgbe_prv_data *pdata = data; 606 607 if (pdata->isr_as_tasklet) 608 tasklet_schedule(&pdata->tasklet_dev); 609 else 610 xgbe_isr_task(&pdata->tasklet_dev); 611 612 return IRQ_HANDLED; 613 } 614 615 static irqreturn_t xgbe_dma_isr(int irq, void *data) 616 { 617 struct xgbe_channel *channel = data; 618 struct xgbe_prv_data *pdata = channel->pdata; 619 unsigned int dma_status; 620 621 /* Per channel DMA interrupts are enabled, so we use the per 622 * channel napi structure and not the private data napi structure 623 */ 624 if (napi_schedule_prep(&channel->napi)) { 625 /* Disable Tx and Rx interrupts */ 626 if (pdata->channel_irq_mode) 627 xgbe_disable_rx_tx_int(pdata, channel); 628 else 629 disable_irq_nosync(channel->dma_irq); 630 631 /* Turn on polling */ 632 __napi_schedule_irqoff(&channel->napi); 633 } 634 635 /* Clear Tx/Rx signals */ 636 dma_status = 0; 637 XGMAC_SET_BITS(dma_status, DMA_CH_SR, TI, 1); 638 XGMAC_SET_BITS(dma_status, DMA_CH_SR, RI, 1); 639 XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_status); 640 641 return IRQ_HANDLED; 642 } 643 644 static void xgbe_tx_timer(struct timer_list *t) 645 { 646 struct xgbe_channel *channel = from_timer(channel, t, tx_timer); 647 struct xgbe_prv_data *pdata = channel->pdata; 648 struct napi_struct *napi; 649 650 DBGPR("-->xgbe_tx_timer\n"); 651 652 napi = (pdata->per_channel_irq) ? &channel->napi : &pdata->napi; 653 654 if (napi_schedule_prep(napi)) { 655 /* Disable Tx and Rx interrupts */ 656 if (pdata->per_channel_irq) 657 if (pdata->channel_irq_mode) 658 xgbe_disable_rx_tx_int(pdata, channel); 659 else 660 disable_irq_nosync(channel->dma_irq); 661 else 662 xgbe_disable_rx_tx_ints(pdata); 663 664 /* Turn on polling */ 665 __napi_schedule(napi); 666 } 667 668 channel->tx_timer_active = 0; 669 670 DBGPR("<--xgbe_tx_timer\n"); 671 } 672 673 static void xgbe_service(struct work_struct *work) 674 { 675 struct xgbe_prv_data *pdata = container_of(work, 676 struct xgbe_prv_data, 677 service_work); 678 679 pdata->phy_if.phy_status(pdata); 680 } 681 682 static void xgbe_service_timer(struct timer_list *t) 683 { 684 struct xgbe_prv_data *pdata = from_timer(pdata, t, service_timer); 685 686 queue_work(pdata->dev_workqueue, &pdata->service_work); 687 688 mod_timer(&pdata->service_timer, jiffies + HZ); 689 } 690 691 static void xgbe_init_timers(struct xgbe_prv_data *pdata) 692 { 693 struct xgbe_channel *channel; 694 unsigned int i; 695 696 timer_setup(&pdata->service_timer, xgbe_service_timer, 0); 697 698 for (i = 0; i < pdata->channel_count; i++) { 699 channel = pdata->channel[i]; 700 if (!channel->tx_ring) 701 break; 702 703 timer_setup(&channel->tx_timer, xgbe_tx_timer, 0); 704 } 705 } 706 707 static void xgbe_start_timers(struct xgbe_prv_data *pdata) 708 { 709 mod_timer(&pdata->service_timer, jiffies + HZ); 710 } 711 712 static void xgbe_stop_timers(struct xgbe_prv_data *pdata) 713 { 714 struct xgbe_channel *channel; 715 unsigned int i; 716 717 del_timer_sync(&pdata->service_timer); 718 719 for (i = 0; i < pdata->channel_count; i++) { 720 channel = pdata->channel[i]; 721 if (!channel->tx_ring) 722 break; 723 724 del_timer_sync(&channel->tx_timer); 725 } 726 } 727 728 void xgbe_get_all_hw_features(struct xgbe_prv_data *pdata) 729 { 730 unsigned int mac_hfr0, mac_hfr1, mac_hfr2; 731 struct xgbe_hw_features *hw_feat = &pdata->hw_feat; 732 733 mac_hfr0 = XGMAC_IOREAD(pdata, MAC_HWF0R); 734 mac_hfr1 = XGMAC_IOREAD(pdata, MAC_HWF1R); 735 mac_hfr2 = XGMAC_IOREAD(pdata, MAC_HWF2R); 736 737 memset(hw_feat, 0, sizeof(*hw_feat)); 738 739 hw_feat->version = XGMAC_IOREAD(pdata, MAC_VR); 740 741 /* Hardware feature register 0 */ 742 hw_feat->gmii = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, GMIISEL); 743 hw_feat->vlhash = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, VLHASH); 744 hw_feat->sma = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, SMASEL); 745 hw_feat->rwk = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, RWKSEL); 746 hw_feat->mgk = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, MGKSEL); 747 hw_feat->mmc = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, MMCSEL); 748 hw_feat->aoe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, ARPOFFSEL); 749 hw_feat->ts = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TSSEL); 750 hw_feat->eee = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, EEESEL); 751 hw_feat->tx_coe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TXCOESEL); 752 hw_feat->rx_coe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, RXCOESEL); 753 hw_feat->addn_mac = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, 754 ADDMACADRSEL); 755 hw_feat->ts_src = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TSSTSSEL); 756 hw_feat->sa_vlan_ins = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, SAVLANINS); 757 hw_feat->vxn = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, VXN); 758 759 /* Hardware feature register 1 */ 760 hw_feat->rx_fifo_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, 761 RXFIFOSIZE); 762 hw_feat->tx_fifo_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, 763 TXFIFOSIZE); 764 hw_feat->adv_ts_hi = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, ADVTHWORD); 765 hw_feat->dma_width = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, ADDR64); 766 hw_feat->dcb = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, DCBEN); 767 hw_feat->sph = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, SPHEN); 768 hw_feat->tso = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, TSOEN); 769 hw_feat->dma_debug = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, DBGMEMA); 770 hw_feat->rss = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, RSSEN); 771 hw_feat->tc_cnt = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, NUMTC); 772 hw_feat->hash_table_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, 773 HASHTBLSZ); 774 hw_feat->l3l4_filter_num = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, 775 L3L4FNUM); 776 777 /* Hardware feature register 2 */ 778 hw_feat->rx_q_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, RXQCNT); 779 hw_feat->tx_q_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, TXQCNT); 780 hw_feat->rx_ch_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, RXCHCNT); 781 hw_feat->tx_ch_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, TXCHCNT); 782 hw_feat->pps_out_num = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, PPSOUTNUM); 783 hw_feat->aux_snap_num = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, AUXSNAPNUM); 784 785 /* Translate the Hash Table size into actual number */ 786 switch (hw_feat->hash_table_size) { 787 case 0: 788 break; 789 case 1: 790 hw_feat->hash_table_size = 64; 791 break; 792 case 2: 793 hw_feat->hash_table_size = 128; 794 break; 795 case 3: 796 hw_feat->hash_table_size = 256; 797 break; 798 } 799 800 /* Translate the address width setting into actual number */ 801 switch (hw_feat->dma_width) { 802 case 0: 803 hw_feat->dma_width = 32; 804 break; 805 case 1: 806 hw_feat->dma_width = 40; 807 break; 808 case 2: 809 hw_feat->dma_width = 48; 810 break; 811 default: 812 hw_feat->dma_width = 32; 813 } 814 815 /* The Queue, Channel and TC counts are zero based so increment them 816 * to get the actual number 817 */ 818 hw_feat->rx_q_cnt++; 819 hw_feat->tx_q_cnt++; 820 hw_feat->rx_ch_cnt++; 821 hw_feat->tx_ch_cnt++; 822 hw_feat->tc_cnt++; 823 824 /* Translate the fifo sizes into actual numbers */ 825 hw_feat->rx_fifo_size = 1 << (hw_feat->rx_fifo_size + 7); 826 hw_feat->tx_fifo_size = 1 << (hw_feat->tx_fifo_size + 7); 827 828 if (netif_msg_probe(pdata)) { 829 dev_dbg(pdata->dev, "Hardware features:\n"); 830 831 /* Hardware feature register 0 */ 832 dev_dbg(pdata->dev, " 1GbE support : %s\n", 833 hw_feat->gmii ? "yes" : "no"); 834 dev_dbg(pdata->dev, " VLAN hash filter : %s\n", 835 hw_feat->vlhash ? "yes" : "no"); 836 dev_dbg(pdata->dev, " MDIO interface : %s\n", 837 hw_feat->sma ? "yes" : "no"); 838 dev_dbg(pdata->dev, " Wake-up packet support : %s\n", 839 hw_feat->rwk ? "yes" : "no"); 840 dev_dbg(pdata->dev, " Magic packet support : %s\n", 841 hw_feat->mgk ? "yes" : "no"); 842 dev_dbg(pdata->dev, " Management counters : %s\n", 843 hw_feat->mmc ? "yes" : "no"); 844 dev_dbg(pdata->dev, " ARP offload : %s\n", 845 hw_feat->aoe ? "yes" : "no"); 846 dev_dbg(pdata->dev, " IEEE 1588-2008 Timestamp : %s\n", 847 hw_feat->ts ? "yes" : "no"); 848 dev_dbg(pdata->dev, " Energy Efficient Ethernet : %s\n", 849 hw_feat->eee ? "yes" : "no"); 850 dev_dbg(pdata->dev, " TX checksum offload : %s\n", 851 hw_feat->tx_coe ? "yes" : "no"); 852 dev_dbg(pdata->dev, " RX checksum offload : %s\n", 853 hw_feat->rx_coe ? "yes" : "no"); 854 dev_dbg(pdata->dev, " Additional MAC addresses : %u\n", 855 hw_feat->addn_mac); 856 dev_dbg(pdata->dev, " Timestamp source : %s\n", 857 (hw_feat->ts_src == 1) ? "internal" : 858 (hw_feat->ts_src == 2) ? "external" : 859 (hw_feat->ts_src == 3) ? "internal/external" : "n/a"); 860 dev_dbg(pdata->dev, " SA/VLAN insertion : %s\n", 861 hw_feat->sa_vlan_ins ? "yes" : "no"); 862 dev_dbg(pdata->dev, " VXLAN/NVGRE support : %s\n", 863 hw_feat->vxn ? "yes" : "no"); 864 865 /* Hardware feature register 1 */ 866 dev_dbg(pdata->dev, " RX fifo size : %u\n", 867 hw_feat->rx_fifo_size); 868 dev_dbg(pdata->dev, " TX fifo size : %u\n", 869 hw_feat->tx_fifo_size); 870 dev_dbg(pdata->dev, " IEEE 1588 high word : %s\n", 871 hw_feat->adv_ts_hi ? "yes" : "no"); 872 dev_dbg(pdata->dev, " DMA width : %u\n", 873 hw_feat->dma_width); 874 dev_dbg(pdata->dev, " Data Center Bridging : %s\n", 875 hw_feat->dcb ? "yes" : "no"); 876 dev_dbg(pdata->dev, " Split header : %s\n", 877 hw_feat->sph ? "yes" : "no"); 878 dev_dbg(pdata->dev, " TCP Segmentation Offload : %s\n", 879 hw_feat->tso ? "yes" : "no"); 880 dev_dbg(pdata->dev, " Debug memory interface : %s\n", 881 hw_feat->dma_debug ? "yes" : "no"); 882 dev_dbg(pdata->dev, " Receive Side Scaling : %s\n", 883 hw_feat->rss ? "yes" : "no"); 884 dev_dbg(pdata->dev, " Traffic Class count : %u\n", 885 hw_feat->tc_cnt); 886 dev_dbg(pdata->dev, " Hash table size : %u\n", 887 hw_feat->hash_table_size); 888 dev_dbg(pdata->dev, " L3/L4 Filters : %u\n", 889 hw_feat->l3l4_filter_num); 890 891 /* Hardware feature register 2 */ 892 dev_dbg(pdata->dev, " RX queue count : %u\n", 893 hw_feat->rx_q_cnt); 894 dev_dbg(pdata->dev, " TX queue count : %u\n", 895 hw_feat->tx_q_cnt); 896 dev_dbg(pdata->dev, " RX DMA channel count : %u\n", 897 hw_feat->rx_ch_cnt); 898 dev_dbg(pdata->dev, " TX DMA channel count : %u\n", 899 hw_feat->rx_ch_cnt); 900 dev_dbg(pdata->dev, " PPS outputs : %u\n", 901 hw_feat->pps_out_num); 902 dev_dbg(pdata->dev, " Auxiliary snapshot inputs : %u\n", 903 hw_feat->aux_snap_num); 904 } 905 } 906 907 static int xgbe_vxlan_set_port(struct net_device *netdev, unsigned int table, 908 unsigned int entry, struct udp_tunnel_info *ti) 909 { 910 struct xgbe_prv_data *pdata = netdev_priv(netdev); 911 912 pdata->vxlan_port = be16_to_cpu(ti->port); 913 pdata->hw_if.enable_vxlan(pdata); 914 915 return 0; 916 } 917 918 static int xgbe_vxlan_unset_port(struct net_device *netdev, unsigned int table, 919 unsigned int entry, struct udp_tunnel_info *ti) 920 { 921 struct xgbe_prv_data *pdata = netdev_priv(netdev); 922 923 pdata->hw_if.disable_vxlan(pdata); 924 pdata->vxlan_port = 0; 925 926 return 0; 927 } 928 929 static const struct udp_tunnel_nic_info xgbe_udp_tunnels = { 930 .set_port = xgbe_vxlan_set_port, 931 .unset_port = xgbe_vxlan_unset_port, 932 .flags = UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 933 .tables = { 934 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 935 }, 936 }; 937 938 const struct udp_tunnel_nic_info *xgbe_get_udp_tunnel_info(void) 939 { 940 return &xgbe_udp_tunnels; 941 } 942 943 static void xgbe_napi_enable(struct xgbe_prv_data *pdata, unsigned int add) 944 { 945 struct xgbe_channel *channel; 946 unsigned int i; 947 948 if (pdata->per_channel_irq) { 949 for (i = 0; i < pdata->channel_count; i++) { 950 channel = pdata->channel[i]; 951 if (add) 952 netif_napi_add(pdata->netdev, &channel->napi, 953 xgbe_one_poll, NAPI_POLL_WEIGHT); 954 955 napi_enable(&channel->napi); 956 } 957 } else { 958 if (add) 959 netif_napi_add(pdata->netdev, &pdata->napi, 960 xgbe_all_poll, NAPI_POLL_WEIGHT); 961 962 napi_enable(&pdata->napi); 963 } 964 } 965 966 static void xgbe_napi_disable(struct xgbe_prv_data *pdata, unsigned int del) 967 { 968 struct xgbe_channel *channel; 969 unsigned int i; 970 971 if (pdata->per_channel_irq) { 972 for (i = 0; i < pdata->channel_count; i++) { 973 channel = pdata->channel[i]; 974 napi_disable(&channel->napi); 975 976 if (del) 977 netif_napi_del(&channel->napi); 978 } 979 } else { 980 napi_disable(&pdata->napi); 981 982 if (del) 983 netif_napi_del(&pdata->napi); 984 } 985 } 986 987 static int xgbe_request_irqs(struct xgbe_prv_data *pdata) 988 { 989 struct xgbe_channel *channel; 990 struct net_device *netdev = pdata->netdev; 991 unsigned int i; 992 int ret; 993 994 tasklet_setup(&pdata->tasklet_dev, xgbe_isr_task); 995 tasklet_setup(&pdata->tasklet_ecc, xgbe_ecc_isr_task); 996 997 ret = devm_request_irq(pdata->dev, pdata->dev_irq, xgbe_isr, 0, 998 netdev_name(netdev), pdata); 999 if (ret) { 1000 netdev_alert(netdev, "error requesting irq %d\n", 1001 pdata->dev_irq); 1002 return ret; 1003 } 1004 1005 if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq)) { 1006 ret = devm_request_irq(pdata->dev, pdata->ecc_irq, xgbe_ecc_isr, 1007 0, pdata->ecc_name, pdata); 1008 if (ret) { 1009 netdev_alert(netdev, "error requesting ecc irq %d\n", 1010 pdata->ecc_irq); 1011 goto err_dev_irq; 1012 } 1013 } 1014 1015 if (!pdata->per_channel_irq) 1016 return 0; 1017 1018 for (i = 0; i < pdata->channel_count; i++) { 1019 channel = pdata->channel[i]; 1020 snprintf(channel->dma_irq_name, 1021 sizeof(channel->dma_irq_name) - 1, 1022 "%s-TxRx-%u", netdev_name(netdev), 1023 channel->queue_index); 1024 1025 ret = devm_request_irq(pdata->dev, channel->dma_irq, 1026 xgbe_dma_isr, 0, 1027 channel->dma_irq_name, channel); 1028 if (ret) { 1029 netdev_alert(netdev, "error requesting irq %d\n", 1030 channel->dma_irq); 1031 goto err_dma_irq; 1032 } 1033 1034 irq_set_affinity_hint(channel->dma_irq, 1035 &channel->affinity_mask); 1036 } 1037 1038 return 0; 1039 1040 err_dma_irq: 1041 /* Using an unsigned int, 'i' will go to UINT_MAX and exit */ 1042 for (i--; i < pdata->channel_count; i--) { 1043 channel = pdata->channel[i]; 1044 1045 irq_set_affinity_hint(channel->dma_irq, NULL); 1046 devm_free_irq(pdata->dev, channel->dma_irq, channel); 1047 } 1048 1049 if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq)) 1050 devm_free_irq(pdata->dev, pdata->ecc_irq, pdata); 1051 1052 err_dev_irq: 1053 devm_free_irq(pdata->dev, pdata->dev_irq, pdata); 1054 1055 return ret; 1056 } 1057 1058 static void xgbe_free_irqs(struct xgbe_prv_data *pdata) 1059 { 1060 struct xgbe_channel *channel; 1061 unsigned int i; 1062 1063 devm_free_irq(pdata->dev, pdata->dev_irq, pdata); 1064 1065 if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq)) 1066 devm_free_irq(pdata->dev, pdata->ecc_irq, pdata); 1067 1068 if (!pdata->per_channel_irq) 1069 return; 1070 1071 for (i = 0; i < pdata->channel_count; i++) { 1072 channel = pdata->channel[i]; 1073 1074 irq_set_affinity_hint(channel->dma_irq, NULL); 1075 devm_free_irq(pdata->dev, channel->dma_irq, channel); 1076 } 1077 } 1078 1079 void xgbe_init_tx_coalesce(struct xgbe_prv_data *pdata) 1080 { 1081 struct xgbe_hw_if *hw_if = &pdata->hw_if; 1082 1083 DBGPR("-->xgbe_init_tx_coalesce\n"); 1084 1085 pdata->tx_usecs = XGMAC_INIT_DMA_TX_USECS; 1086 pdata->tx_frames = XGMAC_INIT_DMA_TX_FRAMES; 1087 1088 hw_if->config_tx_coalesce(pdata); 1089 1090 DBGPR("<--xgbe_init_tx_coalesce\n"); 1091 } 1092 1093 void xgbe_init_rx_coalesce(struct xgbe_prv_data *pdata) 1094 { 1095 struct xgbe_hw_if *hw_if = &pdata->hw_if; 1096 1097 DBGPR("-->xgbe_init_rx_coalesce\n"); 1098 1099 pdata->rx_riwt = hw_if->usec_to_riwt(pdata, XGMAC_INIT_DMA_RX_USECS); 1100 pdata->rx_usecs = XGMAC_INIT_DMA_RX_USECS; 1101 pdata->rx_frames = XGMAC_INIT_DMA_RX_FRAMES; 1102 1103 hw_if->config_rx_coalesce(pdata); 1104 1105 DBGPR("<--xgbe_init_rx_coalesce\n"); 1106 } 1107 1108 static void xgbe_free_tx_data(struct xgbe_prv_data *pdata) 1109 { 1110 struct xgbe_desc_if *desc_if = &pdata->desc_if; 1111 struct xgbe_ring *ring; 1112 struct xgbe_ring_data *rdata; 1113 unsigned int i, j; 1114 1115 DBGPR("-->xgbe_free_tx_data\n"); 1116 1117 for (i = 0; i < pdata->channel_count; i++) { 1118 ring = pdata->channel[i]->tx_ring; 1119 if (!ring) 1120 break; 1121 1122 for (j = 0; j < ring->rdesc_count; j++) { 1123 rdata = XGBE_GET_DESC_DATA(ring, j); 1124 desc_if->unmap_rdata(pdata, rdata); 1125 } 1126 } 1127 1128 DBGPR("<--xgbe_free_tx_data\n"); 1129 } 1130 1131 static void xgbe_free_rx_data(struct xgbe_prv_data *pdata) 1132 { 1133 struct xgbe_desc_if *desc_if = &pdata->desc_if; 1134 struct xgbe_ring *ring; 1135 struct xgbe_ring_data *rdata; 1136 unsigned int i, j; 1137 1138 DBGPR("-->xgbe_free_rx_data\n"); 1139 1140 for (i = 0; i < pdata->channel_count; i++) { 1141 ring = pdata->channel[i]->rx_ring; 1142 if (!ring) 1143 break; 1144 1145 for (j = 0; j < ring->rdesc_count; j++) { 1146 rdata = XGBE_GET_DESC_DATA(ring, j); 1147 desc_if->unmap_rdata(pdata, rdata); 1148 } 1149 } 1150 1151 DBGPR("<--xgbe_free_rx_data\n"); 1152 } 1153 1154 static int xgbe_phy_reset(struct xgbe_prv_data *pdata) 1155 { 1156 pdata->phy_link = -1; 1157 pdata->phy_speed = SPEED_UNKNOWN; 1158 1159 return pdata->phy_if.phy_reset(pdata); 1160 } 1161 1162 int xgbe_powerdown(struct net_device *netdev, unsigned int caller) 1163 { 1164 struct xgbe_prv_data *pdata = netdev_priv(netdev); 1165 struct xgbe_hw_if *hw_if = &pdata->hw_if; 1166 unsigned long flags; 1167 1168 DBGPR("-->xgbe_powerdown\n"); 1169 1170 if (!netif_running(netdev) || 1171 (caller == XGMAC_IOCTL_CONTEXT && pdata->power_down)) { 1172 netdev_alert(netdev, "Device is already powered down\n"); 1173 DBGPR("<--xgbe_powerdown\n"); 1174 return -EINVAL; 1175 } 1176 1177 spin_lock_irqsave(&pdata->lock, flags); 1178 1179 if (caller == XGMAC_DRIVER_CONTEXT) 1180 netif_device_detach(netdev); 1181 1182 netif_tx_stop_all_queues(netdev); 1183 1184 xgbe_stop_timers(pdata); 1185 flush_workqueue(pdata->dev_workqueue); 1186 1187 hw_if->powerdown_tx(pdata); 1188 hw_if->powerdown_rx(pdata); 1189 1190 xgbe_napi_disable(pdata, 0); 1191 1192 pdata->power_down = 1; 1193 1194 spin_unlock_irqrestore(&pdata->lock, flags); 1195 1196 DBGPR("<--xgbe_powerdown\n"); 1197 1198 return 0; 1199 } 1200 1201 int xgbe_powerup(struct net_device *netdev, unsigned int caller) 1202 { 1203 struct xgbe_prv_data *pdata = netdev_priv(netdev); 1204 struct xgbe_hw_if *hw_if = &pdata->hw_if; 1205 unsigned long flags; 1206 1207 DBGPR("-->xgbe_powerup\n"); 1208 1209 if (!netif_running(netdev) || 1210 (caller == XGMAC_IOCTL_CONTEXT && !pdata->power_down)) { 1211 netdev_alert(netdev, "Device is already powered up\n"); 1212 DBGPR("<--xgbe_powerup\n"); 1213 return -EINVAL; 1214 } 1215 1216 spin_lock_irqsave(&pdata->lock, flags); 1217 1218 pdata->power_down = 0; 1219 1220 xgbe_napi_enable(pdata, 0); 1221 1222 hw_if->powerup_tx(pdata); 1223 hw_if->powerup_rx(pdata); 1224 1225 if (caller == XGMAC_DRIVER_CONTEXT) 1226 netif_device_attach(netdev); 1227 1228 netif_tx_start_all_queues(netdev); 1229 1230 xgbe_start_timers(pdata); 1231 1232 spin_unlock_irqrestore(&pdata->lock, flags); 1233 1234 DBGPR("<--xgbe_powerup\n"); 1235 1236 return 0; 1237 } 1238 1239 static void xgbe_free_memory(struct xgbe_prv_data *pdata) 1240 { 1241 struct xgbe_desc_if *desc_if = &pdata->desc_if; 1242 1243 /* Free the ring descriptors and buffers */ 1244 desc_if->free_ring_resources(pdata); 1245 1246 /* Free the channel and ring structures */ 1247 xgbe_free_channels(pdata); 1248 } 1249 1250 static int xgbe_alloc_memory(struct xgbe_prv_data *pdata) 1251 { 1252 struct xgbe_desc_if *desc_if = &pdata->desc_if; 1253 struct net_device *netdev = pdata->netdev; 1254 int ret; 1255 1256 if (pdata->new_tx_ring_count) { 1257 pdata->tx_ring_count = pdata->new_tx_ring_count; 1258 pdata->tx_q_count = pdata->tx_ring_count; 1259 pdata->new_tx_ring_count = 0; 1260 } 1261 1262 if (pdata->new_rx_ring_count) { 1263 pdata->rx_ring_count = pdata->new_rx_ring_count; 1264 pdata->new_rx_ring_count = 0; 1265 } 1266 1267 /* Calculate the Rx buffer size before allocating rings */ 1268 pdata->rx_buf_size = xgbe_calc_rx_buf_size(netdev, netdev->mtu); 1269 1270 /* Allocate the channel and ring structures */ 1271 ret = xgbe_alloc_channels(pdata); 1272 if (ret) 1273 return ret; 1274 1275 /* Allocate the ring descriptors and buffers */ 1276 ret = desc_if->alloc_ring_resources(pdata); 1277 if (ret) 1278 goto err_channels; 1279 1280 /* Initialize the service and Tx timers */ 1281 xgbe_init_timers(pdata); 1282 1283 return 0; 1284 1285 err_channels: 1286 xgbe_free_memory(pdata); 1287 1288 return ret; 1289 } 1290 1291 static int xgbe_start(struct xgbe_prv_data *pdata) 1292 { 1293 struct xgbe_hw_if *hw_if = &pdata->hw_if; 1294 struct xgbe_phy_if *phy_if = &pdata->phy_if; 1295 struct net_device *netdev = pdata->netdev; 1296 unsigned int i; 1297 int ret; 1298 1299 /* Set the number of queues */ 1300 ret = netif_set_real_num_tx_queues(netdev, pdata->tx_ring_count); 1301 if (ret) { 1302 netdev_err(netdev, "error setting real tx queue count\n"); 1303 return ret; 1304 } 1305 1306 ret = netif_set_real_num_rx_queues(netdev, pdata->rx_ring_count); 1307 if (ret) { 1308 netdev_err(netdev, "error setting real rx queue count\n"); 1309 return ret; 1310 } 1311 1312 /* Set RSS lookup table data for programming */ 1313 for (i = 0; i < XGBE_RSS_MAX_TABLE_SIZE; i++) 1314 XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, 1315 i % pdata->rx_ring_count); 1316 1317 ret = hw_if->init(pdata); 1318 if (ret) 1319 return ret; 1320 1321 xgbe_napi_enable(pdata, 1); 1322 1323 ret = xgbe_request_irqs(pdata); 1324 if (ret) 1325 goto err_napi; 1326 1327 ret = phy_if->phy_start(pdata); 1328 if (ret) 1329 goto err_irqs; 1330 1331 hw_if->enable_tx(pdata); 1332 hw_if->enable_rx(pdata); 1333 1334 udp_tunnel_nic_reset_ntf(netdev); 1335 1336 netif_tx_start_all_queues(netdev); 1337 1338 xgbe_start_timers(pdata); 1339 queue_work(pdata->dev_workqueue, &pdata->service_work); 1340 1341 clear_bit(XGBE_STOPPED, &pdata->dev_state); 1342 1343 return 0; 1344 1345 err_irqs: 1346 xgbe_free_irqs(pdata); 1347 1348 err_napi: 1349 xgbe_napi_disable(pdata, 1); 1350 1351 hw_if->exit(pdata); 1352 1353 return ret; 1354 } 1355 1356 static void xgbe_stop(struct xgbe_prv_data *pdata) 1357 { 1358 struct xgbe_hw_if *hw_if = &pdata->hw_if; 1359 struct xgbe_phy_if *phy_if = &pdata->phy_if; 1360 struct xgbe_channel *channel; 1361 struct net_device *netdev = pdata->netdev; 1362 struct netdev_queue *txq; 1363 unsigned int i; 1364 1365 DBGPR("-->xgbe_stop\n"); 1366 1367 if (test_bit(XGBE_STOPPED, &pdata->dev_state)) 1368 return; 1369 1370 netif_tx_stop_all_queues(netdev); 1371 netif_carrier_off(pdata->netdev); 1372 1373 xgbe_stop_timers(pdata); 1374 flush_workqueue(pdata->dev_workqueue); 1375 1376 xgbe_vxlan_unset_port(netdev, 0, 0, NULL); 1377 1378 hw_if->disable_tx(pdata); 1379 hw_if->disable_rx(pdata); 1380 1381 phy_if->phy_stop(pdata); 1382 1383 xgbe_free_irqs(pdata); 1384 1385 xgbe_napi_disable(pdata, 1); 1386 1387 hw_if->exit(pdata); 1388 1389 for (i = 0; i < pdata->channel_count; i++) { 1390 channel = pdata->channel[i]; 1391 if (!channel->tx_ring) 1392 continue; 1393 1394 txq = netdev_get_tx_queue(netdev, channel->queue_index); 1395 netdev_tx_reset_queue(txq); 1396 } 1397 1398 set_bit(XGBE_STOPPED, &pdata->dev_state); 1399 1400 DBGPR("<--xgbe_stop\n"); 1401 } 1402 1403 static void xgbe_stopdev(struct work_struct *work) 1404 { 1405 struct xgbe_prv_data *pdata = container_of(work, 1406 struct xgbe_prv_data, 1407 stopdev_work); 1408 1409 rtnl_lock(); 1410 1411 xgbe_stop(pdata); 1412 1413 xgbe_free_tx_data(pdata); 1414 xgbe_free_rx_data(pdata); 1415 1416 rtnl_unlock(); 1417 1418 netdev_alert(pdata->netdev, "device stopped\n"); 1419 } 1420 1421 void xgbe_full_restart_dev(struct xgbe_prv_data *pdata) 1422 { 1423 /* If not running, "restart" will happen on open */ 1424 if (!netif_running(pdata->netdev)) 1425 return; 1426 1427 xgbe_stop(pdata); 1428 1429 xgbe_free_memory(pdata); 1430 xgbe_alloc_memory(pdata); 1431 1432 xgbe_start(pdata); 1433 } 1434 1435 void xgbe_restart_dev(struct xgbe_prv_data *pdata) 1436 { 1437 /* If not running, "restart" will happen on open */ 1438 if (!netif_running(pdata->netdev)) 1439 return; 1440 1441 xgbe_stop(pdata); 1442 1443 xgbe_free_tx_data(pdata); 1444 xgbe_free_rx_data(pdata); 1445 1446 xgbe_start(pdata); 1447 } 1448 1449 static void xgbe_restart(struct work_struct *work) 1450 { 1451 struct xgbe_prv_data *pdata = container_of(work, 1452 struct xgbe_prv_data, 1453 restart_work); 1454 1455 rtnl_lock(); 1456 1457 xgbe_restart_dev(pdata); 1458 1459 rtnl_unlock(); 1460 } 1461 1462 static void xgbe_tx_tstamp(struct work_struct *work) 1463 { 1464 struct xgbe_prv_data *pdata = container_of(work, 1465 struct xgbe_prv_data, 1466 tx_tstamp_work); 1467 struct skb_shared_hwtstamps hwtstamps; 1468 u64 nsec; 1469 unsigned long flags; 1470 1471 spin_lock_irqsave(&pdata->tstamp_lock, flags); 1472 if (!pdata->tx_tstamp_skb) 1473 goto unlock; 1474 1475 if (pdata->tx_tstamp) { 1476 nsec = timecounter_cyc2time(&pdata->tstamp_tc, 1477 pdata->tx_tstamp); 1478 1479 memset(&hwtstamps, 0, sizeof(hwtstamps)); 1480 hwtstamps.hwtstamp = ns_to_ktime(nsec); 1481 skb_tstamp_tx(pdata->tx_tstamp_skb, &hwtstamps); 1482 } 1483 1484 dev_kfree_skb_any(pdata->tx_tstamp_skb); 1485 1486 pdata->tx_tstamp_skb = NULL; 1487 1488 unlock: 1489 spin_unlock_irqrestore(&pdata->tstamp_lock, flags); 1490 } 1491 1492 static int xgbe_get_hwtstamp_settings(struct xgbe_prv_data *pdata, 1493 struct ifreq *ifreq) 1494 { 1495 if (copy_to_user(ifreq->ifr_data, &pdata->tstamp_config, 1496 sizeof(pdata->tstamp_config))) 1497 return -EFAULT; 1498 1499 return 0; 1500 } 1501 1502 static int xgbe_set_hwtstamp_settings(struct xgbe_prv_data *pdata, 1503 struct ifreq *ifreq) 1504 { 1505 struct hwtstamp_config config; 1506 unsigned int mac_tscr; 1507 1508 if (copy_from_user(&config, ifreq->ifr_data, sizeof(config))) 1509 return -EFAULT; 1510 1511 if (config.flags) 1512 return -EINVAL; 1513 1514 mac_tscr = 0; 1515 1516 switch (config.tx_type) { 1517 case HWTSTAMP_TX_OFF: 1518 break; 1519 1520 case HWTSTAMP_TX_ON: 1521 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1522 break; 1523 1524 default: 1525 return -ERANGE; 1526 } 1527 1528 switch (config.rx_filter) { 1529 case HWTSTAMP_FILTER_NONE: 1530 break; 1531 1532 case HWTSTAMP_FILTER_NTP_ALL: 1533 case HWTSTAMP_FILTER_ALL: 1534 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENALL, 1); 1535 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1536 break; 1537 1538 /* PTP v2, UDP, any kind of event packet */ 1539 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1540 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); 1541 fallthrough; /* to PTP v1, UDP, any kind of event packet */ 1542 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1543 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); 1544 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); 1545 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1); 1546 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1547 break; 1548 1549 /* PTP v2, UDP, Sync packet */ 1550 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1551 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); 1552 fallthrough; /* to PTP v1, UDP, Sync packet */ 1553 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1554 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); 1555 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); 1556 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); 1557 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1558 break; 1559 1560 /* PTP v2, UDP, Delay_req packet */ 1561 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1562 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); 1563 fallthrough; /* to PTP v1, UDP, Delay_req packet */ 1564 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1565 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); 1566 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); 1567 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); 1568 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1); 1569 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1570 break; 1571 1572 /* 802.AS1, Ethernet, any kind of event packet */ 1573 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1574 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1); 1575 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1); 1576 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1577 break; 1578 1579 /* 802.AS1, Ethernet, Sync packet */ 1580 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1581 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1); 1582 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); 1583 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1584 break; 1585 1586 /* 802.AS1, Ethernet, Delay_req packet */ 1587 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1588 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1); 1589 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1); 1590 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); 1591 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1592 break; 1593 1594 /* PTP v2/802.AS1, any layer, any kind of event packet */ 1595 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1596 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); 1597 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1); 1598 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); 1599 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); 1600 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1); 1601 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1602 break; 1603 1604 /* PTP v2/802.AS1, any layer, Sync packet */ 1605 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1606 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); 1607 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1); 1608 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); 1609 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); 1610 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); 1611 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1612 break; 1613 1614 /* PTP v2/802.AS1, any layer, Delay_req packet */ 1615 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1616 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); 1617 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1); 1618 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); 1619 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); 1620 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1); 1621 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); 1622 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); 1623 break; 1624 1625 default: 1626 return -ERANGE; 1627 } 1628 1629 pdata->hw_if.config_tstamp(pdata, mac_tscr); 1630 1631 memcpy(&pdata->tstamp_config, &config, sizeof(config)); 1632 1633 return 0; 1634 } 1635 1636 static void xgbe_prep_tx_tstamp(struct xgbe_prv_data *pdata, 1637 struct sk_buff *skb, 1638 struct xgbe_packet_data *packet) 1639 { 1640 unsigned long flags; 1641 1642 if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP)) { 1643 spin_lock_irqsave(&pdata->tstamp_lock, flags); 1644 if (pdata->tx_tstamp_skb) { 1645 /* Another timestamp in progress, ignore this one */ 1646 XGMAC_SET_BITS(packet->attributes, 1647 TX_PACKET_ATTRIBUTES, PTP, 0); 1648 } else { 1649 pdata->tx_tstamp_skb = skb_get(skb); 1650 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1651 } 1652 spin_unlock_irqrestore(&pdata->tstamp_lock, flags); 1653 } 1654 1655 skb_tx_timestamp(skb); 1656 } 1657 1658 static void xgbe_prep_vlan(struct sk_buff *skb, struct xgbe_packet_data *packet) 1659 { 1660 if (skb_vlan_tag_present(skb)) 1661 packet->vlan_ctag = skb_vlan_tag_get(skb); 1662 } 1663 1664 static int xgbe_prep_tso(struct sk_buff *skb, struct xgbe_packet_data *packet) 1665 { 1666 int ret; 1667 1668 if (!XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1669 TSO_ENABLE)) 1670 return 0; 1671 1672 ret = skb_cow_head(skb, 0); 1673 if (ret) 1674 return ret; 1675 1676 if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, VXLAN)) { 1677 packet->header_len = skb_inner_transport_offset(skb) + 1678 inner_tcp_hdrlen(skb); 1679 packet->tcp_header_len = inner_tcp_hdrlen(skb); 1680 } else { 1681 packet->header_len = skb_transport_offset(skb) + 1682 tcp_hdrlen(skb); 1683 packet->tcp_header_len = tcp_hdrlen(skb); 1684 } 1685 packet->tcp_payload_len = skb->len - packet->header_len; 1686 packet->mss = skb_shinfo(skb)->gso_size; 1687 1688 DBGPR(" packet->header_len=%u\n", packet->header_len); 1689 DBGPR(" packet->tcp_header_len=%u, packet->tcp_payload_len=%u\n", 1690 packet->tcp_header_len, packet->tcp_payload_len); 1691 DBGPR(" packet->mss=%u\n", packet->mss); 1692 1693 /* Update the number of packets that will ultimately be transmitted 1694 * along with the extra bytes for each extra packet 1695 */ 1696 packet->tx_packets = skb_shinfo(skb)->gso_segs; 1697 packet->tx_bytes += (packet->tx_packets - 1) * packet->header_len; 1698 1699 return 0; 1700 } 1701 1702 static bool xgbe_is_vxlan(struct sk_buff *skb) 1703 { 1704 if (!skb->encapsulation) 1705 return false; 1706 1707 if (skb->ip_summed != CHECKSUM_PARTIAL) 1708 return false; 1709 1710 switch (skb->protocol) { 1711 case htons(ETH_P_IP): 1712 if (ip_hdr(skb)->protocol != IPPROTO_UDP) 1713 return false; 1714 break; 1715 1716 case htons(ETH_P_IPV6): 1717 if (ipv6_hdr(skb)->nexthdr != IPPROTO_UDP) 1718 return false; 1719 break; 1720 1721 default: 1722 return false; 1723 } 1724 1725 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1726 skb->inner_protocol != htons(ETH_P_TEB) || 1727 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 1728 sizeof(struct udphdr) + sizeof(struct vxlanhdr))) 1729 return false; 1730 1731 return true; 1732 } 1733 1734 static int xgbe_is_tso(struct sk_buff *skb) 1735 { 1736 if (skb->ip_summed != CHECKSUM_PARTIAL) 1737 return 0; 1738 1739 if (!skb_is_gso(skb)) 1740 return 0; 1741 1742 DBGPR(" TSO packet to be processed\n"); 1743 1744 return 1; 1745 } 1746 1747 static void xgbe_packet_info(struct xgbe_prv_data *pdata, 1748 struct xgbe_ring *ring, struct sk_buff *skb, 1749 struct xgbe_packet_data *packet) 1750 { 1751 skb_frag_t *frag; 1752 unsigned int context_desc; 1753 unsigned int len; 1754 unsigned int i; 1755 1756 packet->skb = skb; 1757 1758 context_desc = 0; 1759 packet->rdesc_count = 0; 1760 1761 packet->tx_packets = 1; 1762 packet->tx_bytes = skb->len; 1763 1764 if (xgbe_is_tso(skb)) { 1765 /* TSO requires an extra descriptor if mss is different */ 1766 if (skb_shinfo(skb)->gso_size != ring->tx.cur_mss) { 1767 context_desc = 1; 1768 packet->rdesc_count++; 1769 } 1770 1771 /* TSO requires an extra descriptor for TSO header */ 1772 packet->rdesc_count++; 1773 1774 XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1775 TSO_ENABLE, 1); 1776 XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1777 CSUM_ENABLE, 1); 1778 } else if (skb->ip_summed == CHECKSUM_PARTIAL) 1779 XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1780 CSUM_ENABLE, 1); 1781 1782 if (xgbe_is_vxlan(skb)) 1783 XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1784 VXLAN, 1); 1785 1786 if (skb_vlan_tag_present(skb)) { 1787 /* VLAN requires an extra descriptor if tag is different */ 1788 if (skb_vlan_tag_get(skb) != ring->tx.cur_vlan_ctag) 1789 /* We can share with the TSO context descriptor */ 1790 if (!context_desc) { 1791 context_desc = 1; 1792 packet->rdesc_count++; 1793 } 1794 1795 XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1796 VLAN_CTAG, 1); 1797 } 1798 1799 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1800 (pdata->tstamp_config.tx_type == HWTSTAMP_TX_ON)) 1801 XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1802 PTP, 1); 1803 1804 for (len = skb_headlen(skb); len;) { 1805 packet->rdesc_count++; 1806 len -= min_t(unsigned int, len, XGBE_TX_MAX_BUF_SIZE); 1807 } 1808 1809 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1810 frag = &skb_shinfo(skb)->frags[i]; 1811 for (len = skb_frag_size(frag); len; ) { 1812 packet->rdesc_count++; 1813 len -= min_t(unsigned int, len, XGBE_TX_MAX_BUF_SIZE); 1814 } 1815 } 1816 } 1817 1818 static int xgbe_open(struct net_device *netdev) 1819 { 1820 struct xgbe_prv_data *pdata = netdev_priv(netdev); 1821 int ret; 1822 1823 /* Create the various names based on netdev name */ 1824 snprintf(pdata->an_name, sizeof(pdata->an_name) - 1, "%s-pcs", 1825 netdev_name(netdev)); 1826 1827 snprintf(pdata->ecc_name, sizeof(pdata->ecc_name) - 1, "%s-ecc", 1828 netdev_name(netdev)); 1829 1830 snprintf(pdata->i2c_name, sizeof(pdata->i2c_name) - 1, "%s-i2c", 1831 netdev_name(netdev)); 1832 1833 /* Create workqueues */ 1834 pdata->dev_workqueue = 1835 create_singlethread_workqueue(netdev_name(netdev)); 1836 if (!pdata->dev_workqueue) { 1837 netdev_err(netdev, "device workqueue creation failed\n"); 1838 return -ENOMEM; 1839 } 1840 1841 pdata->an_workqueue = 1842 create_singlethread_workqueue(pdata->an_name); 1843 if (!pdata->an_workqueue) { 1844 netdev_err(netdev, "phy workqueue creation failed\n"); 1845 ret = -ENOMEM; 1846 goto err_dev_wq; 1847 } 1848 1849 /* Reset the phy settings */ 1850 ret = xgbe_phy_reset(pdata); 1851 if (ret) 1852 goto err_an_wq; 1853 1854 /* Enable the clocks */ 1855 ret = clk_prepare_enable(pdata->sysclk); 1856 if (ret) { 1857 netdev_alert(netdev, "dma clk_prepare_enable failed\n"); 1858 goto err_an_wq; 1859 } 1860 1861 ret = clk_prepare_enable(pdata->ptpclk); 1862 if (ret) { 1863 netdev_alert(netdev, "ptp clk_prepare_enable failed\n"); 1864 goto err_sysclk; 1865 } 1866 1867 INIT_WORK(&pdata->service_work, xgbe_service); 1868 INIT_WORK(&pdata->restart_work, xgbe_restart); 1869 INIT_WORK(&pdata->stopdev_work, xgbe_stopdev); 1870 INIT_WORK(&pdata->tx_tstamp_work, xgbe_tx_tstamp); 1871 1872 ret = xgbe_alloc_memory(pdata); 1873 if (ret) 1874 goto err_ptpclk; 1875 1876 ret = xgbe_start(pdata); 1877 if (ret) 1878 goto err_mem; 1879 1880 clear_bit(XGBE_DOWN, &pdata->dev_state); 1881 1882 return 0; 1883 1884 err_mem: 1885 xgbe_free_memory(pdata); 1886 1887 err_ptpclk: 1888 clk_disable_unprepare(pdata->ptpclk); 1889 1890 err_sysclk: 1891 clk_disable_unprepare(pdata->sysclk); 1892 1893 err_an_wq: 1894 destroy_workqueue(pdata->an_workqueue); 1895 1896 err_dev_wq: 1897 destroy_workqueue(pdata->dev_workqueue); 1898 1899 return ret; 1900 } 1901 1902 static int xgbe_close(struct net_device *netdev) 1903 { 1904 struct xgbe_prv_data *pdata = netdev_priv(netdev); 1905 1906 /* Stop the device */ 1907 xgbe_stop(pdata); 1908 1909 xgbe_free_memory(pdata); 1910 1911 /* Disable the clocks */ 1912 clk_disable_unprepare(pdata->ptpclk); 1913 clk_disable_unprepare(pdata->sysclk); 1914 1915 flush_workqueue(pdata->an_workqueue); 1916 destroy_workqueue(pdata->an_workqueue); 1917 1918 flush_workqueue(pdata->dev_workqueue); 1919 destroy_workqueue(pdata->dev_workqueue); 1920 1921 set_bit(XGBE_DOWN, &pdata->dev_state); 1922 1923 return 0; 1924 } 1925 1926 static netdev_tx_t xgbe_xmit(struct sk_buff *skb, struct net_device *netdev) 1927 { 1928 struct xgbe_prv_data *pdata = netdev_priv(netdev); 1929 struct xgbe_hw_if *hw_if = &pdata->hw_if; 1930 struct xgbe_desc_if *desc_if = &pdata->desc_if; 1931 struct xgbe_channel *channel; 1932 struct xgbe_ring *ring; 1933 struct xgbe_packet_data *packet; 1934 struct netdev_queue *txq; 1935 netdev_tx_t ret; 1936 1937 DBGPR("-->xgbe_xmit: skb->len = %d\n", skb->len); 1938 1939 channel = pdata->channel[skb->queue_mapping]; 1940 txq = netdev_get_tx_queue(netdev, channel->queue_index); 1941 ring = channel->tx_ring; 1942 packet = &ring->packet_data; 1943 1944 ret = NETDEV_TX_OK; 1945 1946 if (skb->len == 0) { 1947 netif_err(pdata, tx_err, netdev, 1948 "empty skb received from stack\n"); 1949 dev_kfree_skb_any(skb); 1950 goto tx_netdev_return; 1951 } 1952 1953 /* Calculate preliminary packet info */ 1954 memset(packet, 0, sizeof(*packet)); 1955 xgbe_packet_info(pdata, ring, skb, packet); 1956 1957 /* Check that there are enough descriptors available */ 1958 ret = xgbe_maybe_stop_tx_queue(channel, ring, packet->rdesc_count); 1959 if (ret) 1960 goto tx_netdev_return; 1961 1962 ret = xgbe_prep_tso(skb, packet); 1963 if (ret) { 1964 netif_err(pdata, tx_err, netdev, 1965 "error processing TSO packet\n"); 1966 dev_kfree_skb_any(skb); 1967 goto tx_netdev_return; 1968 } 1969 xgbe_prep_vlan(skb, packet); 1970 1971 if (!desc_if->map_tx_skb(channel, skb)) { 1972 dev_kfree_skb_any(skb); 1973 goto tx_netdev_return; 1974 } 1975 1976 xgbe_prep_tx_tstamp(pdata, skb, packet); 1977 1978 /* Report on the actual number of bytes (to be) sent */ 1979 netdev_tx_sent_queue(txq, packet->tx_bytes); 1980 1981 /* Configure required descriptor fields for transmission */ 1982 hw_if->dev_xmit(channel); 1983 1984 if (netif_msg_pktdata(pdata)) 1985 xgbe_print_pkt(netdev, skb, true); 1986 1987 /* Stop the queue in advance if there may not be enough descriptors */ 1988 xgbe_maybe_stop_tx_queue(channel, ring, XGBE_TX_MAX_DESCS); 1989 1990 ret = NETDEV_TX_OK; 1991 1992 tx_netdev_return: 1993 return ret; 1994 } 1995 1996 static void xgbe_set_rx_mode(struct net_device *netdev) 1997 { 1998 struct xgbe_prv_data *pdata = netdev_priv(netdev); 1999 struct xgbe_hw_if *hw_if = &pdata->hw_if; 2000 2001 DBGPR("-->xgbe_set_rx_mode\n"); 2002 2003 hw_if->config_rx_mode(pdata); 2004 2005 DBGPR("<--xgbe_set_rx_mode\n"); 2006 } 2007 2008 static int xgbe_set_mac_address(struct net_device *netdev, void *addr) 2009 { 2010 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2011 struct xgbe_hw_if *hw_if = &pdata->hw_if; 2012 struct sockaddr *saddr = addr; 2013 2014 DBGPR("-->xgbe_set_mac_address\n"); 2015 2016 if (!is_valid_ether_addr(saddr->sa_data)) 2017 return -EADDRNOTAVAIL; 2018 2019 memcpy(netdev->dev_addr, saddr->sa_data, netdev->addr_len); 2020 2021 hw_if->set_mac_address(pdata, netdev->dev_addr); 2022 2023 DBGPR("<--xgbe_set_mac_address\n"); 2024 2025 return 0; 2026 } 2027 2028 static int xgbe_ioctl(struct net_device *netdev, struct ifreq *ifreq, int cmd) 2029 { 2030 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2031 int ret; 2032 2033 switch (cmd) { 2034 case SIOCGHWTSTAMP: 2035 ret = xgbe_get_hwtstamp_settings(pdata, ifreq); 2036 break; 2037 2038 case SIOCSHWTSTAMP: 2039 ret = xgbe_set_hwtstamp_settings(pdata, ifreq); 2040 break; 2041 2042 default: 2043 ret = -EOPNOTSUPP; 2044 } 2045 2046 return ret; 2047 } 2048 2049 static int xgbe_change_mtu(struct net_device *netdev, int mtu) 2050 { 2051 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2052 int ret; 2053 2054 DBGPR("-->xgbe_change_mtu\n"); 2055 2056 ret = xgbe_calc_rx_buf_size(netdev, mtu); 2057 if (ret < 0) 2058 return ret; 2059 2060 pdata->rx_buf_size = ret; 2061 netdev->mtu = mtu; 2062 2063 xgbe_restart_dev(pdata); 2064 2065 DBGPR("<--xgbe_change_mtu\n"); 2066 2067 return 0; 2068 } 2069 2070 static void xgbe_tx_timeout(struct net_device *netdev, unsigned int txqueue) 2071 { 2072 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2073 2074 netdev_warn(netdev, "tx timeout, device restarting\n"); 2075 schedule_work(&pdata->restart_work); 2076 } 2077 2078 static void xgbe_get_stats64(struct net_device *netdev, 2079 struct rtnl_link_stats64 *s) 2080 { 2081 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2082 struct xgbe_mmc_stats *pstats = &pdata->mmc_stats; 2083 2084 DBGPR("-->%s\n", __func__); 2085 2086 pdata->hw_if.read_mmc_stats(pdata); 2087 2088 s->rx_packets = pstats->rxframecount_gb; 2089 s->rx_bytes = pstats->rxoctetcount_gb; 2090 s->rx_errors = pstats->rxframecount_gb - 2091 pstats->rxbroadcastframes_g - 2092 pstats->rxmulticastframes_g - 2093 pstats->rxunicastframes_g; 2094 s->multicast = pstats->rxmulticastframes_g; 2095 s->rx_length_errors = pstats->rxlengtherror; 2096 s->rx_crc_errors = pstats->rxcrcerror; 2097 s->rx_fifo_errors = pstats->rxfifooverflow; 2098 2099 s->tx_packets = pstats->txframecount_gb; 2100 s->tx_bytes = pstats->txoctetcount_gb; 2101 s->tx_errors = pstats->txframecount_gb - pstats->txframecount_g; 2102 s->tx_dropped = netdev->stats.tx_dropped; 2103 2104 DBGPR("<--%s\n", __func__); 2105 } 2106 2107 static int xgbe_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, 2108 u16 vid) 2109 { 2110 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2111 struct xgbe_hw_if *hw_if = &pdata->hw_if; 2112 2113 DBGPR("-->%s\n", __func__); 2114 2115 set_bit(vid, pdata->active_vlans); 2116 hw_if->update_vlan_hash_table(pdata); 2117 2118 DBGPR("<--%s\n", __func__); 2119 2120 return 0; 2121 } 2122 2123 static int xgbe_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, 2124 u16 vid) 2125 { 2126 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2127 struct xgbe_hw_if *hw_if = &pdata->hw_if; 2128 2129 DBGPR("-->%s\n", __func__); 2130 2131 clear_bit(vid, pdata->active_vlans); 2132 hw_if->update_vlan_hash_table(pdata); 2133 2134 DBGPR("<--%s\n", __func__); 2135 2136 return 0; 2137 } 2138 2139 #ifdef CONFIG_NET_POLL_CONTROLLER 2140 static void xgbe_poll_controller(struct net_device *netdev) 2141 { 2142 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2143 struct xgbe_channel *channel; 2144 unsigned int i; 2145 2146 DBGPR("-->xgbe_poll_controller\n"); 2147 2148 if (pdata->per_channel_irq) { 2149 for (i = 0; i < pdata->channel_count; i++) { 2150 channel = pdata->channel[i]; 2151 xgbe_dma_isr(channel->dma_irq, channel); 2152 } 2153 } else { 2154 disable_irq(pdata->dev_irq); 2155 xgbe_isr(pdata->dev_irq, pdata); 2156 enable_irq(pdata->dev_irq); 2157 } 2158 2159 DBGPR("<--xgbe_poll_controller\n"); 2160 } 2161 #endif /* End CONFIG_NET_POLL_CONTROLLER */ 2162 2163 static int xgbe_setup_tc(struct net_device *netdev, enum tc_setup_type type, 2164 void *type_data) 2165 { 2166 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2167 struct tc_mqprio_qopt *mqprio = type_data; 2168 u8 tc; 2169 2170 if (type != TC_SETUP_QDISC_MQPRIO) 2171 return -EOPNOTSUPP; 2172 2173 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 2174 tc = mqprio->num_tc; 2175 2176 if (tc > pdata->hw_feat.tc_cnt) 2177 return -EINVAL; 2178 2179 pdata->num_tcs = tc; 2180 pdata->hw_if.config_tc(pdata); 2181 2182 return 0; 2183 } 2184 2185 static netdev_features_t xgbe_fix_features(struct net_device *netdev, 2186 netdev_features_t features) 2187 { 2188 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2189 netdev_features_t vxlan_base; 2190 2191 vxlan_base = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RX_UDP_TUNNEL_PORT; 2192 2193 if (!pdata->hw_feat.vxn) 2194 return features; 2195 2196 /* VXLAN CSUM requires VXLAN base */ 2197 if ((features & NETIF_F_GSO_UDP_TUNNEL_CSUM) && 2198 !(features & NETIF_F_GSO_UDP_TUNNEL)) { 2199 netdev_notice(netdev, 2200 "forcing tx udp tunnel support\n"); 2201 features |= NETIF_F_GSO_UDP_TUNNEL; 2202 } 2203 2204 /* Can't do one without doing the other */ 2205 if ((features & vxlan_base) != vxlan_base) { 2206 netdev_notice(netdev, 2207 "forcing both tx and rx udp tunnel support\n"); 2208 features |= vxlan_base; 2209 } 2210 2211 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2212 if (!(features & NETIF_F_GSO_UDP_TUNNEL_CSUM)) { 2213 netdev_notice(netdev, 2214 "forcing tx udp tunnel checksumming on\n"); 2215 features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 2216 } 2217 } else { 2218 if (features & NETIF_F_GSO_UDP_TUNNEL_CSUM) { 2219 netdev_notice(netdev, 2220 "forcing tx udp tunnel checksumming off\n"); 2221 features &= ~NETIF_F_GSO_UDP_TUNNEL_CSUM; 2222 } 2223 } 2224 2225 return features; 2226 } 2227 2228 static int xgbe_set_features(struct net_device *netdev, 2229 netdev_features_t features) 2230 { 2231 struct xgbe_prv_data *pdata = netdev_priv(netdev); 2232 struct xgbe_hw_if *hw_if = &pdata->hw_if; 2233 netdev_features_t rxhash, rxcsum, rxvlan, rxvlan_filter; 2234 int ret = 0; 2235 2236 rxhash = pdata->netdev_features & NETIF_F_RXHASH; 2237 rxcsum = pdata->netdev_features & NETIF_F_RXCSUM; 2238 rxvlan = pdata->netdev_features & NETIF_F_HW_VLAN_CTAG_RX; 2239 rxvlan_filter = pdata->netdev_features & NETIF_F_HW_VLAN_CTAG_FILTER; 2240 2241 if ((features & NETIF_F_RXHASH) && !rxhash) 2242 ret = hw_if->enable_rss(pdata); 2243 else if (!(features & NETIF_F_RXHASH) && rxhash) 2244 ret = hw_if->disable_rss(pdata); 2245 if (ret) 2246 return ret; 2247 2248 if ((features & NETIF_F_RXCSUM) && !rxcsum) 2249 hw_if->enable_rx_csum(pdata); 2250 else if (!(features & NETIF_F_RXCSUM) && rxcsum) 2251 hw_if->disable_rx_csum(pdata); 2252 2253 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && !rxvlan) 2254 hw_if->enable_rx_vlan_stripping(pdata); 2255 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && rxvlan) 2256 hw_if->disable_rx_vlan_stripping(pdata); 2257 2258 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && !rxvlan_filter) 2259 hw_if->enable_rx_vlan_filtering(pdata); 2260 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && rxvlan_filter) 2261 hw_if->disable_rx_vlan_filtering(pdata); 2262 2263 pdata->netdev_features = features; 2264 2265 DBGPR("<--xgbe_set_features\n"); 2266 2267 return 0; 2268 } 2269 2270 static netdev_features_t xgbe_features_check(struct sk_buff *skb, 2271 struct net_device *netdev, 2272 netdev_features_t features) 2273 { 2274 features = vlan_features_check(skb, features); 2275 features = vxlan_features_check(skb, features); 2276 2277 return features; 2278 } 2279 2280 static const struct net_device_ops xgbe_netdev_ops = { 2281 .ndo_open = xgbe_open, 2282 .ndo_stop = xgbe_close, 2283 .ndo_start_xmit = xgbe_xmit, 2284 .ndo_set_rx_mode = xgbe_set_rx_mode, 2285 .ndo_set_mac_address = xgbe_set_mac_address, 2286 .ndo_validate_addr = eth_validate_addr, 2287 .ndo_eth_ioctl = xgbe_ioctl, 2288 .ndo_change_mtu = xgbe_change_mtu, 2289 .ndo_tx_timeout = xgbe_tx_timeout, 2290 .ndo_get_stats64 = xgbe_get_stats64, 2291 .ndo_vlan_rx_add_vid = xgbe_vlan_rx_add_vid, 2292 .ndo_vlan_rx_kill_vid = xgbe_vlan_rx_kill_vid, 2293 #ifdef CONFIG_NET_POLL_CONTROLLER 2294 .ndo_poll_controller = xgbe_poll_controller, 2295 #endif 2296 .ndo_setup_tc = xgbe_setup_tc, 2297 .ndo_fix_features = xgbe_fix_features, 2298 .ndo_set_features = xgbe_set_features, 2299 .ndo_features_check = xgbe_features_check, 2300 }; 2301 2302 const struct net_device_ops *xgbe_get_netdev_ops(void) 2303 { 2304 return &xgbe_netdev_ops; 2305 } 2306 2307 static void xgbe_rx_refresh(struct xgbe_channel *channel) 2308 { 2309 struct xgbe_prv_data *pdata = channel->pdata; 2310 struct xgbe_hw_if *hw_if = &pdata->hw_if; 2311 struct xgbe_desc_if *desc_if = &pdata->desc_if; 2312 struct xgbe_ring *ring = channel->rx_ring; 2313 struct xgbe_ring_data *rdata; 2314 2315 while (ring->dirty != ring->cur) { 2316 rdata = XGBE_GET_DESC_DATA(ring, ring->dirty); 2317 2318 /* Reset rdata values */ 2319 desc_if->unmap_rdata(pdata, rdata); 2320 2321 if (desc_if->map_rx_buffer(pdata, ring, rdata)) 2322 break; 2323 2324 hw_if->rx_desc_reset(pdata, rdata, ring->dirty); 2325 2326 ring->dirty++; 2327 } 2328 2329 /* Make sure everything is written before the register write */ 2330 wmb(); 2331 2332 /* Update the Rx Tail Pointer Register with address of 2333 * the last cleaned entry */ 2334 rdata = XGBE_GET_DESC_DATA(ring, ring->dirty - 1); 2335 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO, 2336 lower_32_bits(rdata->rdesc_dma)); 2337 } 2338 2339 static struct sk_buff *xgbe_create_skb(struct xgbe_prv_data *pdata, 2340 struct napi_struct *napi, 2341 struct xgbe_ring_data *rdata, 2342 unsigned int len) 2343 { 2344 struct sk_buff *skb; 2345 u8 *packet; 2346 2347 skb = napi_alloc_skb(napi, rdata->rx.hdr.dma_len); 2348 if (!skb) 2349 return NULL; 2350 2351 /* Pull in the header buffer which may contain just the header 2352 * or the header plus data 2353 */ 2354 dma_sync_single_range_for_cpu(pdata->dev, rdata->rx.hdr.dma_base, 2355 rdata->rx.hdr.dma_off, 2356 rdata->rx.hdr.dma_len, DMA_FROM_DEVICE); 2357 2358 packet = page_address(rdata->rx.hdr.pa.pages) + 2359 rdata->rx.hdr.pa.pages_offset; 2360 skb_copy_to_linear_data(skb, packet, len); 2361 skb_put(skb, len); 2362 2363 return skb; 2364 } 2365 2366 static unsigned int xgbe_rx_buf1_len(struct xgbe_ring_data *rdata, 2367 struct xgbe_packet_data *packet) 2368 { 2369 /* Always zero if not the first descriptor */ 2370 if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, FIRST)) 2371 return 0; 2372 2373 /* First descriptor with split header, return header length */ 2374 if (rdata->rx.hdr_len) 2375 return rdata->rx.hdr_len; 2376 2377 /* First descriptor but not the last descriptor and no split header, 2378 * so the full buffer was used 2379 */ 2380 if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, LAST)) 2381 return rdata->rx.hdr.dma_len; 2382 2383 /* First descriptor and last descriptor and no split header, so 2384 * calculate how much of the buffer was used 2385 */ 2386 return min_t(unsigned int, rdata->rx.hdr.dma_len, rdata->rx.len); 2387 } 2388 2389 static unsigned int xgbe_rx_buf2_len(struct xgbe_ring_data *rdata, 2390 struct xgbe_packet_data *packet, 2391 unsigned int len) 2392 { 2393 /* Always the full buffer if not the last descriptor */ 2394 if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, LAST)) 2395 return rdata->rx.buf.dma_len; 2396 2397 /* Last descriptor so calculate how much of the buffer was used 2398 * for the last bit of data 2399 */ 2400 return rdata->rx.len - len; 2401 } 2402 2403 static int xgbe_tx_poll(struct xgbe_channel *channel) 2404 { 2405 struct xgbe_prv_data *pdata = channel->pdata; 2406 struct xgbe_hw_if *hw_if = &pdata->hw_if; 2407 struct xgbe_desc_if *desc_if = &pdata->desc_if; 2408 struct xgbe_ring *ring = channel->tx_ring; 2409 struct xgbe_ring_data *rdata; 2410 struct xgbe_ring_desc *rdesc; 2411 struct net_device *netdev = pdata->netdev; 2412 struct netdev_queue *txq; 2413 int processed = 0; 2414 unsigned int tx_packets = 0, tx_bytes = 0; 2415 unsigned int cur; 2416 2417 DBGPR("-->xgbe_tx_poll\n"); 2418 2419 /* Nothing to do if there isn't a Tx ring for this channel */ 2420 if (!ring) 2421 return 0; 2422 2423 cur = ring->cur; 2424 2425 /* Be sure we get ring->cur before accessing descriptor data */ 2426 smp_rmb(); 2427 2428 txq = netdev_get_tx_queue(netdev, channel->queue_index); 2429 2430 while ((processed < XGBE_TX_DESC_MAX_PROC) && 2431 (ring->dirty != cur)) { 2432 rdata = XGBE_GET_DESC_DATA(ring, ring->dirty); 2433 rdesc = rdata->rdesc; 2434 2435 if (!hw_if->tx_complete(rdesc)) 2436 break; 2437 2438 /* Make sure descriptor fields are read after reading the OWN 2439 * bit */ 2440 dma_rmb(); 2441 2442 if (netif_msg_tx_done(pdata)) 2443 xgbe_dump_tx_desc(pdata, ring, ring->dirty, 1, 0); 2444 2445 if (hw_if->is_last_desc(rdesc)) { 2446 tx_packets += rdata->tx.packets; 2447 tx_bytes += rdata->tx.bytes; 2448 } 2449 2450 /* Free the SKB and reset the descriptor for re-use */ 2451 desc_if->unmap_rdata(pdata, rdata); 2452 hw_if->tx_desc_reset(rdata); 2453 2454 processed++; 2455 ring->dirty++; 2456 } 2457 2458 if (!processed) 2459 return 0; 2460 2461 netdev_tx_completed_queue(txq, tx_packets, tx_bytes); 2462 2463 if ((ring->tx.queue_stopped == 1) && 2464 (xgbe_tx_avail_desc(ring) > XGBE_TX_DESC_MIN_FREE)) { 2465 ring->tx.queue_stopped = 0; 2466 netif_tx_wake_queue(txq); 2467 } 2468 2469 DBGPR("<--xgbe_tx_poll: processed=%d\n", processed); 2470 2471 return processed; 2472 } 2473 2474 static int xgbe_rx_poll(struct xgbe_channel *channel, int budget) 2475 { 2476 struct xgbe_prv_data *pdata = channel->pdata; 2477 struct xgbe_hw_if *hw_if = &pdata->hw_if; 2478 struct xgbe_ring *ring = channel->rx_ring; 2479 struct xgbe_ring_data *rdata; 2480 struct xgbe_packet_data *packet; 2481 struct net_device *netdev = pdata->netdev; 2482 struct napi_struct *napi; 2483 struct sk_buff *skb; 2484 struct skb_shared_hwtstamps *hwtstamps; 2485 unsigned int last, error, context_next, context; 2486 unsigned int len, buf1_len, buf2_len, max_len; 2487 unsigned int received = 0; 2488 int packet_count = 0; 2489 2490 DBGPR("-->xgbe_rx_poll: budget=%d\n", budget); 2491 2492 /* Nothing to do if there isn't a Rx ring for this channel */ 2493 if (!ring) 2494 return 0; 2495 2496 last = 0; 2497 context_next = 0; 2498 2499 napi = (pdata->per_channel_irq) ? &channel->napi : &pdata->napi; 2500 2501 rdata = XGBE_GET_DESC_DATA(ring, ring->cur); 2502 packet = &ring->packet_data; 2503 while (packet_count < budget) { 2504 DBGPR(" cur = %d\n", ring->cur); 2505 2506 /* First time in loop see if we need to restore state */ 2507 if (!received && rdata->state_saved) { 2508 skb = rdata->state.skb; 2509 error = rdata->state.error; 2510 len = rdata->state.len; 2511 } else { 2512 memset(packet, 0, sizeof(*packet)); 2513 skb = NULL; 2514 error = 0; 2515 len = 0; 2516 } 2517 2518 read_again: 2519 rdata = XGBE_GET_DESC_DATA(ring, ring->cur); 2520 2521 if (xgbe_rx_dirty_desc(ring) > (XGBE_RX_DESC_CNT >> 3)) 2522 xgbe_rx_refresh(channel); 2523 2524 if (hw_if->dev_read(channel)) 2525 break; 2526 2527 received++; 2528 ring->cur++; 2529 2530 last = XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 2531 LAST); 2532 context_next = XGMAC_GET_BITS(packet->attributes, 2533 RX_PACKET_ATTRIBUTES, 2534 CONTEXT_NEXT); 2535 context = XGMAC_GET_BITS(packet->attributes, 2536 RX_PACKET_ATTRIBUTES, 2537 CONTEXT); 2538 2539 /* Earlier error, just drain the remaining data */ 2540 if ((!last || context_next) && error) 2541 goto read_again; 2542 2543 if (error || packet->errors) { 2544 if (packet->errors) 2545 netif_err(pdata, rx_err, netdev, 2546 "error in received packet\n"); 2547 dev_kfree_skb(skb); 2548 goto next_packet; 2549 } 2550 2551 if (!context) { 2552 /* Get the data length in the descriptor buffers */ 2553 buf1_len = xgbe_rx_buf1_len(rdata, packet); 2554 len += buf1_len; 2555 buf2_len = xgbe_rx_buf2_len(rdata, packet, len); 2556 len += buf2_len; 2557 2558 if (!skb) { 2559 skb = xgbe_create_skb(pdata, napi, rdata, 2560 buf1_len); 2561 if (!skb) { 2562 error = 1; 2563 goto skip_data; 2564 } 2565 } 2566 2567 if (buf2_len) { 2568 dma_sync_single_range_for_cpu(pdata->dev, 2569 rdata->rx.buf.dma_base, 2570 rdata->rx.buf.dma_off, 2571 rdata->rx.buf.dma_len, 2572 DMA_FROM_DEVICE); 2573 2574 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 2575 rdata->rx.buf.pa.pages, 2576 rdata->rx.buf.pa.pages_offset, 2577 buf2_len, 2578 rdata->rx.buf.dma_len); 2579 rdata->rx.buf.pa.pages = NULL; 2580 } 2581 } 2582 2583 skip_data: 2584 if (!last || context_next) 2585 goto read_again; 2586 2587 if (!skb) 2588 goto next_packet; 2589 2590 /* Be sure we don't exceed the configured MTU */ 2591 max_len = netdev->mtu + ETH_HLEN; 2592 if (!(netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 2593 (skb->protocol == htons(ETH_P_8021Q))) 2594 max_len += VLAN_HLEN; 2595 2596 if (skb->len > max_len) { 2597 netif_err(pdata, rx_err, netdev, 2598 "packet length exceeds configured MTU\n"); 2599 dev_kfree_skb(skb); 2600 goto next_packet; 2601 } 2602 2603 if (netif_msg_pktdata(pdata)) 2604 xgbe_print_pkt(netdev, skb, false); 2605 2606 skb_checksum_none_assert(skb); 2607 if (XGMAC_GET_BITS(packet->attributes, 2608 RX_PACKET_ATTRIBUTES, CSUM_DONE)) 2609 skb->ip_summed = CHECKSUM_UNNECESSARY; 2610 2611 if (XGMAC_GET_BITS(packet->attributes, 2612 RX_PACKET_ATTRIBUTES, TNP)) { 2613 skb->encapsulation = 1; 2614 2615 if (XGMAC_GET_BITS(packet->attributes, 2616 RX_PACKET_ATTRIBUTES, TNPCSUM_DONE)) 2617 skb->csum_level = 1; 2618 } 2619 2620 if (XGMAC_GET_BITS(packet->attributes, 2621 RX_PACKET_ATTRIBUTES, VLAN_CTAG)) 2622 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2623 packet->vlan_ctag); 2624 2625 if (XGMAC_GET_BITS(packet->attributes, 2626 RX_PACKET_ATTRIBUTES, RX_TSTAMP)) { 2627 u64 nsec; 2628 2629 nsec = timecounter_cyc2time(&pdata->tstamp_tc, 2630 packet->rx_tstamp); 2631 hwtstamps = skb_hwtstamps(skb); 2632 hwtstamps->hwtstamp = ns_to_ktime(nsec); 2633 } 2634 2635 if (XGMAC_GET_BITS(packet->attributes, 2636 RX_PACKET_ATTRIBUTES, RSS_HASH)) 2637 skb_set_hash(skb, packet->rss_hash, 2638 packet->rss_hash_type); 2639 2640 skb->dev = netdev; 2641 skb->protocol = eth_type_trans(skb, netdev); 2642 skb_record_rx_queue(skb, channel->queue_index); 2643 2644 napi_gro_receive(napi, skb); 2645 2646 next_packet: 2647 packet_count++; 2648 } 2649 2650 /* Check if we need to save state before leaving */ 2651 if (received && (!last || context_next)) { 2652 rdata = XGBE_GET_DESC_DATA(ring, ring->cur); 2653 rdata->state_saved = 1; 2654 rdata->state.skb = skb; 2655 rdata->state.len = len; 2656 rdata->state.error = error; 2657 } 2658 2659 DBGPR("<--xgbe_rx_poll: packet_count = %d\n", packet_count); 2660 2661 return packet_count; 2662 } 2663 2664 static int xgbe_one_poll(struct napi_struct *napi, int budget) 2665 { 2666 struct xgbe_channel *channel = container_of(napi, struct xgbe_channel, 2667 napi); 2668 struct xgbe_prv_data *pdata = channel->pdata; 2669 int processed = 0; 2670 2671 DBGPR("-->xgbe_one_poll: budget=%d\n", budget); 2672 2673 /* Cleanup Tx ring first */ 2674 xgbe_tx_poll(channel); 2675 2676 /* Process Rx ring next */ 2677 processed = xgbe_rx_poll(channel, budget); 2678 2679 /* If we processed everything, we are done */ 2680 if ((processed < budget) && napi_complete_done(napi, processed)) { 2681 /* Enable Tx and Rx interrupts */ 2682 if (pdata->channel_irq_mode) 2683 xgbe_enable_rx_tx_int(pdata, channel); 2684 else 2685 enable_irq(channel->dma_irq); 2686 } 2687 2688 DBGPR("<--xgbe_one_poll: received = %d\n", processed); 2689 2690 return processed; 2691 } 2692 2693 static int xgbe_all_poll(struct napi_struct *napi, int budget) 2694 { 2695 struct xgbe_prv_data *pdata = container_of(napi, struct xgbe_prv_data, 2696 napi); 2697 struct xgbe_channel *channel; 2698 int ring_budget; 2699 int processed, last_processed; 2700 unsigned int i; 2701 2702 DBGPR("-->xgbe_all_poll: budget=%d\n", budget); 2703 2704 processed = 0; 2705 ring_budget = budget / pdata->rx_ring_count; 2706 do { 2707 last_processed = processed; 2708 2709 for (i = 0; i < pdata->channel_count; i++) { 2710 channel = pdata->channel[i]; 2711 2712 /* Cleanup Tx ring first */ 2713 xgbe_tx_poll(channel); 2714 2715 /* Process Rx ring next */ 2716 if (ring_budget > (budget - processed)) 2717 ring_budget = budget - processed; 2718 processed += xgbe_rx_poll(channel, ring_budget); 2719 } 2720 } while ((processed < budget) && (processed != last_processed)); 2721 2722 /* If we processed everything, we are done */ 2723 if ((processed < budget) && napi_complete_done(napi, processed)) { 2724 /* Enable Tx and Rx interrupts */ 2725 xgbe_enable_rx_tx_ints(pdata); 2726 } 2727 2728 DBGPR("<--xgbe_all_poll: received = %d\n", processed); 2729 2730 return processed; 2731 } 2732 2733 void xgbe_dump_tx_desc(struct xgbe_prv_data *pdata, struct xgbe_ring *ring, 2734 unsigned int idx, unsigned int count, unsigned int flag) 2735 { 2736 struct xgbe_ring_data *rdata; 2737 struct xgbe_ring_desc *rdesc; 2738 2739 while (count--) { 2740 rdata = XGBE_GET_DESC_DATA(ring, idx); 2741 rdesc = rdata->rdesc; 2742 netdev_dbg(pdata->netdev, 2743 "TX_NORMAL_DESC[%d %s] = %08x:%08x:%08x:%08x\n", idx, 2744 (flag == 1) ? "QUEUED FOR TX" : "TX BY DEVICE", 2745 le32_to_cpu(rdesc->desc0), 2746 le32_to_cpu(rdesc->desc1), 2747 le32_to_cpu(rdesc->desc2), 2748 le32_to_cpu(rdesc->desc3)); 2749 idx++; 2750 } 2751 } 2752 2753 void xgbe_dump_rx_desc(struct xgbe_prv_data *pdata, struct xgbe_ring *ring, 2754 unsigned int idx) 2755 { 2756 struct xgbe_ring_data *rdata; 2757 struct xgbe_ring_desc *rdesc; 2758 2759 rdata = XGBE_GET_DESC_DATA(ring, idx); 2760 rdesc = rdata->rdesc; 2761 netdev_dbg(pdata->netdev, 2762 "RX_NORMAL_DESC[%d RX BY DEVICE] = %08x:%08x:%08x:%08x\n", 2763 idx, le32_to_cpu(rdesc->desc0), le32_to_cpu(rdesc->desc1), 2764 le32_to_cpu(rdesc->desc2), le32_to_cpu(rdesc->desc3)); 2765 } 2766 2767 void xgbe_print_pkt(struct net_device *netdev, struct sk_buff *skb, bool tx_rx) 2768 { 2769 struct ethhdr *eth = (struct ethhdr *)skb->data; 2770 unsigned char buffer[128]; 2771 unsigned int i; 2772 2773 netdev_dbg(netdev, "\n************** SKB dump ****************\n"); 2774 2775 netdev_dbg(netdev, "%s packet of %d bytes\n", 2776 (tx_rx ? "TX" : "RX"), skb->len); 2777 2778 netdev_dbg(netdev, "Dst MAC addr: %pM\n", eth->h_dest); 2779 netdev_dbg(netdev, "Src MAC addr: %pM\n", eth->h_source); 2780 netdev_dbg(netdev, "Protocol: %#06hx\n", ntohs(eth->h_proto)); 2781 2782 for (i = 0; i < skb->len; i += 32) { 2783 unsigned int len = min(skb->len - i, 32U); 2784 2785 hex_dump_to_buffer(&skb->data[i], len, 32, 1, 2786 buffer, sizeof(buffer), false); 2787 netdev_dbg(netdev, " %#06x: %s\n", i, buffer); 2788 } 2789 2790 netdev_dbg(netdev, "\n************** SKB dump ****************\n"); 2791 } 2792