1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * This file is available to you under your choice of the following two
5  * licenses:
6  *
7  * License 1: GPLv2
8  *
9  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
60  * All rights reserved.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions are met:
64  *     * Redistributions of source code must retain the above copyright
65  *       notice, this list of conditions and the following disclaimer.
66  *     * Redistributions in binary form must reproduce the above copyright
67  *       notice, this list of conditions and the following disclaimer in the
68  *       documentation and/or other materials provided with the distribution.
69  *     * Neither the name of Advanced Micro Devices, Inc. nor the
70  *       names of its contributors may be used to endorse or promote products
71  *       derived from this software without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83  *
84  * This file incorporates work covered by the following copyright and
85  * permission notice:
86  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89  *     and you.
90  *
91  *     The Software IS NOT an item of Licensed Software or Licensed Product
92  *     under any End User Software License Agreement or Agreement for Licensed
93  *     Product with Synopsys or any supplement thereto.  Permission is hereby
94  *     granted, free of charge, to any person obtaining a copy of this software
95  *     annotated with this license and the Software, to deal in the Software
96  *     without restriction, including without limitation the rights to use,
97  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98  *     of the Software, and to permit persons to whom the Software is furnished
99  *     to do so, subject to the following conditions:
100  *
101  *     The above copyright notice and this permission notice shall be included
102  *     in all copies or substantial portions of the Software.
103  *
104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114  *     THE POSSIBILITY OF SUCH DAMAGE.
115  */
116 
117 #include <linux/phy.h>
118 #include <linux/mdio.h>
119 #include <linux/clk.h>
120 #include <linux/bitrev.h>
121 #include <linux/crc32.h>
122 
123 #include "xgbe.h"
124 #include "xgbe-common.h"
125 
126 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
127 {
128 	return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
129 }
130 
131 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
132 				      unsigned int usec)
133 {
134 	unsigned long rate;
135 	unsigned int ret;
136 
137 	DBGPR("-->xgbe_usec_to_riwt\n");
138 
139 	rate = pdata->sysclk_rate;
140 
141 	/*
142 	 * Convert the input usec value to the watchdog timer value. Each
143 	 * watchdog timer value is equivalent to 256 clock cycles.
144 	 * Calculate the required value as:
145 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
146 	 */
147 	ret = (usec * (rate / 1000000)) / 256;
148 
149 	DBGPR("<--xgbe_usec_to_riwt\n");
150 
151 	return ret;
152 }
153 
154 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
155 				      unsigned int riwt)
156 {
157 	unsigned long rate;
158 	unsigned int ret;
159 
160 	DBGPR("-->xgbe_riwt_to_usec\n");
161 
162 	rate = pdata->sysclk_rate;
163 
164 	/*
165 	 * Convert the input watchdog timer value to the usec value. Each
166 	 * watchdog timer value is equivalent to 256 clock cycles.
167 	 * Calculate the required value as:
168 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
169 	 */
170 	ret = (riwt * 256) / (rate / 1000000);
171 
172 	DBGPR("<--xgbe_riwt_to_usec\n");
173 
174 	return ret;
175 }
176 
177 static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
178 {
179 	unsigned int pblx8, pbl;
180 	unsigned int i;
181 
182 	pblx8 = DMA_PBL_X8_DISABLE;
183 	pbl = pdata->pbl;
184 
185 	if (pdata->pbl > 32) {
186 		pblx8 = DMA_PBL_X8_ENABLE;
187 		pbl >>= 3;
188 	}
189 
190 	for (i = 0; i < pdata->channel_count; i++) {
191 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
192 				       pblx8);
193 
194 		if (pdata->channel[i]->tx_ring)
195 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
196 					       PBL, pbl);
197 
198 		if (pdata->channel[i]->rx_ring)
199 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
200 					       PBL, pbl);
201 	}
202 
203 	return 0;
204 }
205 
206 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
207 {
208 	unsigned int i;
209 
210 	for (i = 0; i < pdata->channel_count; i++) {
211 		if (!pdata->channel[i]->tx_ring)
212 			break;
213 
214 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
215 				       pdata->tx_osp_mode);
216 	}
217 
218 	return 0;
219 }
220 
221 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
222 {
223 	unsigned int i;
224 
225 	for (i = 0; i < pdata->rx_q_count; i++)
226 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
227 
228 	return 0;
229 }
230 
231 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
232 {
233 	unsigned int i;
234 
235 	for (i = 0; i < pdata->tx_q_count; i++)
236 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
237 
238 	return 0;
239 }
240 
241 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
242 				    unsigned int val)
243 {
244 	unsigned int i;
245 
246 	for (i = 0; i < pdata->rx_q_count; i++)
247 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
248 
249 	return 0;
250 }
251 
252 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
253 				    unsigned int val)
254 {
255 	unsigned int i;
256 
257 	for (i = 0; i < pdata->tx_q_count; i++)
258 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
259 
260 	return 0;
261 }
262 
263 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
264 {
265 	unsigned int i;
266 
267 	for (i = 0; i < pdata->channel_count; i++) {
268 		if (!pdata->channel[i]->rx_ring)
269 			break;
270 
271 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
272 				       pdata->rx_riwt);
273 	}
274 
275 	return 0;
276 }
277 
278 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
279 {
280 	return 0;
281 }
282 
283 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
284 {
285 	unsigned int i;
286 
287 	for (i = 0; i < pdata->channel_count; i++) {
288 		if (!pdata->channel[i]->rx_ring)
289 			break;
290 
291 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
292 				       pdata->rx_buf_size);
293 	}
294 }
295 
296 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
297 {
298 	unsigned int i;
299 
300 	for (i = 0; i < pdata->channel_count; i++) {
301 		if (!pdata->channel[i]->tx_ring)
302 			break;
303 
304 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
305 	}
306 }
307 
308 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
309 {
310 	unsigned int i;
311 
312 	for (i = 0; i < pdata->channel_count; i++) {
313 		if (!pdata->channel[i]->rx_ring)
314 			break;
315 
316 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
317 	}
318 
319 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
320 }
321 
322 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
323 			      unsigned int index, unsigned int val)
324 {
325 	unsigned int wait;
326 	int ret = 0;
327 
328 	mutex_lock(&pdata->rss_mutex);
329 
330 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
331 		ret = -EBUSY;
332 		goto unlock;
333 	}
334 
335 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
336 
337 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
338 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
339 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
340 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
341 
342 	wait = 1000;
343 	while (wait--) {
344 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
345 			goto unlock;
346 
347 		usleep_range(1000, 1500);
348 	}
349 
350 	ret = -EBUSY;
351 
352 unlock:
353 	mutex_unlock(&pdata->rss_mutex);
354 
355 	return ret;
356 }
357 
358 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
359 {
360 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
361 	unsigned int *key = (unsigned int *)&pdata->rss_key;
362 	int ret;
363 
364 	while (key_regs--) {
365 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
366 					 key_regs, *key++);
367 		if (ret)
368 			return ret;
369 	}
370 
371 	return 0;
372 }
373 
374 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
375 {
376 	unsigned int i;
377 	int ret;
378 
379 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
380 		ret = xgbe_write_rss_reg(pdata,
381 					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
382 					 pdata->rss_table[i]);
383 		if (ret)
384 			return ret;
385 	}
386 
387 	return 0;
388 }
389 
390 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
391 {
392 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
393 
394 	return xgbe_write_rss_hash_key(pdata);
395 }
396 
397 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
398 				     const u32 *table)
399 {
400 	unsigned int i;
401 
402 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
403 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
404 
405 	return xgbe_write_rss_lookup_table(pdata);
406 }
407 
408 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
409 {
410 	int ret;
411 
412 	if (!pdata->hw_feat.rss)
413 		return -EOPNOTSUPP;
414 
415 	/* Program the hash key */
416 	ret = xgbe_write_rss_hash_key(pdata);
417 	if (ret)
418 		return ret;
419 
420 	/* Program the lookup table */
421 	ret = xgbe_write_rss_lookup_table(pdata);
422 	if (ret)
423 		return ret;
424 
425 	/* Set the RSS options */
426 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
427 
428 	/* Enable RSS */
429 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
430 
431 	return 0;
432 }
433 
434 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
435 {
436 	if (!pdata->hw_feat.rss)
437 		return -EOPNOTSUPP;
438 
439 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
440 
441 	return 0;
442 }
443 
444 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
445 {
446 	int ret;
447 
448 	if (!pdata->hw_feat.rss)
449 		return;
450 
451 	if (pdata->netdev->features & NETIF_F_RXHASH)
452 		ret = xgbe_enable_rss(pdata);
453 	else
454 		ret = xgbe_disable_rss(pdata);
455 
456 	if (ret)
457 		netdev_err(pdata->netdev,
458 			   "error configuring RSS, RSS disabled\n");
459 }
460 
461 static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
462 			      unsigned int queue)
463 {
464 	unsigned int prio, tc;
465 
466 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
467 		/* Does this queue handle the priority? */
468 		if (pdata->prio2q_map[prio] != queue)
469 			continue;
470 
471 		/* Get the Traffic Class for this priority */
472 		tc = pdata->ets->prio_tc[prio];
473 
474 		/* Check if PFC is enabled for this traffic class */
475 		if (pdata->pfc->pfc_en & (1 << tc))
476 			return true;
477 	}
478 
479 	return false;
480 }
481 
482 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
483 {
484 	unsigned int max_q_count, q_count;
485 	unsigned int reg, reg_val;
486 	unsigned int i;
487 
488 	/* Clear MTL flow control */
489 	for (i = 0; i < pdata->rx_q_count; i++)
490 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
491 
492 	/* Clear MAC flow control */
493 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
494 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
495 	reg = MAC_Q0TFCR;
496 	for (i = 0; i < q_count; i++) {
497 		reg_val = XGMAC_IOREAD(pdata, reg);
498 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
499 		XGMAC_IOWRITE(pdata, reg, reg_val);
500 
501 		reg += MAC_QTFCR_INC;
502 	}
503 
504 	return 0;
505 }
506 
507 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
508 {
509 	struct ieee_pfc *pfc = pdata->pfc;
510 	struct ieee_ets *ets = pdata->ets;
511 	unsigned int max_q_count, q_count;
512 	unsigned int reg, reg_val;
513 	unsigned int i;
514 
515 	/* Set MTL flow control */
516 	for (i = 0; i < pdata->rx_q_count; i++) {
517 		unsigned int ehfc = 0;
518 
519 		if (pdata->rx_rfd[i]) {
520 			/* Flow control thresholds are established */
521 			if (pfc && ets) {
522 				if (xgbe_is_pfc_queue(pdata, i))
523 					ehfc = 1;
524 			} else {
525 				ehfc = 1;
526 			}
527 		}
528 
529 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
530 
531 		netif_dbg(pdata, drv, pdata->netdev,
532 			  "flow control %s for RXq%u\n",
533 			  ehfc ? "enabled" : "disabled", i);
534 	}
535 
536 	/* Set MAC flow control */
537 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
538 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
539 	reg = MAC_Q0TFCR;
540 	for (i = 0; i < q_count; i++) {
541 		reg_val = XGMAC_IOREAD(pdata, reg);
542 
543 		/* Enable transmit flow control */
544 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
545 		/* Set pause time */
546 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
547 
548 		XGMAC_IOWRITE(pdata, reg, reg_val);
549 
550 		reg += MAC_QTFCR_INC;
551 	}
552 
553 	return 0;
554 }
555 
556 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
557 {
558 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
559 
560 	return 0;
561 }
562 
563 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
564 {
565 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
566 
567 	return 0;
568 }
569 
570 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
571 {
572 	struct ieee_pfc *pfc = pdata->pfc;
573 
574 	if (pdata->tx_pause || (pfc && pfc->pfc_en))
575 		xgbe_enable_tx_flow_control(pdata);
576 	else
577 		xgbe_disable_tx_flow_control(pdata);
578 
579 	return 0;
580 }
581 
582 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
583 {
584 	struct ieee_pfc *pfc = pdata->pfc;
585 
586 	if (pdata->rx_pause || (pfc && pfc->pfc_en))
587 		xgbe_enable_rx_flow_control(pdata);
588 	else
589 		xgbe_disable_rx_flow_control(pdata);
590 
591 	return 0;
592 }
593 
594 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
595 {
596 	struct ieee_pfc *pfc = pdata->pfc;
597 
598 	xgbe_config_tx_flow_control(pdata);
599 	xgbe_config_rx_flow_control(pdata);
600 
601 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
602 			   (pfc && pfc->pfc_en) ? 1 : 0);
603 }
604 
605 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
606 {
607 	struct xgbe_channel *channel;
608 	unsigned int dma_ch_isr, dma_ch_ier;
609 	unsigned int i;
610 
611 	/* Set the interrupt mode if supported */
612 	if (pdata->channel_irq_mode)
613 		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
614 				   pdata->channel_irq_mode);
615 
616 	for (i = 0; i < pdata->channel_count; i++) {
617 		channel = pdata->channel[i];
618 
619 		/* Clear all the interrupts which are set */
620 		dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR);
621 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr);
622 
623 		/* Clear all interrupt enable bits */
624 		dma_ch_ier = 0;
625 
626 		/* Enable following interrupts
627 		 *   NIE  - Normal Interrupt Summary Enable
628 		 *   AIE  - Abnormal Interrupt Summary Enable
629 		 *   FBEE - Fatal Bus Error Enable
630 		 */
631 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, NIE, 1);
632 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, AIE, 1);
633 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
634 
635 		if (channel->tx_ring) {
636 			/* Enable the following Tx interrupts
637 			 *   TIE  - Transmit Interrupt Enable (unless using
638 			 *          per channel interrupts in edge triggered
639 			 *          mode)
640 			 */
641 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
642 				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
643 		}
644 		if (channel->rx_ring) {
645 			/* Enable following Rx interrupts
646 			 *   RBUE - Receive Buffer Unavailable Enable
647 			 *   RIE  - Receive Interrupt Enable (unless using
648 			 *          per channel interrupts in edge triggered
649 			 *          mode)
650 			 */
651 			XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
652 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
653 				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
654 		}
655 
656 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
657 	}
658 }
659 
660 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
661 {
662 	unsigned int mtl_q_isr;
663 	unsigned int q_count, i;
664 
665 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
666 	for (i = 0; i < q_count; i++) {
667 		/* Clear all the interrupts which are set */
668 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
669 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
670 
671 		/* No MTL interrupts to be enabled */
672 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
673 	}
674 }
675 
676 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
677 {
678 	unsigned int mac_ier = 0;
679 
680 	/* Enable Timestamp interrupt */
681 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
682 
683 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
684 
685 	/* Enable all counter interrupts */
686 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
687 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
688 
689 	/* Enable MDIO single command completion interrupt */
690 	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
691 }
692 
693 static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
694 {
695 	unsigned int ecc_isr, ecc_ier = 0;
696 
697 	if (!pdata->vdata->ecc_support)
698 		return;
699 
700 	/* Clear all the interrupts which are set */
701 	ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
702 	XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
703 
704 	/* Enable ECC interrupts */
705 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
706 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
707 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
708 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
709 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
710 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
711 
712 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
713 }
714 
715 static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
716 {
717 	unsigned int ecc_ier;
718 
719 	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
720 
721 	/* Disable ECC DED interrupts */
722 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
723 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
724 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
725 
726 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
727 }
728 
729 static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
730 				 enum xgbe_ecc_sec sec)
731 {
732 	unsigned int ecc_ier;
733 
734 	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
735 
736 	/* Disable ECC SEC interrupt */
737 	switch (sec) {
738 	case XGBE_ECC_SEC_TX:
739 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
740 		break;
741 	case XGBE_ECC_SEC_RX:
742 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
743 		break;
744 	case XGBE_ECC_SEC_DESC:
745 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
746 		break;
747 	}
748 
749 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
750 }
751 
752 static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
753 {
754 	unsigned int ss;
755 
756 	switch (speed) {
757 	case SPEED_1000:
758 		ss = 0x03;
759 		break;
760 	case SPEED_2500:
761 		ss = 0x02;
762 		break;
763 	case SPEED_10000:
764 		ss = 0x00;
765 		break;
766 	default:
767 		return -EINVAL;
768 	}
769 
770 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
771 		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
772 
773 	return 0;
774 }
775 
776 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
777 {
778 	/* Put the VLAN tag in the Rx descriptor */
779 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
780 
781 	/* Don't check the VLAN type */
782 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
783 
784 	/* Check only C-TAG (0x8100) packets */
785 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
786 
787 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
788 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
789 
790 	/* Enable VLAN tag stripping */
791 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
792 
793 	return 0;
794 }
795 
796 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
797 {
798 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
799 
800 	return 0;
801 }
802 
803 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
804 {
805 	/* Enable VLAN filtering */
806 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
807 
808 	/* Enable VLAN Hash Table filtering */
809 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
810 
811 	/* Disable VLAN tag inverse matching */
812 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
813 
814 	/* Only filter on the lower 12-bits of the VLAN tag */
815 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
816 
817 	/* In order for the VLAN Hash Table filtering to be effective,
818 	 * the VLAN tag identifier in the VLAN Tag Register must not
819 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
820 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
821 	 * 1 will always pass filtering.
822 	 */
823 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
824 
825 	return 0;
826 }
827 
828 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
829 {
830 	/* Disable VLAN filtering */
831 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
832 
833 	return 0;
834 }
835 
836 static u32 xgbe_vid_crc32_le(__le16 vid_le)
837 {
838 	u32 poly = 0xedb88320;	/* CRCPOLY_LE */
839 	u32 crc = ~0;
840 	u32 temp = 0;
841 	unsigned char *data = (unsigned char *)&vid_le;
842 	unsigned char data_byte = 0;
843 	int i, bits;
844 
845 	bits = get_bitmask_order(VLAN_VID_MASK);
846 	for (i = 0; i < bits; i++) {
847 		if ((i % 8) == 0)
848 			data_byte = data[i / 8];
849 
850 		temp = ((crc & 1) ^ data_byte) & 1;
851 		crc >>= 1;
852 		data_byte >>= 1;
853 
854 		if (temp)
855 			crc ^= poly;
856 	}
857 
858 	return crc;
859 }
860 
861 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
862 {
863 	u32 crc;
864 	u16 vid;
865 	__le16 vid_le;
866 	u16 vlan_hash_table = 0;
867 
868 	/* Generate the VLAN Hash Table value */
869 	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
870 		/* Get the CRC32 value of the VLAN ID */
871 		vid_le = cpu_to_le16(vid);
872 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
873 
874 		vlan_hash_table |= (1 << crc);
875 	}
876 
877 	/* Set the VLAN Hash Table filtering register */
878 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
879 
880 	return 0;
881 }
882 
883 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
884 				     unsigned int enable)
885 {
886 	unsigned int val = enable ? 1 : 0;
887 
888 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
889 		return 0;
890 
891 	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
892 		  enable ? "entering" : "leaving");
893 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
894 
895 	/* Hardware will still perform VLAN filtering in promiscuous mode */
896 	if (enable) {
897 		xgbe_disable_rx_vlan_filtering(pdata);
898 	} else {
899 		if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
900 			xgbe_enable_rx_vlan_filtering(pdata);
901 	}
902 
903 	return 0;
904 }
905 
906 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
907 				       unsigned int enable)
908 {
909 	unsigned int val = enable ? 1 : 0;
910 
911 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
912 		return 0;
913 
914 	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
915 		  enable ? "entering" : "leaving");
916 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
917 
918 	return 0;
919 }
920 
921 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
922 			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
923 {
924 	unsigned int mac_addr_hi, mac_addr_lo;
925 	u8 *mac_addr;
926 
927 	mac_addr_lo = 0;
928 	mac_addr_hi = 0;
929 
930 	if (ha) {
931 		mac_addr = (u8 *)&mac_addr_lo;
932 		mac_addr[0] = ha->addr[0];
933 		mac_addr[1] = ha->addr[1];
934 		mac_addr[2] = ha->addr[2];
935 		mac_addr[3] = ha->addr[3];
936 		mac_addr = (u8 *)&mac_addr_hi;
937 		mac_addr[0] = ha->addr[4];
938 		mac_addr[1] = ha->addr[5];
939 
940 		netif_dbg(pdata, drv, pdata->netdev,
941 			  "adding mac address %pM at %#x\n",
942 			  ha->addr, *mac_reg);
943 
944 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
945 	}
946 
947 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
948 	*mac_reg += MAC_MACA_INC;
949 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
950 	*mac_reg += MAC_MACA_INC;
951 }
952 
953 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
954 {
955 	struct net_device *netdev = pdata->netdev;
956 	struct netdev_hw_addr *ha;
957 	unsigned int mac_reg;
958 	unsigned int addn_macs;
959 
960 	mac_reg = MAC_MACA1HR;
961 	addn_macs = pdata->hw_feat.addn_mac;
962 
963 	if (netdev_uc_count(netdev) > addn_macs) {
964 		xgbe_set_promiscuous_mode(pdata, 1);
965 	} else {
966 		netdev_for_each_uc_addr(ha, netdev) {
967 			xgbe_set_mac_reg(pdata, ha, &mac_reg);
968 			addn_macs--;
969 		}
970 
971 		if (netdev_mc_count(netdev) > addn_macs) {
972 			xgbe_set_all_multicast_mode(pdata, 1);
973 		} else {
974 			netdev_for_each_mc_addr(ha, netdev) {
975 				xgbe_set_mac_reg(pdata, ha, &mac_reg);
976 				addn_macs--;
977 			}
978 		}
979 	}
980 
981 	/* Clear remaining additional MAC address entries */
982 	while (addn_macs--)
983 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
984 }
985 
986 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
987 {
988 	struct net_device *netdev = pdata->netdev;
989 	struct netdev_hw_addr *ha;
990 	unsigned int hash_reg;
991 	unsigned int hash_table_shift, hash_table_count;
992 	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
993 	u32 crc;
994 	unsigned int i;
995 
996 	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
997 	hash_table_count = pdata->hw_feat.hash_table_size / 32;
998 	memset(hash_table, 0, sizeof(hash_table));
999 
1000 	/* Build the MAC Hash Table register values */
1001 	netdev_for_each_uc_addr(ha, netdev) {
1002 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1003 		crc >>= hash_table_shift;
1004 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1005 	}
1006 
1007 	netdev_for_each_mc_addr(ha, netdev) {
1008 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1009 		crc >>= hash_table_shift;
1010 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1011 	}
1012 
1013 	/* Set the MAC Hash Table registers */
1014 	hash_reg = MAC_HTR0;
1015 	for (i = 0; i < hash_table_count; i++) {
1016 		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1017 		hash_reg += MAC_HTR_INC;
1018 	}
1019 }
1020 
1021 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1022 {
1023 	if (pdata->hw_feat.hash_table_size)
1024 		xgbe_set_mac_hash_table(pdata);
1025 	else
1026 		xgbe_set_mac_addn_addrs(pdata);
1027 
1028 	return 0;
1029 }
1030 
1031 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
1032 {
1033 	unsigned int mac_addr_hi, mac_addr_lo;
1034 
1035 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
1036 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1037 		      (addr[1] <<  8) | (addr[0] <<  0);
1038 
1039 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1040 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1041 
1042 	return 0;
1043 }
1044 
1045 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1046 {
1047 	struct net_device *netdev = pdata->netdev;
1048 	unsigned int pr_mode, am_mode;
1049 
1050 	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1051 	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1052 
1053 	xgbe_set_promiscuous_mode(pdata, pr_mode);
1054 	xgbe_set_all_multicast_mode(pdata, am_mode);
1055 
1056 	xgbe_add_mac_addresses(pdata);
1057 
1058 	return 0;
1059 }
1060 
1061 static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1062 {
1063 	unsigned int reg;
1064 
1065 	if (gpio > 15)
1066 		return -EINVAL;
1067 
1068 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1069 
1070 	reg &= ~(1 << (gpio + 16));
1071 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1072 
1073 	return 0;
1074 }
1075 
1076 static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1077 {
1078 	unsigned int reg;
1079 
1080 	if (gpio > 15)
1081 		return -EINVAL;
1082 
1083 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1084 
1085 	reg |= (1 << (gpio + 16));
1086 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1087 
1088 	return 0;
1089 }
1090 
1091 static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1092 				 int mmd_reg)
1093 {
1094 	unsigned long flags;
1095 	unsigned int mmd_address, index, offset;
1096 	int mmd_data;
1097 
1098 	if (mmd_reg & MII_ADDR_C45)
1099 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1100 	else
1101 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1102 
1103 	/* The PCS registers are accessed using mmio. The underlying
1104 	 * management interface uses indirect addressing to access the MMD
1105 	 * register sets. This requires accessing of the PCS register in two
1106 	 * phases, an address phase and a data phase.
1107 	 *
1108 	 * The mmio interface is based on 16-bit offsets and values. All
1109 	 * register offsets must therefore be adjusted by left shifting the
1110 	 * offset 1 bit and reading 16 bits of data.
1111 	 */
1112 	mmd_address <<= 1;
1113 	index = mmd_address & ~pdata->xpcs_window_mask;
1114 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1115 
1116 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1117 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1118 	mmd_data = XPCS16_IOREAD(pdata, offset);
1119 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1120 
1121 	return mmd_data;
1122 }
1123 
1124 static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1125 				   int mmd_reg, int mmd_data)
1126 {
1127 	unsigned long flags;
1128 	unsigned int mmd_address, index, offset;
1129 
1130 	if (mmd_reg & MII_ADDR_C45)
1131 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1132 	else
1133 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1134 
1135 	/* The PCS registers are accessed using mmio. The underlying
1136 	 * management interface uses indirect addressing to access the MMD
1137 	 * register sets. This requires accessing of the PCS register in two
1138 	 * phases, an address phase and a data phase.
1139 	 *
1140 	 * The mmio interface is based on 16-bit offsets and values. All
1141 	 * register offsets must therefore be adjusted by left shifting the
1142 	 * offset 1 bit and writing 16 bits of data.
1143 	 */
1144 	mmd_address <<= 1;
1145 	index = mmd_address & ~pdata->xpcs_window_mask;
1146 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1147 
1148 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1149 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1150 	XPCS16_IOWRITE(pdata, offset, mmd_data);
1151 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1152 }
1153 
1154 static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1155 				 int mmd_reg)
1156 {
1157 	unsigned long flags;
1158 	unsigned int mmd_address;
1159 	int mmd_data;
1160 
1161 	if (mmd_reg & MII_ADDR_C45)
1162 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1163 	else
1164 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1165 
1166 	/* The PCS registers are accessed using mmio. The underlying APB3
1167 	 * management interface uses indirect addressing to access the MMD
1168 	 * register sets. This requires accessing of the PCS register in two
1169 	 * phases, an address phase and a data phase.
1170 	 *
1171 	 * The mmio interface is based on 32-bit offsets and values. All
1172 	 * register offsets must therefore be adjusted by left shifting the
1173 	 * offset 2 bits and reading 32 bits of data.
1174 	 */
1175 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1176 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1177 	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1178 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1179 
1180 	return mmd_data;
1181 }
1182 
1183 static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1184 				   int mmd_reg, int mmd_data)
1185 {
1186 	unsigned int mmd_address;
1187 	unsigned long flags;
1188 
1189 	if (mmd_reg & MII_ADDR_C45)
1190 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1191 	else
1192 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1193 
1194 	/* The PCS registers are accessed using mmio. The underlying APB3
1195 	 * management interface uses indirect addressing to access the MMD
1196 	 * register sets. This requires accessing of the PCS register in two
1197 	 * phases, an address phase and a data phase.
1198 	 *
1199 	 * The mmio interface is based on 32-bit offsets and values. All
1200 	 * register offsets must therefore be adjusted by left shifting the
1201 	 * offset 2 bits and writing 32 bits of data.
1202 	 */
1203 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1204 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1205 	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1206 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1207 }
1208 
1209 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1210 			      int mmd_reg)
1211 {
1212 	switch (pdata->vdata->xpcs_access) {
1213 	case XGBE_XPCS_ACCESS_V1:
1214 		return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1215 
1216 	case XGBE_XPCS_ACCESS_V2:
1217 	default:
1218 		return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1219 	}
1220 }
1221 
1222 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1223 				int mmd_reg, int mmd_data)
1224 {
1225 	switch (pdata->vdata->xpcs_access) {
1226 	case XGBE_XPCS_ACCESS_V1:
1227 		return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1228 
1229 	case XGBE_XPCS_ACCESS_V2:
1230 	default:
1231 		return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1232 	}
1233 }
1234 
1235 static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1236 				   int reg, u16 val)
1237 {
1238 	unsigned int mdio_sca, mdio_sccd;
1239 
1240 	reinit_completion(&pdata->mdio_complete);
1241 
1242 	mdio_sca = 0;
1243 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, REG, reg);
1244 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, addr);
1245 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1246 
1247 	mdio_sccd = 0;
1248 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1249 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1250 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1251 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1252 
1253 	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1254 		netdev_err(pdata->netdev, "mdio write operation timed out\n");
1255 		return -ETIMEDOUT;
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1262 				  int reg)
1263 {
1264 	unsigned int mdio_sca, mdio_sccd;
1265 
1266 	reinit_completion(&pdata->mdio_complete);
1267 
1268 	mdio_sca = 0;
1269 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, REG, reg);
1270 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, addr);
1271 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1272 
1273 	mdio_sccd = 0;
1274 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1275 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1276 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1277 
1278 	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1279 		netdev_err(pdata->netdev, "mdio read operation timed out\n");
1280 		return -ETIMEDOUT;
1281 	}
1282 
1283 	return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1284 }
1285 
1286 static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1287 				 enum xgbe_mdio_mode mode)
1288 {
1289 	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1290 
1291 	switch (mode) {
1292 	case XGBE_MDIO_MODE_CL22:
1293 		if (port > XGMAC_MAX_C22_PORT)
1294 			return -EINVAL;
1295 		reg_val |= (1 << port);
1296 		break;
1297 	case XGBE_MDIO_MODE_CL45:
1298 		break;
1299 	default:
1300 		return -EINVAL;
1301 	}
1302 
1303 	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1304 
1305 	return 0;
1306 }
1307 
1308 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1309 {
1310 	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1311 }
1312 
1313 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1314 {
1315 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1316 
1317 	return 0;
1318 }
1319 
1320 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1321 {
1322 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1323 
1324 	return 0;
1325 }
1326 
1327 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1328 {
1329 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1330 
1331 	/* Reset the Tx descriptor
1332 	 *   Set buffer 1 (lo) address to zero
1333 	 *   Set buffer 1 (hi) address to zero
1334 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1335 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1336 	 */
1337 	rdesc->desc0 = 0;
1338 	rdesc->desc1 = 0;
1339 	rdesc->desc2 = 0;
1340 	rdesc->desc3 = 0;
1341 
1342 	/* Make sure ownership is written to the descriptor */
1343 	dma_wmb();
1344 }
1345 
1346 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1347 {
1348 	struct xgbe_ring *ring = channel->tx_ring;
1349 	struct xgbe_ring_data *rdata;
1350 	int i;
1351 	int start_index = ring->cur;
1352 
1353 	DBGPR("-->tx_desc_init\n");
1354 
1355 	/* Initialze all descriptors */
1356 	for (i = 0; i < ring->rdesc_count; i++) {
1357 		rdata = XGBE_GET_DESC_DATA(ring, i);
1358 
1359 		/* Initialize Tx descriptor */
1360 		xgbe_tx_desc_reset(rdata);
1361 	}
1362 
1363 	/* Update the total number of Tx descriptors */
1364 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1365 
1366 	/* Update the starting address of descriptor ring */
1367 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1368 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1369 			  upper_32_bits(rdata->rdesc_dma));
1370 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1371 			  lower_32_bits(rdata->rdesc_dma));
1372 
1373 	DBGPR("<--tx_desc_init\n");
1374 }
1375 
1376 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1377 			       struct xgbe_ring_data *rdata, unsigned int index)
1378 {
1379 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1380 	unsigned int rx_usecs = pdata->rx_usecs;
1381 	unsigned int rx_frames = pdata->rx_frames;
1382 	unsigned int inte;
1383 	dma_addr_t hdr_dma, buf_dma;
1384 
1385 	if (!rx_usecs && !rx_frames) {
1386 		/* No coalescing, interrupt for every descriptor */
1387 		inte = 1;
1388 	} else {
1389 		/* Set interrupt based on Rx frame coalescing setting */
1390 		if (rx_frames && !((index + 1) % rx_frames))
1391 			inte = 1;
1392 		else
1393 			inte = 0;
1394 	}
1395 
1396 	/* Reset the Rx descriptor
1397 	 *   Set buffer 1 (lo) address to header dma address (lo)
1398 	 *   Set buffer 1 (hi) address to header dma address (hi)
1399 	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1400 	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1401 	 *     set control bits OWN and INTE
1402 	 */
1403 	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1404 	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1405 	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1406 	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1407 	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1408 	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1409 
1410 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1411 
1412 	/* Since the Rx DMA engine is likely running, make sure everything
1413 	 * is written to the descriptor(s) before setting the OWN bit
1414 	 * for the descriptor
1415 	 */
1416 	dma_wmb();
1417 
1418 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1419 
1420 	/* Make sure ownership is written to the descriptor */
1421 	dma_wmb();
1422 }
1423 
1424 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1425 {
1426 	struct xgbe_prv_data *pdata = channel->pdata;
1427 	struct xgbe_ring *ring = channel->rx_ring;
1428 	struct xgbe_ring_data *rdata;
1429 	unsigned int start_index = ring->cur;
1430 	unsigned int i;
1431 
1432 	DBGPR("-->rx_desc_init\n");
1433 
1434 	/* Initialize all descriptors */
1435 	for (i = 0; i < ring->rdesc_count; i++) {
1436 		rdata = XGBE_GET_DESC_DATA(ring, i);
1437 
1438 		/* Initialize Rx descriptor */
1439 		xgbe_rx_desc_reset(pdata, rdata, i);
1440 	}
1441 
1442 	/* Update the total number of Rx descriptors */
1443 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1444 
1445 	/* Update the starting address of descriptor ring */
1446 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1447 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1448 			  upper_32_bits(rdata->rdesc_dma));
1449 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1450 			  lower_32_bits(rdata->rdesc_dma));
1451 
1452 	/* Update the Rx Descriptor Tail Pointer */
1453 	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1454 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1455 			  lower_32_bits(rdata->rdesc_dma));
1456 
1457 	DBGPR("<--rx_desc_init\n");
1458 }
1459 
1460 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1461 				      unsigned int addend)
1462 {
1463 	unsigned int count = 10000;
1464 
1465 	/* Set the addend register value and tell the device */
1466 	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1467 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1468 
1469 	/* Wait for addend update to complete */
1470 	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1471 		udelay(5);
1472 
1473 	if (!count)
1474 		netdev_err(pdata->netdev,
1475 			   "timed out updating timestamp addend register\n");
1476 }
1477 
1478 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1479 				 unsigned int nsec)
1480 {
1481 	unsigned int count = 10000;
1482 
1483 	/* Set the time values and tell the device */
1484 	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1485 	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1486 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1487 
1488 	/* Wait for time update to complete */
1489 	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1490 		udelay(5);
1491 
1492 	if (!count)
1493 		netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1494 }
1495 
1496 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1497 {
1498 	u64 nsec;
1499 
1500 	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1501 	nsec *= NSEC_PER_SEC;
1502 	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1503 
1504 	return nsec;
1505 }
1506 
1507 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1508 {
1509 	unsigned int tx_snr, tx_ssr;
1510 	u64 nsec;
1511 
1512 	if (pdata->vdata->tx_tstamp_workaround) {
1513 		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1514 		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1515 	} else {
1516 		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1517 		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1518 	}
1519 
1520 	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1521 		return 0;
1522 
1523 	nsec = tx_ssr;
1524 	nsec *= NSEC_PER_SEC;
1525 	nsec += tx_snr;
1526 
1527 	return nsec;
1528 }
1529 
1530 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1531 			       struct xgbe_ring_desc *rdesc)
1532 {
1533 	u64 nsec;
1534 
1535 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1536 	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1537 		nsec = le32_to_cpu(rdesc->desc1);
1538 		nsec <<= 32;
1539 		nsec |= le32_to_cpu(rdesc->desc0);
1540 		if (nsec != 0xffffffffffffffffULL) {
1541 			packet->rx_tstamp = nsec;
1542 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1543 				       RX_TSTAMP, 1);
1544 		}
1545 	}
1546 }
1547 
1548 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1549 			      unsigned int mac_tscr)
1550 {
1551 	/* Set one nano-second accuracy */
1552 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1553 
1554 	/* Set fine timestamp update */
1555 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1556 
1557 	/* Overwrite earlier timestamps */
1558 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1559 
1560 	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1561 
1562 	/* Exit if timestamping is not enabled */
1563 	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1564 		return 0;
1565 
1566 	/* Initialize time registers */
1567 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1568 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1569 	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1570 	xgbe_set_tstamp_time(pdata, 0, 0);
1571 
1572 	/* Initialize the timecounter */
1573 	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1574 			 ktime_to_ns(ktime_get_real()));
1575 
1576 	return 0;
1577 }
1578 
1579 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1580 			       struct xgbe_ring *ring)
1581 {
1582 	struct xgbe_prv_data *pdata = channel->pdata;
1583 	struct xgbe_ring_data *rdata;
1584 
1585 	/* Make sure everything is written before the register write */
1586 	wmb();
1587 
1588 	/* Issue a poll command to Tx DMA by writing address
1589 	 * of next immediate free descriptor */
1590 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1591 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1592 			  lower_32_bits(rdata->rdesc_dma));
1593 
1594 	/* Start the Tx timer */
1595 	if (pdata->tx_usecs && !channel->tx_timer_active) {
1596 		channel->tx_timer_active = 1;
1597 		mod_timer(&channel->tx_timer,
1598 			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1599 	}
1600 
1601 	ring->tx.xmit_more = 0;
1602 }
1603 
1604 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1605 {
1606 	struct xgbe_prv_data *pdata = channel->pdata;
1607 	struct xgbe_ring *ring = channel->tx_ring;
1608 	struct xgbe_ring_data *rdata;
1609 	struct xgbe_ring_desc *rdesc;
1610 	struct xgbe_packet_data *packet = &ring->packet_data;
1611 	unsigned int csum, tso, vlan;
1612 	unsigned int tso_context, vlan_context;
1613 	unsigned int tx_set_ic;
1614 	int start_index = ring->cur;
1615 	int cur_index = ring->cur;
1616 	int i;
1617 
1618 	DBGPR("-->xgbe_dev_xmit\n");
1619 
1620 	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1621 			      CSUM_ENABLE);
1622 	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1623 			     TSO_ENABLE);
1624 	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1625 			      VLAN_CTAG);
1626 
1627 	if (tso && (packet->mss != ring->tx.cur_mss))
1628 		tso_context = 1;
1629 	else
1630 		tso_context = 0;
1631 
1632 	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1633 		vlan_context = 1;
1634 	else
1635 		vlan_context = 0;
1636 
1637 	/* Determine if an interrupt should be generated for this Tx:
1638 	 *   Interrupt:
1639 	 *     - Tx frame count exceeds the frame count setting
1640 	 *     - Addition of Tx frame count to the frame count since the
1641 	 *       last interrupt was set exceeds the frame count setting
1642 	 *   No interrupt:
1643 	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1644 	 *     - Addition of Tx frame count to the frame count since the
1645 	 *       last interrupt was set does not exceed the frame count setting
1646 	 */
1647 	ring->coalesce_count += packet->tx_packets;
1648 	if (!pdata->tx_frames)
1649 		tx_set_ic = 0;
1650 	else if (packet->tx_packets > pdata->tx_frames)
1651 		tx_set_ic = 1;
1652 	else if ((ring->coalesce_count % pdata->tx_frames) <
1653 		 packet->tx_packets)
1654 		tx_set_ic = 1;
1655 	else
1656 		tx_set_ic = 0;
1657 
1658 	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1659 	rdesc = rdata->rdesc;
1660 
1661 	/* Create a context descriptor if this is a TSO packet */
1662 	if (tso_context || vlan_context) {
1663 		if (tso_context) {
1664 			netif_dbg(pdata, tx_queued, pdata->netdev,
1665 				  "TSO context descriptor, mss=%u\n",
1666 				  packet->mss);
1667 
1668 			/* Set the MSS size */
1669 			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1670 					  MSS, packet->mss);
1671 
1672 			/* Mark it as a CONTEXT descriptor */
1673 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1674 					  CTXT, 1);
1675 
1676 			/* Indicate this descriptor contains the MSS */
1677 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1678 					  TCMSSV, 1);
1679 
1680 			ring->tx.cur_mss = packet->mss;
1681 		}
1682 
1683 		if (vlan_context) {
1684 			netif_dbg(pdata, tx_queued, pdata->netdev,
1685 				  "VLAN context descriptor, ctag=%u\n",
1686 				  packet->vlan_ctag);
1687 
1688 			/* Mark it as a CONTEXT descriptor */
1689 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1690 					  CTXT, 1);
1691 
1692 			/* Set the VLAN tag */
1693 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1694 					  VT, packet->vlan_ctag);
1695 
1696 			/* Indicate this descriptor contains the VLAN tag */
1697 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1698 					  VLTV, 1);
1699 
1700 			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1701 		}
1702 
1703 		cur_index++;
1704 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1705 		rdesc = rdata->rdesc;
1706 	}
1707 
1708 	/* Update buffer address (for TSO this is the header) */
1709 	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1710 	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1711 
1712 	/* Update the buffer length */
1713 	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1714 			  rdata->skb_dma_len);
1715 
1716 	/* VLAN tag insertion check */
1717 	if (vlan)
1718 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1719 				  TX_NORMAL_DESC2_VLAN_INSERT);
1720 
1721 	/* Timestamp enablement check */
1722 	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1723 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1724 
1725 	/* Mark it as First Descriptor */
1726 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1727 
1728 	/* Mark it as a NORMAL descriptor */
1729 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1730 
1731 	/* Set OWN bit if not the first descriptor */
1732 	if (cur_index != start_index)
1733 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1734 
1735 	if (tso) {
1736 		/* Enable TSO */
1737 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1738 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1739 				  packet->tcp_payload_len);
1740 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1741 				  packet->tcp_header_len / 4);
1742 
1743 		pdata->ext_stats.tx_tso_packets++;
1744 	} else {
1745 		/* Enable CRC and Pad Insertion */
1746 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1747 
1748 		/* Enable HW CSUM */
1749 		if (csum)
1750 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1751 					  CIC, 0x3);
1752 
1753 		/* Set the total length to be transmitted */
1754 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1755 				  packet->length);
1756 	}
1757 
1758 	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1759 		cur_index++;
1760 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1761 		rdesc = rdata->rdesc;
1762 
1763 		/* Update buffer address */
1764 		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1765 		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1766 
1767 		/* Update the buffer length */
1768 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1769 				  rdata->skb_dma_len);
1770 
1771 		/* Set OWN bit */
1772 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1773 
1774 		/* Mark it as NORMAL descriptor */
1775 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1776 
1777 		/* Enable HW CSUM */
1778 		if (csum)
1779 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1780 					  CIC, 0x3);
1781 	}
1782 
1783 	/* Set LAST bit for the last descriptor */
1784 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1785 
1786 	/* Set IC bit based on Tx coalescing settings */
1787 	if (tx_set_ic)
1788 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1789 
1790 	/* Save the Tx info to report back during cleanup */
1791 	rdata->tx.packets = packet->tx_packets;
1792 	rdata->tx.bytes = packet->tx_bytes;
1793 
1794 	/* In case the Tx DMA engine is running, make sure everything
1795 	 * is written to the descriptor(s) before setting the OWN bit
1796 	 * for the first descriptor
1797 	 */
1798 	dma_wmb();
1799 
1800 	/* Set OWN bit for the first descriptor */
1801 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1802 	rdesc = rdata->rdesc;
1803 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1804 
1805 	if (netif_msg_tx_queued(pdata))
1806 		xgbe_dump_tx_desc(pdata, ring, start_index,
1807 				  packet->rdesc_count, 1);
1808 
1809 	/* Make sure ownership is written to the descriptor */
1810 	smp_wmb();
1811 
1812 	ring->cur = cur_index + 1;
1813 	if (!packet->skb->xmit_more ||
1814 	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1815 						   channel->queue_index)))
1816 		xgbe_tx_start_xmit(channel, ring);
1817 	else
1818 		ring->tx.xmit_more = 1;
1819 
1820 	DBGPR("  %s: descriptors %u to %u written\n",
1821 	      channel->name, start_index & (ring->rdesc_count - 1),
1822 	      (ring->cur - 1) & (ring->rdesc_count - 1));
1823 
1824 	DBGPR("<--xgbe_dev_xmit\n");
1825 }
1826 
1827 static int xgbe_dev_read(struct xgbe_channel *channel)
1828 {
1829 	struct xgbe_prv_data *pdata = channel->pdata;
1830 	struct xgbe_ring *ring = channel->rx_ring;
1831 	struct xgbe_ring_data *rdata;
1832 	struct xgbe_ring_desc *rdesc;
1833 	struct xgbe_packet_data *packet = &ring->packet_data;
1834 	struct net_device *netdev = pdata->netdev;
1835 	unsigned int err, etlt, l34t;
1836 
1837 	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1838 
1839 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1840 	rdesc = rdata->rdesc;
1841 
1842 	/* Check for data availability */
1843 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1844 		return 1;
1845 
1846 	/* Make sure descriptor fields are read after reading the OWN bit */
1847 	dma_rmb();
1848 
1849 	if (netif_msg_rx_status(pdata))
1850 		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1851 
1852 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1853 		/* Timestamp Context Descriptor */
1854 		xgbe_get_rx_tstamp(packet, rdesc);
1855 
1856 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1857 			       CONTEXT, 1);
1858 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1859 			       CONTEXT_NEXT, 0);
1860 		return 0;
1861 	}
1862 
1863 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1864 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1865 
1866 	/* Indicate if a Context Descriptor is next */
1867 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1868 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1869 			       CONTEXT_NEXT, 1);
1870 
1871 	/* Get the header length */
1872 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1873 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1874 			       FIRST, 1);
1875 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1876 						      RX_NORMAL_DESC2, HL);
1877 		if (rdata->rx.hdr_len)
1878 			pdata->ext_stats.rx_split_header_packets++;
1879 	} else {
1880 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1881 			       FIRST, 0);
1882 	}
1883 
1884 	/* Get the RSS hash */
1885 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1886 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1887 			       RSS_HASH, 1);
1888 
1889 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1890 
1891 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1892 		switch (l34t) {
1893 		case RX_DESC3_L34T_IPV4_TCP:
1894 		case RX_DESC3_L34T_IPV4_UDP:
1895 		case RX_DESC3_L34T_IPV6_TCP:
1896 		case RX_DESC3_L34T_IPV6_UDP:
1897 			packet->rss_hash_type = PKT_HASH_TYPE_L4;
1898 			break;
1899 		default:
1900 			packet->rss_hash_type = PKT_HASH_TYPE_L3;
1901 		}
1902 	}
1903 
1904 	/* Not all the data has been transferred for this packet */
1905 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
1906 		return 0;
1907 
1908 	/* This is the last of the data for this packet */
1909 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1910 		       LAST, 1);
1911 
1912 	/* Get the packet length */
1913 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1914 
1915 	/* Set checksum done indicator as appropriate */
1916 	if (netdev->features & NETIF_F_RXCSUM)
1917 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1918 			       CSUM_DONE, 1);
1919 
1920 	/* Check for errors (only valid in last descriptor) */
1921 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1922 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1923 	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
1924 
1925 	if (!err || !etlt) {
1926 		/* No error if err is 0 or etlt is 0 */
1927 		if ((etlt == 0x09) &&
1928 		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1929 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1930 				       VLAN_CTAG, 1);
1931 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1932 							      RX_NORMAL_DESC0,
1933 							      OVT);
1934 			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
1935 				  packet->vlan_ctag);
1936 		}
1937 	} else {
1938 		if ((etlt == 0x05) || (etlt == 0x06))
1939 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1940 				       CSUM_DONE, 0);
1941 		else
1942 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1943 				       FRAME, 1);
1944 	}
1945 
1946 	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
1947 	      ring->cur & (ring->rdesc_count - 1), ring->cur);
1948 
1949 	return 0;
1950 }
1951 
1952 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1953 {
1954 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1955 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
1956 }
1957 
1958 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1959 {
1960 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1961 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
1962 }
1963 
1964 static int xgbe_enable_int(struct xgbe_channel *channel,
1965 			   enum xgbe_int int_id)
1966 {
1967 	unsigned int dma_ch_ier;
1968 
1969 	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1970 
1971 	switch (int_id) {
1972 	case XGMAC_INT_DMA_CH_SR_TI:
1973 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1974 		break;
1975 	case XGMAC_INT_DMA_CH_SR_TPS:
1976 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 1);
1977 		break;
1978 	case XGMAC_INT_DMA_CH_SR_TBU:
1979 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 1);
1980 		break;
1981 	case XGMAC_INT_DMA_CH_SR_RI:
1982 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1983 		break;
1984 	case XGMAC_INT_DMA_CH_SR_RBU:
1985 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
1986 		break;
1987 	case XGMAC_INT_DMA_CH_SR_RPS:
1988 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 1);
1989 		break;
1990 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1991 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1992 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1993 		break;
1994 	case XGMAC_INT_DMA_CH_SR_FBE:
1995 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
1996 		break;
1997 	case XGMAC_INT_DMA_ALL:
1998 		dma_ch_ier |= channel->saved_ier;
1999 		break;
2000 	default:
2001 		return -1;
2002 	}
2003 
2004 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
2005 
2006 	return 0;
2007 }
2008 
2009 static int xgbe_disable_int(struct xgbe_channel *channel,
2010 			    enum xgbe_int int_id)
2011 {
2012 	unsigned int dma_ch_ier;
2013 
2014 	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
2015 
2016 	switch (int_id) {
2017 	case XGMAC_INT_DMA_CH_SR_TI:
2018 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
2019 		break;
2020 	case XGMAC_INT_DMA_CH_SR_TPS:
2021 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 0);
2022 		break;
2023 	case XGMAC_INT_DMA_CH_SR_TBU:
2024 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 0);
2025 		break;
2026 	case XGMAC_INT_DMA_CH_SR_RI:
2027 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
2028 		break;
2029 	case XGMAC_INT_DMA_CH_SR_RBU:
2030 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 0);
2031 		break;
2032 	case XGMAC_INT_DMA_CH_SR_RPS:
2033 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 0);
2034 		break;
2035 	case XGMAC_INT_DMA_CH_SR_TI_RI:
2036 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
2037 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
2038 		break;
2039 	case XGMAC_INT_DMA_CH_SR_FBE:
2040 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 0);
2041 		break;
2042 	case XGMAC_INT_DMA_ALL:
2043 		channel->saved_ier = dma_ch_ier & XGBE_DMA_INTERRUPT_MASK;
2044 		dma_ch_ier &= ~XGBE_DMA_INTERRUPT_MASK;
2045 		break;
2046 	default:
2047 		return -1;
2048 	}
2049 
2050 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
2051 
2052 	return 0;
2053 }
2054 
2055 static int __xgbe_exit(struct xgbe_prv_data *pdata)
2056 {
2057 	unsigned int count = 2000;
2058 
2059 	DBGPR("-->xgbe_exit\n");
2060 
2061 	/* Issue a software reset */
2062 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2063 	usleep_range(10, 15);
2064 
2065 	/* Poll Until Poll Condition */
2066 	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2067 		usleep_range(500, 600);
2068 
2069 	if (!count)
2070 		return -EBUSY;
2071 
2072 	DBGPR("<--xgbe_exit\n");
2073 
2074 	return 0;
2075 }
2076 
2077 static int xgbe_exit(struct xgbe_prv_data *pdata)
2078 {
2079 	int ret;
2080 
2081 	/* To guard against possible incorrectly generated interrupts,
2082 	 * issue the software reset twice.
2083 	 */
2084 	ret = __xgbe_exit(pdata);
2085 	if (ret)
2086 		return ret;
2087 
2088 	return __xgbe_exit(pdata);
2089 }
2090 
2091 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2092 {
2093 	unsigned int i, count;
2094 
2095 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2096 		return 0;
2097 
2098 	for (i = 0; i < pdata->tx_q_count; i++)
2099 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2100 
2101 	/* Poll Until Poll Condition */
2102 	for (i = 0; i < pdata->tx_q_count; i++) {
2103 		count = 2000;
2104 		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2105 							MTL_Q_TQOMR, FTQ))
2106 			usleep_range(500, 600);
2107 
2108 		if (!count)
2109 			return -EBUSY;
2110 	}
2111 
2112 	return 0;
2113 }
2114 
2115 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2116 {
2117 	unsigned int sbmr;
2118 
2119 	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2120 
2121 	/* Set enhanced addressing mode */
2122 	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2123 
2124 	/* Set the System Bus mode */
2125 	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2126 	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2127 	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2128 	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2129 	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2130 
2131 	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2132 
2133 	/* Set descriptor fetching threshold */
2134 	if (pdata->vdata->tx_desc_prefetch)
2135 		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2136 				   pdata->vdata->tx_desc_prefetch);
2137 
2138 	if (pdata->vdata->rx_desc_prefetch)
2139 		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2140 				   pdata->vdata->rx_desc_prefetch);
2141 }
2142 
2143 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2144 {
2145 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2146 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2147 	if (pdata->awarcr)
2148 		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
2149 }
2150 
2151 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2152 {
2153 	unsigned int i;
2154 
2155 	/* Set Tx to weighted round robin scheduling algorithm */
2156 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2157 
2158 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
2159 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2160 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2161 				       MTL_TSA_ETS);
2162 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2163 	}
2164 
2165 	/* Set Rx to strict priority algorithm */
2166 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2167 }
2168 
2169 static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2170 					      unsigned int queue,
2171 					      unsigned int q_fifo_size)
2172 {
2173 	unsigned int frame_fifo_size;
2174 	unsigned int rfa, rfd;
2175 
2176 	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2177 
2178 	if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2179 		/* PFC is active for this queue */
2180 		rfa = pdata->pfc_rfa;
2181 		rfd = rfa + frame_fifo_size;
2182 		if (rfd > XGMAC_FLOW_CONTROL_MAX)
2183 			rfd = XGMAC_FLOW_CONTROL_MAX;
2184 		if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2185 			rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2186 	} else {
2187 		/* This path deals with just maximum frame sizes which are
2188 		 * limited to a jumbo frame of 9,000 (plus headers, etc.)
2189 		 * so we can never exceed the maximum allowable RFA/RFD
2190 		 * values.
2191 		 */
2192 		if (q_fifo_size <= 2048) {
2193 			/* rx_rfd to zero to signal no flow control */
2194 			pdata->rx_rfa[queue] = 0;
2195 			pdata->rx_rfd[queue] = 0;
2196 			return;
2197 		}
2198 
2199 		if (q_fifo_size <= 4096) {
2200 			/* Between 2048 and 4096 */
2201 			pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
2202 			pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
2203 			return;
2204 		}
2205 
2206 		if (q_fifo_size <= frame_fifo_size) {
2207 			/* Between 4096 and max-frame */
2208 			pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
2209 			pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
2210 			return;
2211 		}
2212 
2213 		if (q_fifo_size <= (frame_fifo_size * 3)) {
2214 			/* Between max-frame and 3 max-frames,
2215 			 * trigger if we get just over a frame of data and
2216 			 * resume when we have just under half a frame left.
2217 			 */
2218 			rfa = q_fifo_size - frame_fifo_size;
2219 			rfd = rfa + (frame_fifo_size / 2);
2220 		} else {
2221 			/* Above 3 max-frames - trigger when just over
2222 			 * 2 frames of space available
2223 			 */
2224 			rfa = frame_fifo_size * 2;
2225 			rfa += XGMAC_FLOW_CONTROL_UNIT;
2226 			rfd = rfa + frame_fifo_size;
2227 		}
2228 	}
2229 
2230 	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2231 	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2232 }
2233 
2234 static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2235 						  unsigned int *fifo)
2236 {
2237 	unsigned int q_fifo_size;
2238 	unsigned int i;
2239 
2240 	for (i = 0; i < pdata->rx_q_count; i++) {
2241 		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2242 
2243 		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2244 	}
2245 }
2246 
2247 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2248 {
2249 	unsigned int i;
2250 
2251 	for (i = 0; i < pdata->rx_q_count; i++) {
2252 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2253 				       pdata->rx_rfa[i]);
2254 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2255 				       pdata->rx_rfd[i]);
2256 	}
2257 }
2258 
2259 static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2260 {
2261 	/* The configured value may not be the actual amount of fifo RAM */
2262 	return min_t(unsigned int, pdata->tx_max_fifo_size,
2263 		     pdata->hw_feat.tx_fifo_size);
2264 }
2265 
2266 static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2267 {
2268 	/* The configured value may not be the actual amount of fifo RAM */
2269 	return min_t(unsigned int, pdata->rx_max_fifo_size,
2270 		     pdata->hw_feat.rx_fifo_size);
2271 }
2272 
2273 static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2274 				      unsigned int queue_count,
2275 				      unsigned int *fifo)
2276 {
2277 	unsigned int q_fifo_size;
2278 	unsigned int p_fifo;
2279 	unsigned int i;
2280 
2281 	q_fifo_size = fifo_size / queue_count;
2282 
2283 	/* Calculate the fifo setting by dividing the queue's fifo size
2284 	 * by the fifo allocation increment (with 0 representing the
2285 	 * base allocation increment so decrement the result by 1).
2286 	 */
2287 	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2288 	if (p_fifo)
2289 		p_fifo--;
2290 
2291 	/* Distribute the fifo equally amongst the queues */
2292 	for (i = 0; i < queue_count; i++)
2293 		fifo[i] = p_fifo;
2294 }
2295 
2296 static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2297 					   unsigned int queue_count,
2298 					   unsigned int *fifo)
2299 {
2300 	unsigned int i;
2301 
2302 	BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2303 
2304 	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2305 		return fifo_size;
2306 
2307 	/* Rx queues 9 and up are for specialized packets,
2308 	 * such as PTP or DCB control packets, etc. and
2309 	 * don't require a large fifo
2310 	 */
2311 	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2312 		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2313 		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2314 	}
2315 
2316 	return fifo_size;
2317 }
2318 
2319 static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2320 {
2321 	unsigned int delay;
2322 
2323 	/* If a delay has been provided, use that */
2324 	if (pdata->pfc->delay)
2325 		return pdata->pfc->delay / 8;
2326 
2327 	/* Allow for two maximum size frames */
2328 	delay = xgbe_get_max_frame(pdata);
2329 	delay += XGMAC_ETH_PREAMBLE;
2330 	delay *= 2;
2331 
2332 	/* Allow for PFC frame */
2333 	delay += XGMAC_PFC_DATA_LEN;
2334 	delay += ETH_HLEN + ETH_FCS_LEN;
2335 	delay += XGMAC_ETH_PREAMBLE;
2336 
2337 	/* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2338 	delay += XGMAC_PFC_DELAYS;
2339 
2340 	return delay;
2341 }
2342 
2343 static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2344 {
2345 	unsigned int count, prio_queues;
2346 	unsigned int i;
2347 
2348 	if (!pdata->pfc->pfc_en)
2349 		return 0;
2350 
2351 	count = 0;
2352 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2353 	for (i = 0; i < prio_queues; i++) {
2354 		if (!xgbe_is_pfc_queue(pdata, i))
2355 			continue;
2356 
2357 		pdata->pfcq[i] = 1;
2358 		count++;
2359 	}
2360 
2361 	return count;
2362 }
2363 
2364 static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2365 				    unsigned int fifo_size,
2366 				    unsigned int *fifo)
2367 {
2368 	unsigned int q_fifo_size, rem_fifo, addn_fifo;
2369 	unsigned int prio_queues;
2370 	unsigned int pfc_count;
2371 	unsigned int i;
2372 
2373 	q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2374 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2375 	pfc_count = xgbe_get_pfc_queues(pdata);
2376 
2377 	if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2378 		/* No traffic classes with PFC enabled or can't do lossless */
2379 		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2380 		return;
2381 	}
2382 
2383 	/* Calculate how much fifo we have to play with */
2384 	rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2385 
2386 	/* Calculate how much more than base fifo PFC needs, which also
2387 	 * becomes the threshold activation point (RFA)
2388 	 */
2389 	pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2390 	pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2391 
2392 	if (pdata->pfc_rfa > q_fifo_size) {
2393 		addn_fifo = pdata->pfc_rfa - q_fifo_size;
2394 		addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2395 	} else {
2396 		addn_fifo = 0;
2397 	}
2398 
2399 	/* Calculate DCB fifo settings:
2400 	 *   - distribute remaining fifo between the VLAN priority
2401 	 *     queues based on traffic class PFC enablement and overall
2402 	 *     priority (0 is lowest priority, so start at highest)
2403 	 */
2404 	i = prio_queues;
2405 	while (i > 0) {
2406 		i--;
2407 
2408 		fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2409 
2410 		if (!pdata->pfcq[i] || !addn_fifo)
2411 			continue;
2412 
2413 		if (addn_fifo > rem_fifo) {
2414 			netdev_warn(pdata->netdev,
2415 				    "RXq%u cannot set needed fifo size\n", i);
2416 			if (!rem_fifo)
2417 				continue;
2418 
2419 			addn_fifo = rem_fifo;
2420 		}
2421 
2422 		fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2423 		rem_fifo -= addn_fifo;
2424 	}
2425 
2426 	if (rem_fifo) {
2427 		unsigned int inc_fifo = rem_fifo / prio_queues;
2428 
2429 		/* Distribute remaining fifo across queues */
2430 		for (i = 0; i < prio_queues; i++)
2431 			fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2432 	}
2433 }
2434 
2435 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2436 {
2437 	unsigned int fifo_size;
2438 	unsigned int fifo[XGBE_MAX_QUEUES];
2439 	unsigned int i;
2440 
2441 	fifo_size = xgbe_get_tx_fifo_size(pdata);
2442 
2443 	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2444 
2445 	for (i = 0; i < pdata->tx_q_count; i++)
2446 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2447 
2448 	netif_info(pdata, drv, pdata->netdev,
2449 		   "%d Tx hardware queues, %d byte fifo per queue\n",
2450 		   pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2451 }
2452 
2453 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2454 {
2455 	unsigned int fifo_size;
2456 	unsigned int fifo[XGBE_MAX_QUEUES];
2457 	unsigned int prio_queues;
2458 	unsigned int i;
2459 
2460 	/* Clear any DCB related fifo/queue information */
2461 	memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2462 	pdata->pfc_rfa = 0;
2463 
2464 	fifo_size = xgbe_get_rx_fifo_size(pdata);
2465 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2466 
2467 	/* Assign a minimum fifo to the non-VLAN priority queues */
2468 	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2469 
2470 	if (pdata->pfc && pdata->ets)
2471 		xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2472 	else
2473 		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2474 
2475 	for (i = 0; i < pdata->rx_q_count; i++)
2476 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2477 
2478 	xgbe_calculate_flow_control_threshold(pdata, fifo);
2479 	xgbe_config_flow_control_threshold(pdata);
2480 
2481 	if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2482 		netif_info(pdata, drv, pdata->netdev,
2483 			   "%u Rx hardware queues\n", pdata->rx_q_count);
2484 		for (i = 0; i < pdata->rx_q_count; i++)
2485 			netif_info(pdata, drv, pdata->netdev,
2486 				   "RxQ%u, %u byte fifo queue\n", i,
2487 				   ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2488 	} else {
2489 		netif_info(pdata, drv, pdata->netdev,
2490 			   "%u Rx hardware queues, %u byte fifo per queue\n",
2491 			   pdata->rx_q_count,
2492 			   ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2493 	}
2494 }
2495 
2496 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2497 {
2498 	unsigned int qptc, qptc_extra, queue;
2499 	unsigned int prio_queues;
2500 	unsigned int ppq, ppq_extra, prio;
2501 	unsigned int mask;
2502 	unsigned int i, j, reg, reg_val;
2503 
2504 	/* Map the MTL Tx Queues to Traffic Classes
2505 	 *   Note: Tx Queues >= Traffic Classes
2506 	 */
2507 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2508 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2509 
2510 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2511 		for (j = 0; j < qptc; j++) {
2512 			netif_dbg(pdata, drv, pdata->netdev,
2513 				  "TXq%u mapped to TC%u\n", queue, i);
2514 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2515 					       Q2TCMAP, i);
2516 			pdata->q2tc_map[queue++] = i;
2517 		}
2518 
2519 		if (i < qptc_extra) {
2520 			netif_dbg(pdata, drv, pdata->netdev,
2521 				  "TXq%u mapped to TC%u\n", queue, i);
2522 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2523 					       Q2TCMAP, i);
2524 			pdata->q2tc_map[queue++] = i;
2525 		}
2526 	}
2527 
2528 	/* Map the 8 VLAN priority values to available MTL Rx queues */
2529 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2530 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2531 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2532 
2533 	reg = MAC_RQC2R;
2534 	reg_val = 0;
2535 	for (i = 0, prio = 0; i < prio_queues;) {
2536 		mask = 0;
2537 		for (j = 0; j < ppq; j++) {
2538 			netif_dbg(pdata, drv, pdata->netdev,
2539 				  "PRIO%u mapped to RXq%u\n", prio, i);
2540 			mask |= (1 << prio);
2541 			pdata->prio2q_map[prio++] = i;
2542 		}
2543 
2544 		if (i < ppq_extra) {
2545 			netif_dbg(pdata, drv, pdata->netdev,
2546 				  "PRIO%u mapped to RXq%u\n", prio, i);
2547 			mask |= (1 << prio);
2548 			pdata->prio2q_map[prio++] = i;
2549 		}
2550 
2551 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2552 
2553 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2554 			continue;
2555 
2556 		XGMAC_IOWRITE(pdata, reg, reg_val);
2557 		reg += MAC_RQC2_INC;
2558 		reg_val = 0;
2559 	}
2560 
2561 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2562 	reg = MTL_RQDCM0R;
2563 	reg_val = 0;
2564 	for (i = 0; i < pdata->rx_q_count;) {
2565 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2566 
2567 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2568 			continue;
2569 
2570 		XGMAC_IOWRITE(pdata, reg, reg_val);
2571 
2572 		reg += MTL_RQDCM_INC;
2573 		reg_val = 0;
2574 	}
2575 }
2576 
2577 static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2578 {
2579 	unsigned int offset, queue, prio;
2580 	u8 i;
2581 
2582 	netdev_reset_tc(pdata->netdev);
2583 	if (!pdata->num_tcs)
2584 		return;
2585 
2586 	netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2587 
2588 	for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2589 		while ((queue < pdata->tx_q_count) &&
2590 		       (pdata->q2tc_map[queue] == i))
2591 			queue++;
2592 
2593 		netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2594 			  i, offset, queue - 1);
2595 		netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2596 		offset = queue;
2597 	}
2598 
2599 	if (!pdata->ets)
2600 		return;
2601 
2602 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2603 		netdev_set_prio_tc_map(pdata->netdev, prio,
2604 				       pdata->ets->prio_tc[prio]);
2605 }
2606 
2607 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2608 {
2609 	struct ieee_ets *ets = pdata->ets;
2610 	unsigned int total_weight, min_weight, weight;
2611 	unsigned int mask, reg, reg_val;
2612 	unsigned int i, prio;
2613 
2614 	if (!ets)
2615 		return;
2616 
2617 	/* Set Tx to deficit weighted round robin scheduling algorithm (when
2618 	 * traffic class is using ETS algorithm)
2619 	 */
2620 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2621 
2622 	/* Set Traffic Class algorithms */
2623 	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2624 	min_weight = total_weight / 100;
2625 	if (!min_weight)
2626 		min_weight = 1;
2627 
2628 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2629 		/* Map the priorities to the traffic class */
2630 		mask = 0;
2631 		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2632 			if (ets->prio_tc[prio] == i)
2633 				mask |= (1 << prio);
2634 		}
2635 		mask &= 0xff;
2636 
2637 		netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2638 			  i, mask);
2639 		reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2640 		reg_val = XGMAC_IOREAD(pdata, reg);
2641 
2642 		reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2643 		reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2644 
2645 		XGMAC_IOWRITE(pdata, reg, reg_val);
2646 
2647 		/* Set the traffic class algorithm */
2648 		switch (ets->tc_tsa[i]) {
2649 		case IEEE_8021QAZ_TSA_STRICT:
2650 			netif_dbg(pdata, drv, pdata->netdev,
2651 				  "TC%u using SP\n", i);
2652 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2653 					       MTL_TSA_SP);
2654 			break;
2655 		case IEEE_8021QAZ_TSA_ETS:
2656 			weight = total_weight * ets->tc_tx_bw[i] / 100;
2657 			weight = clamp(weight, min_weight, total_weight);
2658 
2659 			netif_dbg(pdata, drv, pdata->netdev,
2660 				  "TC%u using DWRR (weight %u)\n", i, weight);
2661 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2662 					       MTL_TSA_ETS);
2663 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2664 					       weight);
2665 			break;
2666 		}
2667 	}
2668 
2669 	xgbe_config_tc(pdata);
2670 }
2671 
2672 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2673 {
2674 	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2675 		/* Just stop the Tx queues while Rx fifo is changed */
2676 		netif_tx_stop_all_queues(pdata->netdev);
2677 
2678 		/* Suspend Rx so that fifo's can be adjusted */
2679 		pdata->hw_if.disable_rx(pdata);
2680 	}
2681 
2682 	xgbe_config_rx_fifo_size(pdata);
2683 	xgbe_config_flow_control(pdata);
2684 
2685 	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2686 		/* Resume Rx */
2687 		pdata->hw_if.enable_rx(pdata);
2688 
2689 		/* Resume Tx queues */
2690 		netif_tx_start_all_queues(pdata->netdev);
2691 	}
2692 }
2693 
2694 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2695 {
2696 	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2697 
2698 	/* Filtering is done using perfect filtering and hash filtering */
2699 	if (pdata->hw_feat.hash_table_size) {
2700 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2701 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2702 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2703 	}
2704 }
2705 
2706 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2707 {
2708 	unsigned int val;
2709 
2710 	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2711 
2712 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2713 }
2714 
2715 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2716 {
2717 	xgbe_set_speed(pdata, pdata->phy_speed);
2718 }
2719 
2720 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2721 {
2722 	if (pdata->netdev->features & NETIF_F_RXCSUM)
2723 		xgbe_enable_rx_csum(pdata);
2724 	else
2725 		xgbe_disable_rx_csum(pdata);
2726 }
2727 
2728 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2729 {
2730 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2731 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2732 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2733 
2734 	/* Set the current VLAN Hash Table register value */
2735 	xgbe_update_vlan_hash_table(pdata);
2736 
2737 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2738 		xgbe_enable_rx_vlan_filtering(pdata);
2739 	else
2740 		xgbe_disable_rx_vlan_filtering(pdata);
2741 
2742 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2743 		xgbe_enable_rx_vlan_stripping(pdata);
2744 	else
2745 		xgbe_disable_rx_vlan_stripping(pdata);
2746 }
2747 
2748 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2749 {
2750 	bool read_hi;
2751 	u64 val;
2752 
2753 	if (pdata->vdata->mmc_64bit) {
2754 		switch (reg_lo) {
2755 		/* These registers are always 32 bit */
2756 		case MMC_RXRUNTERROR:
2757 		case MMC_RXJABBERERROR:
2758 		case MMC_RXUNDERSIZE_G:
2759 		case MMC_RXOVERSIZE_G:
2760 		case MMC_RXWATCHDOGERROR:
2761 			read_hi = false;
2762 			break;
2763 
2764 		default:
2765 			read_hi = true;
2766 		}
2767 	} else {
2768 		switch (reg_lo) {
2769 		/* These registers are always 64 bit */
2770 		case MMC_TXOCTETCOUNT_GB_LO:
2771 		case MMC_TXOCTETCOUNT_G_LO:
2772 		case MMC_RXOCTETCOUNT_GB_LO:
2773 		case MMC_RXOCTETCOUNT_G_LO:
2774 			read_hi = true;
2775 			break;
2776 
2777 		default:
2778 			read_hi = false;
2779 		}
2780 	}
2781 
2782 	val = XGMAC_IOREAD(pdata, reg_lo);
2783 
2784 	if (read_hi)
2785 		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2786 
2787 	return val;
2788 }
2789 
2790 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2791 {
2792 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2793 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2794 
2795 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2796 		stats->txoctetcount_gb +=
2797 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2798 
2799 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2800 		stats->txframecount_gb +=
2801 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2802 
2803 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2804 		stats->txbroadcastframes_g +=
2805 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2806 
2807 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2808 		stats->txmulticastframes_g +=
2809 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2810 
2811 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2812 		stats->tx64octets_gb +=
2813 			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2814 
2815 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2816 		stats->tx65to127octets_gb +=
2817 			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2818 
2819 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2820 		stats->tx128to255octets_gb +=
2821 			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2822 
2823 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2824 		stats->tx256to511octets_gb +=
2825 			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2826 
2827 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2828 		stats->tx512to1023octets_gb +=
2829 			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2830 
2831 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2832 		stats->tx1024tomaxoctets_gb +=
2833 			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2834 
2835 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2836 		stats->txunicastframes_gb +=
2837 			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2838 
2839 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2840 		stats->txmulticastframes_gb +=
2841 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2842 
2843 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2844 		stats->txbroadcastframes_g +=
2845 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2846 
2847 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2848 		stats->txunderflowerror +=
2849 			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2850 
2851 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2852 		stats->txoctetcount_g +=
2853 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2854 
2855 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2856 		stats->txframecount_g +=
2857 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2858 
2859 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2860 		stats->txpauseframes +=
2861 			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2862 
2863 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2864 		stats->txvlanframes_g +=
2865 			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2866 }
2867 
2868 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2869 {
2870 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2871 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2872 
2873 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2874 		stats->rxframecount_gb +=
2875 			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2876 
2877 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2878 		stats->rxoctetcount_gb +=
2879 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2880 
2881 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2882 		stats->rxoctetcount_g +=
2883 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2884 
2885 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2886 		stats->rxbroadcastframes_g +=
2887 			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2888 
2889 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2890 		stats->rxmulticastframes_g +=
2891 			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2892 
2893 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2894 		stats->rxcrcerror +=
2895 			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2896 
2897 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2898 		stats->rxrunterror +=
2899 			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2900 
2901 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2902 		stats->rxjabbererror +=
2903 			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2904 
2905 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2906 		stats->rxundersize_g +=
2907 			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2908 
2909 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2910 		stats->rxoversize_g +=
2911 			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2912 
2913 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2914 		stats->rx64octets_gb +=
2915 			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2916 
2917 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2918 		stats->rx65to127octets_gb +=
2919 			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2920 
2921 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2922 		stats->rx128to255octets_gb +=
2923 			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2924 
2925 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2926 		stats->rx256to511octets_gb +=
2927 			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2928 
2929 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2930 		stats->rx512to1023octets_gb +=
2931 			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2932 
2933 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2934 		stats->rx1024tomaxoctets_gb +=
2935 			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2936 
2937 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2938 		stats->rxunicastframes_g +=
2939 			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2940 
2941 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2942 		stats->rxlengtherror +=
2943 			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2944 
2945 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2946 		stats->rxoutofrangetype +=
2947 			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2948 
2949 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2950 		stats->rxpauseframes +=
2951 			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2952 
2953 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2954 		stats->rxfifooverflow +=
2955 			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2956 
2957 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2958 		stats->rxvlanframes_gb +=
2959 			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2960 
2961 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2962 		stats->rxwatchdogerror +=
2963 			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2964 }
2965 
2966 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2967 {
2968 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2969 
2970 	/* Freeze counters */
2971 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2972 
2973 	stats->txoctetcount_gb +=
2974 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2975 
2976 	stats->txframecount_gb +=
2977 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2978 
2979 	stats->txbroadcastframes_g +=
2980 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2981 
2982 	stats->txmulticastframes_g +=
2983 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2984 
2985 	stats->tx64octets_gb +=
2986 		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2987 
2988 	stats->tx65to127octets_gb +=
2989 		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2990 
2991 	stats->tx128to255octets_gb +=
2992 		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2993 
2994 	stats->tx256to511octets_gb +=
2995 		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2996 
2997 	stats->tx512to1023octets_gb +=
2998 		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2999 
3000 	stats->tx1024tomaxoctets_gb +=
3001 		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3002 
3003 	stats->txunicastframes_gb +=
3004 		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3005 
3006 	stats->txmulticastframes_gb +=
3007 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3008 
3009 	stats->txbroadcastframes_g +=
3010 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3011 
3012 	stats->txunderflowerror +=
3013 		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3014 
3015 	stats->txoctetcount_g +=
3016 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3017 
3018 	stats->txframecount_g +=
3019 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3020 
3021 	stats->txpauseframes +=
3022 		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3023 
3024 	stats->txvlanframes_g +=
3025 		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3026 
3027 	stats->rxframecount_gb +=
3028 		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3029 
3030 	stats->rxoctetcount_gb +=
3031 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3032 
3033 	stats->rxoctetcount_g +=
3034 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3035 
3036 	stats->rxbroadcastframes_g +=
3037 		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3038 
3039 	stats->rxmulticastframes_g +=
3040 		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3041 
3042 	stats->rxcrcerror +=
3043 		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3044 
3045 	stats->rxrunterror +=
3046 		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3047 
3048 	stats->rxjabbererror +=
3049 		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3050 
3051 	stats->rxundersize_g +=
3052 		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3053 
3054 	stats->rxoversize_g +=
3055 		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3056 
3057 	stats->rx64octets_gb +=
3058 		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3059 
3060 	stats->rx65to127octets_gb +=
3061 		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3062 
3063 	stats->rx128to255octets_gb +=
3064 		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3065 
3066 	stats->rx256to511octets_gb +=
3067 		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3068 
3069 	stats->rx512to1023octets_gb +=
3070 		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3071 
3072 	stats->rx1024tomaxoctets_gb +=
3073 		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3074 
3075 	stats->rxunicastframes_g +=
3076 		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3077 
3078 	stats->rxlengtherror +=
3079 		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3080 
3081 	stats->rxoutofrangetype +=
3082 		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3083 
3084 	stats->rxpauseframes +=
3085 		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3086 
3087 	stats->rxfifooverflow +=
3088 		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3089 
3090 	stats->rxvlanframes_gb +=
3091 		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3092 
3093 	stats->rxwatchdogerror +=
3094 		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3095 
3096 	/* Un-freeze counters */
3097 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3098 }
3099 
3100 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3101 {
3102 	/* Set counters to reset on read */
3103 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3104 
3105 	/* Reset the counters */
3106 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3107 }
3108 
3109 static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3110 				     unsigned int queue)
3111 {
3112 	unsigned int tx_status;
3113 	unsigned long tx_timeout;
3114 
3115 	/* The Tx engine cannot be stopped if it is actively processing
3116 	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
3117 	 * wait forever though...
3118 	 */
3119 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3120 	while (time_before(jiffies, tx_timeout)) {
3121 		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3122 		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3123 		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3124 			break;
3125 
3126 		usleep_range(500, 1000);
3127 	}
3128 
3129 	if (!time_before(jiffies, tx_timeout))
3130 		netdev_info(pdata->netdev,
3131 			    "timed out waiting for Tx queue %u to empty\n",
3132 			    queue);
3133 }
3134 
3135 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3136 				 unsigned int queue)
3137 {
3138 	unsigned int tx_dsr, tx_pos, tx_qidx;
3139 	unsigned int tx_status;
3140 	unsigned long tx_timeout;
3141 
3142 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3143 		return xgbe_txq_prepare_tx_stop(pdata, queue);
3144 
3145 	/* Calculate the status register to read and the position within */
3146 	if (queue < DMA_DSRX_FIRST_QUEUE) {
3147 		tx_dsr = DMA_DSR0;
3148 		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3149 	} else {
3150 		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3151 
3152 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3153 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3154 			 DMA_DSRX_TPS_START;
3155 	}
3156 
3157 	/* The Tx engine cannot be stopped if it is actively processing
3158 	 * descriptors. Wait for the Tx engine to enter the stopped or
3159 	 * suspended state.  Don't wait forever though...
3160 	 */
3161 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3162 	while (time_before(jiffies, tx_timeout)) {
3163 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3164 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3165 		if ((tx_status == DMA_TPS_STOPPED) ||
3166 		    (tx_status == DMA_TPS_SUSPENDED))
3167 			break;
3168 
3169 		usleep_range(500, 1000);
3170 	}
3171 
3172 	if (!time_before(jiffies, tx_timeout))
3173 		netdev_info(pdata->netdev,
3174 			    "timed out waiting for Tx DMA channel %u to stop\n",
3175 			    queue);
3176 }
3177 
3178 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3179 {
3180 	unsigned int i;
3181 
3182 	/* Enable each Tx DMA channel */
3183 	for (i = 0; i < pdata->channel_count; i++) {
3184 		if (!pdata->channel[i]->tx_ring)
3185 			break;
3186 
3187 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3188 	}
3189 
3190 	/* Enable each Tx queue */
3191 	for (i = 0; i < pdata->tx_q_count; i++)
3192 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3193 				       MTL_Q_ENABLED);
3194 
3195 	/* Enable MAC Tx */
3196 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3197 }
3198 
3199 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3200 {
3201 	unsigned int i;
3202 
3203 	/* Prepare for Tx DMA channel stop */
3204 	for (i = 0; i < pdata->tx_q_count; i++)
3205 		xgbe_prepare_tx_stop(pdata, i);
3206 
3207 	/* Disable MAC Tx */
3208 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3209 
3210 	/* Disable each Tx queue */
3211 	for (i = 0; i < pdata->tx_q_count; i++)
3212 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3213 
3214 	/* Disable each Tx DMA channel */
3215 	for (i = 0; i < pdata->channel_count; i++) {
3216 		if (!pdata->channel[i]->tx_ring)
3217 			break;
3218 
3219 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3220 	}
3221 }
3222 
3223 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3224 				 unsigned int queue)
3225 {
3226 	unsigned int rx_status;
3227 	unsigned long rx_timeout;
3228 
3229 	/* The Rx engine cannot be stopped if it is actively processing
3230 	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
3231 	 * wait forever though...
3232 	 */
3233 	rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3234 	while (time_before(jiffies, rx_timeout)) {
3235 		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3236 		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3237 		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3238 			break;
3239 
3240 		usleep_range(500, 1000);
3241 	}
3242 
3243 	if (!time_before(jiffies, rx_timeout))
3244 		netdev_info(pdata->netdev,
3245 			    "timed out waiting for Rx queue %u to empty\n",
3246 			    queue);
3247 }
3248 
3249 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3250 {
3251 	unsigned int reg_val, i;
3252 
3253 	/* Enable each Rx DMA channel */
3254 	for (i = 0; i < pdata->channel_count; i++) {
3255 		if (!pdata->channel[i]->rx_ring)
3256 			break;
3257 
3258 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3259 	}
3260 
3261 	/* Enable each Rx queue */
3262 	reg_val = 0;
3263 	for (i = 0; i < pdata->rx_q_count; i++)
3264 		reg_val |= (0x02 << (i << 1));
3265 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3266 
3267 	/* Enable MAC Rx */
3268 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3269 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3270 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3271 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3272 }
3273 
3274 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3275 {
3276 	unsigned int i;
3277 
3278 	/* Disable MAC Rx */
3279 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3280 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3281 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3282 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3283 
3284 	/* Prepare for Rx DMA channel stop */
3285 	for (i = 0; i < pdata->rx_q_count; i++)
3286 		xgbe_prepare_rx_stop(pdata, i);
3287 
3288 	/* Disable each Rx queue */
3289 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3290 
3291 	/* Disable each Rx DMA channel */
3292 	for (i = 0; i < pdata->channel_count; i++) {
3293 		if (!pdata->channel[i]->rx_ring)
3294 			break;
3295 
3296 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3297 	}
3298 }
3299 
3300 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3301 {
3302 	unsigned int i;
3303 
3304 	/* Enable each Tx DMA channel */
3305 	for (i = 0; i < pdata->channel_count; i++) {
3306 		if (!pdata->channel[i]->tx_ring)
3307 			break;
3308 
3309 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3310 	}
3311 
3312 	/* Enable MAC Tx */
3313 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3314 }
3315 
3316 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3317 {
3318 	unsigned int i;
3319 
3320 	/* Prepare for Tx DMA channel stop */
3321 	for (i = 0; i < pdata->tx_q_count; i++)
3322 		xgbe_prepare_tx_stop(pdata, i);
3323 
3324 	/* Disable MAC Tx */
3325 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3326 
3327 	/* Disable each Tx DMA channel */
3328 	for (i = 0; i < pdata->channel_count; i++) {
3329 		if (!pdata->channel[i]->tx_ring)
3330 			break;
3331 
3332 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3333 	}
3334 }
3335 
3336 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3337 {
3338 	unsigned int i;
3339 
3340 	/* Enable each Rx DMA channel */
3341 	for (i = 0; i < pdata->channel_count; i++) {
3342 		if (!pdata->channel[i]->rx_ring)
3343 			break;
3344 
3345 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3346 	}
3347 }
3348 
3349 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3350 {
3351 	unsigned int i;
3352 
3353 	/* Disable each Rx DMA channel */
3354 	for (i = 0; i < pdata->channel_count; i++) {
3355 		if (!pdata->channel[i]->rx_ring)
3356 			break;
3357 
3358 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3359 	}
3360 }
3361 
3362 static int xgbe_init(struct xgbe_prv_data *pdata)
3363 {
3364 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
3365 	int ret;
3366 
3367 	DBGPR("-->xgbe_init\n");
3368 
3369 	/* Flush Tx queues */
3370 	ret = xgbe_flush_tx_queues(pdata);
3371 	if (ret) {
3372 		netdev_err(pdata->netdev, "error flushing TX queues\n");
3373 		return ret;
3374 	}
3375 
3376 	/*
3377 	 * Initialize DMA related features
3378 	 */
3379 	xgbe_config_dma_bus(pdata);
3380 	xgbe_config_dma_cache(pdata);
3381 	xgbe_config_osp_mode(pdata);
3382 	xgbe_config_pbl_val(pdata);
3383 	xgbe_config_rx_coalesce(pdata);
3384 	xgbe_config_tx_coalesce(pdata);
3385 	xgbe_config_rx_buffer_size(pdata);
3386 	xgbe_config_tso_mode(pdata);
3387 	xgbe_config_sph_mode(pdata);
3388 	xgbe_config_rss(pdata);
3389 	desc_if->wrapper_tx_desc_init(pdata);
3390 	desc_if->wrapper_rx_desc_init(pdata);
3391 	xgbe_enable_dma_interrupts(pdata);
3392 
3393 	/*
3394 	 * Initialize MTL related features
3395 	 */
3396 	xgbe_config_mtl_mode(pdata);
3397 	xgbe_config_queue_mapping(pdata);
3398 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3399 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3400 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3401 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3402 	xgbe_config_tx_fifo_size(pdata);
3403 	xgbe_config_rx_fifo_size(pdata);
3404 	/*TODO: Error Packet and undersized good Packet forwarding enable
3405 		(FEP and FUP)
3406 	 */
3407 	xgbe_config_dcb_tc(pdata);
3408 	xgbe_enable_mtl_interrupts(pdata);
3409 
3410 	/*
3411 	 * Initialize MAC related features
3412 	 */
3413 	xgbe_config_mac_address(pdata);
3414 	xgbe_config_rx_mode(pdata);
3415 	xgbe_config_jumbo_enable(pdata);
3416 	xgbe_config_flow_control(pdata);
3417 	xgbe_config_mac_speed(pdata);
3418 	xgbe_config_checksum_offload(pdata);
3419 	xgbe_config_vlan_support(pdata);
3420 	xgbe_config_mmc(pdata);
3421 	xgbe_enable_mac_interrupts(pdata);
3422 
3423 	/*
3424 	 * Initialize ECC related features
3425 	 */
3426 	xgbe_enable_ecc_interrupts(pdata);
3427 
3428 	DBGPR("<--xgbe_init\n");
3429 
3430 	return 0;
3431 }
3432 
3433 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3434 {
3435 	DBGPR("-->xgbe_init_function_ptrs\n");
3436 
3437 	hw_if->tx_complete = xgbe_tx_complete;
3438 
3439 	hw_if->set_mac_address = xgbe_set_mac_address;
3440 	hw_if->config_rx_mode = xgbe_config_rx_mode;
3441 
3442 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3443 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3444 
3445 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3446 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3447 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3448 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3449 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3450 
3451 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3452 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3453 
3454 	hw_if->set_speed = xgbe_set_speed;
3455 
3456 	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3457 	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
3458 	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
3459 
3460 	hw_if->set_gpio = xgbe_set_gpio;
3461 	hw_if->clr_gpio = xgbe_clr_gpio;
3462 
3463 	hw_if->enable_tx = xgbe_enable_tx;
3464 	hw_if->disable_tx = xgbe_disable_tx;
3465 	hw_if->enable_rx = xgbe_enable_rx;
3466 	hw_if->disable_rx = xgbe_disable_rx;
3467 
3468 	hw_if->powerup_tx = xgbe_powerup_tx;
3469 	hw_if->powerdown_tx = xgbe_powerdown_tx;
3470 	hw_if->powerup_rx = xgbe_powerup_rx;
3471 	hw_if->powerdown_rx = xgbe_powerdown_rx;
3472 
3473 	hw_if->dev_xmit = xgbe_dev_xmit;
3474 	hw_if->dev_read = xgbe_dev_read;
3475 	hw_if->enable_int = xgbe_enable_int;
3476 	hw_if->disable_int = xgbe_disable_int;
3477 	hw_if->init = xgbe_init;
3478 	hw_if->exit = xgbe_exit;
3479 
3480 	/* Descriptor related Sequences have to be initialized here */
3481 	hw_if->tx_desc_init = xgbe_tx_desc_init;
3482 	hw_if->rx_desc_init = xgbe_rx_desc_init;
3483 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3484 	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3485 	hw_if->is_last_desc = xgbe_is_last_desc;
3486 	hw_if->is_context_desc = xgbe_is_context_desc;
3487 	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3488 
3489 	/* For FLOW ctrl */
3490 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3491 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3492 
3493 	/* For RX coalescing */
3494 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3495 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3496 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3497 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3498 
3499 	/* For RX and TX threshold config */
3500 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3501 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3502 
3503 	/* For RX and TX Store and Forward Mode config */
3504 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3505 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3506 
3507 	/* For TX DMA Operating on Second Frame config */
3508 	hw_if->config_osp_mode = xgbe_config_osp_mode;
3509 
3510 	/* For MMC statistics support */
3511 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3512 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3513 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3514 
3515 	/* For PTP config */
3516 	hw_if->config_tstamp = xgbe_config_tstamp;
3517 	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3518 	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3519 	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3520 	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3521 
3522 	/* For Data Center Bridging config */
3523 	hw_if->config_tc = xgbe_config_tc;
3524 	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3525 	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3526 
3527 	/* For Receive Side Scaling */
3528 	hw_if->enable_rss = xgbe_enable_rss;
3529 	hw_if->disable_rss = xgbe_disable_rss;
3530 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3531 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3532 
3533 	/* For ECC */
3534 	hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3535 	hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3536 
3537 	DBGPR("<--xgbe_init_function_ptrs\n");
3538 }
3539