1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * This file is available to you under your choice of the following two
5  * licenses:
6  *
7  * License 1: GPLv2
8  *
9  * Copyright (c) 2014 Advanced Micro Devices, Inc.
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Copyright (c) 2014 Advanced Micro Devices, Inc.
60  * All rights reserved.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions are met:
64  *     * Redistributions of source code must retain the above copyright
65  *       notice, this list of conditions and the following disclaimer.
66  *     * Redistributions in binary form must reproduce the above copyright
67  *       notice, this list of conditions and the following disclaimer in the
68  *       documentation and/or other materials provided with the distribution.
69  *     * Neither the name of Advanced Micro Devices, Inc. nor the
70  *       names of its contributors may be used to endorse or promote products
71  *       derived from this software without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83  *
84  * This file incorporates work covered by the following copyright and
85  * permission notice:
86  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89  *     and you.
90  *
91  *     The Software IS NOT an item of Licensed Software or Licensed Product
92  *     under any End User Software License Agreement or Agreement for Licensed
93  *     Product with Synopsys or any supplement thereto.  Permission is hereby
94  *     granted, free of charge, to any person obtaining a copy of this software
95  *     annotated with this license and the Software, to deal in the Software
96  *     without restriction, including without limitation the rights to use,
97  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98  *     of the Software, and to permit persons to whom the Software is furnished
99  *     to do so, subject to the following conditions:
100  *
101  *     The above copyright notice and this permission notice shall be included
102  *     in all copies or substantial portions of the Software.
103  *
104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114  *     THE POSSIBILITY OF SUCH DAMAGE.
115  */
116 
117 #include <linux/phy.h>
118 #include <linux/clk.h>
119 #include <linux/bitrev.h>
120 #include <linux/crc32.h>
121 
122 #include "xgbe.h"
123 #include "xgbe-common.h"
124 
125 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
126 				      unsigned int usec)
127 {
128 	unsigned long rate;
129 	unsigned int ret;
130 
131 	DBGPR("-->xgbe_usec_to_riwt\n");
132 
133 	rate = clk_get_rate(pdata->sysclk);
134 
135 	/*
136 	 * Convert the input usec value to the watchdog timer value. Each
137 	 * watchdog timer value is equivalent to 256 clock cycles.
138 	 * Calculate the required value as:
139 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
140 	 */
141 	ret = (usec * (rate / 1000000)) / 256;
142 
143 	DBGPR("<--xgbe_usec_to_riwt\n");
144 
145 	return ret;
146 }
147 
148 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
149 				      unsigned int riwt)
150 {
151 	unsigned long rate;
152 	unsigned int ret;
153 
154 	DBGPR("-->xgbe_riwt_to_usec\n");
155 
156 	rate = clk_get_rate(pdata->sysclk);
157 
158 	/*
159 	 * Convert the input watchdog timer value to the usec value. Each
160 	 * watchdog timer value is equivalent to 256 clock cycles.
161 	 * Calculate the required value as:
162 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
163 	 */
164 	ret = (riwt * 256) / (rate / 1000000);
165 
166 	DBGPR("<--xgbe_riwt_to_usec\n");
167 
168 	return ret;
169 }
170 
171 static int xgbe_config_pblx8(struct xgbe_prv_data *pdata)
172 {
173 	struct xgbe_channel *channel;
174 	unsigned int i;
175 
176 	channel = pdata->channel;
177 	for (i = 0; i < pdata->channel_count; i++, channel++)
178 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, PBLX8,
179 				       pdata->pblx8);
180 
181 	return 0;
182 }
183 
184 static int xgbe_get_tx_pbl_val(struct xgbe_prv_data *pdata)
185 {
186 	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_TCR, PBL);
187 }
188 
189 static int xgbe_config_tx_pbl_val(struct xgbe_prv_data *pdata)
190 {
191 	struct xgbe_channel *channel;
192 	unsigned int i;
193 
194 	channel = pdata->channel;
195 	for (i = 0; i < pdata->channel_count; i++, channel++) {
196 		if (!channel->tx_ring)
197 			break;
198 
199 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, PBL,
200 				       pdata->tx_pbl);
201 	}
202 
203 	return 0;
204 }
205 
206 static int xgbe_get_rx_pbl_val(struct xgbe_prv_data *pdata)
207 {
208 	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_RCR, PBL);
209 }
210 
211 static int xgbe_config_rx_pbl_val(struct xgbe_prv_data *pdata)
212 {
213 	struct xgbe_channel *channel;
214 	unsigned int i;
215 
216 	channel = pdata->channel;
217 	for (i = 0; i < pdata->channel_count; i++, channel++) {
218 		if (!channel->rx_ring)
219 			break;
220 
221 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, PBL,
222 				       pdata->rx_pbl);
223 	}
224 
225 	return 0;
226 }
227 
228 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
229 {
230 	struct xgbe_channel *channel;
231 	unsigned int i;
232 
233 	channel = pdata->channel;
234 	for (i = 0; i < pdata->channel_count; i++, channel++) {
235 		if (!channel->tx_ring)
236 			break;
237 
238 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, OSP,
239 				       pdata->tx_osp_mode);
240 	}
241 
242 	return 0;
243 }
244 
245 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
246 {
247 	unsigned int i;
248 
249 	for (i = 0; i < pdata->rx_q_count; i++)
250 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
251 
252 	return 0;
253 }
254 
255 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
256 {
257 	unsigned int i;
258 
259 	for (i = 0; i < pdata->tx_q_count; i++)
260 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
261 
262 	return 0;
263 }
264 
265 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
266 				    unsigned int val)
267 {
268 	unsigned int i;
269 
270 	for (i = 0; i < pdata->rx_q_count; i++)
271 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
272 
273 	return 0;
274 }
275 
276 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
277 				    unsigned int val)
278 {
279 	unsigned int i;
280 
281 	for (i = 0; i < pdata->tx_q_count; i++)
282 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
283 
284 	return 0;
285 }
286 
287 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
288 {
289 	struct xgbe_channel *channel;
290 	unsigned int i;
291 
292 	channel = pdata->channel;
293 	for (i = 0; i < pdata->channel_count; i++, channel++) {
294 		if (!channel->rx_ring)
295 			break;
296 
297 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RIWT, RWT,
298 				       pdata->rx_riwt);
299 	}
300 
301 	return 0;
302 }
303 
304 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
305 {
306 	return 0;
307 }
308 
309 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
310 {
311 	struct xgbe_channel *channel;
312 	unsigned int i;
313 
314 	channel = pdata->channel;
315 	for (i = 0; i < pdata->channel_count; i++, channel++) {
316 		if (!channel->rx_ring)
317 			break;
318 
319 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, RBSZ,
320 				       pdata->rx_buf_size);
321 	}
322 }
323 
324 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
325 {
326 	struct xgbe_channel *channel;
327 	unsigned int i;
328 
329 	channel = pdata->channel;
330 	for (i = 0; i < pdata->channel_count; i++, channel++) {
331 		if (!channel->tx_ring)
332 			break;
333 
334 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, TSE, 1);
335 	}
336 }
337 
338 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
339 {
340 	struct xgbe_channel *channel;
341 	unsigned int i;
342 
343 	channel = pdata->channel;
344 	for (i = 0; i < pdata->channel_count; i++, channel++) {
345 		if (!channel->rx_ring)
346 			break;
347 
348 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, SPH, 1);
349 	}
350 
351 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
352 }
353 
354 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
355 			      unsigned int index, unsigned int val)
356 {
357 	unsigned int wait;
358 	int ret = 0;
359 
360 	mutex_lock(&pdata->rss_mutex);
361 
362 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
363 		ret = -EBUSY;
364 		goto unlock;
365 	}
366 
367 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
368 
369 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
370 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
371 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
372 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
373 
374 	wait = 1000;
375 	while (wait--) {
376 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
377 			goto unlock;
378 
379 		usleep_range(1000, 1500);
380 	}
381 
382 	ret = -EBUSY;
383 
384 unlock:
385 	mutex_unlock(&pdata->rss_mutex);
386 
387 	return ret;
388 }
389 
390 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
391 {
392 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
393 	unsigned int *key = (unsigned int *)&pdata->rss_key;
394 	int ret;
395 
396 	while (key_regs--) {
397 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
398 					 key_regs, *key++);
399 		if (ret)
400 			return ret;
401 	}
402 
403 	return 0;
404 }
405 
406 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
407 {
408 	unsigned int i;
409 	int ret;
410 
411 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
412 		ret = xgbe_write_rss_reg(pdata,
413 					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
414 					 pdata->rss_table[i]);
415 		if (ret)
416 			return ret;
417 	}
418 
419 	return 0;
420 }
421 
422 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
423 {
424 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
425 
426 	return xgbe_write_rss_hash_key(pdata);
427 }
428 
429 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
430 				     const u32 *table)
431 {
432 	unsigned int i;
433 
434 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
435 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
436 
437 	return xgbe_write_rss_lookup_table(pdata);
438 }
439 
440 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
441 {
442 	int ret;
443 
444 	if (!pdata->hw_feat.rss)
445 		return -EOPNOTSUPP;
446 
447 	/* Program the hash key */
448 	ret = xgbe_write_rss_hash_key(pdata);
449 	if (ret)
450 		return ret;
451 
452 	/* Program the lookup table */
453 	ret = xgbe_write_rss_lookup_table(pdata);
454 	if (ret)
455 		return ret;
456 
457 	/* Set the RSS options */
458 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
459 
460 	/* Enable RSS */
461 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
462 
463 	return 0;
464 }
465 
466 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
467 {
468 	if (!pdata->hw_feat.rss)
469 		return -EOPNOTSUPP;
470 
471 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
472 
473 	return 0;
474 }
475 
476 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
477 {
478 	int ret;
479 
480 	if (!pdata->hw_feat.rss)
481 		return;
482 
483 	if (pdata->netdev->features & NETIF_F_RXHASH)
484 		ret = xgbe_enable_rss(pdata);
485 	else
486 		ret = xgbe_disable_rss(pdata);
487 
488 	if (ret)
489 		netdev_err(pdata->netdev,
490 			   "error configuring RSS, RSS disabled\n");
491 }
492 
493 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
494 {
495 	unsigned int max_q_count, q_count;
496 	unsigned int reg, reg_val;
497 	unsigned int i;
498 
499 	/* Clear MTL flow control */
500 	for (i = 0; i < pdata->rx_q_count; i++)
501 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
502 
503 	/* Clear MAC flow control */
504 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
505 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
506 	reg = MAC_Q0TFCR;
507 	for (i = 0; i < q_count; i++) {
508 		reg_val = XGMAC_IOREAD(pdata, reg);
509 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
510 		XGMAC_IOWRITE(pdata, reg, reg_val);
511 
512 		reg += MAC_QTFCR_INC;
513 	}
514 
515 	return 0;
516 }
517 
518 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
519 {
520 	unsigned int max_q_count, q_count;
521 	unsigned int reg, reg_val;
522 	unsigned int i;
523 
524 	/* Set MTL flow control */
525 	for (i = 0; i < pdata->rx_q_count; i++)
526 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 1);
527 
528 	/* Set MAC flow control */
529 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
530 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
531 	reg = MAC_Q0TFCR;
532 	for (i = 0; i < q_count; i++) {
533 		reg_val = XGMAC_IOREAD(pdata, reg);
534 
535 		/* Enable transmit flow control */
536 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
537 		/* Set pause time */
538 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
539 
540 		XGMAC_IOWRITE(pdata, reg, reg_val);
541 
542 		reg += MAC_QTFCR_INC;
543 	}
544 
545 	return 0;
546 }
547 
548 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
549 {
550 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
551 
552 	return 0;
553 }
554 
555 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
556 {
557 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
558 
559 	return 0;
560 }
561 
562 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
563 {
564 	struct ieee_pfc *pfc = pdata->pfc;
565 
566 	if (pdata->tx_pause || (pfc && pfc->pfc_en))
567 		xgbe_enable_tx_flow_control(pdata);
568 	else
569 		xgbe_disable_tx_flow_control(pdata);
570 
571 	return 0;
572 }
573 
574 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
575 {
576 	struct ieee_pfc *pfc = pdata->pfc;
577 
578 	if (pdata->rx_pause || (pfc && pfc->pfc_en))
579 		xgbe_enable_rx_flow_control(pdata);
580 	else
581 		xgbe_disable_rx_flow_control(pdata);
582 
583 	return 0;
584 }
585 
586 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
587 {
588 	struct ieee_pfc *pfc = pdata->pfc;
589 
590 	xgbe_config_tx_flow_control(pdata);
591 	xgbe_config_rx_flow_control(pdata);
592 
593 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
594 			   (pfc && pfc->pfc_en) ? 1 : 0);
595 }
596 
597 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
598 {
599 	struct xgbe_channel *channel;
600 	unsigned int dma_ch_isr, dma_ch_ier;
601 	unsigned int i;
602 
603 	channel = pdata->channel;
604 	for (i = 0; i < pdata->channel_count; i++, channel++) {
605 		/* Clear all the interrupts which are set */
606 		dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR);
607 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr);
608 
609 		/* Clear all interrupt enable bits */
610 		dma_ch_ier = 0;
611 
612 		/* Enable following interrupts
613 		 *   NIE  - Normal Interrupt Summary Enable
614 		 *   AIE  - Abnormal Interrupt Summary Enable
615 		 *   FBEE - Fatal Bus Error Enable
616 		 */
617 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, NIE, 1);
618 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, AIE, 1);
619 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
620 
621 		if (channel->tx_ring) {
622 			/* Enable the following Tx interrupts
623 			 *   TIE  - Transmit Interrupt Enable (unless using
624 			 *          per channel interrupts)
625 			 */
626 			if (!pdata->per_channel_irq)
627 				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
628 		}
629 		if (channel->rx_ring) {
630 			/* Enable following Rx interrupts
631 			 *   RBUE - Receive Buffer Unavailable Enable
632 			 *   RIE  - Receive Interrupt Enable (unless using
633 			 *          per channel interrupts)
634 			 */
635 			XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
636 			if (!pdata->per_channel_irq)
637 				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
638 		}
639 
640 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
641 	}
642 }
643 
644 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
645 {
646 	unsigned int mtl_q_isr;
647 	unsigned int q_count, i;
648 
649 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
650 	for (i = 0; i < q_count; i++) {
651 		/* Clear all the interrupts which are set */
652 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
653 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
654 
655 		/* No MTL interrupts to be enabled */
656 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
657 	}
658 }
659 
660 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
661 {
662 	unsigned int mac_ier = 0;
663 
664 	/* Enable Timestamp interrupt */
665 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
666 
667 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
668 
669 	/* Enable all counter interrupts */
670 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
671 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
672 }
673 
674 static int xgbe_set_gmii_speed(struct xgbe_prv_data *pdata)
675 {
676 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x3);
677 
678 	return 0;
679 }
680 
681 static int xgbe_set_gmii_2500_speed(struct xgbe_prv_data *pdata)
682 {
683 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x2);
684 
685 	return 0;
686 }
687 
688 static int xgbe_set_xgmii_speed(struct xgbe_prv_data *pdata)
689 {
690 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0);
691 
692 	return 0;
693 }
694 
695 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
696 				     unsigned int enable)
697 {
698 	unsigned int val = enable ? 1 : 0;
699 
700 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
701 		return 0;
702 
703 	DBGPR("  %s promiscuous mode\n", enable ? "entering" : "leaving");
704 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
705 
706 	return 0;
707 }
708 
709 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
710 				       unsigned int enable)
711 {
712 	unsigned int val = enable ? 1 : 0;
713 
714 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
715 		return 0;
716 
717 	DBGPR("  %s allmulti mode\n", enable ? "entering" : "leaving");
718 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
719 
720 	return 0;
721 }
722 
723 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
724 			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
725 {
726 	unsigned int mac_addr_hi, mac_addr_lo;
727 	u8 *mac_addr;
728 
729 	mac_addr_lo = 0;
730 	mac_addr_hi = 0;
731 
732 	if (ha) {
733 		mac_addr = (u8 *)&mac_addr_lo;
734 		mac_addr[0] = ha->addr[0];
735 		mac_addr[1] = ha->addr[1];
736 		mac_addr[2] = ha->addr[2];
737 		mac_addr[3] = ha->addr[3];
738 		mac_addr = (u8 *)&mac_addr_hi;
739 		mac_addr[0] = ha->addr[4];
740 		mac_addr[1] = ha->addr[5];
741 
742 		DBGPR("  adding mac address %pM at 0x%04x\n", ha->addr,
743 		      *mac_reg);
744 
745 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
746 	}
747 
748 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
749 	*mac_reg += MAC_MACA_INC;
750 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
751 	*mac_reg += MAC_MACA_INC;
752 }
753 
754 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
755 {
756 	struct net_device *netdev = pdata->netdev;
757 	struct netdev_hw_addr *ha;
758 	unsigned int mac_reg;
759 	unsigned int addn_macs;
760 
761 	mac_reg = MAC_MACA1HR;
762 	addn_macs = pdata->hw_feat.addn_mac;
763 
764 	if (netdev_uc_count(netdev) > addn_macs) {
765 		xgbe_set_promiscuous_mode(pdata, 1);
766 	} else {
767 		netdev_for_each_uc_addr(ha, netdev) {
768 			xgbe_set_mac_reg(pdata, ha, &mac_reg);
769 			addn_macs--;
770 		}
771 
772 		if (netdev_mc_count(netdev) > addn_macs) {
773 			xgbe_set_all_multicast_mode(pdata, 1);
774 		} else {
775 			netdev_for_each_mc_addr(ha, netdev) {
776 				xgbe_set_mac_reg(pdata, ha, &mac_reg);
777 				addn_macs--;
778 			}
779 		}
780 	}
781 
782 	/* Clear remaining additional MAC address entries */
783 	while (addn_macs--)
784 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
785 }
786 
787 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
788 {
789 	struct net_device *netdev = pdata->netdev;
790 	struct netdev_hw_addr *ha;
791 	unsigned int hash_reg;
792 	unsigned int hash_table_shift, hash_table_count;
793 	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
794 	u32 crc;
795 	unsigned int i;
796 
797 	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
798 	hash_table_count = pdata->hw_feat.hash_table_size / 32;
799 	memset(hash_table, 0, sizeof(hash_table));
800 
801 	/* Build the MAC Hash Table register values */
802 	netdev_for_each_uc_addr(ha, netdev) {
803 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
804 		crc >>= hash_table_shift;
805 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
806 	}
807 
808 	netdev_for_each_mc_addr(ha, netdev) {
809 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
810 		crc >>= hash_table_shift;
811 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
812 	}
813 
814 	/* Set the MAC Hash Table registers */
815 	hash_reg = MAC_HTR0;
816 	for (i = 0; i < hash_table_count; i++) {
817 		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
818 		hash_reg += MAC_HTR_INC;
819 	}
820 }
821 
822 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
823 {
824 	if (pdata->hw_feat.hash_table_size)
825 		xgbe_set_mac_hash_table(pdata);
826 	else
827 		xgbe_set_mac_addn_addrs(pdata);
828 
829 	return 0;
830 }
831 
832 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
833 {
834 	unsigned int mac_addr_hi, mac_addr_lo;
835 
836 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
837 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
838 		      (addr[1] <<  8) | (addr[0] <<  0);
839 
840 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
841 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
842 
843 	return 0;
844 }
845 
846 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
847 			      int mmd_reg)
848 {
849 	unsigned int mmd_address;
850 	int mmd_data;
851 
852 	if (mmd_reg & MII_ADDR_C45)
853 		mmd_address = mmd_reg & ~MII_ADDR_C45;
854 	else
855 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
856 
857 	/* The PCS registers are accessed using mmio. The underlying APB3
858 	 * management interface uses indirect addressing to access the MMD
859 	 * register sets. This requires accessing of the PCS register in two
860 	 * phases, an address phase and a data phase.
861 	 *
862 	 * The mmio interface is based on 32-bit offsets and values. All
863 	 * register offsets must therefore be adjusted by left shifting the
864 	 * offset 2 bits and reading 32 bits of data.
865 	 */
866 	mutex_lock(&pdata->xpcs_mutex);
867 	XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8);
868 	mmd_data = XPCS_IOREAD(pdata, (mmd_address & 0xff) << 2);
869 	mutex_unlock(&pdata->xpcs_mutex);
870 
871 	return mmd_data;
872 }
873 
874 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
875 				int mmd_reg, int mmd_data)
876 {
877 	unsigned int mmd_address;
878 
879 	if (mmd_reg & MII_ADDR_C45)
880 		mmd_address = mmd_reg & ~MII_ADDR_C45;
881 	else
882 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
883 
884 	/* The PCS registers are accessed using mmio. The underlying APB3
885 	 * management interface uses indirect addressing to access the MMD
886 	 * register sets. This requires accessing of the PCS register in two
887 	 * phases, an address phase and a data phase.
888 	 *
889 	 * The mmio interface is based on 32-bit offsets and values. All
890 	 * register offsets must therefore be adjusted by left shifting the
891 	 * offset 2 bits and reading 32 bits of data.
892 	 */
893 	mutex_lock(&pdata->xpcs_mutex);
894 	XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8);
895 	XPCS_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
896 	mutex_unlock(&pdata->xpcs_mutex);
897 }
898 
899 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
900 {
901 	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
902 }
903 
904 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
905 {
906 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
907 
908 	return 0;
909 }
910 
911 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
912 {
913 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
914 
915 	return 0;
916 }
917 
918 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
919 {
920 	/* Put the VLAN tag in the Rx descriptor */
921 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
922 
923 	/* Don't check the VLAN type */
924 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
925 
926 	/* Check only C-TAG (0x8100) packets */
927 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
928 
929 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
930 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
931 
932 	/* Enable VLAN tag stripping */
933 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
934 
935 	return 0;
936 }
937 
938 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
939 {
940 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
941 
942 	return 0;
943 }
944 
945 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
946 {
947 	/* Enable VLAN filtering */
948 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
949 
950 	/* Enable VLAN Hash Table filtering */
951 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
952 
953 	/* Disable VLAN tag inverse matching */
954 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
955 
956 	/* Only filter on the lower 12-bits of the VLAN tag */
957 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
958 
959 	/* In order for the VLAN Hash Table filtering to be effective,
960 	 * the VLAN tag identifier in the VLAN Tag Register must not
961 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
962 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
963 	 * 1 will always pass filtering.
964 	 */
965 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
966 
967 	return 0;
968 }
969 
970 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
971 {
972 	/* Disable VLAN filtering */
973 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
974 
975 	return 0;
976 }
977 
978 #ifndef CRCPOLY_LE
979 #define CRCPOLY_LE 0xedb88320
980 #endif
981 static u32 xgbe_vid_crc32_le(__le16 vid_le)
982 {
983 	u32 poly = CRCPOLY_LE;
984 	u32 crc = ~0;
985 	u32 temp = 0;
986 	unsigned char *data = (unsigned char *)&vid_le;
987 	unsigned char data_byte = 0;
988 	int i, bits;
989 
990 	bits = get_bitmask_order(VLAN_VID_MASK);
991 	for (i = 0; i < bits; i++) {
992 		if ((i % 8) == 0)
993 			data_byte = data[i / 8];
994 
995 		temp = ((crc & 1) ^ data_byte) & 1;
996 		crc >>= 1;
997 		data_byte >>= 1;
998 
999 		if (temp)
1000 			crc ^= poly;
1001 	}
1002 
1003 	return crc;
1004 }
1005 
1006 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
1007 {
1008 	u32 crc;
1009 	u16 vid;
1010 	__le16 vid_le;
1011 	u16 vlan_hash_table = 0;
1012 
1013 	/* Generate the VLAN Hash Table value */
1014 	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
1015 		/* Get the CRC32 value of the VLAN ID */
1016 		vid_le = cpu_to_le16(vid);
1017 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
1018 
1019 		vlan_hash_table |= (1 << crc);
1020 	}
1021 
1022 	/* Set the VLAN Hash Table filtering register */
1023 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
1024 
1025 	return 0;
1026 }
1027 
1028 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1029 {
1030 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1031 
1032 	/* Reset the Tx descriptor
1033 	 *   Set buffer 1 (lo) address to zero
1034 	 *   Set buffer 1 (hi) address to zero
1035 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1036 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1037 	 */
1038 	rdesc->desc0 = 0;
1039 	rdesc->desc1 = 0;
1040 	rdesc->desc2 = 0;
1041 	rdesc->desc3 = 0;
1042 
1043 	/* Make sure ownership is written to the descriptor */
1044 	wmb();
1045 }
1046 
1047 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1048 {
1049 	struct xgbe_ring *ring = channel->tx_ring;
1050 	struct xgbe_ring_data *rdata;
1051 	int i;
1052 	int start_index = ring->cur;
1053 
1054 	DBGPR("-->tx_desc_init\n");
1055 
1056 	/* Initialze all descriptors */
1057 	for (i = 0; i < ring->rdesc_count; i++) {
1058 		rdata = XGBE_GET_DESC_DATA(ring, i);
1059 
1060 		/* Initialize Tx descriptor */
1061 		xgbe_tx_desc_reset(rdata);
1062 	}
1063 
1064 	/* Update the total number of Tx descriptors */
1065 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1066 
1067 	/* Update the starting address of descriptor ring */
1068 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1069 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1070 			  upper_32_bits(rdata->rdesc_dma));
1071 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1072 			  lower_32_bits(rdata->rdesc_dma));
1073 
1074 	DBGPR("<--tx_desc_init\n");
1075 }
1076 
1077 static void xgbe_rx_desc_reset(struct xgbe_ring_data *rdata)
1078 {
1079 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1080 
1081 	/* Reset the Rx descriptor
1082 	 *   Set buffer 1 (lo) address to header dma address (lo)
1083 	 *   Set buffer 1 (hi) address to header dma address (hi)
1084 	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1085 	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1086 	 *     set control bits OWN and INTE
1087 	 */
1088 	rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->rx.hdr.dma));
1089 	rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->rx.hdr.dma));
1090 	rdesc->desc2 = cpu_to_le32(lower_32_bits(rdata->rx.buf.dma));
1091 	rdesc->desc3 = cpu_to_le32(upper_32_bits(rdata->rx.buf.dma));
1092 
1093 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE,
1094 			  rdata->interrupt ? 1 : 0);
1095 
1096 	/* Since the Rx DMA engine is likely running, make sure everything
1097 	 * is written to the descriptor(s) before setting the OWN bit
1098 	 * for the descriptor
1099 	 */
1100 	wmb();
1101 
1102 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1103 
1104 	/* Make sure ownership is written to the descriptor */
1105 	wmb();
1106 }
1107 
1108 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1109 {
1110 	struct xgbe_prv_data *pdata = channel->pdata;
1111 	struct xgbe_ring *ring = channel->rx_ring;
1112 	struct xgbe_ring_data *rdata;
1113 	unsigned int start_index = ring->cur;
1114 	unsigned int rx_coalesce, rx_frames;
1115 	unsigned int i;
1116 
1117 	DBGPR("-->rx_desc_init\n");
1118 
1119 	rx_coalesce = (pdata->rx_riwt || pdata->rx_frames) ? 1 : 0;
1120 	rx_frames = pdata->rx_frames;
1121 
1122 	/* Initialize all descriptors */
1123 	for (i = 0; i < ring->rdesc_count; i++) {
1124 		rdata = XGBE_GET_DESC_DATA(ring, i);
1125 
1126 		/* Set interrupt on completion bit as appropriate */
1127 		if (rx_coalesce && (!rx_frames || ((i + 1) % rx_frames)))
1128 			rdata->interrupt = 0;
1129 		else
1130 			rdata->interrupt = 1;
1131 
1132 		/* Initialize Rx descriptor */
1133 		xgbe_rx_desc_reset(rdata);
1134 	}
1135 
1136 	/* Update the total number of Rx descriptors */
1137 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1138 
1139 	/* Update the starting address of descriptor ring */
1140 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1141 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1142 			  upper_32_bits(rdata->rdesc_dma));
1143 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1144 			  lower_32_bits(rdata->rdesc_dma));
1145 
1146 	/* Update the Rx Descriptor Tail Pointer */
1147 	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1148 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1149 			  lower_32_bits(rdata->rdesc_dma));
1150 
1151 	DBGPR("<--rx_desc_init\n");
1152 }
1153 
1154 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1155 				      unsigned int addend)
1156 {
1157 	/* Set the addend register value and tell the device */
1158 	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1159 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1160 
1161 	/* Wait for addend update to complete */
1162 	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1163 		udelay(5);
1164 }
1165 
1166 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1167 				 unsigned int nsec)
1168 {
1169 	/* Set the time values and tell the device */
1170 	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1171 	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1172 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1173 
1174 	/* Wait for time update to complete */
1175 	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1176 		udelay(5);
1177 }
1178 
1179 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1180 {
1181 	u64 nsec;
1182 
1183 	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1184 	nsec *= NSEC_PER_SEC;
1185 	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1186 
1187 	return nsec;
1188 }
1189 
1190 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1191 {
1192 	unsigned int tx_snr;
1193 	u64 nsec;
1194 
1195 	tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1196 	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1197 		return 0;
1198 
1199 	nsec = XGMAC_IOREAD(pdata, MAC_TXSSR);
1200 	nsec *= NSEC_PER_SEC;
1201 	nsec += tx_snr;
1202 
1203 	return nsec;
1204 }
1205 
1206 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1207 			       struct xgbe_ring_desc *rdesc)
1208 {
1209 	u64 nsec;
1210 
1211 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1212 	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1213 		nsec = le32_to_cpu(rdesc->desc1);
1214 		nsec <<= 32;
1215 		nsec |= le32_to_cpu(rdesc->desc0);
1216 		if (nsec != 0xffffffffffffffffULL) {
1217 			packet->rx_tstamp = nsec;
1218 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1219 				       RX_TSTAMP, 1);
1220 		}
1221 	}
1222 }
1223 
1224 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1225 			      unsigned int mac_tscr)
1226 {
1227 	/* Set one nano-second accuracy */
1228 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1229 
1230 	/* Set fine timestamp update */
1231 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1232 
1233 	/* Overwrite earlier timestamps */
1234 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1235 
1236 	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1237 
1238 	/* Exit if timestamping is not enabled */
1239 	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1240 		return 0;
1241 
1242 	/* Initialize time registers */
1243 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1244 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1245 	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1246 	xgbe_set_tstamp_time(pdata, 0, 0);
1247 
1248 	/* Initialize the timecounter */
1249 	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1250 			 ktime_to_ns(ktime_get_real()));
1251 
1252 	return 0;
1253 }
1254 
1255 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
1256 {
1257 	struct ieee_ets *ets = pdata->ets;
1258 	unsigned int total_weight, min_weight, weight;
1259 	unsigned int i;
1260 
1261 	if (!ets)
1262 		return;
1263 
1264 	/* Set Tx to deficit weighted round robin scheduling algorithm (when
1265 	 * traffic class is using ETS algorithm)
1266 	 */
1267 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
1268 
1269 	/* Set Traffic Class algorithms */
1270 	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
1271 	min_weight = total_weight / 100;
1272 	if (!min_weight)
1273 		min_weight = 1;
1274 
1275 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1276 		switch (ets->tc_tsa[i]) {
1277 		case IEEE_8021QAZ_TSA_STRICT:
1278 			DBGPR("  TC%u using SP\n", i);
1279 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1280 					       MTL_TSA_SP);
1281 			break;
1282 		case IEEE_8021QAZ_TSA_ETS:
1283 			weight = total_weight * ets->tc_tx_bw[i] / 100;
1284 			weight = clamp(weight, min_weight, total_weight);
1285 
1286 			DBGPR("  TC%u using DWRR (weight %u)\n", i, weight);
1287 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1288 					       MTL_TSA_ETS);
1289 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
1290 					       weight);
1291 			break;
1292 		}
1293 	}
1294 }
1295 
1296 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
1297 {
1298 	struct ieee_pfc *pfc = pdata->pfc;
1299 	struct ieee_ets *ets = pdata->ets;
1300 	unsigned int mask, reg, reg_val;
1301 	unsigned int tc, prio;
1302 
1303 	if (!pfc || !ets)
1304 		return;
1305 
1306 	for (tc = 0; tc < pdata->hw_feat.tc_cnt; tc++) {
1307 		mask = 0;
1308 		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
1309 			if ((pfc->pfc_en & (1 << prio)) &&
1310 			    (ets->prio_tc[prio] == tc))
1311 				mask |= (1 << prio);
1312 		}
1313 		mask &= 0xff;
1314 
1315 		DBGPR("  TC%u PFC mask=%#x\n", tc, mask);
1316 		reg = MTL_TCPM0R + (MTL_TCPM_INC * (tc / MTL_TCPM_TC_PER_REG));
1317 		reg_val = XGMAC_IOREAD(pdata, reg);
1318 
1319 		reg_val &= ~(0xff << ((tc % MTL_TCPM_TC_PER_REG) << 3));
1320 		reg_val |= (mask << ((tc % MTL_TCPM_TC_PER_REG) << 3));
1321 
1322 		XGMAC_IOWRITE(pdata, reg, reg_val);
1323 	}
1324 
1325 	xgbe_config_flow_control(pdata);
1326 }
1327 
1328 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1329 			       struct xgbe_ring *ring)
1330 {
1331 	struct xgbe_prv_data *pdata = channel->pdata;
1332 	struct xgbe_ring_data *rdata;
1333 
1334 	/* Issue a poll command to Tx DMA by writing address
1335 	 * of next immediate free descriptor */
1336 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1337 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1338 			  lower_32_bits(rdata->rdesc_dma));
1339 
1340 	/* Start the Tx coalescing timer */
1341 	if (pdata->tx_usecs && !channel->tx_timer_active) {
1342 		channel->tx_timer_active = 1;
1343 		hrtimer_start(&channel->tx_timer,
1344 			      ktime_set(0, pdata->tx_usecs * NSEC_PER_USEC),
1345 			      HRTIMER_MODE_REL);
1346 	}
1347 
1348 	ring->tx.xmit_more = 0;
1349 }
1350 
1351 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1352 {
1353 	struct xgbe_prv_data *pdata = channel->pdata;
1354 	struct xgbe_ring *ring = channel->tx_ring;
1355 	struct xgbe_ring_data *rdata;
1356 	struct xgbe_ring_desc *rdesc;
1357 	struct xgbe_packet_data *packet = &ring->packet_data;
1358 	unsigned int csum, tso, vlan;
1359 	unsigned int tso_context, vlan_context;
1360 	unsigned int tx_set_ic;
1361 	int start_index = ring->cur;
1362 	int i;
1363 
1364 	DBGPR("-->xgbe_dev_xmit\n");
1365 
1366 	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1367 			      CSUM_ENABLE);
1368 	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1369 			     TSO_ENABLE);
1370 	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1371 			      VLAN_CTAG);
1372 
1373 	if (tso && (packet->mss != ring->tx.cur_mss))
1374 		tso_context = 1;
1375 	else
1376 		tso_context = 0;
1377 
1378 	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1379 		vlan_context = 1;
1380 	else
1381 		vlan_context = 0;
1382 
1383 	/* Determine if an interrupt should be generated for this Tx:
1384 	 *   Interrupt:
1385 	 *     - Tx frame count exceeds the frame count setting
1386 	 *     - Addition of Tx frame count to the frame count since the
1387 	 *       last interrupt was set exceeds the frame count setting
1388 	 *   No interrupt:
1389 	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1390 	 *     - Addition of Tx frame count to the frame count since the
1391 	 *       last interrupt was set does not exceed the frame count setting
1392 	 */
1393 	ring->coalesce_count += packet->tx_packets;
1394 	if (!pdata->tx_frames)
1395 		tx_set_ic = 0;
1396 	else if (packet->tx_packets > pdata->tx_frames)
1397 		tx_set_ic = 1;
1398 	else if ((ring->coalesce_count % pdata->tx_frames) <
1399 		 packet->tx_packets)
1400 		tx_set_ic = 1;
1401 	else
1402 		tx_set_ic = 0;
1403 
1404 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1405 	rdesc = rdata->rdesc;
1406 
1407 	/* Create a context descriptor if this is a TSO packet */
1408 	if (tso_context || vlan_context) {
1409 		if (tso_context) {
1410 			DBGPR("  TSO context descriptor, mss=%u\n",
1411 			      packet->mss);
1412 
1413 			/* Set the MSS size */
1414 			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1415 					  MSS, packet->mss);
1416 
1417 			/* Mark it as a CONTEXT descriptor */
1418 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1419 					  CTXT, 1);
1420 
1421 			/* Indicate this descriptor contains the MSS */
1422 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1423 					  TCMSSV, 1);
1424 
1425 			ring->tx.cur_mss = packet->mss;
1426 		}
1427 
1428 		if (vlan_context) {
1429 			DBGPR("  VLAN context descriptor, ctag=%u\n",
1430 			      packet->vlan_ctag);
1431 
1432 			/* Mark it as a CONTEXT descriptor */
1433 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1434 					  CTXT, 1);
1435 
1436 			/* Set the VLAN tag */
1437 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1438 					  VT, packet->vlan_ctag);
1439 
1440 			/* Indicate this descriptor contains the VLAN tag */
1441 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1442 					  VLTV, 1);
1443 
1444 			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1445 		}
1446 
1447 		ring->cur++;
1448 		rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1449 		rdesc = rdata->rdesc;
1450 	}
1451 
1452 	/* Update buffer address (for TSO this is the header) */
1453 	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1454 	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1455 
1456 	/* Update the buffer length */
1457 	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1458 			  rdata->skb_dma_len);
1459 
1460 	/* VLAN tag insertion check */
1461 	if (vlan)
1462 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1463 				  TX_NORMAL_DESC2_VLAN_INSERT);
1464 
1465 	/* Timestamp enablement check */
1466 	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1467 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1468 
1469 	/* Mark it as First Descriptor */
1470 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1471 
1472 	/* Mark it as a NORMAL descriptor */
1473 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1474 
1475 	/* Set OWN bit if not the first descriptor */
1476 	if (ring->cur != start_index)
1477 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1478 
1479 	if (tso) {
1480 		/* Enable TSO */
1481 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1482 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1483 				  packet->tcp_payload_len);
1484 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1485 				  packet->tcp_header_len / 4);
1486 	} else {
1487 		/* Enable CRC and Pad Insertion */
1488 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1489 
1490 		/* Enable HW CSUM */
1491 		if (csum)
1492 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1493 					  CIC, 0x3);
1494 
1495 		/* Set the total length to be transmitted */
1496 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1497 				  packet->length);
1498 	}
1499 
1500 	for (i = ring->cur - start_index + 1; i < packet->rdesc_count; i++) {
1501 		ring->cur++;
1502 		rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1503 		rdesc = rdata->rdesc;
1504 
1505 		/* Update buffer address */
1506 		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1507 		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1508 
1509 		/* Update the buffer length */
1510 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1511 				  rdata->skb_dma_len);
1512 
1513 		/* Set OWN bit */
1514 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1515 
1516 		/* Mark it as NORMAL descriptor */
1517 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1518 
1519 		/* Enable HW CSUM */
1520 		if (csum)
1521 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1522 					  CIC, 0x3);
1523 	}
1524 
1525 	/* Set LAST bit for the last descriptor */
1526 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1527 
1528 	/* Set IC bit based on Tx coalescing settings */
1529 	if (tx_set_ic)
1530 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1531 
1532 	/* Save the Tx info to report back during cleanup */
1533 	rdata->tx.packets = packet->tx_packets;
1534 	rdata->tx.bytes = packet->tx_bytes;
1535 
1536 	/* In case the Tx DMA engine is running, make sure everything
1537 	 * is written to the descriptor(s) before setting the OWN bit
1538 	 * for the first descriptor
1539 	 */
1540 	wmb();
1541 
1542 	/* Set OWN bit for the first descriptor */
1543 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1544 	rdesc = rdata->rdesc;
1545 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1546 
1547 #ifdef XGMAC_ENABLE_TX_DESC_DUMP
1548 	xgbe_dump_tx_desc(ring, start_index, packet->rdesc_count, 1);
1549 #endif
1550 
1551 	/* Make sure ownership is written to the descriptor */
1552 	wmb();
1553 
1554 	ring->cur++;
1555 	if (!packet->skb->xmit_more ||
1556 	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1557 						   channel->queue_index)))
1558 		xgbe_tx_start_xmit(channel, ring);
1559 	else
1560 		ring->tx.xmit_more = 1;
1561 
1562 	DBGPR("  %s: descriptors %u to %u written\n",
1563 	      channel->name, start_index & (ring->rdesc_count - 1),
1564 	      (ring->cur - 1) & (ring->rdesc_count - 1));
1565 
1566 	DBGPR("<--xgbe_dev_xmit\n");
1567 }
1568 
1569 static int xgbe_dev_read(struct xgbe_channel *channel)
1570 {
1571 	struct xgbe_ring *ring = channel->rx_ring;
1572 	struct xgbe_ring_data *rdata;
1573 	struct xgbe_ring_desc *rdesc;
1574 	struct xgbe_packet_data *packet = &ring->packet_data;
1575 	struct net_device *netdev = channel->pdata->netdev;
1576 	unsigned int err, etlt, l34t;
1577 
1578 	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1579 
1580 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1581 	rdesc = rdata->rdesc;
1582 
1583 	/* Check for data availability */
1584 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1585 		return 1;
1586 
1587 	/* Make sure descriptor fields are read after reading the OWN bit */
1588 	rmb();
1589 
1590 #ifdef XGMAC_ENABLE_RX_DESC_DUMP
1591 	xgbe_dump_rx_desc(ring, rdesc, ring->cur);
1592 #endif
1593 
1594 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1595 		/* Timestamp Context Descriptor */
1596 		xgbe_get_rx_tstamp(packet, rdesc);
1597 
1598 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1599 			       CONTEXT, 1);
1600 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1601 			       CONTEXT_NEXT, 0);
1602 		return 0;
1603 	}
1604 
1605 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1606 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1607 
1608 	/* Indicate if a Context Descriptor is next */
1609 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1610 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1611 			       CONTEXT_NEXT, 1);
1612 
1613 	/* Get the header length */
1614 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD))
1615 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1616 						      RX_NORMAL_DESC2, HL);
1617 
1618 	/* Get the RSS hash */
1619 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1620 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1621 			       RSS_HASH, 1);
1622 
1623 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1624 
1625 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1626 		switch (l34t) {
1627 		case RX_DESC3_L34T_IPV4_TCP:
1628 		case RX_DESC3_L34T_IPV4_UDP:
1629 		case RX_DESC3_L34T_IPV6_TCP:
1630 		case RX_DESC3_L34T_IPV6_UDP:
1631 			packet->rss_hash_type = PKT_HASH_TYPE_L4;
1632 			break;
1633 		default:
1634 			packet->rss_hash_type = PKT_HASH_TYPE_L3;
1635 		}
1636 	}
1637 
1638 	/* Get the packet length */
1639 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1640 
1641 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1642 		/* Not all the data has been transferred for this packet */
1643 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1644 			       INCOMPLETE, 1);
1645 		return 0;
1646 	}
1647 
1648 	/* This is the last of the data for this packet */
1649 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1650 		       INCOMPLETE, 0);
1651 
1652 	/* Set checksum done indicator as appropriate */
1653 	if (channel->pdata->netdev->features & NETIF_F_RXCSUM)
1654 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1655 			       CSUM_DONE, 1);
1656 
1657 	/* Check for errors (only valid in last descriptor) */
1658 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1659 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1660 	DBGPR("  err=%u, etlt=%#x\n", err, etlt);
1661 
1662 	if (!err || !etlt) {
1663 		/* No error if err is 0 or etlt is 0 */
1664 		if ((etlt == 0x09) &&
1665 		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1666 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1667 				       VLAN_CTAG, 1);
1668 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1669 							      RX_NORMAL_DESC0,
1670 							      OVT);
1671 			DBGPR("  vlan-ctag=0x%04x\n", packet->vlan_ctag);
1672 		}
1673 	} else {
1674 		if ((etlt == 0x05) || (etlt == 0x06))
1675 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1676 				       CSUM_DONE, 0);
1677 		else
1678 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1679 				       FRAME, 1);
1680 	}
1681 
1682 	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
1683 	      ring->cur & (ring->rdesc_count - 1), ring->cur);
1684 
1685 	return 0;
1686 }
1687 
1688 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1689 {
1690 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1691 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
1692 }
1693 
1694 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1695 {
1696 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1697 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
1698 }
1699 
1700 static int xgbe_enable_int(struct xgbe_channel *channel,
1701 			   enum xgbe_int int_id)
1702 {
1703 	unsigned int dma_ch_ier;
1704 
1705 	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1706 
1707 	switch (int_id) {
1708 	case XGMAC_INT_DMA_CH_SR_TI:
1709 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1710 		break;
1711 	case XGMAC_INT_DMA_CH_SR_TPS:
1712 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 1);
1713 		break;
1714 	case XGMAC_INT_DMA_CH_SR_TBU:
1715 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 1);
1716 		break;
1717 	case XGMAC_INT_DMA_CH_SR_RI:
1718 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1719 		break;
1720 	case XGMAC_INT_DMA_CH_SR_RBU:
1721 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
1722 		break;
1723 	case XGMAC_INT_DMA_CH_SR_RPS:
1724 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 1);
1725 		break;
1726 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1727 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1728 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1729 		break;
1730 	case XGMAC_INT_DMA_CH_SR_FBE:
1731 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
1732 		break;
1733 	case XGMAC_INT_DMA_ALL:
1734 		dma_ch_ier |= channel->saved_ier;
1735 		break;
1736 	default:
1737 		return -1;
1738 	}
1739 
1740 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
1741 
1742 	return 0;
1743 }
1744 
1745 static int xgbe_disable_int(struct xgbe_channel *channel,
1746 			    enum xgbe_int int_id)
1747 {
1748 	unsigned int dma_ch_ier;
1749 
1750 	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1751 
1752 	switch (int_id) {
1753 	case XGMAC_INT_DMA_CH_SR_TI:
1754 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
1755 		break;
1756 	case XGMAC_INT_DMA_CH_SR_TPS:
1757 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 0);
1758 		break;
1759 	case XGMAC_INT_DMA_CH_SR_TBU:
1760 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 0);
1761 		break;
1762 	case XGMAC_INT_DMA_CH_SR_RI:
1763 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
1764 		break;
1765 	case XGMAC_INT_DMA_CH_SR_RBU:
1766 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 0);
1767 		break;
1768 	case XGMAC_INT_DMA_CH_SR_RPS:
1769 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 0);
1770 		break;
1771 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1772 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
1773 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
1774 		break;
1775 	case XGMAC_INT_DMA_CH_SR_FBE:
1776 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 0);
1777 		break;
1778 	case XGMAC_INT_DMA_ALL:
1779 		channel->saved_ier = dma_ch_ier & XGBE_DMA_INTERRUPT_MASK;
1780 		dma_ch_ier &= ~XGBE_DMA_INTERRUPT_MASK;
1781 		break;
1782 	default:
1783 		return -1;
1784 	}
1785 
1786 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
1787 
1788 	return 0;
1789 }
1790 
1791 static int xgbe_exit(struct xgbe_prv_data *pdata)
1792 {
1793 	unsigned int count = 2000;
1794 
1795 	DBGPR("-->xgbe_exit\n");
1796 
1797 	/* Issue a software reset */
1798 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1799 	usleep_range(10, 15);
1800 
1801 	/* Poll Until Poll Condition */
1802 	while (count-- && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1803 		usleep_range(500, 600);
1804 
1805 	if (!count)
1806 		return -EBUSY;
1807 
1808 	DBGPR("<--xgbe_exit\n");
1809 
1810 	return 0;
1811 }
1812 
1813 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1814 {
1815 	unsigned int i, count;
1816 
1817 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1818 		return 0;
1819 
1820 	for (i = 0; i < pdata->tx_q_count; i++)
1821 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1822 
1823 	/* Poll Until Poll Condition */
1824 	for (i = 0; i < pdata->tx_q_count; i++) {
1825 		count = 2000;
1826 		while (count-- && XGMAC_MTL_IOREAD_BITS(pdata, i,
1827 							MTL_Q_TQOMR, FTQ))
1828 			usleep_range(500, 600);
1829 
1830 		if (!count)
1831 			return -EBUSY;
1832 	}
1833 
1834 	return 0;
1835 }
1836 
1837 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1838 {
1839 	/* Set enhanced addressing mode */
1840 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, EAME, 1);
1841 
1842 	/* Set the System Bus mode */
1843 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, UNDEF, 1);
1844 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, BLEN_256, 1);
1845 }
1846 
1847 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1848 {
1849 	unsigned int arcache, awcache;
1850 
1851 	arcache = 0;
1852 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRC, pdata->arcache);
1853 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRD, pdata->axdomain);
1854 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TEC, pdata->arcache);
1855 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TED, pdata->axdomain);
1856 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THC, pdata->arcache);
1857 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THD, pdata->axdomain);
1858 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, arcache);
1859 
1860 	awcache = 0;
1861 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWC, pdata->awcache);
1862 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWD, pdata->axdomain);
1863 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPC, pdata->awcache);
1864 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPD, pdata->axdomain);
1865 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHC, pdata->awcache);
1866 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHD, pdata->axdomain);
1867 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDC, pdata->awcache);
1868 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDD, pdata->axdomain);
1869 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, awcache);
1870 }
1871 
1872 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1873 {
1874 	unsigned int i;
1875 
1876 	/* Set Tx to weighted round robin scheduling algorithm */
1877 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1878 
1879 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
1880 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1881 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1882 				       MTL_TSA_ETS);
1883 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1884 	}
1885 
1886 	/* Set Rx to strict priority algorithm */
1887 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
1888 }
1889 
1890 static unsigned int xgbe_calculate_per_queue_fifo(unsigned int fifo_size,
1891 						  unsigned int queue_count)
1892 {
1893 	unsigned int q_fifo_size = 0;
1894 	enum xgbe_mtl_fifo_size p_fifo = XGMAC_MTL_FIFO_SIZE_256;
1895 
1896 	/* Calculate Tx/Rx fifo share per queue */
1897 	switch (fifo_size) {
1898 	case 0:
1899 		q_fifo_size = XGBE_FIFO_SIZE_B(128);
1900 		break;
1901 	case 1:
1902 		q_fifo_size = XGBE_FIFO_SIZE_B(256);
1903 		break;
1904 	case 2:
1905 		q_fifo_size = XGBE_FIFO_SIZE_B(512);
1906 		break;
1907 	case 3:
1908 		q_fifo_size = XGBE_FIFO_SIZE_KB(1);
1909 		break;
1910 	case 4:
1911 		q_fifo_size = XGBE_FIFO_SIZE_KB(2);
1912 		break;
1913 	case 5:
1914 		q_fifo_size = XGBE_FIFO_SIZE_KB(4);
1915 		break;
1916 	case 6:
1917 		q_fifo_size = XGBE_FIFO_SIZE_KB(8);
1918 		break;
1919 	case 7:
1920 		q_fifo_size = XGBE_FIFO_SIZE_KB(16);
1921 		break;
1922 	case 8:
1923 		q_fifo_size = XGBE_FIFO_SIZE_KB(32);
1924 		break;
1925 	case 9:
1926 		q_fifo_size = XGBE_FIFO_SIZE_KB(64);
1927 		break;
1928 	case 10:
1929 		q_fifo_size = XGBE_FIFO_SIZE_KB(128);
1930 		break;
1931 	case 11:
1932 		q_fifo_size = XGBE_FIFO_SIZE_KB(256);
1933 		break;
1934 	}
1935 
1936 	/* The configured value is not the actual amount of fifo RAM */
1937 	q_fifo_size = min_t(unsigned int, XGBE_FIFO_MAX, q_fifo_size);
1938 
1939 	q_fifo_size = q_fifo_size / queue_count;
1940 
1941 	/* Set the queue fifo size programmable value */
1942 	if (q_fifo_size >= XGBE_FIFO_SIZE_KB(256))
1943 		p_fifo = XGMAC_MTL_FIFO_SIZE_256K;
1944 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(128))
1945 		p_fifo = XGMAC_MTL_FIFO_SIZE_128K;
1946 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(64))
1947 		p_fifo = XGMAC_MTL_FIFO_SIZE_64K;
1948 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(32))
1949 		p_fifo = XGMAC_MTL_FIFO_SIZE_32K;
1950 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(16))
1951 		p_fifo = XGMAC_MTL_FIFO_SIZE_16K;
1952 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(8))
1953 		p_fifo = XGMAC_MTL_FIFO_SIZE_8K;
1954 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(4))
1955 		p_fifo = XGMAC_MTL_FIFO_SIZE_4K;
1956 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(2))
1957 		p_fifo = XGMAC_MTL_FIFO_SIZE_2K;
1958 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(1))
1959 		p_fifo = XGMAC_MTL_FIFO_SIZE_1K;
1960 	else if (q_fifo_size >= XGBE_FIFO_SIZE_B(512))
1961 		p_fifo = XGMAC_MTL_FIFO_SIZE_512;
1962 	else if (q_fifo_size >= XGBE_FIFO_SIZE_B(256))
1963 		p_fifo = XGMAC_MTL_FIFO_SIZE_256;
1964 
1965 	return p_fifo;
1966 }
1967 
1968 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
1969 {
1970 	enum xgbe_mtl_fifo_size fifo_size;
1971 	unsigned int i;
1972 
1973 	fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.tx_fifo_size,
1974 						  pdata->tx_q_count);
1975 
1976 	for (i = 0; i < pdata->tx_q_count; i++)
1977 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo_size);
1978 
1979 	netdev_notice(pdata->netdev, "%d Tx queues, %d byte fifo per queue\n",
1980 		      pdata->tx_q_count, ((fifo_size + 1) * 256));
1981 }
1982 
1983 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
1984 {
1985 	enum xgbe_mtl_fifo_size fifo_size;
1986 	unsigned int i;
1987 
1988 	fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.rx_fifo_size,
1989 						  pdata->rx_q_count);
1990 
1991 	for (i = 0; i < pdata->rx_q_count; i++)
1992 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo_size);
1993 
1994 	netdev_notice(pdata->netdev, "%d Rx queues, %d byte fifo per queue\n",
1995 		      pdata->rx_q_count, ((fifo_size + 1) * 256));
1996 }
1997 
1998 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
1999 {
2000 	unsigned int qptc, qptc_extra, queue;
2001 	unsigned int prio_queues;
2002 	unsigned int ppq, ppq_extra, prio;
2003 	unsigned int mask;
2004 	unsigned int i, j, reg, reg_val;
2005 
2006 	/* Map the MTL Tx Queues to Traffic Classes
2007 	 *   Note: Tx Queues >= Traffic Classes
2008 	 */
2009 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2010 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2011 
2012 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2013 		for (j = 0; j < qptc; j++) {
2014 			DBGPR("  TXq%u mapped to TC%u\n", queue, i);
2015 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2016 					       Q2TCMAP, i);
2017 			pdata->q2tc_map[queue++] = i;
2018 		}
2019 
2020 		if (i < qptc_extra) {
2021 			DBGPR("  TXq%u mapped to TC%u\n", queue, i);
2022 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2023 					       Q2TCMAP, i);
2024 			pdata->q2tc_map[queue++] = i;
2025 		}
2026 	}
2027 
2028 	/* Map the 8 VLAN priority values to available MTL Rx queues */
2029 	prio_queues = min_t(unsigned int, IEEE_8021QAZ_MAX_TCS,
2030 			    pdata->rx_q_count);
2031 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2032 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2033 
2034 	reg = MAC_RQC2R;
2035 	reg_val = 0;
2036 	for (i = 0, prio = 0; i < prio_queues;) {
2037 		mask = 0;
2038 		for (j = 0; j < ppq; j++) {
2039 			DBGPR("  PRIO%u mapped to RXq%u\n", prio, i);
2040 			mask |= (1 << prio);
2041 			pdata->prio2q_map[prio++] = i;
2042 		}
2043 
2044 		if (i < ppq_extra) {
2045 			DBGPR("  PRIO%u mapped to RXq%u\n", prio, i);
2046 			mask |= (1 << prio);
2047 			pdata->prio2q_map[prio++] = i;
2048 		}
2049 
2050 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2051 
2052 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2053 			continue;
2054 
2055 		XGMAC_IOWRITE(pdata, reg, reg_val);
2056 		reg += MAC_RQC2_INC;
2057 		reg_val = 0;
2058 	}
2059 
2060 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2061 	reg = MTL_RQDCM0R;
2062 	reg_val = 0;
2063 	for (i = 0; i < pdata->rx_q_count;) {
2064 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2065 
2066 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2067 			continue;
2068 
2069 		XGMAC_IOWRITE(pdata, reg, reg_val);
2070 
2071 		reg += MTL_RQDCM_INC;
2072 		reg_val = 0;
2073 	}
2074 }
2075 
2076 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2077 {
2078 	unsigned int i;
2079 
2080 	for (i = 0; i < pdata->rx_q_count; i++) {
2081 		/* Activate flow control when less than 4k left in fifo */
2082 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RFA, 2);
2083 
2084 		/* De-activate flow control when more than 6k left in fifo */
2085 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RFD, 4);
2086 	}
2087 }
2088 
2089 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2090 {
2091 	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2092 
2093 	/* Filtering is done using perfect filtering and hash filtering */
2094 	if (pdata->hw_feat.hash_table_size) {
2095 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2096 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2097 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2098 	}
2099 }
2100 
2101 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2102 {
2103 	unsigned int val;
2104 
2105 	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2106 
2107 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2108 }
2109 
2110 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2111 {
2112 	if (pdata->netdev->features & NETIF_F_RXCSUM)
2113 		xgbe_enable_rx_csum(pdata);
2114 	else
2115 		xgbe_disable_rx_csum(pdata);
2116 }
2117 
2118 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2119 {
2120 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2121 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2122 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2123 
2124 	/* Set the current VLAN Hash Table register value */
2125 	xgbe_update_vlan_hash_table(pdata);
2126 
2127 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2128 		xgbe_enable_rx_vlan_filtering(pdata);
2129 	else
2130 		xgbe_disable_rx_vlan_filtering(pdata);
2131 
2132 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2133 		xgbe_enable_rx_vlan_stripping(pdata);
2134 	else
2135 		xgbe_disable_rx_vlan_stripping(pdata);
2136 }
2137 
2138 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2139 {
2140 	bool read_hi;
2141 	u64 val;
2142 
2143 	switch (reg_lo) {
2144 	/* These registers are always 64 bit */
2145 	case MMC_TXOCTETCOUNT_GB_LO:
2146 	case MMC_TXOCTETCOUNT_G_LO:
2147 	case MMC_RXOCTETCOUNT_GB_LO:
2148 	case MMC_RXOCTETCOUNT_G_LO:
2149 		read_hi = true;
2150 		break;
2151 
2152 	default:
2153 		read_hi = false;
2154 	};
2155 
2156 	val = XGMAC_IOREAD(pdata, reg_lo);
2157 
2158 	if (read_hi)
2159 		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2160 
2161 	return val;
2162 }
2163 
2164 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2165 {
2166 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2167 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2168 
2169 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2170 		stats->txoctetcount_gb +=
2171 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2172 
2173 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2174 		stats->txframecount_gb +=
2175 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2176 
2177 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2178 		stats->txbroadcastframes_g +=
2179 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2180 
2181 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2182 		stats->txmulticastframes_g +=
2183 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2184 
2185 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2186 		stats->tx64octets_gb +=
2187 			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2188 
2189 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2190 		stats->tx65to127octets_gb +=
2191 			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2192 
2193 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2194 		stats->tx128to255octets_gb +=
2195 			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2196 
2197 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2198 		stats->tx256to511octets_gb +=
2199 			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2200 
2201 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2202 		stats->tx512to1023octets_gb +=
2203 			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2204 
2205 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2206 		stats->tx1024tomaxoctets_gb +=
2207 			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2208 
2209 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2210 		stats->txunicastframes_gb +=
2211 			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2212 
2213 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2214 		stats->txmulticastframes_gb +=
2215 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2216 
2217 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2218 		stats->txbroadcastframes_g +=
2219 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2220 
2221 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2222 		stats->txunderflowerror +=
2223 			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2224 
2225 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2226 		stats->txoctetcount_g +=
2227 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2228 
2229 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2230 		stats->txframecount_g +=
2231 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2232 
2233 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2234 		stats->txpauseframes +=
2235 			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2236 
2237 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2238 		stats->txvlanframes_g +=
2239 			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2240 }
2241 
2242 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2243 {
2244 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2245 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2246 
2247 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2248 		stats->rxframecount_gb +=
2249 			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2250 
2251 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2252 		stats->rxoctetcount_gb +=
2253 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2254 
2255 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2256 		stats->rxoctetcount_g +=
2257 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2258 
2259 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2260 		stats->rxbroadcastframes_g +=
2261 			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2262 
2263 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2264 		stats->rxmulticastframes_g +=
2265 			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2266 
2267 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2268 		stats->rxcrcerror +=
2269 			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2270 
2271 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2272 		stats->rxrunterror +=
2273 			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2274 
2275 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2276 		stats->rxjabbererror +=
2277 			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2278 
2279 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2280 		stats->rxundersize_g +=
2281 			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2282 
2283 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2284 		stats->rxoversize_g +=
2285 			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2286 
2287 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2288 		stats->rx64octets_gb +=
2289 			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2290 
2291 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2292 		stats->rx65to127octets_gb +=
2293 			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2294 
2295 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2296 		stats->rx128to255octets_gb +=
2297 			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2298 
2299 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2300 		stats->rx256to511octets_gb +=
2301 			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2302 
2303 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2304 		stats->rx512to1023octets_gb +=
2305 			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2306 
2307 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2308 		stats->rx1024tomaxoctets_gb +=
2309 			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2310 
2311 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2312 		stats->rxunicastframes_g +=
2313 			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2314 
2315 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2316 		stats->rxlengtherror +=
2317 			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2318 
2319 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2320 		stats->rxoutofrangetype +=
2321 			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2322 
2323 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2324 		stats->rxpauseframes +=
2325 			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2326 
2327 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2328 		stats->rxfifooverflow +=
2329 			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2330 
2331 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2332 		stats->rxvlanframes_gb +=
2333 			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2334 
2335 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2336 		stats->rxwatchdogerror +=
2337 			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2338 }
2339 
2340 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2341 {
2342 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2343 
2344 	/* Freeze counters */
2345 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2346 
2347 	stats->txoctetcount_gb +=
2348 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2349 
2350 	stats->txframecount_gb +=
2351 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2352 
2353 	stats->txbroadcastframes_g +=
2354 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2355 
2356 	stats->txmulticastframes_g +=
2357 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2358 
2359 	stats->tx64octets_gb +=
2360 		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2361 
2362 	stats->tx65to127octets_gb +=
2363 		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2364 
2365 	stats->tx128to255octets_gb +=
2366 		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2367 
2368 	stats->tx256to511octets_gb +=
2369 		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2370 
2371 	stats->tx512to1023octets_gb +=
2372 		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2373 
2374 	stats->tx1024tomaxoctets_gb +=
2375 		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2376 
2377 	stats->txunicastframes_gb +=
2378 		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2379 
2380 	stats->txmulticastframes_gb +=
2381 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2382 
2383 	stats->txbroadcastframes_g +=
2384 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2385 
2386 	stats->txunderflowerror +=
2387 		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2388 
2389 	stats->txoctetcount_g +=
2390 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2391 
2392 	stats->txframecount_g +=
2393 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2394 
2395 	stats->txpauseframes +=
2396 		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2397 
2398 	stats->txvlanframes_g +=
2399 		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2400 
2401 	stats->rxframecount_gb +=
2402 		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2403 
2404 	stats->rxoctetcount_gb +=
2405 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2406 
2407 	stats->rxoctetcount_g +=
2408 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2409 
2410 	stats->rxbroadcastframes_g +=
2411 		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2412 
2413 	stats->rxmulticastframes_g +=
2414 		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2415 
2416 	stats->rxcrcerror +=
2417 		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2418 
2419 	stats->rxrunterror +=
2420 		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2421 
2422 	stats->rxjabbererror +=
2423 		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2424 
2425 	stats->rxundersize_g +=
2426 		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2427 
2428 	stats->rxoversize_g +=
2429 		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2430 
2431 	stats->rx64octets_gb +=
2432 		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2433 
2434 	stats->rx65to127octets_gb +=
2435 		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2436 
2437 	stats->rx128to255octets_gb +=
2438 		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2439 
2440 	stats->rx256to511octets_gb +=
2441 		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2442 
2443 	stats->rx512to1023octets_gb +=
2444 		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2445 
2446 	stats->rx1024tomaxoctets_gb +=
2447 		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2448 
2449 	stats->rxunicastframes_g +=
2450 		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2451 
2452 	stats->rxlengtherror +=
2453 		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2454 
2455 	stats->rxoutofrangetype +=
2456 		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2457 
2458 	stats->rxpauseframes +=
2459 		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2460 
2461 	stats->rxfifooverflow +=
2462 		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2463 
2464 	stats->rxvlanframes_gb +=
2465 		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2466 
2467 	stats->rxwatchdogerror +=
2468 		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2469 
2470 	/* Un-freeze counters */
2471 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2472 }
2473 
2474 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
2475 {
2476 	/* Set counters to reset on read */
2477 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2478 
2479 	/* Reset the counters */
2480 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2481 }
2482 
2483 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
2484 				 struct xgbe_channel *channel)
2485 {
2486 	unsigned int tx_dsr, tx_pos, tx_qidx;
2487 	unsigned int tx_status;
2488 	unsigned long tx_timeout;
2489 
2490 	/* Calculate the status register to read and the position within */
2491 	if (channel->queue_index < DMA_DSRX_FIRST_QUEUE) {
2492 		tx_dsr = DMA_DSR0;
2493 		tx_pos = (channel->queue_index * DMA_DSR_Q_WIDTH) +
2494 			 DMA_DSR0_TPS_START;
2495 	} else {
2496 		tx_qidx = channel->queue_index - DMA_DSRX_FIRST_QUEUE;
2497 
2498 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2499 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2500 			 DMA_DSRX_TPS_START;
2501 	}
2502 
2503 	/* The Tx engine cannot be stopped if it is actively processing
2504 	 * descriptors. Wait for the Tx engine to enter the stopped or
2505 	 * suspended state.  Don't wait forever though...
2506 	 */
2507 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
2508 	while (time_before(jiffies, tx_timeout)) {
2509 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2510 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2511 		if ((tx_status == DMA_TPS_STOPPED) ||
2512 		    (tx_status == DMA_TPS_SUSPENDED))
2513 			break;
2514 
2515 		usleep_range(500, 1000);
2516 	}
2517 
2518 	if (!time_before(jiffies, tx_timeout))
2519 		netdev_info(pdata->netdev,
2520 			    "timed out waiting for Tx DMA channel %u to stop\n",
2521 			    channel->queue_index);
2522 }
2523 
2524 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
2525 {
2526 	struct xgbe_channel *channel;
2527 	unsigned int i;
2528 
2529 	/* Enable each Tx DMA channel */
2530 	channel = pdata->channel;
2531 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2532 		if (!channel->tx_ring)
2533 			break;
2534 
2535 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
2536 	}
2537 
2538 	/* Enable each Tx queue */
2539 	for (i = 0; i < pdata->tx_q_count; i++)
2540 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2541 				       MTL_Q_ENABLED);
2542 
2543 	/* Enable MAC Tx */
2544 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2545 }
2546 
2547 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
2548 {
2549 	struct xgbe_channel *channel;
2550 	unsigned int i;
2551 
2552 	/* Prepare for Tx DMA channel stop */
2553 	channel = pdata->channel;
2554 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2555 		if (!channel->tx_ring)
2556 			break;
2557 
2558 		xgbe_prepare_tx_stop(pdata, channel);
2559 	}
2560 
2561 	/* Disable MAC Tx */
2562 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2563 
2564 	/* Disable each Tx queue */
2565 	for (i = 0; i < pdata->tx_q_count; i++)
2566 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2567 
2568 	/* Disable each Tx DMA channel */
2569 	channel = pdata->channel;
2570 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2571 		if (!channel->tx_ring)
2572 			break;
2573 
2574 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
2575 	}
2576 }
2577 
2578 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
2579 {
2580 	struct xgbe_channel *channel;
2581 	unsigned int reg_val, i;
2582 
2583 	/* Enable each Rx DMA channel */
2584 	channel = pdata->channel;
2585 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2586 		if (!channel->rx_ring)
2587 			break;
2588 
2589 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
2590 	}
2591 
2592 	/* Enable each Rx queue */
2593 	reg_val = 0;
2594 	for (i = 0; i < pdata->rx_q_count; i++)
2595 		reg_val |= (0x02 << (i << 1));
2596 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2597 
2598 	/* Enable MAC Rx */
2599 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2600 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2601 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2602 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2603 }
2604 
2605 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
2606 {
2607 	struct xgbe_channel *channel;
2608 	unsigned int i;
2609 
2610 	/* Disable MAC Rx */
2611 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2612 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2613 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2614 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2615 
2616 	/* Disable each Rx queue */
2617 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2618 
2619 	/* Disable each Rx DMA channel */
2620 	channel = pdata->channel;
2621 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2622 		if (!channel->rx_ring)
2623 			break;
2624 
2625 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
2626 	}
2627 }
2628 
2629 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2630 {
2631 	struct xgbe_channel *channel;
2632 	unsigned int i;
2633 
2634 	/* Enable each Tx DMA channel */
2635 	channel = pdata->channel;
2636 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2637 		if (!channel->tx_ring)
2638 			break;
2639 
2640 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
2641 	}
2642 
2643 	/* Enable MAC Tx */
2644 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2645 }
2646 
2647 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2648 {
2649 	struct xgbe_channel *channel;
2650 	unsigned int i;
2651 
2652 	/* Prepare for Tx DMA channel stop */
2653 	channel = pdata->channel;
2654 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2655 		if (!channel->tx_ring)
2656 			break;
2657 
2658 		xgbe_prepare_tx_stop(pdata, channel);
2659 	}
2660 
2661 	/* Disable MAC Tx */
2662 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2663 
2664 	/* Disable each Tx DMA channel */
2665 	channel = pdata->channel;
2666 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2667 		if (!channel->tx_ring)
2668 			break;
2669 
2670 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
2671 	}
2672 }
2673 
2674 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2675 {
2676 	struct xgbe_channel *channel;
2677 	unsigned int i;
2678 
2679 	/* Enable each Rx DMA channel */
2680 	channel = pdata->channel;
2681 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2682 		if (!channel->rx_ring)
2683 			break;
2684 
2685 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
2686 	}
2687 }
2688 
2689 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2690 {
2691 	struct xgbe_channel *channel;
2692 	unsigned int i;
2693 
2694 	/* Disable each Rx DMA channel */
2695 	channel = pdata->channel;
2696 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2697 		if (!channel->rx_ring)
2698 			break;
2699 
2700 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
2701 	}
2702 }
2703 
2704 static int xgbe_init(struct xgbe_prv_data *pdata)
2705 {
2706 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
2707 	int ret;
2708 
2709 	DBGPR("-->xgbe_init\n");
2710 
2711 	/* Flush Tx queues */
2712 	ret = xgbe_flush_tx_queues(pdata);
2713 	if (ret)
2714 		return ret;
2715 
2716 	/*
2717 	 * Initialize DMA related features
2718 	 */
2719 	xgbe_config_dma_bus(pdata);
2720 	xgbe_config_dma_cache(pdata);
2721 	xgbe_config_osp_mode(pdata);
2722 	xgbe_config_pblx8(pdata);
2723 	xgbe_config_tx_pbl_val(pdata);
2724 	xgbe_config_rx_pbl_val(pdata);
2725 	xgbe_config_rx_coalesce(pdata);
2726 	xgbe_config_tx_coalesce(pdata);
2727 	xgbe_config_rx_buffer_size(pdata);
2728 	xgbe_config_tso_mode(pdata);
2729 	xgbe_config_sph_mode(pdata);
2730 	xgbe_config_rss(pdata);
2731 	desc_if->wrapper_tx_desc_init(pdata);
2732 	desc_if->wrapper_rx_desc_init(pdata);
2733 	xgbe_enable_dma_interrupts(pdata);
2734 
2735 	/*
2736 	 * Initialize MTL related features
2737 	 */
2738 	xgbe_config_mtl_mode(pdata);
2739 	xgbe_config_queue_mapping(pdata);
2740 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2741 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2742 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2743 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2744 	xgbe_config_tx_fifo_size(pdata);
2745 	xgbe_config_rx_fifo_size(pdata);
2746 	xgbe_config_flow_control_threshold(pdata);
2747 	/*TODO: Error Packet and undersized good Packet forwarding enable
2748 		(FEP and FUP)
2749 	 */
2750 	xgbe_config_dcb_tc(pdata);
2751 	xgbe_config_dcb_pfc(pdata);
2752 	xgbe_enable_mtl_interrupts(pdata);
2753 
2754 	/*
2755 	 * Initialize MAC related features
2756 	 */
2757 	xgbe_config_mac_address(pdata);
2758 	xgbe_config_jumbo_enable(pdata);
2759 	xgbe_config_flow_control(pdata);
2760 	xgbe_config_checksum_offload(pdata);
2761 	xgbe_config_vlan_support(pdata);
2762 	xgbe_config_mmc(pdata);
2763 	xgbe_enable_mac_interrupts(pdata);
2764 
2765 	DBGPR("<--xgbe_init\n");
2766 
2767 	return 0;
2768 }
2769 
2770 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2771 {
2772 	DBGPR("-->xgbe_init_function_ptrs\n");
2773 
2774 	hw_if->tx_complete = xgbe_tx_complete;
2775 
2776 	hw_if->set_promiscuous_mode = xgbe_set_promiscuous_mode;
2777 	hw_if->set_all_multicast_mode = xgbe_set_all_multicast_mode;
2778 	hw_if->add_mac_addresses = xgbe_add_mac_addresses;
2779 	hw_if->set_mac_address = xgbe_set_mac_address;
2780 
2781 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2782 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2783 
2784 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2785 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2786 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2787 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2788 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2789 
2790 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2791 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2792 
2793 	hw_if->set_gmii_speed = xgbe_set_gmii_speed;
2794 	hw_if->set_gmii_2500_speed = xgbe_set_gmii_2500_speed;
2795 	hw_if->set_xgmii_speed = xgbe_set_xgmii_speed;
2796 
2797 	hw_if->enable_tx = xgbe_enable_tx;
2798 	hw_if->disable_tx = xgbe_disable_tx;
2799 	hw_if->enable_rx = xgbe_enable_rx;
2800 	hw_if->disable_rx = xgbe_disable_rx;
2801 
2802 	hw_if->powerup_tx = xgbe_powerup_tx;
2803 	hw_if->powerdown_tx = xgbe_powerdown_tx;
2804 	hw_if->powerup_rx = xgbe_powerup_rx;
2805 	hw_if->powerdown_rx = xgbe_powerdown_rx;
2806 
2807 	hw_if->dev_xmit = xgbe_dev_xmit;
2808 	hw_if->dev_read = xgbe_dev_read;
2809 	hw_if->enable_int = xgbe_enable_int;
2810 	hw_if->disable_int = xgbe_disable_int;
2811 	hw_if->init = xgbe_init;
2812 	hw_if->exit = xgbe_exit;
2813 
2814 	/* Descriptor related Sequences have to be initialized here */
2815 	hw_if->tx_desc_init = xgbe_tx_desc_init;
2816 	hw_if->rx_desc_init = xgbe_rx_desc_init;
2817 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2818 	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
2819 	hw_if->is_last_desc = xgbe_is_last_desc;
2820 	hw_if->is_context_desc = xgbe_is_context_desc;
2821 	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
2822 
2823 	/* For FLOW ctrl */
2824 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2825 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2826 
2827 	/* For RX coalescing */
2828 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2829 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2830 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2831 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2832 
2833 	/* For RX and TX threshold config */
2834 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2835 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2836 
2837 	/* For RX and TX Store and Forward Mode config */
2838 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2839 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2840 
2841 	/* For TX DMA Operating on Second Frame config */
2842 	hw_if->config_osp_mode = xgbe_config_osp_mode;
2843 
2844 	/* For RX and TX PBL config */
2845 	hw_if->config_rx_pbl_val = xgbe_config_rx_pbl_val;
2846 	hw_if->get_rx_pbl_val = xgbe_get_rx_pbl_val;
2847 	hw_if->config_tx_pbl_val = xgbe_config_tx_pbl_val;
2848 	hw_if->get_tx_pbl_val = xgbe_get_tx_pbl_val;
2849 	hw_if->config_pblx8 = xgbe_config_pblx8;
2850 
2851 	/* For MMC statistics support */
2852 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2853 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2854 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2855 
2856 	/* For PTP config */
2857 	hw_if->config_tstamp = xgbe_config_tstamp;
2858 	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
2859 	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
2860 	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
2861 	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
2862 
2863 	/* For Data Center Bridging config */
2864 	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
2865 	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
2866 
2867 	/* For Receive Side Scaling */
2868 	hw_if->enable_rss = xgbe_enable_rss;
2869 	hw_if->disable_rss = xgbe_disable_rss;
2870 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2871 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2872 
2873 	DBGPR("<--xgbe_init_function_ptrs\n");
2874 }
2875