1 /* 2 * AMD 10Gb Ethernet driver 3 * 4 * This file is available to you under your choice of the following two 5 * licenses: 6 * 7 * License 1: GPLv2 8 * 9 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. 10 * 11 * This file is free software; you may copy, redistribute and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation, either version 2 of the License, or (at 14 * your option) any later version. 15 * 16 * This file is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program. If not, see <http://www.gnu.org/licenses/>. 23 * 24 * This file incorporates work covered by the following copyright and 25 * permission notice: 26 * The Synopsys DWC ETHER XGMAC Software Driver and documentation 27 * (hereinafter "Software") is an unsupported proprietary work of Synopsys, 28 * Inc. unless otherwise expressly agreed to in writing between Synopsys 29 * and you. 30 * 31 * The Software IS NOT an item of Licensed Software or Licensed Product 32 * under any End User Software License Agreement or Agreement for Licensed 33 * Product with Synopsys or any supplement thereto. Permission is hereby 34 * granted, free of charge, to any person obtaining a copy of this software 35 * annotated with this license and the Software, to deal in the Software 36 * without restriction, including without limitation the rights to use, 37 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies 38 * of the Software, and to permit persons to whom the Software is furnished 39 * to do so, subject to the following conditions: 40 * 41 * The above copyright notice and this permission notice shall be included 42 * in all copies or substantial portions of the Software. 43 * 44 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" 45 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 46 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 47 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS 48 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 49 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 50 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 51 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 52 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 53 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 54 * THE POSSIBILITY OF SUCH DAMAGE. 55 * 56 * 57 * License 2: Modified BSD 58 * 59 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. 60 * All rights reserved. 61 * 62 * Redistribution and use in source and binary forms, with or without 63 * modification, are permitted provided that the following conditions are met: 64 * * Redistributions of source code must retain the above copyright 65 * notice, this list of conditions and the following disclaimer. 66 * * Redistributions in binary form must reproduce the above copyright 67 * notice, this list of conditions and the following disclaimer in the 68 * documentation and/or other materials provided with the distribution. 69 * * Neither the name of Advanced Micro Devices, Inc. nor the 70 * names of its contributors may be used to endorse or promote products 71 * derived from this software without specific prior written permission. 72 * 73 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 74 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 76 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY 77 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 78 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 80 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 81 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 82 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 83 * 84 * This file incorporates work covered by the following copyright and 85 * permission notice: 86 * The Synopsys DWC ETHER XGMAC Software Driver and documentation 87 * (hereinafter "Software") is an unsupported proprietary work of Synopsys, 88 * Inc. unless otherwise expressly agreed to in writing between Synopsys 89 * and you. 90 * 91 * The Software IS NOT an item of Licensed Software or Licensed Product 92 * under any End User Software License Agreement or Agreement for Licensed 93 * Product with Synopsys or any supplement thereto. Permission is hereby 94 * granted, free of charge, to any person obtaining a copy of this software 95 * annotated with this license and the Software, to deal in the Software 96 * without restriction, including without limitation the rights to use, 97 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies 98 * of the Software, and to permit persons to whom the Software is furnished 99 * to do so, subject to the following conditions: 100 * 101 * The above copyright notice and this permission notice shall be included 102 * in all copies or substantial portions of the Software. 103 * 104 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" 105 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 106 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 107 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS 108 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 109 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 110 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 111 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 112 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 113 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 114 * THE POSSIBILITY OF SUCH DAMAGE. 115 */ 116 117 #include <linux/phy.h> 118 #include <linux/mdio.h> 119 #include <linux/clk.h> 120 #include <linux/bitrev.h> 121 #include <linux/crc32.h> 122 #include <linux/crc32poly.h> 123 124 #include "xgbe.h" 125 #include "xgbe-common.h" 126 127 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata) 128 { 129 return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 130 } 131 132 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, 133 unsigned int usec) 134 { 135 unsigned long rate; 136 unsigned int ret; 137 138 DBGPR("-->xgbe_usec_to_riwt\n"); 139 140 rate = pdata->sysclk_rate; 141 142 /* 143 * Convert the input usec value to the watchdog timer value. Each 144 * watchdog timer value is equivalent to 256 clock cycles. 145 * Calculate the required value as: 146 * ( usec * ( system_clock_mhz / 10^6 ) / 256 147 */ 148 ret = (usec * (rate / 1000000)) / 256; 149 150 DBGPR("<--xgbe_usec_to_riwt\n"); 151 152 return ret; 153 } 154 155 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, 156 unsigned int riwt) 157 { 158 unsigned long rate; 159 unsigned int ret; 160 161 DBGPR("-->xgbe_riwt_to_usec\n"); 162 163 rate = pdata->sysclk_rate; 164 165 /* 166 * Convert the input watchdog timer value to the usec value. Each 167 * watchdog timer value is equivalent to 256 clock cycles. 168 * Calculate the required value as: 169 * ( riwt * 256 ) / ( system_clock_mhz / 10^6 ) 170 */ 171 ret = (riwt * 256) / (rate / 1000000); 172 173 DBGPR("<--xgbe_riwt_to_usec\n"); 174 175 return ret; 176 } 177 178 static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata) 179 { 180 unsigned int pblx8, pbl; 181 unsigned int i; 182 183 pblx8 = DMA_PBL_X8_DISABLE; 184 pbl = pdata->pbl; 185 186 if (pdata->pbl > 32) { 187 pblx8 = DMA_PBL_X8_ENABLE; 188 pbl >>= 3; 189 } 190 191 for (i = 0; i < pdata->channel_count; i++) { 192 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8, 193 pblx8); 194 195 if (pdata->channel[i]->tx_ring) 196 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, 197 PBL, pbl); 198 199 if (pdata->channel[i]->rx_ring) 200 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, 201 PBL, pbl); 202 } 203 204 return 0; 205 } 206 207 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata) 208 { 209 unsigned int i; 210 211 for (i = 0; i < pdata->channel_count; i++) { 212 if (!pdata->channel[i]->tx_ring) 213 break; 214 215 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP, 216 pdata->tx_osp_mode); 217 } 218 219 return 0; 220 } 221 222 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val) 223 { 224 unsigned int i; 225 226 for (i = 0; i < pdata->rx_q_count; i++) 227 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val); 228 229 return 0; 230 } 231 232 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val) 233 { 234 unsigned int i; 235 236 for (i = 0; i < pdata->tx_q_count; i++) 237 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val); 238 239 return 0; 240 } 241 242 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, 243 unsigned int val) 244 { 245 unsigned int i; 246 247 for (i = 0; i < pdata->rx_q_count; i++) 248 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val); 249 250 return 0; 251 } 252 253 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, 254 unsigned int val) 255 { 256 unsigned int i; 257 258 for (i = 0; i < pdata->tx_q_count; i++) 259 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val); 260 261 return 0; 262 } 263 264 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata) 265 { 266 unsigned int i; 267 268 for (i = 0; i < pdata->channel_count; i++) { 269 if (!pdata->channel[i]->rx_ring) 270 break; 271 272 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT, 273 pdata->rx_riwt); 274 } 275 276 return 0; 277 } 278 279 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata) 280 { 281 return 0; 282 } 283 284 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata) 285 { 286 unsigned int i; 287 288 for (i = 0; i < pdata->channel_count; i++) { 289 if (!pdata->channel[i]->rx_ring) 290 break; 291 292 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ, 293 pdata->rx_buf_size); 294 } 295 } 296 297 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata) 298 { 299 unsigned int i; 300 301 for (i = 0; i < pdata->channel_count; i++) { 302 if (!pdata->channel[i]->tx_ring) 303 break; 304 305 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1); 306 } 307 } 308 309 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata) 310 { 311 unsigned int i; 312 313 for (i = 0; i < pdata->channel_count; i++) { 314 if (!pdata->channel[i]->rx_ring) 315 break; 316 317 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1); 318 } 319 320 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE); 321 } 322 323 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type, 324 unsigned int index, unsigned int val) 325 { 326 unsigned int wait; 327 int ret = 0; 328 329 mutex_lock(&pdata->rss_mutex); 330 331 if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) { 332 ret = -EBUSY; 333 goto unlock; 334 } 335 336 XGMAC_IOWRITE(pdata, MAC_RSSDR, val); 337 338 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index); 339 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type); 340 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0); 341 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1); 342 343 wait = 1000; 344 while (wait--) { 345 if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) 346 goto unlock; 347 348 usleep_range(1000, 1500); 349 } 350 351 ret = -EBUSY; 352 353 unlock: 354 mutex_unlock(&pdata->rss_mutex); 355 356 return ret; 357 } 358 359 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata) 360 { 361 unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32); 362 unsigned int *key = (unsigned int *)&pdata->rss_key; 363 int ret; 364 365 while (key_regs--) { 366 ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE, 367 key_regs, *key++); 368 if (ret) 369 return ret; 370 } 371 372 return 0; 373 } 374 375 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata) 376 { 377 unsigned int i; 378 int ret; 379 380 for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) { 381 ret = xgbe_write_rss_reg(pdata, 382 XGBE_RSS_LOOKUP_TABLE_TYPE, i, 383 pdata->rss_table[i]); 384 if (ret) 385 return ret; 386 } 387 388 return 0; 389 } 390 391 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key) 392 { 393 memcpy(pdata->rss_key, key, sizeof(pdata->rss_key)); 394 395 return xgbe_write_rss_hash_key(pdata); 396 } 397 398 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, 399 const u32 *table) 400 { 401 unsigned int i; 402 403 for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) 404 XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]); 405 406 return xgbe_write_rss_lookup_table(pdata); 407 } 408 409 static int xgbe_enable_rss(struct xgbe_prv_data *pdata) 410 { 411 int ret; 412 413 if (!pdata->hw_feat.rss) 414 return -EOPNOTSUPP; 415 416 /* Program the hash key */ 417 ret = xgbe_write_rss_hash_key(pdata); 418 if (ret) 419 return ret; 420 421 /* Program the lookup table */ 422 ret = xgbe_write_rss_lookup_table(pdata); 423 if (ret) 424 return ret; 425 426 /* Set the RSS options */ 427 XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options); 428 429 /* Enable RSS */ 430 XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1); 431 432 return 0; 433 } 434 435 static int xgbe_disable_rss(struct xgbe_prv_data *pdata) 436 { 437 if (!pdata->hw_feat.rss) 438 return -EOPNOTSUPP; 439 440 XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0); 441 442 return 0; 443 } 444 445 static void xgbe_config_rss(struct xgbe_prv_data *pdata) 446 { 447 int ret; 448 449 if (!pdata->hw_feat.rss) 450 return; 451 452 if (pdata->netdev->features & NETIF_F_RXHASH) 453 ret = xgbe_enable_rss(pdata); 454 else 455 ret = xgbe_disable_rss(pdata); 456 457 if (ret) 458 netdev_err(pdata->netdev, 459 "error configuring RSS, RSS disabled\n"); 460 } 461 462 static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata, 463 unsigned int queue) 464 { 465 unsigned int prio, tc; 466 467 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) { 468 /* Does this queue handle the priority? */ 469 if (pdata->prio2q_map[prio] != queue) 470 continue; 471 472 /* Get the Traffic Class for this priority */ 473 tc = pdata->ets->prio_tc[prio]; 474 475 /* Check if PFC is enabled for this traffic class */ 476 if (pdata->pfc->pfc_en & (1 << tc)) 477 return true; 478 } 479 480 return false; 481 } 482 483 static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata) 484 { 485 /* Program the VXLAN port */ 486 XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port); 487 488 netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n", 489 pdata->vxlan_port); 490 } 491 492 static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata) 493 { 494 if (!pdata->hw_feat.vxn) 495 return; 496 497 /* Program the VXLAN port */ 498 xgbe_set_vxlan_id(pdata); 499 500 /* Allow for IPv6/UDP zero-checksum VXLAN packets */ 501 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1); 502 503 /* Enable VXLAN tunneling mode */ 504 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0); 505 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1); 506 507 netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n"); 508 } 509 510 static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata) 511 { 512 if (!pdata->hw_feat.vxn) 513 return; 514 515 /* Disable tunneling mode */ 516 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0); 517 518 /* Clear IPv6/UDP zero-checksum VXLAN packets setting */ 519 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0); 520 521 /* Clear the VXLAN port */ 522 XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0); 523 524 netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n"); 525 } 526 527 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata) 528 { 529 unsigned int max_q_count, q_count; 530 unsigned int reg, reg_val; 531 unsigned int i; 532 533 /* Clear MTL flow control */ 534 for (i = 0; i < pdata->rx_q_count; i++) 535 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0); 536 537 /* Clear MAC flow control */ 538 max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES; 539 q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count); 540 reg = MAC_Q0TFCR; 541 for (i = 0; i < q_count; i++) { 542 reg_val = XGMAC_IOREAD(pdata, reg); 543 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0); 544 XGMAC_IOWRITE(pdata, reg, reg_val); 545 546 reg += MAC_QTFCR_INC; 547 } 548 549 return 0; 550 } 551 552 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata) 553 { 554 struct ieee_pfc *pfc = pdata->pfc; 555 struct ieee_ets *ets = pdata->ets; 556 unsigned int max_q_count, q_count; 557 unsigned int reg, reg_val; 558 unsigned int i; 559 560 /* Set MTL flow control */ 561 for (i = 0; i < pdata->rx_q_count; i++) { 562 unsigned int ehfc = 0; 563 564 if (pdata->rx_rfd[i]) { 565 /* Flow control thresholds are established */ 566 if (pfc && ets) { 567 if (xgbe_is_pfc_queue(pdata, i)) 568 ehfc = 1; 569 } else { 570 ehfc = 1; 571 } 572 } 573 574 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc); 575 576 netif_dbg(pdata, drv, pdata->netdev, 577 "flow control %s for RXq%u\n", 578 ehfc ? "enabled" : "disabled", i); 579 } 580 581 /* Set MAC flow control */ 582 max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES; 583 q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count); 584 reg = MAC_Q0TFCR; 585 for (i = 0; i < q_count; i++) { 586 reg_val = XGMAC_IOREAD(pdata, reg); 587 588 /* Enable transmit flow control */ 589 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1); 590 /* Set pause time */ 591 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff); 592 593 XGMAC_IOWRITE(pdata, reg, reg_val); 594 595 reg += MAC_QTFCR_INC; 596 } 597 598 return 0; 599 } 600 601 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata) 602 { 603 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0); 604 605 return 0; 606 } 607 608 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata) 609 { 610 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1); 611 612 return 0; 613 } 614 615 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata) 616 { 617 struct ieee_pfc *pfc = pdata->pfc; 618 619 if (pdata->tx_pause || (pfc && pfc->pfc_en)) 620 xgbe_enable_tx_flow_control(pdata); 621 else 622 xgbe_disable_tx_flow_control(pdata); 623 624 return 0; 625 } 626 627 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata) 628 { 629 struct ieee_pfc *pfc = pdata->pfc; 630 631 if (pdata->rx_pause || (pfc && pfc->pfc_en)) 632 xgbe_enable_rx_flow_control(pdata); 633 else 634 xgbe_disable_rx_flow_control(pdata); 635 636 return 0; 637 } 638 639 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata) 640 { 641 struct ieee_pfc *pfc = pdata->pfc; 642 643 xgbe_config_tx_flow_control(pdata); 644 xgbe_config_rx_flow_control(pdata); 645 646 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 647 (pfc && pfc->pfc_en) ? 1 : 0); 648 } 649 650 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata) 651 { 652 struct xgbe_channel *channel; 653 unsigned int i, ver; 654 655 /* Set the interrupt mode if supported */ 656 if (pdata->channel_irq_mode) 657 XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM, 658 pdata->channel_irq_mode); 659 660 ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER); 661 662 for (i = 0; i < pdata->channel_count; i++) { 663 channel = pdata->channel[i]; 664 665 /* Clear all the interrupts which are set */ 666 XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, 667 XGMAC_DMA_IOREAD(channel, DMA_CH_SR)); 668 669 /* Clear all interrupt enable bits */ 670 channel->curr_ier = 0; 671 672 /* Enable following interrupts 673 * NIE - Normal Interrupt Summary Enable 674 * AIE - Abnormal Interrupt Summary Enable 675 * FBEE - Fatal Bus Error Enable 676 */ 677 if (ver < 0x21) { 678 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1); 679 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1); 680 } else { 681 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1); 682 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1); 683 } 684 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1); 685 686 if (channel->tx_ring) { 687 /* Enable the following Tx interrupts 688 * TIE - Transmit Interrupt Enable (unless using 689 * per channel interrupts in edge triggered 690 * mode) 691 */ 692 if (!pdata->per_channel_irq || pdata->channel_irq_mode) 693 XGMAC_SET_BITS(channel->curr_ier, 694 DMA_CH_IER, TIE, 1); 695 } 696 if (channel->rx_ring) { 697 /* Enable following Rx interrupts 698 * RBUE - Receive Buffer Unavailable Enable 699 * RIE - Receive Interrupt Enable (unless using 700 * per channel interrupts in edge triggered 701 * mode) 702 */ 703 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1); 704 if (!pdata->per_channel_irq || pdata->channel_irq_mode) 705 XGMAC_SET_BITS(channel->curr_ier, 706 DMA_CH_IER, RIE, 1); 707 } 708 709 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier); 710 } 711 } 712 713 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata) 714 { 715 unsigned int mtl_q_isr; 716 unsigned int q_count, i; 717 718 q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt); 719 for (i = 0; i < q_count; i++) { 720 /* Clear all the interrupts which are set */ 721 mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR); 722 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr); 723 724 /* No MTL interrupts to be enabled */ 725 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0); 726 } 727 } 728 729 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata) 730 { 731 unsigned int mac_ier = 0; 732 733 /* Enable Timestamp interrupt */ 734 XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1); 735 736 XGMAC_IOWRITE(pdata, MAC_IER, mac_ier); 737 738 /* Enable all counter interrupts */ 739 XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff); 740 XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff); 741 742 /* Enable MDIO single command completion interrupt */ 743 XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1); 744 } 745 746 static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata) 747 { 748 unsigned int ecc_isr, ecc_ier = 0; 749 750 if (!pdata->vdata->ecc_support) 751 return; 752 753 /* Clear all the interrupts which are set */ 754 ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR); 755 XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr); 756 757 /* Enable ECC interrupts */ 758 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1); 759 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1); 760 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1); 761 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1); 762 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1); 763 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1); 764 765 XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier); 766 } 767 768 static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata) 769 { 770 unsigned int ecc_ier; 771 772 ecc_ier = XP_IOREAD(pdata, XP_ECC_IER); 773 774 /* Disable ECC DED interrupts */ 775 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0); 776 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0); 777 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0); 778 779 XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier); 780 } 781 782 static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata, 783 enum xgbe_ecc_sec sec) 784 { 785 unsigned int ecc_ier; 786 787 ecc_ier = XP_IOREAD(pdata, XP_ECC_IER); 788 789 /* Disable ECC SEC interrupt */ 790 switch (sec) { 791 case XGBE_ECC_SEC_TX: 792 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0); 793 break; 794 case XGBE_ECC_SEC_RX: 795 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0); 796 break; 797 case XGBE_ECC_SEC_DESC: 798 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0); 799 break; 800 } 801 802 XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier); 803 } 804 805 static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed) 806 { 807 unsigned int ss; 808 809 switch (speed) { 810 case SPEED_1000: 811 ss = 0x03; 812 break; 813 case SPEED_2500: 814 ss = 0x02; 815 break; 816 case SPEED_10000: 817 ss = 0x00; 818 break; 819 default: 820 return -EINVAL; 821 } 822 823 if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss) 824 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss); 825 826 return 0; 827 } 828 829 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata) 830 { 831 /* Put the VLAN tag in the Rx descriptor */ 832 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1); 833 834 /* Don't check the VLAN type */ 835 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1); 836 837 /* Check only C-TAG (0x8100) packets */ 838 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0); 839 840 /* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */ 841 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0); 842 843 /* Enable VLAN tag stripping */ 844 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3); 845 846 return 0; 847 } 848 849 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata) 850 { 851 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0); 852 853 return 0; 854 } 855 856 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata) 857 { 858 /* Enable VLAN filtering */ 859 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1); 860 861 /* Enable VLAN Hash Table filtering */ 862 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1); 863 864 /* Disable VLAN tag inverse matching */ 865 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0); 866 867 /* Only filter on the lower 12-bits of the VLAN tag */ 868 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1); 869 870 /* In order for the VLAN Hash Table filtering to be effective, 871 * the VLAN tag identifier in the VLAN Tag Register must not 872 * be zero. Set the VLAN tag identifier to "1" to enable the 873 * VLAN Hash Table filtering. This implies that a VLAN tag of 874 * 1 will always pass filtering. 875 */ 876 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1); 877 878 return 0; 879 } 880 881 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata) 882 { 883 /* Disable VLAN filtering */ 884 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0); 885 886 return 0; 887 } 888 889 static u32 xgbe_vid_crc32_le(__le16 vid_le) 890 { 891 u32 crc = ~0; 892 u32 temp = 0; 893 unsigned char *data = (unsigned char *)&vid_le; 894 unsigned char data_byte = 0; 895 int i, bits; 896 897 bits = get_bitmask_order(VLAN_VID_MASK); 898 for (i = 0; i < bits; i++) { 899 if ((i % 8) == 0) 900 data_byte = data[i / 8]; 901 902 temp = ((crc & 1) ^ data_byte) & 1; 903 crc >>= 1; 904 data_byte >>= 1; 905 906 if (temp) 907 crc ^= CRC32_POLY_LE; 908 } 909 910 return crc; 911 } 912 913 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata) 914 { 915 u32 crc; 916 u16 vid; 917 __le16 vid_le; 918 u16 vlan_hash_table = 0; 919 920 /* Generate the VLAN Hash Table value */ 921 for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) { 922 /* Get the CRC32 value of the VLAN ID */ 923 vid_le = cpu_to_le16(vid); 924 crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28; 925 926 vlan_hash_table |= (1 << crc); 927 } 928 929 /* Set the VLAN Hash Table filtering register */ 930 XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table); 931 932 return 0; 933 } 934 935 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, 936 unsigned int enable) 937 { 938 unsigned int val = enable ? 1 : 0; 939 940 if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val) 941 return 0; 942 943 netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n", 944 enable ? "entering" : "leaving"); 945 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val); 946 947 /* Hardware will still perform VLAN filtering in promiscuous mode */ 948 if (enable) { 949 xgbe_disable_rx_vlan_filtering(pdata); 950 } else { 951 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER) 952 xgbe_enable_rx_vlan_filtering(pdata); 953 } 954 955 return 0; 956 } 957 958 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, 959 unsigned int enable) 960 { 961 unsigned int val = enable ? 1 : 0; 962 963 if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val) 964 return 0; 965 966 netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n", 967 enable ? "entering" : "leaving"); 968 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val); 969 970 return 0; 971 } 972 973 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata, 974 struct netdev_hw_addr *ha, unsigned int *mac_reg) 975 { 976 unsigned int mac_addr_hi, mac_addr_lo; 977 u8 *mac_addr; 978 979 mac_addr_lo = 0; 980 mac_addr_hi = 0; 981 982 if (ha) { 983 mac_addr = (u8 *)&mac_addr_lo; 984 mac_addr[0] = ha->addr[0]; 985 mac_addr[1] = ha->addr[1]; 986 mac_addr[2] = ha->addr[2]; 987 mac_addr[3] = ha->addr[3]; 988 mac_addr = (u8 *)&mac_addr_hi; 989 mac_addr[0] = ha->addr[4]; 990 mac_addr[1] = ha->addr[5]; 991 992 netif_dbg(pdata, drv, pdata->netdev, 993 "adding mac address %pM at %#x\n", 994 ha->addr, *mac_reg); 995 996 XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1); 997 } 998 999 XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi); 1000 *mac_reg += MAC_MACA_INC; 1001 XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo); 1002 *mac_reg += MAC_MACA_INC; 1003 } 1004 1005 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata) 1006 { 1007 struct net_device *netdev = pdata->netdev; 1008 struct netdev_hw_addr *ha; 1009 unsigned int mac_reg; 1010 unsigned int addn_macs; 1011 1012 mac_reg = MAC_MACA1HR; 1013 addn_macs = pdata->hw_feat.addn_mac; 1014 1015 if (netdev_uc_count(netdev) > addn_macs) { 1016 xgbe_set_promiscuous_mode(pdata, 1); 1017 } else { 1018 netdev_for_each_uc_addr(ha, netdev) { 1019 xgbe_set_mac_reg(pdata, ha, &mac_reg); 1020 addn_macs--; 1021 } 1022 1023 if (netdev_mc_count(netdev) > addn_macs) { 1024 xgbe_set_all_multicast_mode(pdata, 1); 1025 } else { 1026 netdev_for_each_mc_addr(ha, netdev) { 1027 xgbe_set_mac_reg(pdata, ha, &mac_reg); 1028 addn_macs--; 1029 } 1030 } 1031 } 1032 1033 /* Clear remaining additional MAC address entries */ 1034 while (addn_macs--) 1035 xgbe_set_mac_reg(pdata, NULL, &mac_reg); 1036 } 1037 1038 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata) 1039 { 1040 struct net_device *netdev = pdata->netdev; 1041 struct netdev_hw_addr *ha; 1042 unsigned int hash_reg; 1043 unsigned int hash_table_shift, hash_table_count; 1044 u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE]; 1045 u32 crc; 1046 unsigned int i; 1047 1048 hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7); 1049 hash_table_count = pdata->hw_feat.hash_table_size / 32; 1050 memset(hash_table, 0, sizeof(hash_table)); 1051 1052 /* Build the MAC Hash Table register values */ 1053 netdev_for_each_uc_addr(ha, netdev) { 1054 crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN)); 1055 crc >>= hash_table_shift; 1056 hash_table[crc >> 5] |= (1 << (crc & 0x1f)); 1057 } 1058 1059 netdev_for_each_mc_addr(ha, netdev) { 1060 crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN)); 1061 crc >>= hash_table_shift; 1062 hash_table[crc >> 5] |= (1 << (crc & 0x1f)); 1063 } 1064 1065 /* Set the MAC Hash Table registers */ 1066 hash_reg = MAC_HTR0; 1067 for (i = 0; i < hash_table_count; i++) { 1068 XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]); 1069 hash_reg += MAC_HTR_INC; 1070 } 1071 } 1072 1073 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata) 1074 { 1075 if (pdata->hw_feat.hash_table_size) 1076 xgbe_set_mac_hash_table(pdata); 1077 else 1078 xgbe_set_mac_addn_addrs(pdata); 1079 1080 return 0; 1081 } 1082 1083 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr) 1084 { 1085 unsigned int mac_addr_hi, mac_addr_lo; 1086 1087 mac_addr_hi = (addr[5] << 8) | (addr[4] << 0); 1088 mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) | 1089 (addr[1] << 8) | (addr[0] << 0); 1090 1091 XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi); 1092 XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo); 1093 1094 return 0; 1095 } 1096 1097 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata) 1098 { 1099 struct net_device *netdev = pdata->netdev; 1100 unsigned int pr_mode, am_mode; 1101 1102 pr_mode = ((netdev->flags & IFF_PROMISC) != 0); 1103 am_mode = ((netdev->flags & IFF_ALLMULTI) != 0); 1104 1105 xgbe_set_promiscuous_mode(pdata, pr_mode); 1106 xgbe_set_all_multicast_mode(pdata, am_mode); 1107 1108 xgbe_add_mac_addresses(pdata); 1109 1110 return 0; 1111 } 1112 1113 static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio) 1114 { 1115 unsigned int reg; 1116 1117 if (gpio > 15) 1118 return -EINVAL; 1119 1120 reg = XGMAC_IOREAD(pdata, MAC_GPIOSR); 1121 1122 reg &= ~(1 << (gpio + 16)); 1123 XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg); 1124 1125 return 0; 1126 } 1127 1128 static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio) 1129 { 1130 unsigned int reg; 1131 1132 if (gpio > 15) 1133 return -EINVAL; 1134 1135 reg = XGMAC_IOREAD(pdata, MAC_GPIOSR); 1136 1137 reg |= (1 << (gpio + 16)); 1138 XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg); 1139 1140 return 0; 1141 } 1142 1143 static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, 1144 int mmd_reg) 1145 { 1146 unsigned long flags; 1147 unsigned int mmd_address, index, offset; 1148 int mmd_data; 1149 1150 if (mmd_reg & MII_ADDR_C45) 1151 mmd_address = mmd_reg & ~MII_ADDR_C45; 1152 else 1153 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); 1154 1155 /* The PCS registers are accessed using mmio. The underlying 1156 * management interface uses indirect addressing to access the MMD 1157 * register sets. This requires accessing of the PCS register in two 1158 * phases, an address phase and a data phase. 1159 * 1160 * The mmio interface is based on 16-bit offsets and values. All 1161 * register offsets must therefore be adjusted by left shifting the 1162 * offset 1 bit and reading 16 bits of data. 1163 */ 1164 mmd_address <<= 1; 1165 index = mmd_address & ~pdata->xpcs_window_mask; 1166 offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask); 1167 1168 spin_lock_irqsave(&pdata->xpcs_lock, flags); 1169 XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index); 1170 mmd_data = XPCS16_IOREAD(pdata, offset); 1171 spin_unlock_irqrestore(&pdata->xpcs_lock, flags); 1172 1173 return mmd_data; 1174 } 1175 1176 static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, 1177 int mmd_reg, int mmd_data) 1178 { 1179 unsigned long flags; 1180 unsigned int mmd_address, index, offset; 1181 1182 if (mmd_reg & MII_ADDR_C45) 1183 mmd_address = mmd_reg & ~MII_ADDR_C45; 1184 else 1185 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); 1186 1187 /* The PCS registers are accessed using mmio. The underlying 1188 * management interface uses indirect addressing to access the MMD 1189 * register sets. This requires accessing of the PCS register in two 1190 * phases, an address phase and a data phase. 1191 * 1192 * The mmio interface is based on 16-bit offsets and values. All 1193 * register offsets must therefore be adjusted by left shifting the 1194 * offset 1 bit and writing 16 bits of data. 1195 */ 1196 mmd_address <<= 1; 1197 index = mmd_address & ~pdata->xpcs_window_mask; 1198 offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask); 1199 1200 spin_lock_irqsave(&pdata->xpcs_lock, flags); 1201 XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index); 1202 XPCS16_IOWRITE(pdata, offset, mmd_data); 1203 spin_unlock_irqrestore(&pdata->xpcs_lock, flags); 1204 } 1205 1206 static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, 1207 int mmd_reg) 1208 { 1209 unsigned long flags; 1210 unsigned int mmd_address; 1211 int mmd_data; 1212 1213 if (mmd_reg & MII_ADDR_C45) 1214 mmd_address = mmd_reg & ~MII_ADDR_C45; 1215 else 1216 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); 1217 1218 /* The PCS registers are accessed using mmio. The underlying APB3 1219 * management interface uses indirect addressing to access the MMD 1220 * register sets. This requires accessing of the PCS register in two 1221 * phases, an address phase and a data phase. 1222 * 1223 * The mmio interface is based on 32-bit offsets and values. All 1224 * register offsets must therefore be adjusted by left shifting the 1225 * offset 2 bits and reading 32 bits of data. 1226 */ 1227 spin_lock_irqsave(&pdata->xpcs_lock, flags); 1228 XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8); 1229 mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2); 1230 spin_unlock_irqrestore(&pdata->xpcs_lock, flags); 1231 1232 return mmd_data; 1233 } 1234 1235 static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, 1236 int mmd_reg, int mmd_data) 1237 { 1238 unsigned int mmd_address; 1239 unsigned long flags; 1240 1241 if (mmd_reg & MII_ADDR_C45) 1242 mmd_address = mmd_reg & ~MII_ADDR_C45; 1243 else 1244 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); 1245 1246 /* The PCS registers are accessed using mmio. The underlying APB3 1247 * management interface uses indirect addressing to access the MMD 1248 * register sets. This requires accessing of the PCS register in two 1249 * phases, an address phase and a data phase. 1250 * 1251 * The mmio interface is based on 32-bit offsets and values. All 1252 * register offsets must therefore be adjusted by left shifting the 1253 * offset 2 bits and writing 32 bits of data. 1254 */ 1255 spin_lock_irqsave(&pdata->xpcs_lock, flags); 1256 XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8); 1257 XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data); 1258 spin_unlock_irqrestore(&pdata->xpcs_lock, flags); 1259 } 1260 1261 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, 1262 int mmd_reg) 1263 { 1264 switch (pdata->vdata->xpcs_access) { 1265 case XGBE_XPCS_ACCESS_V1: 1266 return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg); 1267 1268 case XGBE_XPCS_ACCESS_V2: 1269 default: 1270 return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg); 1271 } 1272 } 1273 1274 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, 1275 int mmd_reg, int mmd_data) 1276 { 1277 switch (pdata->vdata->xpcs_access) { 1278 case XGBE_XPCS_ACCESS_V1: 1279 return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data); 1280 1281 case XGBE_XPCS_ACCESS_V2: 1282 default: 1283 return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data); 1284 } 1285 } 1286 1287 static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, 1288 int reg, u16 val) 1289 { 1290 unsigned int mdio_sca, mdio_sccd; 1291 1292 reinit_completion(&pdata->mdio_complete); 1293 1294 mdio_sca = 0; 1295 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, REG, reg); 1296 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, addr); 1297 XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca); 1298 1299 mdio_sccd = 0; 1300 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val); 1301 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1); 1302 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1); 1303 XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd); 1304 1305 if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) { 1306 netdev_err(pdata->netdev, "mdio write operation timed out\n"); 1307 return -ETIMEDOUT; 1308 } 1309 1310 return 0; 1311 } 1312 1313 static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, 1314 int reg) 1315 { 1316 unsigned int mdio_sca, mdio_sccd; 1317 1318 reinit_completion(&pdata->mdio_complete); 1319 1320 mdio_sca = 0; 1321 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, REG, reg); 1322 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, addr); 1323 XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca); 1324 1325 mdio_sccd = 0; 1326 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3); 1327 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1); 1328 XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd); 1329 1330 if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) { 1331 netdev_err(pdata->netdev, "mdio read operation timed out\n"); 1332 return -ETIMEDOUT; 1333 } 1334 1335 return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA); 1336 } 1337 1338 static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port, 1339 enum xgbe_mdio_mode mode) 1340 { 1341 unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R); 1342 1343 switch (mode) { 1344 case XGBE_MDIO_MODE_CL22: 1345 if (port > XGMAC_MAX_C22_PORT) 1346 return -EINVAL; 1347 reg_val |= (1 << port); 1348 break; 1349 case XGBE_MDIO_MODE_CL45: 1350 break; 1351 default: 1352 return -EINVAL; 1353 } 1354 1355 XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val); 1356 1357 return 0; 1358 } 1359 1360 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc) 1361 { 1362 return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN); 1363 } 1364 1365 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata) 1366 { 1367 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0); 1368 1369 return 0; 1370 } 1371 1372 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata) 1373 { 1374 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1); 1375 1376 return 0; 1377 } 1378 1379 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata) 1380 { 1381 struct xgbe_ring_desc *rdesc = rdata->rdesc; 1382 1383 /* Reset the Tx descriptor 1384 * Set buffer 1 (lo) address to zero 1385 * Set buffer 1 (hi) address to zero 1386 * Reset all other control bits (IC, TTSE, B2L & B1L) 1387 * Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc) 1388 */ 1389 rdesc->desc0 = 0; 1390 rdesc->desc1 = 0; 1391 rdesc->desc2 = 0; 1392 rdesc->desc3 = 0; 1393 1394 /* Make sure ownership is written to the descriptor */ 1395 dma_wmb(); 1396 } 1397 1398 static void xgbe_tx_desc_init(struct xgbe_channel *channel) 1399 { 1400 struct xgbe_ring *ring = channel->tx_ring; 1401 struct xgbe_ring_data *rdata; 1402 int i; 1403 int start_index = ring->cur; 1404 1405 DBGPR("-->tx_desc_init\n"); 1406 1407 /* Initialze all descriptors */ 1408 for (i = 0; i < ring->rdesc_count; i++) { 1409 rdata = XGBE_GET_DESC_DATA(ring, i); 1410 1411 /* Initialize Tx descriptor */ 1412 xgbe_tx_desc_reset(rdata); 1413 } 1414 1415 /* Update the total number of Tx descriptors */ 1416 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1); 1417 1418 /* Update the starting address of descriptor ring */ 1419 rdata = XGBE_GET_DESC_DATA(ring, start_index); 1420 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI, 1421 upper_32_bits(rdata->rdesc_dma)); 1422 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO, 1423 lower_32_bits(rdata->rdesc_dma)); 1424 1425 DBGPR("<--tx_desc_init\n"); 1426 } 1427 1428 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata, 1429 struct xgbe_ring_data *rdata, unsigned int index) 1430 { 1431 struct xgbe_ring_desc *rdesc = rdata->rdesc; 1432 unsigned int rx_usecs = pdata->rx_usecs; 1433 unsigned int rx_frames = pdata->rx_frames; 1434 unsigned int inte; 1435 dma_addr_t hdr_dma, buf_dma; 1436 1437 if (!rx_usecs && !rx_frames) { 1438 /* No coalescing, interrupt for every descriptor */ 1439 inte = 1; 1440 } else { 1441 /* Set interrupt based on Rx frame coalescing setting */ 1442 if (rx_frames && !((index + 1) % rx_frames)) 1443 inte = 1; 1444 else 1445 inte = 0; 1446 } 1447 1448 /* Reset the Rx descriptor 1449 * Set buffer 1 (lo) address to header dma address (lo) 1450 * Set buffer 1 (hi) address to header dma address (hi) 1451 * Set buffer 2 (lo) address to buffer dma address (lo) 1452 * Set buffer 2 (hi) address to buffer dma address (hi) and 1453 * set control bits OWN and INTE 1454 */ 1455 hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off; 1456 buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off; 1457 rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma)); 1458 rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma)); 1459 rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma)); 1460 rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma)); 1461 1462 XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte); 1463 1464 /* Since the Rx DMA engine is likely running, make sure everything 1465 * is written to the descriptor(s) before setting the OWN bit 1466 * for the descriptor 1467 */ 1468 dma_wmb(); 1469 1470 XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1); 1471 1472 /* Make sure ownership is written to the descriptor */ 1473 dma_wmb(); 1474 } 1475 1476 static void xgbe_rx_desc_init(struct xgbe_channel *channel) 1477 { 1478 struct xgbe_prv_data *pdata = channel->pdata; 1479 struct xgbe_ring *ring = channel->rx_ring; 1480 struct xgbe_ring_data *rdata; 1481 unsigned int start_index = ring->cur; 1482 unsigned int i; 1483 1484 DBGPR("-->rx_desc_init\n"); 1485 1486 /* Initialize all descriptors */ 1487 for (i = 0; i < ring->rdesc_count; i++) { 1488 rdata = XGBE_GET_DESC_DATA(ring, i); 1489 1490 /* Initialize Rx descriptor */ 1491 xgbe_rx_desc_reset(pdata, rdata, i); 1492 } 1493 1494 /* Update the total number of Rx descriptors */ 1495 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1); 1496 1497 /* Update the starting address of descriptor ring */ 1498 rdata = XGBE_GET_DESC_DATA(ring, start_index); 1499 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI, 1500 upper_32_bits(rdata->rdesc_dma)); 1501 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO, 1502 lower_32_bits(rdata->rdesc_dma)); 1503 1504 /* Update the Rx Descriptor Tail Pointer */ 1505 rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1); 1506 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO, 1507 lower_32_bits(rdata->rdesc_dma)); 1508 1509 DBGPR("<--rx_desc_init\n"); 1510 } 1511 1512 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata, 1513 unsigned int addend) 1514 { 1515 unsigned int count = 10000; 1516 1517 /* Set the addend register value and tell the device */ 1518 XGMAC_IOWRITE(pdata, MAC_TSAR, addend); 1519 XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1); 1520 1521 /* Wait for addend update to complete */ 1522 while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG)) 1523 udelay(5); 1524 1525 if (!count) 1526 netdev_err(pdata->netdev, 1527 "timed out updating timestamp addend register\n"); 1528 } 1529 1530 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec, 1531 unsigned int nsec) 1532 { 1533 unsigned int count = 10000; 1534 1535 /* Set the time values and tell the device */ 1536 XGMAC_IOWRITE(pdata, MAC_STSUR, sec); 1537 XGMAC_IOWRITE(pdata, MAC_STNUR, nsec); 1538 XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1); 1539 1540 /* Wait for time update to complete */ 1541 while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT)) 1542 udelay(5); 1543 1544 if (!count) 1545 netdev_err(pdata->netdev, "timed out initializing timestamp\n"); 1546 } 1547 1548 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata) 1549 { 1550 u64 nsec; 1551 1552 nsec = XGMAC_IOREAD(pdata, MAC_STSR); 1553 nsec *= NSEC_PER_SEC; 1554 nsec += XGMAC_IOREAD(pdata, MAC_STNR); 1555 1556 return nsec; 1557 } 1558 1559 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata) 1560 { 1561 unsigned int tx_snr, tx_ssr; 1562 u64 nsec; 1563 1564 if (pdata->vdata->tx_tstamp_workaround) { 1565 tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR); 1566 tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR); 1567 } else { 1568 tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR); 1569 tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR); 1570 } 1571 1572 if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS)) 1573 return 0; 1574 1575 nsec = tx_ssr; 1576 nsec *= NSEC_PER_SEC; 1577 nsec += tx_snr; 1578 1579 return nsec; 1580 } 1581 1582 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet, 1583 struct xgbe_ring_desc *rdesc) 1584 { 1585 u64 nsec; 1586 1587 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) && 1588 !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) { 1589 nsec = le32_to_cpu(rdesc->desc1); 1590 nsec <<= 32; 1591 nsec |= le32_to_cpu(rdesc->desc0); 1592 if (nsec != 0xffffffffffffffffULL) { 1593 packet->rx_tstamp = nsec; 1594 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1595 RX_TSTAMP, 1); 1596 } 1597 } 1598 } 1599 1600 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata, 1601 unsigned int mac_tscr) 1602 { 1603 /* Set one nano-second accuracy */ 1604 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1); 1605 1606 /* Set fine timestamp update */ 1607 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1); 1608 1609 /* Overwrite earlier timestamps */ 1610 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1); 1611 1612 XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr); 1613 1614 /* Exit if timestamping is not enabled */ 1615 if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA)) 1616 return 0; 1617 1618 /* Initialize time registers */ 1619 XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC); 1620 XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC); 1621 xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend); 1622 xgbe_set_tstamp_time(pdata, 0, 0); 1623 1624 /* Initialize the timecounter */ 1625 timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc, 1626 ktime_to_ns(ktime_get_real())); 1627 1628 return 0; 1629 } 1630 1631 static void xgbe_tx_start_xmit(struct xgbe_channel *channel, 1632 struct xgbe_ring *ring) 1633 { 1634 struct xgbe_prv_data *pdata = channel->pdata; 1635 struct xgbe_ring_data *rdata; 1636 1637 /* Make sure everything is written before the register write */ 1638 wmb(); 1639 1640 /* Issue a poll command to Tx DMA by writing address 1641 * of next immediate free descriptor */ 1642 rdata = XGBE_GET_DESC_DATA(ring, ring->cur); 1643 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO, 1644 lower_32_bits(rdata->rdesc_dma)); 1645 1646 /* Start the Tx timer */ 1647 if (pdata->tx_usecs && !channel->tx_timer_active) { 1648 channel->tx_timer_active = 1; 1649 mod_timer(&channel->tx_timer, 1650 jiffies + usecs_to_jiffies(pdata->tx_usecs)); 1651 } 1652 1653 ring->tx.xmit_more = 0; 1654 } 1655 1656 static void xgbe_dev_xmit(struct xgbe_channel *channel) 1657 { 1658 struct xgbe_prv_data *pdata = channel->pdata; 1659 struct xgbe_ring *ring = channel->tx_ring; 1660 struct xgbe_ring_data *rdata; 1661 struct xgbe_ring_desc *rdesc; 1662 struct xgbe_packet_data *packet = &ring->packet_data; 1663 unsigned int tx_packets, tx_bytes; 1664 unsigned int csum, tso, vlan, vxlan; 1665 unsigned int tso_context, vlan_context; 1666 unsigned int tx_set_ic; 1667 int start_index = ring->cur; 1668 int cur_index = ring->cur; 1669 int i; 1670 1671 DBGPR("-->xgbe_dev_xmit\n"); 1672 1673 tx_packets = packet->tx_packets; 1674 tx_bytes = packet->tx_bytes; 1675 1676 csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1677 CSUM_ENABLE); 1678 tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1679 TSO_ENABLE); 1680 vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1681 VLAN_CTAG); 1682 vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1683 VXLAN); 1684 1685 if (tso && (packet->mss != ring->tx.cur_mss)) 1686 tso_context = 1; 1687 else 1688 tso_context = 0; 1689 1690 if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag)) 1691 vlan_context = 1; 1692 else 1693 vlan_context = 0; 1694 1695 /* Determine if an interrupt should be generated for this Tx: 1696 * Interrupt: 1697 * - Tx frame count exceeds the frame count setting 1698 * - Addition of Tx frame count to the frame count since the 1699 * last interrupt was set exceeds the frame count setting 1700 * No interrupt: 1701 * - No frame count setting specified (ethtool -C ethX tx-frames 0) 1702 * - Addition of Tx frame count to the frame count since the 1703 * last interrupt was set does not exceed the frame count setting 1704 */ 1705 ring->coalesce_count += tx_packets; 1706 if (!pdata->tx_frames) 1707 tx_set_ic = 0; 1708 else if (tx_packets > pdata->tx_frames) 1709 tx_set_ic = 1; 1710 else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets) 1711 tx_set_ic = 1; 1712 else 1713 tx_set_ic = 0; 1714 1715 rdata = XGBE_GET_DESC_DATA(ring, cur_index); 1716 rdesc = rdata->rdesc; 1717 1718 /* Create a context descriptor if this is a TSO packet */ 1719 if (tso_context || vlan_context) { 1720 if (tso_context) { 1721 netif_dbg(pdata, tx_queued, pdata->netdev, 1722 "TSO context descriptor, mss=%u\n", 1723 packet->mss); 1724 1725 /* Set the MSS size */ 1726 XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2, 1727 MSS, packet->mss); 1728 1729 /* Mark it as a CONTEXT descriptor */ 1730 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, 1731 CTXT, 1); 1732 1733 /* Indicate this descriptor contains the MSS */ 1734 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, 1735 TCMSSV, 1); 1736 1737 ring->tx.cur_mss = packet->mss; 1738 } 1739 1740 if (vlan_context) { 1741 netif_dbg(pdata, tx_queued, pdata->netdev, 1742 "VLAN context descriptor, ctag=%u\n", 1743 packet->vlan_ctag); 1744 1745 /* Mark it as a CONTEXT descriptor */ 1746 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, 1747 CTXT, 1); 1748 1749 /* Set the VLAN tag */ 1750 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, 1751 VT, packet->vlan_ctag); 1752 1753 /* Indicate this descriptor contains the VLAN tag */ 1754 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, 1755 VLTV, 1); 1756 1757 ring->tx.cur_vlan_ctag = packet->vlan_ctag; 1758 } 1759 1760 cur_index++; 1761 rdata = XGBE_GET_DESC_DATA(ring, cur_index); 1762 rdesc = rdata->rdesc; 1763 } 1764 1765 /* Update buffer address (for TSO this is the header) */ 1766 rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma)); 1767 rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma)); 1768 1769 /* Update the buffer length */ 1770 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L, 1771 rdata->skb_dma_len); 1772 1773 /* VLAN tag insertion check */ 1774 if (vlan) 1775 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR, 1776 TX_NORMAL_DESC2_VLAN_INSERT); 1777 1778 /* Timestamp enablement check */ 1779 if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP)) 1780 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1); 1781 1782 /* Mark it as First Descriptor */ 1783 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1); 1784 1785 /* Mark it as a NORMAL descriptor */ 1786 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0); 1787 1788 /* Set OWN bit if not the first descriptor */ 1789 if (cur_index != start_index) 1790 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); 1791 1792 if (tso) { 1793 /* Enable TSO */ 1794 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1); 1795 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL, 1796 packet->tcp_payload_len); 1797 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN, 1798 packet->tcp_header_len / 4); 1799 1800 pdata->ext_stats.tx_tso_packets += tx_packets; 1801 } else { 1802 /* Enable CRC and Pad Insertion */ 1803 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0); 1804 1805 /* Enable HW CSUM */ 1806 if (csum) 1807 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, 1808 CIC, 0x3); 1809 1810 /* Set the total length to be transmitted */ 1811 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL, 1812 packet->length); 1813 } 1814 1815 if (vxlan) { 1816 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP, 1817 TX_NORMAL_DESC3_VXLAN_PACKET); 1818 1819 pdata->ext_stats.tx_vxlan_packets += packet->tx_packets; 1820 } 1821 1822 for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) { 1823 cur_index++; 1824 rdata = XGBE_GET_DESC_DATA(ring, cur_index); 1825 rdesc = rdata->rdesc; 1826 1827 /* Update buffer address */ 1828 rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma)); 1829 rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma)); 1830 1831 /* Update the buffer length */ 1832 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L, 1833 rdata->skb_dma_len); 1834 1835 /* Set OWN bit */ 1836 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); 1837 1838 /* Mark it as NORMAL descriptor */ 1839 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0); 1840 1841 /* Enable HW CSUM */ 1842 if (csum) 1843 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, 1844 CIC, 0x3); 1845 } 1846 1847 /* Set LAST bit for the last descriptor */ 1848 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1); 1849 1850 /* Set IC bit based on Tx coalescing settings */ 1851 if (tx_set_ic) 1852 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1); 1853 1854 /* Save the Tx info to report back during cleanup */ 1855 rdata->tx.packets = tx_packets; 1856 rdata->tx.bytes = tx_bytes; 1857 1858 pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets; 1859 pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes; 1860 1861 /* In case the Tx DMA engine is running, make sure everything 1862 * is written to the descriptor(s) before setting the OWN bit 1863 * for the first descriptor 1864 */ 1865 dma_wmb(); 1866 1867 /* Set OWN bit for the first descriptor */ 1868 rdata = XGBE_GET_DESC_DATA(ring, start_index); 1869 rdesc = rdata->rdesc; 1870 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); 1871 1872 if (netif_msg_tx_queued(pdata)) 1873 xgbe_dump_tx_desc(pdata, ring, start_index, 1874 packet->rdesc_count, 1); 1875 1876 /* Make sure ownership is written to the descriptor */ 1877 smp_wmb(); 1878 1879 ring->cur = cur_index + 1; 1880 if (!packet->skb->xmit_more || 1881 netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev, 1882 channel->queue_index))) 1883 xgbe_tx_start_xmit(channel, ring); 1884 else 1885 ring->tx.xmit_more = 1; 1886 1887 DBGPR(" %s: descriptors %u to %u written\n", 1888 channel->name, start_index & (ring->rdesc_count - 1), 1889 (ring->cur - 1) & (ring->rdesc_count - 1)); 1890 1891 DBGPR("<--xgbe_dev_xmit\n"); 1892 } 1893 1894 static int xgbe_dev_read(struct xgbe_channel *channel) 1895 { 1896 struct xgbe_prv_data *pdata = channel->pdata; 1897 struct xgbe_ring *ring = channel->rx_ring; 1898 struct xgbe_ring_data *rdata; 1899 struct xgbe_ring_desc *rdesc; 1900 struct xgbe_packet_data *packet = &ring->packet_data; 1901 struct net_device *netdev = pdata->netdev; 1902 unsigned int err, etlt, l34t; 1903 1904 DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur); 1905 1906 rdata = XGBE_GET_DESC_DATA(ring, ring->cur); 1907 rdesc = rdata->rdesc; 1908 1909 /* Check for data availability */ 1910 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN)) 1911 return 1; 1912 1913 /* Make sure descriptor fields are read after reading the OWN bit */ 1914 dma_rmb(); 1915 1916 if (netif_msg_rx_status(pdata)) 1917 xgbe_dump_rx_desc(pdata, ring, ring->cur); 1918 1919 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) { 1920 /* Timestamp Context Descriptor */ 1921 xgbe_get_rx_tstamp(packet, rdesc); 1922 1923 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1924 CONTEXT, 1); 1925 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1926 CONTEXT_NEXT, 0); 1927 return 0; 1928 } 1929 1930 /* Normal Descriptor, be sure Context Descriptor bit is off */ 1931 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0); 1932 1933 /* Indicate if a Context Descriptor is next */ 1934 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA)) 1935 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1936 CONTEXT_NEXT, 1); 1937 1938 /* Get the header length */ 1939 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) { 1940 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1941 FIRST, 1); 1942 rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2, 1943 RX_NORMAL_DESC2, HL); 1944 if (rdata->rx.hdr_len) 1945 pdata->ext_stats.rx_split_header_packets++; 1946 } else { 1947 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1948 FIRST, 0); 1949 } 1950 1951 /* Get the RSS hash */ 1952 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) { 1953 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1954 RSS_HASH, 1); 1955 1956 packet->rss_hash = le32_to_cpu(rdesc->desc1); 1957 1958 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T); 1959 switch (l34t) { 1960 case RX_DESC3_L34T_IPV4_TCP: 1961 case RX_DESC3_L34T_IPV4_UDP: 1962 case RX_DESC3_L34T_IPV6_TCP: 1963 case RX_DESC3_L34T_IPV6_UDP: 1964 packet->rss_hash_type = PKT_HASH_TYPE_L4; 1965 break; 1966 default: 1967 packet->rss_hash_type = PKT_HASH_TYPE_L3; 1968 } 1969 } 1970 1971 /* Not all the data has been transferred for this packet */ 1972 if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) 1973 return 0; 1974 1975 /* This is the last of the data for this packet */ 1976 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1977 LAST, 1); 1978 1979 /* Get the packet length */ 1980 rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL); 1981 1982 /* Set checksum done indicator as appropriate */ 1983 if (netdev->features & NETIF_F_RXCSUM) { 1984 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1985 CSUM_DONE, 1); 1986 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1987 TNPCSUM_DONE, 1); 1988 } 1989 1990 /* Set the tunneled packet indicator */ 1991 if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) { 1992 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1993 TNP, 1); 1994 pdata->ext_stats.rx_vxlan_packets++; 1995 1996 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T); 1997 switch (l34t) { 1998 case RX_DESC3_L34T_IPV4_UNKNOWN: 1999 case RX_DESC3_L34T_IPV6_UNKNOWN: 2000 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 2001 TNPCSUM_DONE, 0); 2002 break; 2003 } 2004 } 2005 2006 /* Check for errors (only valid in last descriptor) */ 2007 err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES); 2008 etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT); 2009 netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt); 2010 2011 if (!err || !etlt) { 2012 /* No error if err is 0 or etlt is 0 */ 2013 if ((etlt == 0x09) && 2014 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) { 2015 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 2016 VLAN_CTAG, 1); 2017 packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0, 2018 RX_NORMAL_DESC0, 2019 OVT); 2020 netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n", 2021 packet->vlan_ctag); 2022 } 2023 } else { 2024 unsigned int tnp = XGMAC_GET_BITS(packet->attributes, 2025 RX_PACKET_ATTRIBUTES, TNP); 2026 2027 if ((etlt == 0x05) || (etlt == 0x06)) { 2028 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 2029 CSUM_DONE, 0); 2030 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 2031 TNPCSUM_DONE, 0); 2032 pdata->ext_stats.rx_csum_errors++; 2033 } else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) { 2034 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 2035 CSUM_DONE, 0); 2036 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 2037 TNPCSUM_DONE, 0); 2038 pdata->ext_stats.rx_vxlan_csum_errors++; 2039 } else { 2040 XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS, 2041 FRAME, 1); 2042 } 2043 } 2044 2045 pdata->ext_stats.rxq_packets[channel->queue_index]++; 2046 pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len; 2047 2048 DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name, 2049 ring->cur & (ring->rdesc_count - 1), ring->cur); 2050 2051 return 0; 2052 } 2053 2054 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc) 2055 { 2056 /* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */ 2057 return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT); 2058 } 2059 2060 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc) 2061 { 2062 /* Rx and Tx share LD bit, so check TDES3.LD bit */ 2063 return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD); 2064 } 2065 2066 static int xgbe_enable_int(struct xgbe_channel *channel, 2067 enum xgbe_int int_id) 2068 { 2069 switch (int_id) { 2070 case XGMAC_INT_DMA_CH_SR_TI: 2071 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1); 2072 break; 2073 case XGMAC_INT_DMA_CH_SR_TPS: 2074 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1); 2075 break; 2076 case XGMAC_INT_DMA_CH_SR_TBU: 2077 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1); 2078 break; 2079 case XGMAC_INT_DMA_CH_SR_RI: 2080 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1); 2081 break; 2082 case XGMAC_INT_DMA_CH_SR_RBU: 2083 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1); 2084 break; 2085 case XGMAC_INT_DMA_CH_SR_RPS: 2086 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1); 2087 break; 2088 case XGMAC_INT_DMA_CH_SR_TI_RI: 2089 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1); 2090 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1); 2091 break; 2092 case XGMAC_INT_DMA_CH_SR_FBE: 2093 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1); 2094 break; 2095 case XGMAC_INT_DMA_ALL: 2096 channel->curr_ier |= channel->saved_ier; 2097 break; 2098 default: 2099 return -1; 2100 } 2101 2102 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier); 2103 2104 return 0; 2105 } 2106 2107 static int xgbe_disable_int(struct xgbe_channel *channel, 2108 enum xgbe_int int_id) 2109 { 2110 switch (int_id) { 2111 case XGMAC_INT_DMA_CH_SR_TI: 2112 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0); 2113 break; 2114 case XGMAC_INT_DMA_CH_SR_TPS: 2115 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0); 2116 break; 2117 case XGMAC_INT_DMA_CH_SR_TBU: 2118 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0); 2119 break; 2120 case XGMAC_INT_DMA_CH_SR_RI: 2121 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0); 2122 break; 2123 case XGMAC_INT_DMA_CH_SR_RBU: 2124 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0); 2125 break; 2126 case XGMAC_INT_DMA_CH_SR_RPS: 2127 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0); 2128 break; 2129 case XGMAC_INT_DMA_CH_SR_TI_RI: 2130 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0); 2131 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0); 2132 break; 2133 case XGMAC_INT_DMA_CH_SR_FBE: 2134 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0); 2135 break; 2136 case XGMAC_INT_DMA_ALL: 2137 channel->saved_ier = channel->curr_ier; 2138 channel->curr_ier = 0; 2139 break; 2140 default: 2141 return -1; 2142 } 2143 2144 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier); 2145 2146 return 0; 2147 } 2148 2149 static int __xgbe_exit(struct xgbe_prv_data *pdata) 2150 { 2151 unsigned int count = 2000; 2152 2153 DBGPR("-->xgbe_exit\n"); 2154 2155 /* Issue a software reset */ 2156 XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1); 2157 usleep_range(10, 15); 2158 2159 /* Poll Until Poll Condition */ 2160 while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR)) 2161 usleep_range(500, 600); 2162 2163 if (!count) 2164 return -EBUSY; 2165 2166 DBGPR("<--xgbe_exit\n"); 2167 2168 return 0; 2169 } 2170 2171 static int xgbe_exit(struct xgbe_prv_data *pdata) 2172 { 2173 int ret; 2174 2175 /* To guard against possible incorrectly generated interrupts, 2176 * issue the software reset twice. 2177 */ 2178 ret = __xgbe_exit(pdata); 2179 if (ret) 2180 return ret; 2181 2182 return __xgbe_exit(pdata); 2183 } 2184 2185 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata) 2186 { 2187 unsigned int i, count; 2188 2189 if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21) 2190 return 0; 2191 2192 for (i = 0; i < pdata->tx_q_count; i++) 2193 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1); 2194 2195 /* Poll Until Poll Condition */ 2196 for (i = 0; i < pdata->tx_q_count; i++) { 2197 count = 2000; 2198 while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i, 2199 MTL_Q_TQOMR, FTQ)) 2200 usleep_range(500, 600); 2201 2202 if (!count) 2203 return -EBUSY; 2204 } 2205 2206 return 0; 2207 } 2208 2209 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata) 2210 { 2211 unsigned int sbmr; 2212 2213 sbmr = XGMAC_IOREAD(pdata, DMA_SBMR); 2214 2215 /* Set enhanced addressing mode */ 2216 XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1); 2217 2218 /* Set the System Bus mode */ 2219 XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1); 2220 XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2); 2221 XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal); 2222 XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1); 2223 XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1); 2224 2225 XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr); 2226 2227 /* Set descriptor fetching threshold */ 2228 if (pdata->vdata->tx_desc_prefetch) 2229 XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS, 2230 pdata->vdata->tx_desc_prefetch); 2231 2232 if (pdata->vdata->rx_desc_prefetch) 2233 XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS, 2234 pdata->vdata->rx_desc_prefetch); 2235 } 2236 2237 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata) 2238 { 2239 XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr); 2240 XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr); 2241 if (pdata->awarcr) 2242 XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr); 2243 } 2244 2245 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata) 2246 { 2247 unsigned int i; 2248 2249 /* Set Tx to weighted round robin scheduling algorithm */ 2250 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR); 2251 2252 /* Set Tx traffic classes to use WRR algorithm with equal weights */ 2253 for (i = 0; i < pdata->hw_feat.tc_cnt; i++) { 2254 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, 2255 MTL_TSA_ETS); 2256 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1); 2257 } 2258 2259 /* Set Rx to strict priority algorithm */ 2260 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP); 2261 } 2262 2263 static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata, 2264 unsigned int queue, 2265 unsigned int q_fifo_size) 2266 { 2267 unsigned int frame_fifo_size; 2268 unsigned int rfa, rfd; 2269 2270 frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata)); 2271 2272 if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) { 2273 /* PFC is active for this queue */ 2274 rfa = pdata->pfc_rfa; 2275 rfd = rfa + frame_fifo_size; 2276 if (rfd > XGMAC_FLOW_CONTROL_MAX) 2277 rfd = XGMAC_FLOW_CONTROL_MAX; 2278 if (rfa >= XGMAC_FLOW_CONTROL_MAX) 2279 rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT; 2280 } else { 2281 /* This path deals with just maximum frame sizes which are 2282 * limited to a jumbo frame of 9,000 (plus headers, etc.) 2283 * so we can never exceed the maximum allowable RFA/RFD 2284 * values. 2285 */ 2286 if (q_fifo_size <= 2048) { 2287 /* rx_rfd to zero to signal no flow control */ 2288 pdata->rx_rfa[queue] = 0; 2289 pdata->rx_rfd[queue] = 0; 2290 return; 2291 } 2292 2293 if (q_fifo_size <= 4096) { 2294 /* Between 2048 and 4096 */ 2295 pdata->rx_rfa[queue] = 0; /* Full - 1024 bytes */ 2296 pdata->rx_rfd[queue] = 1; /* Full - 1536 bytes */ 2297 return; 2298 } 2299 2300 if (q_fifo_size <= frame_fifo_size) { 2301 /* Between 4096 and max-frame */ 2302 pdata->rx_rfa[queue] = 2; /* Full - 2048 bytes */ 2303 pdata->rx_rfd[queue] = 5; /* Full - 3584 bytes */ 2304 return; 2305 } 2306 2307 if (q_fifo_size <= (frame_fifo_size * 3)) { 2308 /* Between max-frame and 3 max-frames, 2309 * trigger if we get just over a frame of data and 2310 * resume when we have just under half a frame left. 2311 */ 2312 rfa = q_fifo_size - frame_fifo_size; 2313 rfd = rfa + (frame_fifo_size / 2); 2314 } else { 2315 /* Above 3 max-frames - trigger when just over 2316 * 2 frames of space available 2317 */ 2318 rfa = frame_fifo_size * 2; 2319 rfa += XGMAC_FLOW_CONTROL_UNIT; 2320 rfd = rfa + frame_fifo_size; 2321 } 2322 } 2323 2324 pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa); 2325 pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd); 2326 } 2327 2328 static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata, 2329 unsigned int *fifo) 2330 { 2331 unsigned int q_fifo_size; 2332 unsigned int i; 2333 2334 for (i = 0; i < pdata->rx_q_count; i++) { 2335 q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT; 2336 2337 xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size); 2338 } 2339 } 2340 2341 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata) 2342 { 2343 unsigned int i; 2344 2345 for (i = 0; i < pdata->rx_q_count; i++) { 2346 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA, 2347 pdata->rx_rfa[i]); 2348 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD, 2349 pdata->rx_rfd[i]); 2350 } 2351 } 2352 2353 static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata) 2354 { 2355 /* The configured value may not be the actual amount of fifo RAM */ 2356 return min_t(unsigned int, pdata->tx_max_fifo_size, 2357 pdata->hw_feat.tx_fifo_size); 2358 } 2359 2360 static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata) 2361 { 2362 /* The configured value may not be the actual amount of fifo RAM */ 2363 return min_t(unsigned int, pdata->rx_max_fifo_size, 2364 pdata->hw_feat.rx_fifo_size); 2365 } 2366 2367 static void xgbe_calculate_equal_fifo(unsigned int fifo_size, 2368 unsigned int queue_count, 2369 unsigned int *fifo) 2370 { 2371 unsigned int q_fifo_size; 2372 unsigned int p_fifo; 2373 unsigned int i; 2374 2375 q_fifo_size = fifo_size / queue_count; 2376 2377 /* Calculate the fifo setting by dividing the queue's fifo size 2378 * by the fifo allocation increment (with 0 representing the 2379 * base allocation increment so decrement the result by 1). 2380 */ 2381 p_fifo = q_fifo_size / XGMAC_FIFO_UNIT; 2382 if (p_fifo) 2383 p_fifo--; 2384 2385 /* Distribute the fifo equally amongst the queues */ 2386 for (i = 0; i < queue_count; i++) 2387 fifo[i] = p_fifo; 2388 } 2389 2390 static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size, 2391 unsigned int queue_count, 2392 unsigned int *fifo) 2393 { 2394 unsigned int i; 2395 2396 BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC); 2397 2398 if (queue_count <= IEEE_8021QAZ_MAX_TCS) 2399 return fifo_size; 2400 2401 /* Rx queues 9 and up are for specialized packets, 2402 * such as PTP or DCB control packets, etc. and 2403 * don't require a large fifo 2404 */ 2405 for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) { 2406 fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1; 2407 fifo_size -= XGMAC_FIFO_MIN_ALLOC; 2408 } 2409 2410 return fifo_size; 2411 } 2412 2413 static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata) 2414 { 2415 unsigned int delay; 2416 2417 /* If a delay has been provided, use that */ 2418 if (pdata->pfc->delay) 2419 return pdata->pfc->delay / 8; 2420 2421 /* Allow for two maximum size frames */ 2422 delay = xgbe_get_max_frame(pdata); 2423 delay += XGMAC_ETH_PREAMBLE; 2424 delay *= 2; 2425 2426 /* Allow for PFC frame */ 2427 delay += XGMAC_PFC_DATA_LEN; 2428 delay += ETH_HLEN + ETH_FCS_LEN; 2429 delay += XGMAC_ETH_PREAMBLE; 2430 2431 /* Allow for miscellaneous delays (LPI exit, cable, etc.) */ 2432 delay += XGMAC_PFC_DELAYS; 2433 2434 return delay; 2435 } 2436 2437 static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata) 2438 { 2439 unsigned int count, prio_queues; 2440 unsigned int i; 2441 2442 if (!pdata->pfc->pfc_en) 2443 return 0; 2444 2445 count = 0; 2446 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); 2447 for (i = 0; i < prio_queues; i++) { 2448 if (!xgbe_is_pfc_queue(pdata, i)) 2449 continue; 2450 2451 pdata->pfcq[i] = 1; 2452 count++; 2453 } 2454 2455 return count; 2456 } 2457 2458 static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata, 2459 unsigned int fifo_size, 2460 unsigned int *fifo) 2461 { 2462 unsigned int q_fifo_size, rem_fifo, addn_fifo; 2463 unsigned int prio_queues; 2464 unsigned int pfc_count; 2465 unsigned int i; 2466 2467 q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata)); 2468 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); 2469 pfc_count = xgbe_get_pfc_queues(pdata); 2470 2471 if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) { 2472 /* No traffic classes with PFC enabled or can't do lossless */ 2473 xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo); 2474 return; 2475 } 2476 2477 /* Calculate how much fifo we have to play with */ 2478 rem_fifo = fifo_size - (q_fifo_size * prio_queues); 2479 2480 /* Calculate how much more than base fifo PFC needs, which also 2481 * becomes the threshold activation point (RFA) 2482 */ 2483 pdata->pfc_rfa = xgbe_get_pfc_delay(pdata); 2484 pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa); 2485 2486 if (pdata->pfc_rfa > q_fifo_size) { 2487 addn_fifo = pdata->pfc_rfa - q_fifo_size; 2488 addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo); 2489 } else { 2490 addn_fifo = 0; 2491 } 2492 2493 /* Calculate DCB fifo settings: 2494 * - distribute remaining fifo between the VLAN priority 2495 * queues based on traffic class PFC enablement and overall 2496 * priority (0 is lowest priority, so start at highest) 2497 */ 2498 i = prio_queues; 2499 while (i > 0) { 2500 i--; 2501 2502 fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1; 2503 2504 if (!pdata->pfcq[i] || !addn_fifo) 2505 continue; 2506 2507 if (addn_fifo > rem_fifo) { 2508 netdev_warn(pdata->netdev, 2509 "RXq%u cannot set needed fifo size\n", i); 2510 if (!rem_fifo) 2511 continue; 2512 2513 addn_fifo = rem_fifo; 2514 } 2515 2516 fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT); 2517 rem_fifo -= addn_fifo; 2518 } 2519 2520 if (rem_fifo) { 2521 unsigned int inc_fifo = rem_fifo / prio_queues; 2522 2523 /* Distribute remaining fifo across queues */ 2524 for (i = 0; i < prio_queues; i++) 2525 fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT); 2526 } 2527 } 2528 2529 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata) 2530 { 2531 unsigned int fifo_size; 2532 unsigned int fifo[XGBE_MAX_QUEUES]; 2533 unsigned int i; 2534 2535 fifo_size = xgbe_get_tx_fifo_size(pdata); 2536 2537 xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo); 2538 2539 for (i = 0; i < pdata->tx_q_count; i++) 2540 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]); 2541 2542 netif_info(pdata, drv, pdata->netdev, 2543 "%d Tx hardware queues, %d byte fifo per queue\n", 2544 pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT)); 2545 } 2546 2547 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata) 2548 { 2549 unsigned int fifo_size; 2550 unsigned int fifo[XGBE_MAX_QUEUES]; 2551 unsigned int prio_queues; 2552 unsigned int i; 2553 2554 /* Clear any DCB related fifo/queue information */ 2555 memset(pdata->pfcq, 0, sizeof(pdata->pfcq)); 2556 pdata->pfc_rfa = 0; 2557 2558 fifo_size = xgbe_get_rx_fifo_size(pdata); 2559 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); 2560 2561 /* Assign a minimum fifo to the non-VLAN priority queues */ 2562 fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo); 2563 2564 if (pdata->pfc && pdata->ets) 2565 xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo); 2566 else 2567 xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo); 2568 2569 for (i = 0; i < pdata->rx_q_count; i++) 2570 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]); 2571 2572 xgbe_calculate_flow_control_threshold(pdata, fifo); 2573 xgbe_config_flow_control_threshold(pdata); 2574 2575 if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) { 2576 netif_info(pdata, drv, pdata->netdev, 2577 "%u Rx hardware queues\n", pdata->rx_q_count); 2578 for (i = 0; i < pdata->rx_q_count; i++) 2579 netif_info(pdata, drv, pdata->netdev, 2580 "RxQ%u, %u byte fifo queue\n", i, 2581 ((fifo[i] + 1) * XGMAC_FIFO_UNIT)); 2582 } else { 2583 netif_info(pdata, drv, pdata->netdev, 2584 "%u Rx hardware queues, %u byte fifo per queue\n", 2585 pdata->rx_q_count, 2586 ((fifo[0] + 1) * XGMAC_FIFO_UNIT)); 2587 } 2588 } 2589 2590 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata) 2591 { 2592 unsigned int qptc, qptc_extra, queue; 2593 unsigned int prio_queues; 2594 unsigned int ppq, ppq_extra, prio; 2595 unsigned int mask; 2596 unsigned int i, j, reg, reg_val; 2597 2598 /* Map the MTL Tx Queues to Traffic Classes 2599 * Note: Tx Queues >= Traffic Classes 2600 */ 2601 qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt; 2602 qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt; 2603 2604 for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) { 2605 for (j = 0; j < qptc; j++) { 2606 netif_dbg(pdata, drv, pdata->netdev, 2607 "TXq%u mapped to TC%u\n", queue, i); 2608 XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR, 2609 Q2TCMAP, i); 2610 pdata->q2tc_map[queue++] = i; 2611 } 2612 2613 if (i < qptc_extra) { 2614 netif_dbg(pdata, drv, pdata->netdev, 2615 "TXq%u mapped to TC%u\n", queue, i); 2616 XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR, 2617 Q2TCMAP, i); 2618 pdata->q2tc_map[queue++] = i; 2619 } 2620 } 2621 2622 /* Map the 8 VLAN priority values to available MTL Rx queues */ 2623 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); 2624 ppq = IEEE_8021QAZ_MAX_TCS / prio_queues; 2625 ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues; 2626 2627 reg = MAC_RQC2R; 2628 reg_val = 0; 2629 for (i = 0, prio = 0; i < prio_queues;) { 2630 mask = 0; 2631 for (j = 0; j < ppq; j++) { 2632 netif_dbg(pdata, drv, pdata->netdev, 2633 "PRIO%u mapped to RXq%u\n", prio, i); 2634 mask |= (1 << prio); 2635 pdata->prio2q_map[prio++] = i; 2636 } 2637 2638 if (i < ppq_extra) { 2639 netif_dbg(pdata, drv, pdata->netdev, 2640 "PRIO%u mapped to RXq%u\n", prio, i); 2641 mask |= (1 << prio); 2642 pdata->prio2q_map[prio++] = i; 2643 } 2644 2645 reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3)); 2646 2647 if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues)) 2648 continue; 2649 2650 XGMAC_IOWRITE(pdata, reg, reg_val); 2651 reg += MAC_RQC2_INC; 2652 reg_val = 0; 2653 } 2654 2655 /* Select dynamic mapping of MTL Rx queue to DMA Rx channel */ 2656 reg = MTL_RQDCM0R; 2657 reg_val = 0; 2658 for (i = 0; i < pdata->rx_q_count;) { 2659 reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3)); 2660 2661 if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count)) 2662 continue; 2663 2664 XGMAC_IOWRITE(pdata, reg, reg_val); 2665 2666 reg += MTL_RQDCM_INC; 2667 reg_val = 0; 2668 } 2669 } 2670 2671 static void xgbe_config_tc(struct xgbe_prv_data *pdata) 2672 { 2673 unsigned int offset, queue, prio; 2674 u8 i; 2675 2676 netdev_reset_tc(pdata->netdev); 2677 if (!pdata->num_tcs) 2678 return; 2679 2680 netdev_set_num_tc(pdata->netdev, pdata->num_tcs); 2681 2682 for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) { 2683 while ((queue < pdata->tx_q_count) && 2684 (pdata->q2tc_map[queue] == i)) 2685 queue++; 2686 2687 netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n", 2688 i, offset, queue - 1); 2689 netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset); 2690 offset = queue; 2691 } 2692 2693 if (!pdata->ets) 2694 return; 2695 2696 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) 2697 netdev_set_prio_tc_map(pdata->netdev, prio, 2698 pdata->ets->prio_tc[prio]); 2699 } 2700 2701 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata) 2702 { 2703 struct ieee_ets *ets = pdata->ets; 2704 unsigned int total_weight, min_weight, weight; 2705 unsigned int mask, reg, reg_val; 2706 unsigned int i, prio; 2707 2708 if (!ets) 2709 return; 2710 2711 /* Set Tx to deficit weighted round robin scheduling algorithm (when 2712 * traffic class is using ETS algorithm) 2713 */ 2714 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR); 2715 2716 /* Set Traffic Class algorithms */ 2717 total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt; 2718 min_weight = total_weight / 100; 2719 if (!min_weight) 2720 min_weight = 1; 2721 2722 for (i = 0; i < pdata->hw_feat.tc_cnt; i++) { 2723 /* Map the priorities to the traffic class */ 2724 mask = 0; 2725 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) { 2726 if (ets->prio_tc[prio] == i) 2727 mask |= (1 << prio); 2728 } 2729 mask &= 0xff; 2730 2731 netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n", 2732 i, mask); 2733 reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG)); 2734 reg_val = XGMAC_IOREAD(pdata, reg); 2735 2736 reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3)); 2737 reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3)); 2738 2739 XGMAC_IOWRITE(pdata, reg, reg_val); 2740 2741 /* Set the traffic class algorithm */ 2742 switch (ets->tc_tsa[i]) { 2743 case IEEE_8021QAZ_TSA_STRICT: 2744 netif_dbg(pdata, drv, pdata->netdev, 2745 "TC%u using SP\n", i); 2746 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, 2747 MTL_TSA_SP); 2748 break; 2749 case IEEE_8021QAZ_TSA_ETS: 2750 weight = total_weight * ets->tc_tx_bw[i] / 100; 2751 weight = clamp(weight, min_weight, total_weight); 2752 2753 netif_dbg(pdata, drv, pdata->netdev, 2754 "TC%u using DWRR (weight %u)\n", i, weight); 2755 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, 2756 MTL_TSA_ETS); 2757 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 2758 weight); 2759 break; 2760 } 2761 } 2762 2763 xgbe_config_tc(pdata); 2764 } 2765 2766 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata) 2767 { 2768 if (!test_bit(XGBE_DOWN, &pdata->dev_state)) { 2769 /* Just stop the Tx queues while Rx fifo is changed */ 2770 netif_tx_stop_all_queues(pdata->netdev); 2771 2772 /* Suspend Rx so that fifo's can be adjusted */ 2773 pdata->hw_if.disable_rx(pdata); 2774 } 2775 2776 xgbe_config_rx_fifo_size(pdata); 2777 xgbe_config_flow_control(pdata); 2778 2779 if (!test_bit(XGBE_DOWN, &pdata->dev_state)) { 2780 /* Resume Rx */ 2781 pdata->hw_if.enable_rx(pdata); 2782 2783 /* Resume Tx queues */ 2784 netif_tx_start_all_queues(pdata->netdev); 2785 } 2786 } 2787 2788 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata) 2789 { 2790 xgbe_set_mac_address(pdata, pdata->netdev->dev_addr); 2791 2792 /* Filtering is done using perfect filtering and hash filtering */ 2793 if (pdata->hw_feat.hash_table_size) { 2794 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1); 2795 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1); 2796 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1); 2797 } 2798 } 2799 2800 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata) 2801 { 2802 unsigned int val; 2803 2804 val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0; 2805 2806 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val); 2807 } 2808 2809 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata) 2810 { 2811 xgbe_set_speed(pdata, pdata->phy_speed); 2812 } 2813 2814 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata) 2815 { 2816 if (pdata->netdev->features & NETIF_F_RXCSUM) 2817 xgbe_enable_rx_csum(pdata); 2818 else 2819 xgbe_disable_rx_csum(pdata); 2820 } 2821 2822 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata) 2823 { 2824 /* Indicate that VLAN Tx CTAGs come from context descriptors */ 2825 XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0); 2826 XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1); 2827 2828 /* Set the current VLAN Hash Table register value */ 2829 xgbe_update_vlan_hash_table(pdata); 2830 2831 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER) 2832 xgbe_enable_rx_vlan_filtering(pdata); 2833 else 2834 xgbe_disable_rx_vlan_filtering(pdata); 2835 2836 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2837 xgbe_enable_rx_vlan_stripping(pdata); 2838 else 2839 xgbe_disable_rx_vlan_stripping(pdata); 2840 } 2841 2842 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo) 2843 { 2844 bool read_hi; 2845 u64 val; 2846 2847 if (pdata->vdata->mmc_64bit) { 2848 switch (reg_lo) { 2849 /* These registers are always 32 bit */ 2850 case MMC_RXRUNTERROR: 2851 case MMC_RXJABBERERROR: 2852 case MMC_RXUNDERSIZE_G: 2853 case MMC_RXOVERSIZE_G: 2854 case MMC_RXWATCHDOGERROR: 2855 read_hi = false; 2856 break; 2857 2858 default: 2859 read_hi = true; 2860 } 2861 } else { 2862 switch (reg_lo) { 2863 /* These registers are always 64 bit */ 2864 case MMC_TXOCTETCOUNT_GB_LO: 2865 case MMC_TXOCTETCOUNT_G_LO: 2866 case MMC_RXOCTETCOUNT_GB_LO: 2867 case MMC_RXOCTETCOUNT_G_LO: 2868 read_hi = true; 2869 break; 2870 2871 default: 2872 read_hi = false; 2873 } 2874 } 2875 2876 val = XGMAC_IOREAD(pdata, reg_lo); 2877 2878 if (read_hi) 2879 val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32); 2880 2881 return val; 2882 } 2883 2884 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata) 2885 { 2886 struct xgbe_mmc_stats *stats = &pdata->mmc_stats; 2887 unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR); 2888 2889 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB)) 2890 stats->txoctetcount_gb += 2891 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO); 2892 2893 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB)) 2894 stats->txframecount_gb += 2895 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO); 2896 2897 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G)) 2898 stats->txbroadcastframes_g += 2899 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO); 2900 2901 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G)) 2902 stats->txmulticastframes_g += 2903 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO); 2904 2905 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB)) 2906 stats->tx64octets_gb += 2907 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO); 2908 2909 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB)) 2910 stats->tx65to127octets_gb += 2911 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO); 2912 2913 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB)) 2914 stats->tx128to255octets_gb += 2915 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO); 2916 2917 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB)) 2918 stats->tx256to511octets_gb += 2919 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO); 2920 2921 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB)) 2922 stats->tx512to1023octets_gb += 2923 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO); 2924 2925 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB)) 2926 stats->tx1024tomaxoctets_gb += 2927 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO); 2928 2929 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB)) 2930 stats->txunicastframes_gb += 2931 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO); 2932 2933 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB)) 2934 stats->txmulticastframes_gb += 2935 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO); 2936 2937 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB)) 2938 stats->txbroadcastframes_g += 2939 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO); 2940 2941 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR)) 2942 stats->txunderflowerror += 2943 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO); 2944 2945 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G)) 2946 stats->txoctetcount_g += 2947 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO); 2948 2949 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G)) 2950 stats->txframecount_g += 2951 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO); 2952 2953 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES)) 2954 stats->txpauseframes += 2955 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO); 2956 2957 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G)) 2958 stats->txvlanframes_g += 2959 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO); 2960 } 2961 2962 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata) 2963 { 2964 struct xgbe_mmc_stats *stats = &pdata->mmc_stats; 2965 unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR); 2966 2967 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB)) 2968 stats->rxframecount_gb += 2969 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO); 2970 2971 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB)) 2972 stats->rxoctetcount_gb += 2973 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO); 2974 2975 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G)) 2976 stats->rxoctetcount_g += 2977 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO); 2978 2979 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G)) 2980 stats->rxbroadcastframes_g += 2981 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO); 2982 2983 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G)) 2984 stats->rxmulticastframes_g += 2985 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO); 2986 2987 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR)) 2988 stats->rxcrcerror += 2989 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO); 2990 2991 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR)) 2992 stats->rxrunterror += 2993 xgbe_mmc_read(pdata, MMC_RXRUNTERROR); 2994 2995 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR)) 2996 stats->rxjabbererror += 2997 xgbe_mmc_read(pdata, MMC_RXJABBERERROR); 2998 2999 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G)) 3000 stats->rxundersize_g += 3001 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G); 3002 3003 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G)) 3004 stats->rxoversize_g += 3005 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G); 3006 3007 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB)) 3008 stats->rx64octets_gb += 3009 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO); 3010 3011 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB)) 3012 stats->rx65to127octets_gb += 3013 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO); 3014 3015 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB)) 3016 stats->rx128to255octets_gb += 3017 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO); 3018 3019 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB)) 3020 stats->rx256to511octets_gb += 3021 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO); 3022 3023 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB)) 3024 stats->rx512to1023octets_gb += 3025 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO); 3026 3027 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB)) 3028 stats->rx1024tomaxoctets_gb += 3029 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO); 3030 3031 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G)) 3032 stats->rxunicastframes_g += 3033 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO); 3034 3035 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR)) 3036 stats->rxlengtherror += 3037 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO); 3038 3039 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE)) 3040 stats->rxoutofrangetype += 3041 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO); 3042 3043 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES)) 3044 stats->rxpauseframes += 3045 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO); 3046 3047 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW)) 3048 stats->rxfifooverflow += 3049 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO); 3050 3051 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB)) 3052 stats->rxvlanframes_gb += 3053 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO); 3054 3055 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR)) 3056 stats->rxwatchdogerror += 3057 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR); 3058 } 3059 3060 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata) 3061 { 3062 struct xgbe_mmc_stats *stats = &pdata->mmc_stats; 3063 3064 /* Freeze counters */ 3065 XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1); 3066 3067 stats->txoctetcount_gb += 3068 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO); 3069 3070 stats->txframecount_gb += 3071 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO); 3072 3073 stats->txbroadcastframes_g += 3074 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO); 3075 3076 stats->txmulticastframes_g += 3077 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO); 3078 3079 stats->tx64octets_gb += 3080 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO); 3081 3082 stats->tx65to127octets_gb += 3083 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO); 3084 3085 stats->tx128to255octets_gb += 3086 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO); 3087 3088 stats->tx256to511octets_gb += 3089 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO); 3090 3091 stats->tx512to1023octets_gb += 3092 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO); 3093 3094 stats->tx1024tomaxoctets_gb += 3095 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO); 3096 3097 stats->txunicastframes_gb += 3098 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO); 3099 3100 stats->txmulticastframes_gb += 3101 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO); 3102 3103 stats->txbroadcastframes_g += 3104 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO); 3105 3106 stats->txunderflowerror += 3107 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO); 3108 3109 stats->txoctetcount_g += 3110 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO); 3111 3112 stats->txframecount_g += 3113 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO); 3114 3115 stats->txpauseframes += 3116 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO); 3117 3118 stats->txvlanframes_g += 3119 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO); 3120 3121 stats->rxframecount_gb += 3122 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO); 3123 3124 stats->rxoctetcount_gb += 3125 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO); 3126 3127 stats->rxoctetcount_g += 3128 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO); 3129 3130 stats->rxbroadcastframes_g += 3131 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO); 3132 3133 stats->rxmulticastframes_g += 3134 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO); 3135 3136 stats->rxcrcerror += 3137 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO); 3138 3139 stats->rxrunterror += 3140 xgbe_mmc_read(pdata, MMC_RXRUNTERROR); 3141 3142 stats->rxjabbererror += 3143 xgbe_mmc_read(pdata, MMC_RXJABBERERROR); 3144 3145 stats->rxundersize_g += 3146 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G); 3147 3148 stats->rxoversize_g += 3149 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G); 3150 3151 stats->rx64octets_gb += 3152 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO); 3153 3154 stats->rx65to127octets_gb += 3155 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO); 3156 3157 stats->rx128to255octets_gb += 3158 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO); 3159 3160 stats->rx256to511octets_gb += 3161 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO); 3162 3163 stats->rx512to1023octets_gb += 3164 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO); 3165 3166 stats->rx1024tomaxoctets_gb += 3167 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO); 3168 3169 stats->rxunicastframes_g += 3170 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO); 3171 3172 stats->rxlengtherror += 3173 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO); 3174 3175 stats->rxoutofrangetype += 3176 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO); 3177 3178 stats->rxpauseframes += 3179 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO); 3180 3181 stats->rxfifooverflow += 3182 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO); 3183 3184 stats->rxvlanframes_gb += 3185 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO); 3186 3187 stats->rxwatchdogerror += 3188 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR); 3189 3190 /* Un-freeze counters */ 3191 XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0); 3192 } 3193 3194 static void xgbe_config_mmc(struct xgbe_prv_data *pdata) 3195 { 3196 /* Set counters to reset on read */ 3197 XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1); 3198 3199 /* Reset the counters */ 3200 XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1); 3201 } 3202 3203 static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, 3204 unsigned int queue) 3205 { 3206 unsigned int tx_status; 3207 unsigned long tx_timeout; 3208 3209 /* The Tx engine cannot be stopped if it is actively processing 3210 * packets. Wait for the Tx queue to empty the Tx fifo. Don't 3211 * wait forever though... 3212 */ 3213 tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ); 3214 while (time_before(jiffies, tx_timeout)) { 3215 tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR); 3216 if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) && 3217 (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0)) 3218 break; 3219 3220 usleep_range(500, 1000); 3221 } 3222 3223 if (!time_before(jiffies, tx_timeout)) 3224 netdev_info(pdata->netdev, 3225 "timed out waiting for Tx queue %u to empty\n", 3226 queue); 3227 } 3228 3229 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, 3230 unsigned int queue) 3231 { 3232 unsigned int tx_dsr, tx_pos, tx_qidx; 3233 unsigned int tx_status; 3234 unsigned long tx_timeout; 3235 3236 if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20) 3237 return xgbe_txq_prepare_tx_stop(pdata, queue); 3238 3239 /* Calculate the status register to read and the position within */ 3240 if (queue < DMA_DSRX_FIRST_QUEUE) { 3241 tx_dsr = DMA_DSR0; 3242 tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START; 3243 } else { 3244 tx_qidx = queue - DMA_DSRX_FIRST_QUEUE; 3245 3246 tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC); 3247 tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) + 3248 DMA_DSRX_TPS_START; 3249 } 3250 3251 /* The Tx engine cannot be stopped if it is actively processing 3252 * descriptors. Wait for the Tx engine to enter the stopped or 3253 * suspended state. Don't wait forever though... 3254 */ 3255 tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ); 3256 while (time_before(jiffies, tx_timeout)) { 3257 tx_status = XGMAC_IOREAD(pdata, tx_dsr); 3258 tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH); 3259 if ((tx_status == DMA_TPS_STOPPED) || 3260 (tx_status == DMA_TPS_SUSPENDED)) 3261 break; 3262 3263 usleep_range(500, 1000); 3264 } 3265 3266 if (!time_before(jiffies, tx_timeout)) 3267 netdev_info(pdata->netdev, 3268 "timed out waiting for Tx DMA channel %u to stop\n", 3269 queue); 3270 } 3271 3272 static void xgbe_enable_tx(struct xgbe_prv_data *pdata) 3273 { 3274 unsigned int i; 3275 3276 /* Enable each Tx DMA channel */ 3277 for (i = 0; i < pdata->channel_count; i++) { 3278 if (!pdata->channel[i]->tx_ring) 3279 break; 3280 3281 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1); 3282 } 3283 3284 /* Enable each Tx queue */ 3285 for (i = 0; i < pdata->tx_q_count; i++) 3286 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 3287 MTL_Q_ENABLED); 3288 3289 /* Enable MAC Tx */ 3290 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1); 3291 } 3292 3293 static void xgbe_disable_tx(struct xgbe_prv_data *pdata) 3294 { 3295 unsigned int i; 3296 3297 /* Prepare for Tx DMA channel stop */ 3298 for (i = 0; i < pdata->tx_q_count; i++) 3299 xgbe_prepare_tx_stop(pdata, i); 3300 3301 /* Disable MAC Tx */ 3302 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0); 3303 3304 /* Disable each Tx queue */ 3305 for (i = 0; i < pdata->tx_q_count; i++) 3306 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0); 3307 3308 /* Disable each Tx DMA channel */ 3309 for (i = 0; i < pdata->channel_count; i++) { 3310 if (!pdata->channel[i]->tx_ring) 3311 break; 3312 3313 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0); 3314 } 3315 } 3316 3317 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, 3318 unsigned int queue) 3319 { 3320 unsigned int rx_status; 3321 unsigned long rx_timeout; 3322 3323 /* The Rx engine cannot be stopped if it is actively processing 3324 * packets. Wait for the Rx queue to empty the Rx fifo. Don't 3325 * wait forever though... 3326 */ 3327 rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ); 3328 while (time_before(jiffies, rx_timeout)) { 3329 rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR); 3330 if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) && 3331 (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0)) 3332 break; 3333 3334 usleep_range(500, 1000); 3335 } 3336 3337 if (!time_before(jiffies, rx_timeout)) 3338 netdev_info(pdata->netdev, 3339 "timed out waiting for Rx queue %u to empty\n", 3340 queue); 3341 } 3342 3343 static void xgbe_enable_rx(struct xgbe_prv_data *pdata) 3344 { 3345 unsigned int reg_val, i; 3346 3347 /* Enable each Rx DMA channel */ 3348 for (i = 0; i < pdata->channel_count; i++) { 3349 if (!pdata->channel[i]->rx_ring) 3350 break; 3351 3352 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1); 3353 } 3354 3355 /* Enable each Rx queue */ 3356 reg_val = 0; 3357 for (i = 0; i < pdata->rx_q_count; i++) 3358 reg_val |= (0x02 << (i << 1)); 3359 XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val); 3360 3361 /* Enable MAC Rx */ 3362 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1); 3363 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1); 3364 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1); 3365 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1); 3366 } 3367 3368 static void xgbe_disable_rx(struct xgbe_prv_data *pdata) 3369 { 3370 unsigned int i; 3371 3372 /* Disable MAC Rx */ 3373 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0); 3374 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0); 3375 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0); 3376 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0); 3377 3378 /* Prepare for Rx DMA channel stop */ 3379 for (i = 0; i < pdata->rx_q_count; i++) 3380 xgbe_prepare_rx_stop(pdata, i); 3381 3382 /* Disable each Rx queue */ 3383 XGMAC_IOWRITE(pdata, MAC_RQC0R, 0); 3384 3385 /* Disable each Rx DMA channel */ 3386 for (i = 0; i < pdata->channel_count; i++) { 3387 if (!pdata->channel[i]->rx_ring) 3388 break; 3389 3390 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0); 3391 } 3392 } 3393 3394 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata) 3395 { 3396 unsigned int i; 3397 3398 /* Enable each Tx DMA channel */ 3399 for (i = 0; i < pdata->channel_count; i++) { 3400 if (!pdata->channel[i]->tx_ring) 3401 break; 3402 3403 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1); 3404 } 3405 3406 /* Enable MAC Tx */ 3407 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1); 3408 } 3409 3410 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata) 3411 { 3412 unsigned int i; 3413 3414 /* Prepare for Tx DMA channel stop */ 3415 for (i = 0; i < pdata->tx_q_count; i++) 3416 xgbe_prepare_tx_stop(pdata, i); 3417 3418 /* Disable MAC Tx */ 3419 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0); 3420 3421 /* Disable each Tx DMA channel */ 3422 for (i = 0; i < pdata->channel_count; i++) { 3423 if (!pdata->channel[i]->tx_ring) 3424 break; 3425 3426 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0); 3427 } 3428 } 3429 3430 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata) 3431 { 3432 unsigned int i; 3433 3434 /* Enable each Rx DMA channel */ 3435 for (i = 0; i < pdata->channel_count; i++) { 3436 if (!pdata->channel[i]->rx_ring) 3437 break; 3438 3439 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1); 3440 } 3441 } 3442 3443 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata) 3444 { 3445 unsigned int i; 3446 3447 /* Disable each Rx DMA channel */ 3448 for (i = 0; i < pdata->channel_count; i++) { 3449 if (!pdata->channel[i]->rx_ring) 3450 break; 3451 3452 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0); 3453 } 3454 } 3455 3456 static int xgbe_init(struct xgbe_prv_data *pdata) 3457 { 3458 struct xgbe_desc_if *desc_if = &pdata->desc_if; 3459 int ret; 3460 3461 DBGPR("-->xgbe_init\n"); 3462 3463 /* Flush Tx queues */ 3464 ret = xgbe_flush_tx_queues(pdata); 3465 if (ret) { 3466 netdev_err(pdata->netdev, "error flushing TX queues\n"); 3467 return ret; 3468 } 3469 3470 /* 3471 * Initialize DMA related features 3472 */ 3473 xgbe_config_dma_bus(pdata); 3474 xgbe_config_dma_cache(pdata); 3475 xgbe_config_osp_mode(pdata); 3476 xgbe_config_pbl_val(pdata); 3477 xgbe_config_rx_coalesce(pdata); 3478 xgbe_config_tx_coalesce(pdata); 3479 xgbe_config_rx_buffer_size(pdata); 3480 xgbe_config_tso_mode(pdata); 3481 xgbe_config_sph_mode(pdata); 3482 xgbe_config_rss(pdata); 3483 desc_if->wrapper_tx_desc_init(pdata); 3484 desc_if->wrapper_rx_desc_init(pdata); 3485 xgbe_enable_dma_interrupts(pdata); 3486 3487 /* 3488 * Initialize MTL related features 3489 */ 3490 xgbe_config_mtl_mode(pdata); 3491 xgbe_config_queue_mapping(pdata); 3492 xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode); 3493 xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode); 3494 xgbe_config_tx_threshold(pdata, pdata->tx_threshold); 3495 xgbe_config_rx_threshold(pdata, pdata->rx_threshold); 3496 xgbe_config_tx_fifo_size(pdata); 3497 xgbe_config_rx_fifo_size(pdata); 3498 /*TODO: Error Packet and undersized good Packet forwarding enable 3499 (FEP and FUP) 3500 */ 3501 xgbe_config_dcb_tc(pdata); 3502 xgbe_enable_mtl_interrupts(pdata); 3503 3504 /* 3505 * Initialize MAC related features 3506 */ 3507 xgbe_config_mac_address(pdata); 3508 xgbe_config_rx_mode(pdata); 3509 xgbe_config_jumbo_enable(pdata); 3510 xgbe_config_flow_control(pdata); 3511 xgbe_config_mac_speed(pdata); 3512 xgbe_config_checksum_offload(pdata); 3513 xgbe_config_vlan_support(pdata); 3514 xgbe_config_mmc(pdata); 3515 xgbe_enable_mac_interrupts(pdata); 3516 3517 /* 3518 * Initialize ECC related features 3519 */ 3520 xgbe_enable_ecc_interrupts(pdata); 3521 3522 DBGPR("<--xgbe_init\n"); 3523 3524 return 0; 3525 } 3526 3527 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if) 3528 { 3529 DBGPR("-->xgbe_init_function_ptrs\n"); 3530 3531 hw_if->tx_complete = xgbe_tx_complete; 3532 3533 hw_if->set_mac_address = xgbe_set_mac_address; 3534 hw_if->config_rx_mode = xgbe_config_rx_mode; 3535 3536 hw_if->enable_rx_csum = xgbe_enable_rx_csum; 3537 hw_if->disable_rx_csum = xgbe_disable_rx_csum; 3538 3539 hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping; 3540 hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping; 3541 hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering; 3542 hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering; 3543 hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table; 3544 3545 hw_if->read_mmd_regs = xgbe_read_mmd_regs; 3546 hw_if->write_mmd_regs = xgbe_write_mmd_regs; 3547 3548 hw_if->set_speed = xgbe_set_speed; 3549 3550 hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode; 3551 hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs; 3552 hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs; 3553 3554 hw_if->set_gpio = xgbe_set_gpio; 3555 hw_if->clr_gpio = xgbe_clr_gpio; 3556 3557 hw_if->enable_tx = xgbe_enable_tx; 3558 hw_if->disable_tx = xgbe_disable_tx; 3559 hw_if->enable_rx = xgbe_enable_rx; 3560 hw_if->disable_rx = xgbe_disable_rx; 3561 3562 hw_if->powerup_tx = xgbe_powerup_tx; 3563 hw_if->powerdown_tx = xgbe_powerdown_tx; 3564 hw_if->powerup_rx = xgbe_powerup_rx; 3565 hw_if->powerdown_rx = xgbe_powerdown_rx; 3566 3567 hw_if->dev_xmit = xgbe_dev_xmit; 3568 hw_if->dev_read = xgbe_dev_read; 3569 hw_if->enable_int = xgbe_enable_int; 3570 hw_if->disable_int = xgbe_disable_int; 3571 hw_if->init = xgbe_init; 3572 hw_if->exit = xgbe_exit; 3573 3574 /* Descriptor related Sequences have to be initialized here */ 3575 hw_if->tx_desc_init = xgbe_tx_desc_init; 3576 hw_if->rx_desc_init = xgbe_rx_desc_init; 3577 hw_if->tx_desc_reset = xgbe_tx_desc_reset; 3578 hw_if->rx_desc_reset = xgbe_rx_desc_reset; 3579 hw_if->is_last_desc = xgbe_is_last_desc; 3580 hw_if->is_context_desc = xgbe_is_context_desc; 3581 hw_if->tx_start_xmit = xgbe_tx_start_xmit; 3582 3583 /* For FLOW ctrl */ 3584 hw_if->config_tx_flow_control = xgbe_config_tx_flow_control; 3585 hw_if->config_rx_flow_control = xgbe_config_rx_flow_control; 3586 3587 /* For RX coalescing */ 3588 hw_if->config_rx_coalesce = xgbe_config_rx_coalesce; 3589 hw_if->config_tx_coalesce = xgbe_config_tx_coalesce; 3590 hw_if->usec_to_riwt = xgbe_usec_to_riwt; 3591 hw_if->riwt_to_usec = xgbe_riwt_to_usec; 3592 3593 /* For RX and TX threshold config */ 3594 hw_if->config_rx_threshold = xgbe_config_rx_threshold; 3595 hw_if->config_tx_threshold = xgbe_config_tx_threshold; 3596 3597 /* For RX and TX Store and Forward Mode config */ 3598 hw_if->config_rsf_mode = xgbe_config_rsf_mode; 3599 hw_if->config_tsf_mode = xgbe_config_tsf_mode; 3600 3601 /* For TX DMA Operating on Second Frame config */ 3602 hw_if->config_osp_mode = xgbe_config_osp_mode; 3603 3604 /* For MMC statistics support */ 3605 hw_if->tx_mmc_int = xgbe_tx_mmc_int; 3606 hw_if->rx_mmc_int = xgbe_rx_mmc_int; 3607 hw_if->read_mmc_stats = xgbe_read_mmc_stats; 3608 3609 /* For PTP config */ 3610 hw_if->config_tstamp = xgbe_config_tstamp; 3611 hw_if->update_tstamp_addend = xgbe_update_tstamp_addend; 3612 hw_if->set_tstamp_time = xgbe_set_tstamp_time; 3613 hw_if->get_tstamp_time = xgbe_get_tstamp_time; 3614 hw_if->get_tx_tstamp = xgbe_get_tx_tstamp; 3615 3616 /* For Data Center Bridging config */ 3617 hw_if->config_tc = xgbe_config_tc; 3618 hw_if->config_dcb_tc = xgbe_config_dcb_tc; 3619 hw_if->config_dcb_pfc = xgbe_config_dcb_pfc; 3620 3621 /* For Receive Side Scaling */ 3622 hw_if->enable_rss = xgbe_enable_rss; 3623 hw_if->disable_rss = xgbe_disable_rss; 3624 hw_if->set_rss_hash_key = xgbe_set_rss_hash_key; 3625 hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table; 3626 3627 /* For ECC */ 3628 hw_if->disable_ecc_ded = xgbe_disable_ecc_ded; 3629 hw_if->disable_ecc_sec = xgbe_disable_ecc_sec; 3630 3631 /* For VXLAN */ 3632 hw_if->enable_vxlan = xgbe_enable_vxlan; 3633 hw_if->disable_vxlan = xgbe_disable_vxlan; 3634 hw_if->set_vxlan_id = xgbe_set_vxlan_id; 3635 3636 DBGPR("<--xgbe_init_function_ptrs\n"); 3637 } 3638