1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * This file is available to you under your choice of the following two
5  * licenses:
6  *
7  * License 1: GPLv2
8  *
9  * Copyright (c) 2014 Advanced Micro Devices, Inc.
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Copyright (c) 2014 Advanced Micro Devices, Inc.
60  * All rights reserved.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions are met:
64  *     * Redistributions of source code must retain the above copyright
65  *       notice, this list of conditions and the following disclaimer.
66  *     * Redistributions in binary form must reproduce the above copyright
67  *       notice, this list of conditions and the following disclaimer in the
68  *       documentation and/or other materials provided with the distribution.
69  *     * Neither the name of Advanced Micro Devices, Inc. nor the
70  *       names of its contributors may be used to endorse or promote products
71  *       derived from this software without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83  *
84  * This file incorporates work covered by the following copyright and
85  * permission notice:
86  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89  *     and you.
90  *
91  *     The Software IS NOT an item of Licensed Software or Licensed Product
92  *     under any End User Software License Agreement or Agreement for Licensed
93  *     Product with Synopsys or any supplement thereto.  Permission is hereby
94  *     granted, free of charge, to any person obtaining a copy of this software
95  *     annotated with this license and the Software, to deal in the Software
96  *     without restriction, including without limitation the rights to use,
97  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98  *     of the Software, and to permit persons to whom the Software is furnished
99  *     to do so, subject to the following conditions:
100  *
101  *     The above copyright notice and this permission notice shall be included
102  *     in all copies or substantial portions of the Software.
103  *
104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114  *     THE POSSIBILITY OF SUCH DAMAGE.
115  */
116 
117 #include <linux/phy.h>
118 #include <linux/mdio.h>
119 #include <linux/clk.h>
120 #include <linux/bitrev.h>
121 #include <linux/crc32.h>
122 
123 #include "xgbe.h"
124 #include "xgbe-common.h"
125 
126 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
127 				      unsigned int usec)
128 {
129 	unsigned long rate;
130 	unsigned int ret;
131 
132 	DBGPR("-->xgbe_usec_to_riwt\n");
133 
134 	rate = pdata->sysclk_rate;
135 
136 	/*
137 	 * Convert the input usec value to the watchdog timer value. Each
138 	 * watchdog timer value is equivalent to 256 clock cycles.
139 	 * Calculate the required value as:
140 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
141 	 */
142 	ret = (usec * (rate / 1000000)) / 256;
143 
144 	DBGPR("<--xgbe_usec_to_riwt\n");
145 
146 	return ret;
147 }
148 
149 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
150 				      unsigned int riwt)
151 {
152 	unsigned long rate;
153 	unsigned int ret;
154 
155 	DBGPR("-->xgbe_riwt_to_usec\n");
156 
157 	rate = pdata->sysclk_rate;
158 
159 	/*
160 	 * Convert the input watchdog timer value to the usec value. Each
161 	 * watchdog timer value is equivalent to 256 clock cycles.
162 	 * Calculate the required value as:
163 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
164 	 */
165 	ret = (riwt * 256) / (rate / 1000000);
166 
167 	DBGPR("<--xgbe_riwt_to_usec\n");
168 
169 	return ret;
170 }
171 
172 static int xgbe_config_pblx8(struct xgbe_prv_data *pdata)
173 {
174 	struct xgbe_channel *channel;
175 	unsigned int i;
176 
177 	channel = pdata->channel;
178 	for (i = 0; i < pdata->channel_count; i++, channel++)
179 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, PBLX8,
180 				       pdata->pblx8);
181 
182 	return 0;
183 }
184 
185 static int xgbe_get_tx_pbl_val(struct xgbe_prv_data *pdata)
186 {
187 	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_TCR, PBL);
188 }
189 
190 static int xgbe_config_tx_pbl_val(struct xgbe_prv_data *pdata)
191 {
192 	struct xgbe_channel *channel;
193 	unsigned int i;
194 
195 	channel = pdata->channel;
196 	for (i = 0; i < pdata->channel_count; i++, channel++) {
197 		if (!channel->tx_ring)
198 			break;
199 
200 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, PBL,
201 				       pdata->tx_pbl);
202 	}
203 
204 	return 0;
205 }
206 
207 static int xgbe_get_rx_pbl_val(struct xgbe_prv_data *pdata)
208 {
209 	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_RCR, PBL);
210 }
211 
212 static int xgbe_config_rx_pbl_val(struct xgbe_prv_data *pdata)
213 {
214 	struct xgbe_channel *channel;
215 	unsigned int i;
216 
217 	channel = pdata->channel;
218 	for (i = 0; i < pdata->channel_count; i++, channel++) {
219 		if (!channel->rx_ring)
220 			break;
221 
222 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, PBL,
223 				       pdata->rx_pbl);
224 	}
225 
226 	return 0;
227 }
228 
229 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
230 {
231 	struct xgbe_channel *channel;
232 	unsigned int i;
233 
234 	channel = pdata->channel;
235 	for (i = 0; i < pdata->channel_count; i++, channel++) {
236 		if (!channel->tx_ring)
237 			break;
238 
239 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, OSP,
240 				       pdata->tx_osp_mode);
241 	}
242 
243 	return 0;
244 }
245 
246 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
247 {
248 	unsigned int i;
249 
250 	for (i = 0; i < pdata->rx_q_count; i++)
251 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
252 
253 	return 0;
254 }
255 
256 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
257 {
258 	unsigned int i;
259 
260 	for (i = 0; i < pdata->tx_q_count; i++)
261 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
262 
263 	return 0;
264 }
265 
266 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
267 				    unsigned int val)
268 {
269 	unsigned int i;
270 
271 	for (i = 0; i < pdata->rx_q_count; i++)
272 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
273 
274 	return 0;
275 }
276 
277 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
278 				    unsigned int val)
279 {
280 	unsigned int i;
281 
282 	for (i = 0; i < pdata->tx_q_count; i++)
283 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
284 
285 	return 0;
286 }
287 
288 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
289 {
290 	struct xgbe_channel *channel;
291 	unsigned int i;
292 
293 	channel = pdata->channel;
294 	for (i = 0; i < pdata->channel_count; i++, channel++) {
295 		if (!channel->rx_ring)
296 			break;
297 
298 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RIWT, RWT,
299 				       pdata->rx_riwt);
300 	}
301 
302 	return 0;
303 }
304 
305 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
306 {
307 	return 0;
308 }
309 
310 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
311 {
312 	struct xgbe_channel *channel;
313 	unsigned int i;
314 
315 	channel = pdata->channel;
316 	for (i = 0; i < pdata->channel_count; i++, channel++) {
317 		if (!channel->rx_ring)
318 			break;
319 
320 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, RBSZ,
321 				       pdata->rx_buf_size);
322 	}
323 }
324 
325 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
326 {
327 	struct xgbe_channel *channel;
328 	unsigned int i;
329 
330 	channel = pdata->channel;
331 	for (i = 0; i < pdata->channel_count; i++, channel++) {
332 		if (!channel->tx_ring)
333 			break;
334 
335 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, TSE, 1);
336 	}
337 }
338 
339 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
340 {
341 	struct xgbe_channel *channel;
342 	unsigned int i;
343 
344 	channel = pdata->channel;
345 	for (i = 0; i < pdata->channel_count; i++, channel++) {
346 		if (!channel->rx_ring)
347 			break;
348 
349 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, SPH, 1);
350 	}
351 
352 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
353 }
354 
355 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
356 			      unsigned int index, unsigned int val)
357 {
358 	unsigned int wait;
359 	int ret = 0;
360 
361 	mutex_lock(&pdata->rss_mutex);
362 
363 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
364 		ret = -EBUSY;
365 		goto unlock;
366 	}
367 
368 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
369 
370 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
371 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
372 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
373 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
374 
375 	wait = 1000;
376 	while (wait--) {
377 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
378 			goto unlock;
379 
380 		usleep_range(1000, 1500);
381 	}
382 
383 	ret = -EBUSY;
384 
385 unlock:
386 	mutex_unlock(&pdata->rss_mutex);
387 
388 	return ret;
389 }
390 
391 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
392 {
393 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
394 	unsigned int *key = (unsigned int *)&pdata->rss_key;
395 	int ret;
396 
397 	while (key_regs--) {
398 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
399 					 key_regs, *key++);
400 		if (ret)
401 			return ret;
402 	}
403 
404 	return 0;
405 }
406 
407 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
408 {
409 	unsigned int i;
410 	int ret;
411 
412 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
413 		ret = xgbe_write_rss_reg(pdata,
414 					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
415 					 pdata->rss_table[i]);
416 		if (ret)
417 			return ret;
418 	}
419 
420 	return 0;
421 }
422 
423 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
424 {
425 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
426 
427 	return xgbe_write_rss_hash_key(pdata);
428 }
429 
430 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
431 				     const u32 *table)
432 {
433 	unsigned int i;
434 
435 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
436 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
437 
438 	return xgbe_write_rss_lookup_table(pdata);
439 }
440 
441 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
442 {
443 	int ret;
444 
445 	if (!pdata->hw_feat.rss)
446 		return -EOPNOTSUPP;
447 
448 	/* Program the hash key */
449 	ret = xgbe_write_rss_hash_key(pdata);
450 	if (ret)
451 		return ret;
452 
453 	/* Program the lookup table */
454 	ret = xgbe_write_rss_lookup_table(pdata);
455 	if (ret)
456 		return ret;
457 
458 	/* Set the RSS options */
459 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
460 
461 	/* Enable RSS */
462 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
463 
464 	return 0;
465 }
466 
467 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
468 {
469 	if (!pdata->hw_feat.rss)
470 		return -EOPNOTSUPP;
471 
472 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
473 
474 	return 0;
475 }
476 
477 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
478 {
479 	int ret;
480 
481 	if (!pdata->hw_feat.rss)
482 		return;
483 
484 	if (pdata->netdev->features & NETIF_F_RXHASH)
485 		ret = xgbe_enable_rss(pdata);
486 	else
487 		ret = xgbe_disable_rss(pdata);
488 
489 	if (ret)
490 		netdev_err(pdata->netdev,
491 			   "error configuring RSS, RSS disabled\n");
492 }
493 
494 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
495 {
496 	unsigned int max_q_count, q_count;
497 	unsigned int reg, reg_val;
498 	unsigned int i;
499 
500 	/* Clear MTL flow control */
501 	for (i = 0; i < pdata->rx_q_count; i++)
502 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
503 
504 	/* Clear MAC flow control */
505 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
506 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
507 	reg = MAC_Q0TFCR;
508 	for (i = 0; i < q_count; i++) {
509 		reg_val = XGMAC_IOREAD(pdata, reg);
510 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
511 		XGMAC_IOWRITE(pdata, reg, reg_val);
512 
513 		reg += MAC_QTFCR_INC;
514 	}
515 
516 	return 0;
517 }
518 
519 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
520 {
521 	unsigned int max_q_count, q_count;
522 	unsigned int reg, reg_val;
523 	unsigned int i;
524 
525 	/* Set MTL flow control */
526 	for (i = 0; i < pdata->rx_q_count; i++)
527 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 1);
528 
529 	/* Set MAC flow control */
530 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
531 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
532 	reg = MAC_Q0TFCR;
533 	for (i = 0; i < q_count; i++) {
534 		reg_val = XGMAC_IOREAD(pdata, reg);
535 
536 		/* Enable transmit flow control */
537 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
538 		/* Set pause time */
539 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
540 
541 		XGMAC_IOWRITE(pdata, reg, reg_val);
542 
543 		reg += MAC_QTFCR_INC;
544 	}
545 
546 	return 0;
547 }
548 
549 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
550 {
551 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
552 
553 	return 0;
554 }
555 
556 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
557 {
558 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
559 
560 	return 0;
561 }
562 
563 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
564 {
565 	struct ieee_pfc *pfc = pdata->pfc;
566 
567 	if (pdata->tx_pause || (pfc && pfc->pfc_en))
568 		xgbe_enable_tx_flow_control(pdata);
569 	else
570 		xgbe_disable_tx_flow_control(pdata);
571 
572 	return 0;
573 }
574 
575 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
576 {
577 	struct ieee_pfc *pfc = pdata->pfc;
578 
579 	if (pdata->rx_pause || (pfc && pfc->pfc_en))
580 		xgbe_enable_rx_flow_control(pdata);
581 	else
582 		xgbe_disable_rx_flow_control(pdata);
583 
584 	return 0;
585 }
586 
587 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
588 {
589 	struct ieee_pfc *pfc = pdata->pfc;
590 
591 	xgbe_config_tx_flow_control(pdata);
592 	xgbe_config_rx_flow_control(pdata);
593 
594 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
595 			   (pfc && pfc->pfc_en) ? 1 : 0);
596 }
597 
598 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
599 {
600 	struct xgbe_channel *channel;
601 	unsigned int dma_ch_isr, dma_ch_ier;
602 	unsigned int i;
603 
604 	channel = pdata->channel;
605 	for (i = 0; i < pdata->channel_count; i++, channel++) {
606 		/* Clear all the interrupts which are set */
607 		dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR);
608 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr);
609 
610 		/* Clear all interrupt enable bits */
611 		dma_ch_ier = 0;
612 
613 		/* Enable following interrupts
614 		 *   NIE  - Normal Interrupt Summary Enable
615 		 *   AIE  - Abnormal Interrupt Summary Enable
616 		 *   FBEE - Fatal Bus Error Enable
617 		 */
618 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, NIE, 1);
619 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, AIE, 1);
620 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
621 
622 		if (channel->tx_ring) {
623 			/* Enable the following Tx interrupts
624 			 *   TIE  - Transmit Interrupt Enable (unless using
625 			 *          per channel interrupts)
626 			 */
627 			if (!pdata->per_channel_irq)
628 				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
629 		}
630 		if (channel->rx_ring) {
631 			/* Enable following Rx interrupts
632 			 *   RBUE - Receive Buffer Unavailable Enable
633 			 *   RIE  - Receive Interrupt Enable (unless using
634 			 *          per channel interrupts)
635 			 */
636 			XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
637 			if (!pdata->per_channel_irq)
638 				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
639 		}
640 
641 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
642 	}
643 }
644 
645 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
646 {
647 	unsigned int mtl_q_isr;
648 	unsigned int q_count, i;
649 
650 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
651 	for (i = 0; i < q_count; i++) {
652 		/* Clear all the interrupts which are set */
653 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
654 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
655 
656 		/* No MTL interrupts to be enabled */
657 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
658 	}
659 }
660 
661 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
662 {
663 	unsigned int mac_ier = 0;
664 
665 	/* Enable Timestamp interrupt */
666 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
667 
668 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
669 
670 	/* Enable all counter interrupts */
671 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
672 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
673 }
674 
675 static int xgbe_set_gmii_speed(struct xgbe_prv_data *pdata)
676 {
677 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x3)
678 		return 0;
679 
680 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x3);
681 
682 	return 0;
683 }
684 
685 static int xgbe_set_gmii_2500_speed(struct xgbe_prv_data *pdata)
686 {
687 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x2)
688 		return 0;
689 
690 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x2);
691 
692 	return 0;
693 }
694 
695 static int xgbe_set_xgmii_speed(struct xgbe_prv_data *pdata)
696 {
697 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0)
698 		return 0;
699 
700 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0);
701 
702 	return 0;
703 }
704 
705 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
706 				     unsigned int enable)
707 {
708 	unsigned int val = enable ? 1 : 0;
709 
710 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
711 		return 0;
712 
713 	DBGPR("  %s promiscuous mode\n", enable ? "entering" : "leaving");
714 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
715 
716 	return 0;
717 }
718 
719 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
720 				       unsigned int enable)
721 {
722 	unsigned int val = enable ? 1 : 0;
723 
724 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
725 		return 0;
726 
727 	DBGPR("  %s allmulti mode\n", enable ? "entering" : "leaving");
728 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
729 
730 	return 0;
731 }
732 
733 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
734 			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
735 {
736 	unsigned int mac_addr_hi, mac_addr_lo;
737 	u8 *mac_addr;
738 
739 	mac_addr_lo = 0;
740 	mac_addr_hi = 0;
741 
742 	if (ha) {
743 		mac_addr = (u8 *)&mac_addr_lo;
744 		mac_addr[0] = ha->addr[0];
745 		mac_addr[1] = ha->addr[1];
746 		mac_addr[2] = ha->addr[2];
747 		mac_addr[3] = ha->addr[3];
748 		mac_addr = (u8 *)&mac_addr_hi;
749 		mac_addr[0] = ha->addr[4];
750 		mac_addr[1] = ha->addr[5];
751 
752 		DBGPR("  adding mac address %pM at 0x%04x\n", ha->addr,
753 		      *mac_reg);
754 
755 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
756 	}
757 
758 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
759 	*mac_reg += MAC_MACA_INC;
760 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
761 	*mac_reg += MAC_MACA_INC;
762 }
763 
764 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
765 {
766 	struct net_device *netdev = pdata->netdev;
767 	struct netdev_hw_addr *ha;
768 	unsigned int mac_reg;
769 	unsigned int addn_macs;
770 
771 	mac_reg = MAC_MACA1HR;
772 	addn_macs = pdata->hw_feat.addn_mac;
773 
774 	if (netdev_uc_count(netdev) > addn_macs) {
775 		xgbe_set_promiscuous_mode(pdata, 1);
776 	} else {
777 		netdev_for_each_uc_addr(ha, netdev) {
778 			xgbe_set_mac_reg(pdata, ha, &mac_reg);
779 			addn_macs--;
780 		}
781 
782 		if (netdev_mc_count(netdev) > addn_macs) {
783 			xgbe_set_all_multicast_mode(pdata, 1);
784 		} else {
785 			netdev_for_each_mc_addr(ha, netdev) {
786 				xgbe_set_mac_reg(pdata, ha, &mac_reg);
787 				addn_macs--;
788 			}
789 		}
790 	}
791 
792 	/* Clear remaining additional MAC address entries */
793 	while (addn_macs--)
794 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
795 }
796 
797 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
798 {
799 	struct net_device *netdev = pdata->netdev;
800 	struct netdev_hw_addr *ha;
801 	unsigned int hash_reg;
802 	unsigned int hash_table_shift, hash_table_count;
803 	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
804 	u32 crc;
805 	unsigned int i;
806 
807 	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
808 	hash_table_count = pdata->hw_feat.hash_table_size / 32;
809 	memset(hash_table, 0, sizeof(hash_table));
810 
811 	/* Build the MAC Hash Table register values */
812 	netdev_for_each_uc_addr(ha, netdev) {
813 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
814 		crc >>= hash_table_shift;
815 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
816 	}
817 
818 	netdev_for_each_mc_addr(ha, netdev) {
819 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
820 		crc >>= hash_table_shift;
821 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
822 	}
823 
824 	/* Set the MAC Hash Table registers */
825 	hash_reg = MAC_HTR0;
826 	for (i = 0; i < hash_table_count; i++) {
827 		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
828 		hash_reg += MAC_HTR_INC;
829 	}
830 }
831 
832 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
833 {
834 	if (pdata->hw_feat.hash_table_size)
835 		xgbe_set_mac_hash_table(pdata);
836 	else
837 		xgbe_set_mac_addn_addrs(pdata);
838 
839 	return 0;
840 }
841 
842 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
843 {
844 	unsigned int mac_addr_hi, mac_addr_lo;
845 
846 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
847 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
848 		      (addr[1] <<  8) | (addr[0] <<  0);
849 
850 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
851 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
852 
853 	return 0;
854 }
855 
856 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
857 			      int mmd_reg)
858 {
859 	unsigned int mmd_address;
860 	int mmd_data;
861 
862 	if (mmd_reg & MII_ADDR_C45)
863 		mmd_address = mmd_reg & ~MII_ADDR_C45;
864 	else
865 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
866 
867 	/* The PCS registers are accessed using mmio. The underlying APB3
868 	 * management interface uses indirect addressing to access the MMD
869 	 * register sets. This requires accessing of the PCS register in two
870 	 * phases, an address phase and a data phase.
871 	 *
872 	 * The mmio interface is based on 32-bit offsets and values. All
873 	 * register offsets must therefore be adjusted by left shifting the
874 	 * offset 2 bits and reading 32 bits of data.
875 	 */
876 	mutex_lock(&pdata->xpcs_mutex);
877 	XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8);
878 	mmd_data = XPCS_IOREAD(pdata, (mmd_address & 0xff) << 2);
879 	mutex_unlock(&pdata->xpcs_mutex);
880 
881 	return mmd_data;
882 }
883 
884 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
885 				int mmd_reg, int mmd_data)
886 {
887 	unsigned int mmd_address;
888 
889 	if (mmd_reg & MII_ADDR_C45)
890 		mmd_address = mmd_reg & ~MII_ADDR_C45;
891 	else
892 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
893 
894 	/* If the PCS is changing modes, match the MAC speed to it */
895 	if (((mmd_address >> 16) == MDIO_MMD_PCS) &&
896 	    ((mmd_address & 0xffff) == MDIO_CTRL2)) {
897 		struct phy_device *phydev = pdata->phydev;
898 
899 		if (mmd_data & MDIO_PCS_CTRL2_TYPE) {
900 			/* KX mode */
901 			if (phydev->supported & SUPPORTED_1000baseKX_Full)
902 				xgbe_set_gmii_speed(pdata);
903 			else
904 				xgbe_set_gmii_2500_speed(pdata);
905 		} else {
906 			/* KR mode */
907 			xgbe_set_xgmii_speed(pdata);
908 		}
909 	}
910 
911 	/* The PCS registers are accessed using mmio. The underlying APB3
912 	 * management interface uses indirect addressing to access the MMD
913 	 * register sets. This requires accessing of the PCS register in two
914 	 * phases, an address phase and a data phase.
915 	 *
916 	 * The mmio interface is based on 32-bit offsets and values. All
917 	 * register offsets must therefore be adjusted by left shifting the
918 	 * offset 2 bits and reading 32 bits of data.
919 	 */
920 	mutex_lock(&pdata->xpcs_mutex);
921 	XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8);
922 	XPCS_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
923 	mutex_unlock(&pdata->xpcs_mutex);
924 }
925 
926 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
927 {
928 	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
929 }
930 
931 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
932 {
933 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
934 
935 	return 0;
936 }
937 
938 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
939 {
940 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
941 
942 	return 0;
943 }
944 
945 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
946 {
947 	/* Put the VLAN tag in the Rx descriptor */
948 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
949 
950 	/* Don't check the VLAN type */
951 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
952 
953 	/* Check only C-TAG (0x8100) packets */
954 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
955 
956 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
957 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
958 
959 	/* Enable VLAN tag stripping */
960 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
961 
962 	return 0;
963 }
964 
965 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
966 {
967 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
968 
969 	return 0;
970 }
971 
972 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
973 {
974 	/* Enable VLAN filtering */
975 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
976 
977 	/* Enable VLAN Hash Table filtering */
978 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
979 
980 	/* Disable VLAN tag inverse matching */
981 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
982 
983 	/* Only filter on the lower 12-bits of the VLAN tag */
984 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
985 
986 	/* In order for the VLAN Hash Table filtering to be effective,
987 	 * the VLAN tag identifier in the VLAN Tag Register must not
988 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
989 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
990 	 * 1 will always pass filtering.
991 	 */
992 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
993 
994 	return 0;
995 }
996 
997 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
998 {
999 	/* Disable VLAN filtering */
1000 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
1001 
1002 	return 0;
1003 }
1004 
1005 #ifndef CRCPOLY_LE
1006 #define CRCPOLY_LE 0xedb88320
1007 #endif
1008 static u32 xgbe_vid_crc32_le(__le16 vid_le)
1009 {
1010 	u32 poly = CRCPOLY_LE;
1011 	u32 crc = ~0;
1012 	u32 temp = 0;
1013 	unsigned char *data = (unsigned char *)&vid_le;
1014 	unsigned char data_byte = 0;
1015 	int i, bits;
1016 
1017 	bits = get_bitmask_order(VLAN_VID_MASK);
1018 	for (i = 0; i < bits; i++) {
1019 		if ((i % 8) == 0)
1020 			data_byte = data[i / 8];
1021 
1022 		temp = ((crc & 1) ^ data_byte) & 1;
1023 		crc >>= 1;
1024 		data_byte >>= 1;
1025 
1026 		if (temp)
1027 			crc ^= poly;
1028 	}
1029 
1030 	return crc;
1031 }
1032 
1033 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
1034 {
1035 	u32 crc;
1036 	u16 vid;
1037 	__le16 vid_le;
1038 	u16 vlan_hash_table = 0;
1039 
1040 	/* Generate the VLAN Hash Table value */
1041 	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
1042 		/* Get the CRC32 value of the VLAN ID */
1043 		vid_le = cpu_to_le16(vid);
1044 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
1045 
1046 		vlan_hash_table |= (1 << crc);
1047 	}
1048 
1049 	/* Set the VLAN Hash Table filtering register */
1050 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
1051 
1052 	return 0;
1053 }
1054 
1055 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1056 {
1057 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1058 
1059 	/* Reset the Tx descriptor
1060 	 *   Set buffer 1 (lo) address to zero
1061 	 *   Set buffer 1 (hi) address to zero
1062 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1063 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1064 	 */
1065 	rdesc->desc0 = 0;
1066 	rdesc->desc1 = 0;
1067 	rdesc->desc2 = 0;
1068 	rdesc->desc3 = 0;
1069 
1070 	/* Make sure ownership is written to the descriptor */
1071 	wmb();
1072 }
1073 
1074 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1075 {
1076 	struct xgbe_ring *ring = channel->tx_ring;
1077 	struct xgbe_ring_data *rdata;
1078 	int i;
1079 	int start_index = ring->cur;
1080 
1081 	DBGPR("-->tx_desc_init\n");
1082 
1083 	/* Initialze all descriptors */
1084 	for (i = 0; i < ring->rdesc_count; i++) {
1085 		rdata = XGBE_GET_DESC_DATA(ring, i);
1086 
1087 		/* Initialize Tx descriptor */
1088 		xgbe_tx_desc_reset(rdata);
1089 	}
1090 
1091 	/* Update the total number of Tx descriptors */
1092 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1093 
1094 	/* Update the starting address of descriptor ring */
1095 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1096 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1097 			  upper_32_bits(rdata->rdesc_dma));
1098 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1099 			  lower_32_bits(rdata->rdesc_dma));
1100 
1101 	DBGPR("<--tx_desc_init\n");
1102 }
1103 
1104 static void xgbe_rx_desc_reset(struct xgbe_ring_data *rdata)
1105 {
1106 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1107 
1108 	/* Reset the Rx descriptor
1109 	 *   Set buffer 1 (lo) address to header dma address (lo)
1110 	 *   Set buffer 1 (hi) address to header dma address (hi)
1111 	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1112 	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1113 	 *     set control bits OWN and INTE
1114 	 */
1115 	rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->rx.hdr.dma));
1116 	rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->rx.hdr.dma));
1117 	rdesc->desc2 = cpu_to_le32(lower_32_bits(rdata->rx.buf.dma));
1118 	rdesc->desc3 = cpu_to_le32(upper_32_bits(rdata->rx.buf.dma));
1119 
1120 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE,
1121 			  rdata->interrupt ? 1 : 0);
1122 
1123 	/* Since the Rx DMA engine is likely running, make sure everything
1124 	 * is written to the descriptor(s) before setting the OWN bit
1125 	 * for the descriptor
1126 	 */
1127 	wmb();
1128 
1129 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1130 
1131 	/* Make sure ownership is written to the descriptor */
1132 	wmb();
1133 }
1134 
1135 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1136 {
1137 	struct xgbe_prv_data *pdata = channel->pdata;
1138 	struct xgbe_ring *ring = channel->rx_ring;
1139 	struct xgbe_ring_data *rdata;
1140 	unsigned int start_index = ring->cur;
1141 	unsigned int rx_coalesce, rx_frames;
1142 	unsigned int i;
1143 
1144 	DBGPR("-->rx_desc_init\n");
1145 
1146 	rx_coalesce = (pdata->rx_riwt || pdata->rx_frames) ? 1 : 0;
1147 	rx_frames = pdata->rx_frames;
1148 
1149 	/* Initialize all descriptors */
1150 	for (i = 0; i < ring->rdesc_count; i++) {
1151 		rdata = XGBE_GET_DESC_DATA(ring, i);
1152 
1153 		/* Set interrupt on completion bit as appropriate */
1154 		if (rx_coalesce && (!rx_frames || ((i + 1) % rx_frames)))
1155 			rdata->interrupt = 0;
1156 		else
1157 			rdata->interrupt = 1;
1158 
1159 		/* Initialize Rx descriptor */
1160 		xgbe_rx_desc_reset(rdata);
1161 	}
1162 
1163 	/* Update the total number of Rx descriptors */
1164 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1165 
1166 	/* Update the starting address of descriptor ring */
1167 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1168 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1169 			  upper_32_bits(rdata->rdesc_dma));
1170 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1171 			  lower_32_bits(rdata->rdesc_dma));
1172 
1173 	/* Update the Rx Descriptor Tail Pointer */
1174 	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1175 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1176 			  lower_32_bits(rdata->rdesc_dma));
1177 
1178 	DBGPR("<--rx_desc_init\n");
1179 }
1180 
1181 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1182 				      unsigned int addend)
1183 {
1184 	/* Set the addend register value and tell the device */
1185 	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1186 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1187 
1188 	/* Wait for addend update to complete */
1189 	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1190 		udelay(5);
1191 }
1192 
1193 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1194 				 unsigned int nsec)
1195 {
1196 	/* Set the time values and tell the device */
1197 	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1198 	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1199 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1200 
1201 	/* Wait for time update to complete */
1202 	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1203 		udelay(5);
1204 }
1205 
1206 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1207 {
1208 	u64 nsec;
1209 
1210 	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1211 	nsec *= NSEC_PER_SEC;
1212 	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1213 
1214 	return nsec;
1215 }
1216 
1217 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1218 {
1219 	unsigned int tx_snr;
1220 	u64 nsec;
1221 
1222 	tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1223 	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1224 		return 0;
1225 
1226 	nsec = XGMAC_IOREAD(pdata, MAC_TXSSR);
1227 	nsec *= NSEC_PER_SEC;
1228 	nsec += tx_snr;
1229 
1230 	return nsec;
1231 }
1232 
1233 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1234 			       struct xgbe_ring_desc *rdesc)
1235 {
1236 	u64 nsec;
1237 
1238 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1239 	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1240 		nsec = le32_to_cpu(rdesc->desc1);
1241 		nsec <<= 32;
1242 		nsec |= le32_to_cpu(rdesc->desc0);
1243 		if (nsec != 0xffffffffffffffffULL) {
1244 			packet->rx_tstamp = nsec;
1245 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1246 				       RX_TSTAMP, 1);
1247 		}
1248 	}
1249 }
1250 
1251 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1252 			      unsigned int mac_tscr)
1253 {
1254 	/* Set one nano-second accuracy */
1255 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1256 
1257 	/* Set fine timestamp update */
1258 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1259 
1260 	/* Overwrite earlier timestamps */
1261 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1262 
1263 	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1264 
1265 	/* Exit if timestamping is not enabled */
1266 	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1267 		return 0;
1268 
1269 	/* Initialize time registers */
1270 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1271 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1272 	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1273 	xgbe_set_tstamp_time(pdata, 0, 0);
1274 
1275 	/* Initialize the timecounter */
1276 	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1277 			 ktime_to_ns(ktime_get_real()));
1278 
1279 	return 0;
1280 }
1281 
1282 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
1283 {
1284 	struct ieee_ets *ets = pdata->ets;
1285 	unsigned int total_weight, min_weight, weight;
1286 	unsigned int i;
1287 
1288 	if (!ets)
1289 		return;
1290 
1291 	/* Set Tx to deficit weighted round robin scheduling algorithm (when
1292 	 * traffic class is using ETS algorithm)
1293 	 */
1294 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
1295 
1296 	/* Set Traffic Class algorithms */
1297 	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
1298 	min_weight = total_weight / 100;
1299 	if (!min_weight)
1300 		min_weight = 1;
1301 
1302 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1303 		switch (ets->tc_tsa[i]) {
1304 		case IEEE_8021QAZ_TSA_STRICT:
1305 			DBGPR("  TC%u using SP\n", i);
1306 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1307 					       MTL_TSA_SP);
1308 			break;
1309 		case IEEE_8021QAZ_TSA_ETS:
1310 			weight = total_weight * ets->tc_tx_bw[i] / 100;
1311 			weight = clamp(weight, min_weight, total_weight);
1312 
1313 			DBGPR("  TC%u using DWRR (weight %u)\n", i, weight);
1314 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1315 					       MTL_TSA_ETS);
1316 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
1317 					       weight);
1318 			break;
1319 		}
1320 	}
1321 }
1322 
1323 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
1324 {
1325 	struct ieee_pfc *pfc = pdata->pfc;
1326 	struct ieee_ets *ets = pdata->ets;
1327 	unsigned int mask, reg, reg_val;
1328 	unsigned int tc, prio;
1329 
1330 	if (!pfc || !ets)
1331 		return;
1332 
1333 	for (tc = 0; tc < pdata->hw_feat.tc_cnt; tc++) {
1334 		mask = 0;
1335 		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
1336 			if ((pfc->pfc_en & (1 << prio)) &&
1337 			    (ets->prio_tc[prio] == tc))
1338 				mask |= (1 << prio);
1339 		}
1340 		mask &= 0xff;
1341 
1342 		DBGPR("  TC%u PFC mask=%#x\n", tc, mask);
1343 		reg = MTL_TCPM0R + (MTL_TCPM_INC * (tc / MTL_TCPM_TC_PER_REG));
1344 		reg_val = XGMAC_IOREAD(pdata, reg);
1345 
1346 		reg_val &= ~(0xff << ((tc % MTL_TCPM_TC_PER_REG) << 3));
1347 		reg_val |= (mask << ((tc % MTL_TCPM_TC_PER_REG) << 3));
1348 
1349 		XGMAC_IOWRITE(pdata, reg, reg_val);
1350 	}
1351 
1352 	xgbe_config_flow_control(pdata);
1353 }
1354 
1355 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1356 			       struct xgbe_ring *ring)
1357 {
1358 	struct xgbe_prv_data *pdata = channel->pdata;
1359 	struct xgbe_ring_data *rdata;
1360 
1361 	/* Issue a poll command to Tx DMA by writing address
1362 	 * of next immediate free descriptor */
1363 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1364 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1365 			  lower_32_bits(rdata->rdesc_dma));
1366 
1367 	/* Start the Tx coalescing timer */
1368 	if (pdata->tx_usecs && !channel->tx_timer_active) {
1369 		channel->tx_timer_active = 1;
1370 		hrtimer_start(&channel->tx_timer,
1371 			      ktime_set(0, pdata->tx_usecs * NSEC_PER_USEC),
1372 			      HRTIMER_MODE_REL);
1373 	}
1374 
1375 	ring->tx.xmit_more = 0;
1376 }
1377 
1378 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1379 {
1380 	struct xgbe_prv_data *pdata = channel->pdata;
1381 	struct xgbe_ring *ring = channel->tx_ring;
1382 	struct xgbe_ring_data *rdata;
1383 	struct xgbe_ring_desc *rdesc;
1384 	struct xgbe_packet_data *packet = &ring->packet_data;
1385 	unsigned int csum, tso, vlan;
1386 	unsigned int tso_context, vlan_context;
1387 	unsigned int tx_set_ic;
1388 	int start_index = ring->cur;
1389 	int cur_index = ring->cur;
1390 	int i;
1391 
1392 	DBGPR("-->xgbe_dev_xmit\n");
1393 
1394 	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1395 			      CSUM_ENABLE);
1396 	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1397 			     TSO_ENABLE);
1398 	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1399 			      VLAN_CTAG);
1400 
1401 	if (tso && (packet->mss != ring->tx.cur_mss))
1402 		tso_context = 1;
1403 	else
1404 		tso_context = 0;
1405 
1406 	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1407 		vlan_context = 1;
1408 	else
1409 		vlan_context = 0;
1410 
1411 	/* Determine if an interrupt should be generated for this Tx:
1412 	 *   Interrupt:
1413 	 *     - Tx frame count exceeds the frame count setting
1414 	 *     - Addition of Tx frame count to the frame count since the
1415 	 *       last interrupt was set exceeds the frame count setting
1416 	 *   No interrupt:
1417 	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1418 	 *     - Addition of Tx frame count to the frame count since the
1419 	 *       last interrupt was set does not exceed the frame count setting
1420 	 */
1421 	ring->coalesce_count += packet->tx_packets;
1422 	if (!pdata->tx_frames)
1423 		tx_set_ic = 0;
1424 	else if (packet->tx_packets > pdata->tx_frames)
1425 		tx_set_ic = 1;
1426 	else if ((ring->coalesce_count % pdata->tx_frames) <
1427 		 packet->tx_packets)
1428 		tx_set_ic = 1;
1429 	else
1430 		tx_set_ic = 0;
1431 
1432 	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1433 	rdesc = rdata->rdesc;
1434 
1435 	/* Create a context descriptor if this is a TSO packet */
1436 	if (tso_context || vlan_context) {
1437 		if (tso_context) {
1438 			DBGPR("  TSO context descriptor, mss=%u\n",
1439 			      packet->mss);
1440 
1441 			/* Set the MSS size */
1442 			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1443 					  MSS, packet->mss);
1444 
1445 			/* Mark it as a CONTEXT descriptor */
1446 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1447 					  CTXT, 1);
1448 
1449 			/* Indicate this descriptor contains the MSS */
1450 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1451 					  TCMSSV, 1);
1452 
1453 			ring->tx.cur_mss = packet->mss;
1454 		}
1455 
1456 		if (vlan_context) {
1457 			DBGPR("  VLAN context descriptor, ctag=%u\n",
1458 			      packet->vlan_ctag);
1459 
1460 			/* Mark it as a CONTEXT descriptor */
1461 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1462 					  CTXT, 1);
1463 
1464 			/* Set the VLAN tag */
1465 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1466 					  VT, packet->vlan_ctag);
1467 
1468 			/* Indicate this descriptor contains the VLAN tag */
1469 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1470 					  VLTV, 1);
1471 
1472 			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1473 		}
1474 
1475 		cur_index++;
1476 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1477 		rdesc = rdata->rdesc;
1478 	}
1479 
1480 	/* Update buffer address (for TSO this is the header) */
1481 	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1482 	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1483 
1484 	/* Update the buffer length */
1485 	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1486 			  rdata->skb_dma_len);
1487 
1488 	/* VLAN tag insertion check */
1489 	if (vlan)
1490 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1491 				  TX_NORMAL_DESC2_VLAN_INSERT);
1492 
1493 	/* Timestamp enablement check */
1494 	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1495 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1496 
1497 	/* Mark it as First Descriptor */
1498 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1499 
1500 	/* Mark it as a NORMAL descriptor */
1501 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1502 
1503 	/* Set OWN bit if not the first descriptor */
1504 	if (cur_index != start_index)
1505 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1506 
1507 	if (tso) {
1508 		/* Enable TSO */
1509 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1510 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1511 				  packet->tcp_payload_len);
1512 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1513 				  packet->tcp_header_len / 4);
1514 	} else {
1515 		/* Enable CRC and Pad Insertion */
1516 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1517 
1518 		/* Enable HW CSUM */
1519 		if (csum)
1520 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1521 					  CIC, 0x3);
1522 
1523 		/* Set the total length to be transmitted */
1524 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1525 				  packet->length);
1526 	}
1527 
1528 	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1529 		cur_index++;
1530 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1531 		rdesc = rdata->rdesc;
1532 
1533 		/* Update buffer address */
1534 		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1535 		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1536 
1537 		/* Update the buffer length */
1538 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1539 				  rdata->skb_dma_len);
1540 
1541 		/* Set OWN bit */
1542 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1543 
1544 		/* Mark it as NORMAL descriptor */
1545 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1546 
1547 		/* Enable HW CSUM */
1548 		if (csum)
1549 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1550 					  CIC, 0x3);
1551 	}
1552 
1553 	/* Set LAST bit for the last descriptor */
1554 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1555 
1556 	/* Set IC bit based on Tx coalescing settings */
1557 	if (tx_set_ic)
1558 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1559 
1560 	/* Save the Tx info to report back during cleanup */
1561 	rdata->tx.packets = packet->tx_packets;
1562 	rdata->tx.bytes = packet->tx_bytes;
1563 
1564 	/* In case the Tx DMA engine is running, make sure everything
1565 	 * is written to the descriptor(s) before setting the OWN bit
1566 	 * for the first descriptor
1567 	 */
1568 	wmb();
1569 
1570 	/* Set OWN bit for the first descriptor */
1571 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1572 	rdesc = rdata->rdesc;
1573 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1574 
1575 #ifdef XGMAC_ENABLE_TX_DESC_DUMP
1576 	xgbe_dump_tx_desc(ring, start_index, packet->rdesc_count, 1);
1577 #endif
1578 
1579 	/* Make sure ownership is written to the descriptor */
1580 	wmb();
1581 
1582 	ring->cur = cur_index + 1;
1583 	if (!packet->skb->xmit_more ||
1584 	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1585 						   channel->queue_index)))
1586 		xgbe_tx_start_xmit(channel, ring);
1587 	else
1588 		ring->tx.xmit_more = 1;
1589 
1590 	DBGPR("  %s: descriptors %u to %u written\n",
1591 	      channel->name, start_index & (ring->rdesc_count - 1),
1592 	      (ring->cur - 1) & (ring->rdesc_count - 1));
1593 
1594 	DBGPR("<--xgbe_dev_xmit\n");
1595 }
1596 
1597 static int xgbe_dev_read(struct xgbe_channel *channel)
1598 {
1599 	struct xgbe_ring *ring = channel->rx_ring;
1600 	struct xgbe_ring_data *rdata;
1601 	struct xgbe_ring_desc *rdesc;
1602 	struct xgbe_packet_data *packet = &ring->packet_data;
1603 	struct net_device *netdev = channel->pdata->netdev;
1604 	unsigned int err, etlt, l34t;
1605 
1606 	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1607 
1608 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1609 	rdesc = rdata->rdesc;
1610 
1611 	/* Check for data availability */
1612 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1613 		return 1;
1614 
1615 	/* Make sure descriptor fields are read after reading the OWN bit */
1616 	rmb();
1617 
1618 #ifdef XGMAC_ENABLE_RX_DESC_DUMP
1619 	xgbe_dump_rx_desc(ring, rdesc, ring->cur);
1620 #endif
1621 
1622 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1623 		/* Timestamp Context Descriptor */
1624 		xgbe_get_rx_tstamp(packet, rdesc);
1625 
1626 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1627 			       CONTEXT, 1);
1628 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1629 			       CONTEXT_NEXT, 0);
1630 		return 0;
1631 	}
1632 
1633 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1634 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1635 
1636 	/* Indicate if a Context Descriptor is next */
1637 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1638 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1639 			       CONTEXT_NEXT, 1);
1640 
1641 	/* Get the header length */
1642 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD))
1643 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1644 						      RX_NORMAL_DESC2, HL);
1645 
1646 	/* Get the RSS hash */
1647 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1648 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1649 			       RSS_HASH, 1);
1650 
1651 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1652 
1653 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1654 		switch (l34t) {
1655 		case RX_DESC3_L34T_IPV4_TCP:
1656 		case RX_DESC3_L34T_IPV4_UDP:
1657 		case RX_DESC3_L34T_IPV6_TCP:
1658 		case RX_DESC3_L34T_IPV6_UDP:
1659 			packet->rss_hash_type = PKT_HASH_TYPE_L4;
1660 			break;
1661 		default:
1662 			packet->rss_hash_type = PKT_HASH_TYPE_L3;
1663 		}
1664 	}
1665 
1666 	/* Get the packet length */
1667 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1668 
1669 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1670 		/* Not all the data has been transferred for this packet */
1671 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1672 			       INCOMPLETE, 1);
1673 		return 0;
1674 	}
1675 
1676 	/* This is the last of the data for this packet */
1677 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1678 		       INCOMPLETE, 0);
1679 
1680 	/* Set checksum done indicator as appropriate */
1681 	if (channel->pdata->netdev->features & NETIF_F_RXCSUM)
1682 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1683 			       CSUM_DONE, 1);
1684 
1685 	/* Check for errors (only valid in last descriptor) */
1686 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1687 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1688 	DBGPR("  err=%u, etlt=%#x\n", err, etlt);
1689 
1690 	if (!err || !etlt) {
1691 		/* No error if err is 0 or etlt is 0 */
1692 		if ((etlt == 0x09) &&
1693 		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1694 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1695 				       VLAN_CTAG, 1);
1696 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1697 							      RX_NORMAL_DESC0,
1698 							      OVT);
1699 			DBGPR("  vlan-ctag=0x%04x\n", packet->vlan_ctag);
1700 		}
1701 	} else {
1702 		if ((etlt == 0x05) || (etlt == 0x06))
1703 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1704 				       CSUM_DONE, 0);
1705 		else
1706 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1707 				       FRAME, 1);
1708 	}
1709 
1710 	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
1711 	      ring->cur & (ring->rdesc_count - 1), ring->cur);
1712 
1713 	return 0;
1714 }
1715 
1716 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1717 {
1718 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1719 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
1720 }
1721 
1722 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1723 {
1724 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1725 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
1726 }
1727 
1728 static int xgbe_enable_int(struct xgbe_channel *channel,
1729 			   enum xgbe_int int_id)
1730 {
1731 	unsigned int dma_ch_ier;
1732 
1733 	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1734 
1735 	switch (int_id) {
1736 	case XGMAC_INT_DMA_CH_SR_TI:
1737 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1738 		break;
1739 	case XGMAC_INT_DMA_CH_SR_TPS:
1740 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 1);
1741 		break;
1742 	case XGMAC_INT_DMA_CH_SR_TBU:
1743 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 1);
1744 		break;
1745 	case XGMAC_INT_DMA_CH_SR_RI:
1746 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1747 		break;
1748 	case XGMAC_INT_DMA_CH_SR_RBU:
1749 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
1750 		break;
1751 	case XGMAC_INT_DMA_CH_SR_RPS:
1752 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 1);
1753 		break;
1754 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1755 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1756 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1757 		break;
1758 	case XGMAC_INT_DMA_CH_SR_FBE:
1759 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
1760 		break;
1761 	case XGMAC_INT_DMA_ALL:
1762 		dma_ch_ier |= channel->saved_ier;
1763 		break;
1764 	default:
1765 		return -1;
1766 	}
1767 
1768 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
1769 
1770 	return 0;
1771 }
1772 
1773 static int xgbe_disable_int(struct xgbe_channel *channel,
1774 			    enum xgbe_int int_id)
1775 {
1776 	unsigned int dma_ch_ier;
1777 
1778 	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1779 
1780 	switch (int_id) {
1781 	case XGMAC_INT_DMA_CH_SR_TI:
1782 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
1783 		break;
1784 	case XGMAC_INT_DMA_CH_SR_TPS:
1785 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 0);
1786 		break;
1787 	case XGMAC_INT_DMA_CH_SR_TBU:
1788 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 0);
1789 		break;
1790 	case XGMAC_INT_DMA_CH_SR_RI:
1791 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
1792 		break;
1793 	case XGMAC_INT_DMA_CH_SR_RBU:
1794 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 0);
1795 		break;
1796 	case XGMAC_INT_DMA_CH_SR_RPS:
1797 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 0);
1798 		break;
1799 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1800 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
1801 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
1802 		break;
1803 	case XGMAC_INT_DMA_CH_SR_FBE:
1804 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 0);
1805 		break;
1806 	case XGMAC_INT_DMA_ALL:
1807 		channel->saved_ier = dma_ch_ier & XGBE_DMA_INTERRUPT_MASK;
1808 		dma_ch_ier &= ~XGBE_DMA_INTERRUPT_MASK;
1809 		break;
1810 	default:
1811 		return -1;
1812 	}
1813 
1814 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
1815 
1816 	return 0;
1817 }
1818 
1819 static int xgbe_exit(struct xgbe_prv_data *pdata)
1820 {
1821 	unsigned int count = 2000;
1822 
1823 	DBGPR("-->xgbe_exit\n");
1824 
1825 	/* Issue a software reset */
1826 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1827 	usleep_range(10, 15);
1828 
1829 	/* Poll Until Poll Condition */
1830 	while (count-- && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1831 		usleep_range(500, 600);
1832 
1833 	if (!count)
1834 		return -EBUSY;
1835 
1836 	DBGPR("<--xgbe_exit\n");
1837 
1838 	return 0;
1839 }
1840 
1841 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1842 {
1843 	unsigned int i, count;
1844 
1845 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1846 		return 0;
1847 
1848 	for (i = 0; i < pdata->tx_q_count; i++)
1849 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1850 
1851 	/* Poll Until Poll Condition */
1852 	for (i = 0; i < pdata->tx_q_count; i++) {
1853 		count = 2000;
1854 		while (count-- && XGMAC_MTL_IOREAD_BITS(pdata, i,
1855 							MTL_Q_TQOMR, FTQ))
1856 			usleep_range(500, 600);
1857 
1858 		if (!count)
1859 			return -EBUSY;
1860 	}
1861 
1862 	return 0;
1863 }
1864 
1865 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1866 {
1867 	/* Set enhanced addressing mode */
1868 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, EAME, 1);
1869 
1870 	/* Set the System Bus mode */
1871 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, UNDEF, 1);
1872 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, BLEN_256, 1);
1873 }
1874 
1875 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1876 {
1877 	unsigned int arcache, awcache;
1878 
1879 	arcache = 0;
1880 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRC, pdata->arcache);
1881 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRD, pdata->axdomain);
1882 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TEC, pdata->arcache);
1883 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TED, pdata->axdomain);
1884 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THC, pdata->arcache);
1885 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THD, pdata->axdomain);
1886 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, arcache);
1887 
1888 	awcache = 0;
1889 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWC, pdata->awcache);
1890 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWD, pdata->axdomain);
1891 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPC, pdata->awcache);
1892 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPD, pdata->axdomain);
1893 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHC, pdata->awcache);
1894 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHD, pdata->axdomain);
1895 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDC, pdata->awcache);
1896 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDD, pdata->axdomain);
1897 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, awcache);
1898 }
1899 
1900 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1901 {
1902 	unsigned int i;
1903 
1904 	/* Set Tx to weighted round robin scheduling algorithm */
1905 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1906 
1907 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
1908 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1909 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1910 				       MTL_TSA_ETS);
1911 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1912 	}
1913 
1914 	/* Set Rx to strict priority algorithm */
1915 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
1916 }
1917 
1918 static unsigned int xgbe_calculate_per_queue_fifo(unsigned int fifo_size,
1919 						  unsigned int queue_count)
1920 {
1921 	unsigned int q_fifo_size = 0;
1922 	enum xgbe_mtl_fifo_size p_fifo = XGMAC_MTL_FIFO_SIZE_256;
1923 
1924 	/* Calculate Tx/Rx fifo share per queue */
1925 	switch (fifo_size) {
1926 	case 0:
1927 		q_fifo_size = XGBE_FIFO_SIZE_B(128);
1928 		break;
1929 	case 1:
1930 		q_fifo_size = XGBE_FIFO_SIZE_B(256);
1931 		break;
1932 	case 2:
1933 		q_fifo_size = XGBE_FIFO_SIZE_B(512);
1934 		break;
1935 	case 3:
1936 		q_fifo_size = XGBE_FIFO_SIZE_KB(1);
1937 		break;
1938 	case 4:
1939 		q_fifo_size = XGBE_FIFO_SIZE_KB(2);
1940 		break;
1941 	case 5:
1942 		q_fifo_size = XGBE_FIFO_SIZE_KB(4);
1943 		break;
1944 	case 6:
1945 		q_fifo_size = XGBE_FIFO_SIZE_KB(8);
1946 		break;
1947 	case 7:
1948 		q_fifo_size = XGBE_FIFO_SIZE_KB(16);
1949 		break;
1950 	case 8:
1951 		q_fifo_size = XGBE_FIFO_SIZE_KB(32);
1952 		break;
1953 	case 9:
1954 		q_fifo_size = XGBE_FIFO_SIZE_KB(64);
1955 		break;
1956 	case 10:
1957 		q_fifo_size = XGBE_FIFO_SIZE_KB(128);
1958 		break;
1959 	case 11:
1960 		q_fifo_size = XGBE_FIFO_SIZE_KB(256);
1961 		break;
1962 	}
1963 
1964 	/* The configured value is not the actual amount of fifo RAM */
1965 	q_fifo_size = min_t(unsigned int, XGBE_FIFO_MAX, q_fifo_size);
1966 
1967 	q_fifo_size = q_fifo_size / queue_count;
1968 
1969 	/* Set the queue fifo size programmable value */
1970 	if (q_fifo_size >= XGBE_FIFO_SIZE_KB(256))
1971 		p_fifo = XGMAC_MTL_FIFO_SIZE_256K;
1972 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(128))
1973 		p_fifo = XGMAC_MTL_FIFO_SIZE_128K;
1974 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(64))
1975 		p_fifo = XGMAC_MTL_FIFO_SIZE_64K;
1976 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(32))
1977 		p_fifo = XGMAC_MTL_FIFO_SIZE_32K;
1978 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(16))
1979 		p_fifo = XGMAC_MTL_FIFO_SIZE_16K;
1980 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(8))
1981 		p_fifo = XGMAC_MTL_FIFO_SIZE_8K;
1982 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(4))
1983 		p_fifo = XGMAC_MTL_FIFO_SIZE_4K;
1984 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(2))
1985 		p_fifo = XGMAC_MTL_FIFO_SIZE_2K;
1986 	else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(1))
1987 		p_fifo = XGMAC_MTL_FIFO_SIZE_1K;
1988 	else if (q_fifo_size >= XGBE_FIFO_SIZE_B(512))
1989 		p_fifo = XGMAC_MTL_FIFO_SIZE_512;
1990 	else if (q_fifo_size >= XGBE_FIFO_SIZE_B(256))
1991 		p_fifo = XGMAC_MTL_FIFO_SIZE_256;
1992 
1993 	return p_fifo;
1994 }
1995 
1996 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
1997 {
1998 	enum xgbe_mtl_fifo_size fifo_size;
1999 	unsigned int i;
2000 
2001 	fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.tx_fifo_size,
2002 						  pdata->tx_q_count);
2003 
2004 	for (i = 0; i < pdata->tx_q_count; i++)
2005 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo_size);
2006 
2007 	netdev_notice(pdata->netdev, "%d Tx queues, %d byte fifo per queue\n",
2008 		      pdata->tx_q_count, ((fifo_size + 1) * 256));
2009 }
2010 
2011 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2012 {
2013 	enum xgbe_mtl_fifo_size fifo_size;
2014 	unsigned int i;
2015 
2016 	fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.rx_fifo_size,
2017 						  pdata->rx_q_count);
2018 
2019 	for (i = 0; i < pdata->rx_q_count; i++)
2020 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo_size);
2021 
2022 	netdev_notice(pdata->netdev, "%d Rx queues, %d byte fifo per queue\n",
2023 		      pdata->rx_q_count, ((fifo_size + 1) * 256));
2024 }
2025 
2026 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2027 {
2028 	unsigned int qptc, qptc_extra, queue;
2029 	unsigned int prio_queues;
2030 	unsigned int ppq, ppq_extra, prio;
2031 	unsigned int mask;
2032 	unsigned int i, j, reg, reg_val;
2033 
2034 	/* Map the MTL Tx Queues to Traffic Classes
2035 	 *   Note: Tx Queues >= Traffic Classes
2036 	 */
2037 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2038 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2039 
2040 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2041 		for (j = 0; j < qptc; j++) {
2042 			DBGPR("  TXq%u mapped to TC%u\n", queue, i);
2043 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2044 					       Q2TCMAP, i);
2045 			pdata->q2tc_map[queue++] = i;
2046 		}
2047 
2048 		if (i < qptc_extra) {
2049 			DBGPR("  TXq%u mapped to TC%u\n", queue, i);
2050 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2051 					       Q2TCMAP, i);
2052 			pdata->q2tc_map[queue++] = i;
2053 		}
2054 	}
2055 
2056 	/* Map the 8 VLAN priority values to available MTL Rx queues */
2057 	prio_queues = min_t(unsigned int, IEEE_8021QAZ_MAX_TCS,
2058 			    pdata->rx_q_count);
2059 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2060 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2061 
2062 	reg = MAC_RQC2R;
2063 	reg_val = 0;
2064 	for (i = 0, prio = 0; i < prio_queues;) {
2065 		mask = 0;
2066 		for (j = 0; j < ppq; j++) {
2067 			DBGPR("  PRIO%u mapped to RXq%u\n", prio, i);
2068 			mask |= (1 << prio);
2069 			pdata->prio2q_map[prio++] = i;
2070 		}
2071 
2072 		if (i < ppq_extra) {
2073 			DBGPR("  PRIO%u mapped to RXq%u\n", prio, i);
2074 			mask |= (1 << prio);
2075 			pdata->prio2q_map[prio++] = i;
2076 		}
2077 
2078 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2079 
2080 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2081 			continue;
2082 
2083 		XGMAC_IOWRITE(pdata, reg, reg_val);
2084 		reg += MAC_RQC2_INC;
2085 		reg_val = 0;
2086 	}
2087 
2088 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2089 	reg = MTL_RQDCM0R;
2090 	reg_val = 0;
2091 	for (i = 0; i < pdata->rx_q_count;) {
2092 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2093 
2094 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2095 			continue;
2096 
2097 		XGMAC_IOWRITE(pdata, reg, reg_val);
2098 
2099 		reg += MTL_RQDCM_INC;
2100 		reg_val = 0;
2101 	}
2102 }
2103 
2104 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2105 {
2106 	unsigned int i;
2107 
2108 	for (i = 0; i < pdata->rx_q_count; i++) {
2109 		/* Activate flow control when less than 4k left in fifo */
2110 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA, 2);
2111 
2112 		/* De-activate flow control when more than 6k left in fifo */
2113 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD, 4);
2114 	}
2115 }
2116 
2117 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2118 {
2119 	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2120 
2121 	/* Filtering is done using perfect filtering and hash filtering */
2122 	if (pdata->hw_feat.hash_table_size) {
2123 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2124 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2125 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2126 	}
2127 }
2128 
2129 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2130 {
2131 	unsigned int val;
2132 
2133 	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2134 
2135 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2136 }
2137 
2138 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2139 {
2140 	switch (pdata->phy_speed) {
2141 	case SPEED_10000:
2142 		xgbe_set_xgmii_speed(pdata);
2143 		break;
2144 
2145 	case SPEED_2500:
2146 		xgbe_set_gmii_2500_speed(pdata);
2147 		break;
2148 
2149 	case SPEED_1000:
2150 		xgbe_set_gmii_speed(pdata);
2151 		break;
2152 	}
2153 }
2154 
2155 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2156 {
2157 	if (pdata->netdev->features & NETIF_F_RXCSUM)
2158 		xgbe_enable_rx_csum(pdata);
2159 	else
2160 		xgbe_disable_rx_csum(pdata);
2161 }
2162 
2163 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2164 {
2165 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2166 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2167 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2168 
2169 	/* Set the current VLAN Hash Table register value */
2170 	xgbe_update_vlan_hash_table(pdata);
2171 
2172 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2173 		xgbe_enable_rx_vlan_filtering(pdata);
2174 	else
2175 		xgbe_disable_rx_vlan_filtering(pdata);
2176 
2177 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2178 		xgbe_enable_rx_vlan_stripping(pdata);
2179 	else
2180 		xgbe_disable_rx_vlan_stripping(pdata);
2181 }
2182 
2183 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2184 {
2185 	bool read_hi;
2186 	u64 val;
2187 
2188 	switch (reg_lo) {
2189 	/* These registers are always 64 bit */
2190 	case MMC_TXOCTETCOUNT_GB_LO:
2191 	case MMC_TXOCTETCOUNT_G_LO:
2192 	case MMC_RXOCTETCOUNT_GB_LO:
2193 	case MMC_RXOCTETCOUNT_G_LO:
2194 		read_hi = true;
2195 		break;
2196 
2197 	default:
2198 		read_hi = false;
2199 	};
2200 
2201 	val = XGMAC_IOREAD(pdata, reg_lo);
2202 
2203 	if (read_hi)
2204 		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2205 
2206 	return val;
2207 }
2208 
2209 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2210 {
2211 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2212 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2213 
2214 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2215 		stats->txoctetcount_gb +=
2216 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2217 
2218 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2219 		stats->txframecount_gb +=
2220 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2221 
2222 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2223 		stats->txbroadcastframes_g +=
2224 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2225 
2226 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2227 		stats->txmulticastframes_g +=
2228 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2229 
2230 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2231 		stats->tx64octets_gb +=
2232 			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2233 
2234 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2235 		stats->tx65to127octets_gb +=
2236 			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2237 
2238 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2239 		stats->tx128to255octets_gb +=
2240 			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2241 
2242 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2243 		stats->tx256to511octets_gb +=
2244 			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2245 
2246 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2247 		stats->tx512to1023octets_gb +=
2248 			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2249 
2250 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2251 		stats->tx1024tomaxoctets_gb +=
2252 			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2253 
2254 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2255 		stats->txunicastframes_gb +=
2256 			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2257 
2258 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2259 		stats->txmulticastframes_gb +=
2260 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2261 
2262 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2263 		stats->txbroadcastframes_g +=
2264 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2265 
2266 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2267 		stats->txunderflowerror +=
2268 			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2269 
2270 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2271 		stats->txoctetcount_g +=
2272 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2273 
2274 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2275 		stats->txframecount_g +=
2276 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2277 
2278 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2279 		stats->txpauseframes +=
2280 			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2281 
2282 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2283 		stats->txvlanframes_g +=
2284 			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2285 }
2286 
2287 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2288 {
2289 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2290 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2291 
2292 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2293 		stats->rxframecount_gb +=
2294 			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2295 
2296 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2297 		stats->rxoctetcount_gb +=
2298 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2299 
2300 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2301 		stats->rxoctetcount_g +=
2302 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2303 
2304 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2305 		stats->rxbroadcastframes_g +=
2306 			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2307 
2308 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2309 		stats->rxmulticastframes_g +=
2310 			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2311 
2312 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2313 		stats->rxcrcerror +=
2314 			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2315 
2316 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2317 		stats->rxrunterror +=
2318 			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2319 
2320 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2321 		stats->rxjabbererror +=
2322 			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2323 
2324 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2325 		stats->rxundersize_g +=
2326 			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2327 
2328 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2329 		stats->rxoversize_g +=
2330 			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2331 
2332 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2333 		stats->rx64octets_gb +=
2334 			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2335 
2336 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2337 		stats->rx65to127octets_gb +=
2338 			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2339 
2340 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2341 		stats->rx128to255octets_gb +=
2342 			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2343 
2344 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2345 		stats->rx256to511octets_gb +=
2346 			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2347 
2348 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2349 		stats->rx512to1023octets_gb +=
2350 			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2351 
2352 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2353 		stats->rx1024tomaxoctets_gb +=
2354 			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2355 
2356 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2357 		stats->rxunicastframes_g +=
2358 			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2359 
2360 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2361 		stats->rxlengtherror +=
2362 			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2363 
2364 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2365 		stats->rxoutofrangetype +=
2366 			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2367 
2368 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2369 		stats->rxpauseframes +=
2370 			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2371 
2372 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2373 		stats->rxfifooverflow +=
2374 			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2375 
2376 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2377 		stats->rxvlanframes_gb +=
2378 			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2379 
2380 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2381 		stats->rxwatchdogerror +=
2382 			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2383 }
2384 
2385 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2386 {
2387 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2388 
2389 	/* Freeze counters */
2390 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2391 
2392 	stats->txoctetcount_gb +=
2393 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2394 
2395 	stats->txframecount_gb +=
2396 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2397 
2398 	stats->txbroadcastframes_g +=
2399 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2400 
2401 	stats->txmulticastframes_g +=
2402 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2403 
2404 	stats->tx64octets_gb +=
2405 		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2406 
2407 	stats->tx65to127octets_gb +=
2408 		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2409 
2410 	stats->tx128to255octets_gb +=
2411 		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2412 
2413 	stats->tx256to511octets_gb +=
2414 		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2415 
2416 	stats->tx512to1023octets_gb +=
2417 		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2418 
2419 	stats->tx1024tomaxoctets_gb +=
2420 		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2421 
2422 	stats->txunicastframes_gb +=
2423 		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2424 
2425 	stats->txmulticastframes_gb +=
2426 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2427 
2428 	stats->txbroadcastframes_g +=
2429 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2430 
2431 	stats->txunderflowerror +=
2432 		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2433 
2434 	stats->txoctetcount_g +=
2435 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2436 
2437 	stats->txframecount_g +=
2438 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2439 
2440 	stats->txpauseframes +=
2441 		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2442 
2443 	stats->txvlanframes_g +=
2444 		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2445 
2446 	stats->rxframecount_gb +=
2447 		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2448 
2449 	stats->rxoctetcount_gb +=
2450 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2451 
2452 	stats->rxoctetcount_g +=
2453 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2454 
2455 	stats->rxbroadcastframes_g +=
2456 		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2457 
2458 	stats->rxmulticastframes_g +=
2459 		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2460 
2461 	stats->rxcrcerror +=
2462 		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2463 
2464 	stats->rxrunterror +=
2465 		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2466 
2467 	stats->rxjabbererror +=
2468 		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2469 
2470 	stats->rxundersize_g +=
2471 		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2472 
2473 	stats->rxoversize_g +=
2474 		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2475 
2476 	stats->rx64octets_gb +=
2477 		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2478 
2479 	stats->rx65to127octets_gb +=
2480 		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2481 
2482 	stats->rx128to255octets_gb +=
2483 		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2484 
2485 	stats->rx256to511octets_gb +=
2486 		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2487 
2488 	stats->rx512to1023octets_gb +=
2489 		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2490 
2491 	stats->rx1024tomaxoctets_gb +=
2492 		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2493 
2494 	stats->rxunicastframes_g +=
2495 		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2496 
2497 	stats->rxlengtherror +=
2498 		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2499 
2500 	stats->rxoutofrangetype +=
2501 		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2502 
2503 	stats->rxpauseframes +=
2504 		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2505 
2506 	stats->rxfifooverflow +=
2507 		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2508 
2509 	stats->rxvlanframes_gb +=
2510 		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2511 
2512 	stats->rxwatchdogerror +=
2513 		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2514 
2515 	/* Un-freeze counters */
2516 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2517 }
2518 
2519 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
2520 {
2521 	/* Set counters to reset on read */
2522 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2523 
2524 	/* Reset the counters */
2525 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2526 }
2527 
2528 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
2529 				 struct xgbe_channel *channel)
2530 {
2531 	unsigned int tx_dsr, tx_pos, tx_qidx;
2532 	unsigned int tx_status;
2533 	unsigned long tx_timeout;
2534 
2535 	/* Calculate the status register to read and the position within */
2536 	if (channel->queue_index < DMA_DSRX_FIRST_QUEUE) {
2537 		tx_dsr = DMA_DSR0;
2538 		tx_pos = (channel->queue_index * DMA_DSR_Q_WIDTH) +
2539 			 DMA_DSR0_TPS_START;
2540 	} else {
2541 		tx_qidx = channel->queue_index - DMA_DSRX_FIRST_QUEUE;
2542 
2543 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2544 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2545 			 DMA_DSRX_TPS_START;
2546 	}
2547 
2548 	/* The Tx engine cannot be stopped if it is actively processing
2549 	 * descriptors. Wait for the Tx engine to enter the stopped or
2550 	 * suspended state.  Don't wait forever though...
2551 	 */
2552 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
2553 	while (time_before(jiffies, tx_timeout)) {
2554 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2555 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2556 		if ((tx_status == DMA_TPS_STOPPED) ||
2557 		    (tx_status == DMA_TPS_SUSPENDED))
2558 			break;
2559 
2560 		usleep_range(500, 1000);
2561 	}
2562 
2563 	if (!time_before(jiffies, tx_timeout))
2564 		netdev_info(pdata->netdev,
2565 			    "timed out waiting for Tx DMA channel %u to stop\n",
2566 			    channel->queue_index);
2567 }
2568 
2569 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
2570 {
2571 	struct xgbe_channel *channel;
2572 	unsigned int i;
2573 
2574 	/* Enable each Tx DMA channel */
2575 	channel = pdata->channel;
2576 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2577 		if (!channel->tx_ring)
2578 			break;
2579 
2580 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
2581 	}
2582 
2583 	/* Enable each Tx queue */
2584 	for (i = 0; i < pdata->tx_q_count; i++)
2585 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2586 				       MTL_Q_ENABLED);
2587 
2588 	/* Enable MAC Tx */
2589 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2590 }
2591 
2592 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
2593 {
2594 	struct xgbe_channel *channel;
2595 	unsigned int i;
2596 
2597 	/* Prepare for Tx DMA channel stop */
2598 	channel = pdata->channel;
2599 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2600 		if (!channel->tx_ring)
2601 			break;
2602 
2603 		xgbe_prepare_tx_stop(pdata, channel);
2604 	}
2605 
2606 	/* Disable MAC Tx */
2607 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2608 
2609 	/* Disable each Tx queue */
2610 	for (i = 0; i < pdata->tx_q_count; i++)
2611 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2612 
2613 	/* Disable each Tx DMA channel */
2614 	channel = pdata->channel;
2615 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2616 		if (!channel->tx_ring)
2617 			break;
2618 
2619 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
2620 	}
2621 }
2622 
2623 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
2624 {
2625 	struct xgbe_channel *channel;
2626 	unsigned int reg_val, i;
2627 
2628 	/* Enable each Rx DMA channel */
2629 	channel = pdata->channel;
2630 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2631 		if (!channel->rx_ring)
2632 			break;
2633 
2634 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
2635 	}
2636 
2637 	/* Enable each Rx queue */
2638 	reg_val = 0;
2639 	for (i = 0; i < pdata->rx_q_count; i++)
2640 		reg_val |= (0x02 << (i << 1));
2641 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2642 
2643 	/* Enable MAC Rx */
2644 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2645 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2646 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2647 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2648 }
2649 
2650 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
2651 {
2652 	struct xgbe_channel *channel;
2653 	unsigned int i;
2654 
2655 	/* Disable MAC Rx */
2656 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2657 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2658 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2659 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2660 
2661 	/* Disable each Rx queue */
2662 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2663 
2664 	/* Disable each Rx DMA channel */
2665 	channel = pdata->channel;
2666 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2667 		if (!channel->rx_ring)
2668 			break;
2669 
2670 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
2671 	}
2672 }
2673 
2674 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2675 {
2676 	struct xgbe_channel *channel;
2677 	unsigned int i;
2678 
2679 	/* Enable each Tx DMA channel */
2680 	channel = pdata->channel;
2681 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2682 		if (!channel->tx_ring)
2683 			break;
2684 
2685 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
2686 	}
2687 
2688 	/* Enable MAC Tx */
2689 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2690 }
2691 
2692 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2693 {
2694 	struct xgbe_channel *channel;
2695 	unsigned int i;
2696 
2697 	/* Prepare for Tx DMA channel stop */
2698 	channel = pdata->channel;
2699 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2700 		if (!channel->tx_ring)
2701 			break;
2702 
2703 		xgbe_prepare_tx_stop(pdata, channel);
2704 	}
2705 
2706 	/* Disable MAC Tx */
2707 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2708 
2709 	/* Disable each Tx DMA channel */
2710 	channel = pdata->channel;
2711 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2712 		if (!channel->tx_ring)
2713 			break;
2714 
2715 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
2716 	}
2717 }
2718 
2719 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2720 {
2721 	struct xgbe_channel *channel;
2722 	unsigned int i;
2723 
2724 	/* Enable each Rx DMA channel */
2725 	channel = pdata->channel;
2726 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2727 		if (!channel->rx_ring)
2728 			break;
2729 
2730 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
2731 	}
2732 }
2733 
2734 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2735 {
2736 	struct xgbe_channel *channel;
2737 	unsigned int i;
2738 
2739 	/* Disable each Rx DMA channel */
2740 	channel = pdata->channel;
2741 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2742 		if (!channel->rx_ring)
2743 			break;
2744 
2745 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
2746 	}
2747 }
2748 
2749 static int xgbe_init(struct xgbe_prv_data *pdata)
2750 {
2751 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
2752 	int ret;
2753 
2754 	DBGPR("-->xgbe_init\n");
2755 
2756 	/* Flush Tx queues */
2757 	ret = xgbe_flush_tx_queues(pdata);
2758 	if (ret)
2759 		return ret;
2760 
2761 	/*
2762 	 * Initialize DMA related features
2763 	 */
2764 	xgbe_config_dma_bus(pdata);
2765 	xgbe_config_dma_cache(pdata);
2766 	xgbe_config_osp_mode(pdata);
2767 	xgbe_config_pblx8(pdata);
2768 	xgbe_config_tx_pbl_val(pdata);
2769 	xgbe_config_rx_pbl_val(pdata);
2770 	xgbe_config_rx_coalesce(pdata);
2771 	xgbe_config_tx_coalesce(pdata);
2772 	xgbe_config_rx_buffer_size(pdata);
2773 	xgbe_config_tso_mode(pdata);
2774 	xgbe_config_sph_mode(pdata);
2775 	xgbe_config_rss(pdata);
2776 	desc_if->wrapper_tx_desc_init(pdata);
2777 	desc_if->wrapper_rx_desc_init(pdata);
2778 	xgbe_enable_dma_interrupts(pdata);
2779 
2780 	/*
2781 	 * Initialize MTL related features
2782 	 */
2783 	xgbe_config_mtl_mode(pdata);
2784 	xgbe_config_queue_mapping(pdata);
2785 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2786 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2787 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2788 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2789 	xgbe_config_tx_fifo_size(pdata);
2790 	xgbe_config_rx_fifo_size(pdata);
2791 	xgbe_config_flow_control_threshold(pdata);
2792 	/*TODO: Error Packet and undersized good Packet forwarding enable
2793 		(FEP and FUP)
2794 	 */
2795 	xgbe_config_dcb_tc(pdata);
2796 	xgbe_config_dcb_pfc(pdata);
2797 	xgbe_enable_mtl_interrupts(pdata);
2798 
2799 	/*
2800 	 * Initialize MAC related features
2801 	 */
2802 	xgbe_config_mac_address(pdata);
2803 	xgbe_config_jumbo_enable(pdata);
2804 	xgbe_config_flow_control(pdata);
2805 	xgbe_config_mac_speed(pdata);
2806 	xgbe_config_checksum_offload(pdata);
2807 	xgbe_config_vlan_support(pdata);
2808 	xgbe_config_mmc(pdata);
2809 	xgbe_enable_mac_interrupts(pdata);
2810 
2811 	DBGPR("<--xgbe_init\n");
2812 
2813 	return 0;
2814 }
2815 
2816 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2817 {
2818 	DBGPR("-->xgbe_init_function_ptrs\n");
2819 
2820 	hw_if->tx_complete = xgbe_tx_complete;
2821 
2822 	hw_if->set_promiscuous_mode = xgbe_set_promiscuous_mode;
2823 	hw_if->set_all_multicast_mode = xgbe_set_all_multicast_mode;
2824 	hw_if->add_mac_addresses = xgbe_add_mac_addresses;
2825 	hw_if->set_mac_address = xgbe_set_mac_address;
2826 
2827 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2828 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2829 
2830 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2831 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2832 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2833 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2834 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2835 
2836 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2837 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2838 
2839 	hw_if->set_gmii_speed = xgbe_set_gmii_speed;
2840 	hw_if->set_gmii_2500_speed = xgbe_set_gmii_2500_speed;
2841 	hw_if->set_xgmii_speed = xgbe_set_xgmii_speed;
2842 
2843 	hw_if->enable_tx = xgbe_enable_tx;
2844 	hw_if->disable_tx = xgbe_disable_tx;
2845 	hw_if->enable_rx = xgbe_enable_rx;
2846 	hw_if->disable_rx = xgbe_disable_rx;
2847 
2848 	hw_if->powerup_tx = xgbe_powerup_tx;
2849 	hw_if->powerdown_tx = xgbe_powerdown_tx;
2850 	hw_if->powerup_rx = xgbe_powerup_rx;
2851 	hw_if->powerdown_rx = xgbe_powerdown_rx;
2852 
2853 	hw_if->dev_xmit = xgbe_dev_xmit;
2854 	hw_if->dev_read = xgbe_dev_read;
2855 	hw_if->enable_int = xgbe_enable_int;
2856 	hw_if->disable_int = xgbe_disable_int;
2857 	hw_if->init = xgbe_init;
2858 	hw_if->exit = xgbe_exit;
2859 
2860 	/* Descriptor related Sequences have to be initialized here */
2861 	hw_if->tx_desc_init = xgbe_tx_desc_init;
2862 	hw_if->rx_desc_init = xgbe_rx_desc_init;
2863 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2864 	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
2865 	hw_if->is_last_desc = xgbe_is_last_desc;
2866 	hw_if->is_context_desc = xgbe_is_context_desc;
2867 	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
2868 
2869 	/* For FLOW ctrl */
2870 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2871 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2872 
2873 	/* For RX coalescing */
2874 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2875 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2876 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2877 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2878 
2879 	/* For RX and TX threshold config */
2880 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2881 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2882 
2883 	/* For RX and TX Store and Forward Mode config */
2884 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2885 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2886 
2887 	/* For TX DMA Operating on Second Frame config */
2888 	hw_if->config_osp_mode = xgbe_config_osp_mode;
2889 
2890 	/* For RX and TX PBL config */
2891 	hw_if->config_rx_pbl_val = xgbe_config_rx_pbl_val;
2892 	hw_if->get_rx_pbl_val = xgbe_get_rx_pbl_val;
2893 	hw_if->config_tx_pbl_val = xgbe_config_tx_pbl_val;
2894 	hw_if->get_tx_pbl_val = xgbe_get_tx_pbl_val;
2895 	hw_if->config_pblx8 = xgbe_config_pblx8;
2896 
2897 	/* For MMC statistics support */
2898 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2899 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2900 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2901 
2902 	/* For PTP config */
2903 	hw_if->config_tstamp = xgbe_config_tstamp;
2904 	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
2905 	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
2906 	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
2907 	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
2908 
2909 	/* For Data Center Bridging config */
2910 	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
2911 	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
2912 
2913 	/* For Receive Side Scaling */
2914 	hw_if->enable_rss = xgbe_enable_rss;
2915 	hw_if->disable_rss = xgbe_disable_rss;
2916 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2917 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2918 
2919 	DBGPR("<--xgbe_init_function_ptrs\n");
2920 }
2921