1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * This file is available to you under your choice of the following two
5  * licenses:
6  *
7  * License 1: GPLv2
8  *
9  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
60  * All rights reserved.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions are met:
64  *     * Redistributions of source code must retain the above copyright
65  *       notice, this list of conditions and the following disclaimer.
66  *     * Redistributions in binary form must reproduce the above copyright
67  *       notice, this list of conditions and the following disclaimer in the
68  *       documentation and/or other materials provided with the distribution.
69  *     * Neither the name of Advanced Micro Devices, Inc. nor the
70  *       names of its contributors may be used to endorse or promote products
71  *       derived from this software without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83  *
84  * This file incorporates work covered by the following copyright and
85  * permission notice:
86  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89  *     and you.
90  *
91  *     The Software IS NOT an item of Licensed Software or Licensed Product
92  *     under any End User Software License Agreement or Agreement for Licensed
93  *     Product with Synopsys or any supplement thereto.  Permission is hereby
94  *     granted, free of charge, to any person obtaining a copy of this software
95  *     annotated with this license and the Software, to deal in the Software
96  *     without restriction, including without limitation the rights to use,
97  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98  *     of the Software, and to permit persons to whom the Software is furnished
99  *     to do so, subject to the following conditions:
100  *
101  *     The above copyright notice and this permission notice shall be included
102  *     in all copies or substantial portions of the Software.
103  *
104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114  *     THE POSSIBILITY OF SUCH DAMAGE.
115  */
116 
117 #include <linux/phy.h>
118 #include <linux/mdio.h>
119 #include <linux/clk.h>
120 #include <linux/bitrev.h>
121 #include <linux/crc32.h>
122 #include <linux/crc32poly.h>
123 
124 #include "xgbe.h"
125 #include "xgbe-common.h"
126 
127 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
128 {
129 	return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
130 }
131 
132 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
133 				      unsigned int usec)
134 {
135 	unsigned long rate;
136 	unsigned int ret;
137 
138 	DBGPR("-->xgbe_usec_to_riwt\n");
139 
140 	rate = pdata->sysclk_rate;
141 
142 	/*
143 	 * Convert the input usec value to the watchdog timer value. Each
144 	 * watchdog timer value is equivalent to 256 clock cycles.
145 	 * Calculate the required value as:
146 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
147 	 */
148 	ret = (usec * (rate / 1000000)) / 256;
149 
150 	DBGPR("<--xgbe_usec_to_riwt\n");
151 
152 	return ret;
153 }
154 
155 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
156 				      unsigned int riwt)
157 {
158 	unsigned long rate;
159 	unsigned int ret;
160 
161 	DBGPR("-->xgbe_riwt_to_usec\n");
162 
163 	rate = pdata->sysclk_rate;
164 
165 	/*
166 	 * Convert the input watchdog timer value to the usec value. Each
167 	 * watchdog timer value is equivalent to 256 clock cycles.
168 	 * Calculate the required value as:
169 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
170 	 */
171 	ret = (riwt * 256) / (rate / 1000000);
172 
173 	DBGPR("<--xgbe_riwt_to_usec\n");
174 
175 	return ret;
176 }
177 
178 static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
179 {
180 	unsigned int pblx8, pbl;
181 	unsigned int i;
182 
183 	pblx8 = DMA_PBL_X8_DISABLE;
184 	pbl = pdata->pbl;
185 
186 	if (pdata->pbl > 32) {
187 		pblx8 = DMA_PBL_X8_ENABLE;
188 		pbl >>= 3;
189 	}
190 
191 	for (i = 0; i < pdata->channel_count; i++) {
192 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
193 				       pblx8);
194 
195 		if (pdata->channel[i]->tx_ring)
196 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
197 					       PBL, pbl);
198 
199 		if (pdata->channel[i]->rx_ring)
200 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
201 					       PBL, pbl);
202 	}
203 
204 	return 0;
205 }
206 
207 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < pdata->channel_count; i++) {
212 		if (!pdata->channel[i]->tx_ring)
213 			break;
214 
215 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
216 				       pdata->tx_osp_mode);
217 	}
218 
219 	return 0;
220 }
221 
222 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
223 {
224 	unsigned int i;
225 
226 	for (i = 0; i < pdata->rx_q_count; i++)
227 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
228 
229 	return 0;
230 }
231 
232 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
233 {
234 	unsigned int i;
235 
236 	for (i = 0; i < pdata->tx_q_count; i++)
237 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
238 
239 	return 0;
240 }
241 
242 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
243 				    unsigned int val)
244 {
245 	unsigned int i;
246 
247 	for (i = 0; i < pdata->rx_q_count; i++)
248 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
249 
250 	return 0;
251 }
252 
253 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
254 				    unsigned int val)
255 {
256 	unsigned int i;
257 
258 	for (i = 0; i < pdata->tx_q_count; i++)
259 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
260 
261 	return 0;
262 }
263 
264 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
265 {
266 	unsigned int i;
267 
268 	for (i = 0; i < pdata->channel_count; i++) {
269 		if (!pdata->channel[i]->rx_ring)
270 			break;
271 
272 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
273 				       pdata->rx_riwt);
274 	}
275 
276 	return 0;
277 }
278 
279 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
280 {
281 	return 0;
282 }
283 
284 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
285 {
286 	unsigned int i;
287 
288 	for (i = 0; i < pdata->channel_count; i++) {
289 		if (!pdata->channel[i]->rx_ring)
290 			break;
291 
292 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
293 				       pdata->rx_buf_size);
294 	}
295 }
296 
297 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
298 {
299 	unsigned int i;
300 
301 	for (i = 0; i < pdata->channel_count; i++) {
302 		if (!pdata->channel[i]->tx_ring)
303 			break;
304 
305 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
306 	}
307 }
308 
309 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
310 {
311 	unsigned int i;
312 
313 	for (i = 0; i < pdata->channel_count; i++) {
314 		if (!pdata->channel[i]->rx_ring)
315 			break;
316 
317 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
318 	}
319 
320 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
321 }
322 
323 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
324 			      unsigned int index, unsigned int val)
325 {
326 	unsigned int wait;
327 	int ret = 0;
328 
329 	mutex_lock(&pdata->rss_mutex);
330 
331 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
332 		ret = -EBUSY;
333 		goto unlock;
334 	}
335 
336 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
337 
338 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
339 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
340 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
341 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
342 
343 	wait = 1000;
344 	while (wait--) {
345 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
346 			goto unlock;
347 
348 		usleep_range(1000, 1500);
349 	}
350 
351 	ret = -EBUSY;
352 
353 unlock:
354 	mutex_unlock(&pdata->rss_mutex);
355 
356 	return ret;
357 }
358 
359 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
360 {
361 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
362 	unsigned int *key = (unsigned int *)&pdata->rss_key;
363 	int ret;
364 
365 	while (key_regs--) {
366 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
367 					 key_regs, *key++);
368 		if (ret)
369 			return ret;
370 	}
371 
372 	return 0;
373 }
374 
375 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
376 {
377 	unsigned int i;
378 	int ret;
379 
380 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
381 		ret = xgbe_write_rss_reg(pdata,
382 					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
383 					 pdata->rss_table[i]);
384 		if (ret)
385 			return ret;
386 	}
387 
388 	return 0;
389 }
390 
391 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
392 {
393 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
394 
395 	return xgbe_write_rss_hash_key(pdata);
396 }
397 
398 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
399 				     const u32 *table)
400 {
401 	unsigned int i;
402 
403 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
404 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
405 
406 	return xgbe_write_rss_lookup_table(pdata);
407 }
408 
409 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
410 {
411 	int ret;
412 
413 	if (!pdata->hw_feat.rss)
414 		return -EOPNOTSUPP;
415 
416 	/* Program the hash key */
417 	ret = xgbe_write_rss_hash_key(pdata);
418 	if (ret)
419 		return ret;
420 
421 	/* Program the lookup table */
422 	ret = xgbe_write_rss_lookup_table(pdata);
423 	if (ret)
424 		return ret;
425 
426 	/* Set the RSS options */
427 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
428 
429 	/* Enable RSS */
430 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
431 
432 	return 0;
433 }
434 
435 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
436 {
437 	if (!pdata->hw_feat.rss)
438 		return -EOPNOTSUPP;
439 
440 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
441 
442 	return 0;
443 }
444 
445 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
446 {
447 	int ret;
448 
449 	if (!pdata->hw_feat.rss)
450 		return;
451 
452 	if (pdata->netdev->features & NETIF_F_RXHASH)
453 		ret = xgbe_enable_rss(pdata);
454 	else
455 		ret = xgbe_disable_rss(pdata);
456 
457 	if (ret)
458 		netdev_err(pdata->netdev,
459 			   "error configuring RSS, RSS disabled\n");
460 }
461 
462 static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
463 			      unsigned int queue)
464 {
465 	unsigned int prio, tc;
466 
467 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
468 		/* Does this queue handle the priority? */
469 		if (pdata->prio2q_map[prio] != queue)
470 			continue;
471 
472 		/* Get the Traffic Class for this priority */
473 		tc = pdata->ets->prio_tc[prio];
474 
475 		/* Check if PFC is enabled for this traffic class */
476 		if (pdata->pfc->pfc_en & (1 << tc))
477 			return true;
478 	}
479 
480 	return false;
481 }
482 
483 static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata)
484 {
485 	/* Program the VXLAN port */
486 	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port);
487 
488 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n",
489 		  pdata->vxlan_port);
490 }
491 
492 static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata)
493 {
494 	if (!pdata->hw_feat.vxn)
495 		return;
496 
497 	/* Program the VXLAN port */
498 	xgbe_set_vxlan_id(pdata);
499 
500 	/* Allow for IPv6/UDP zero-checksum VXLAN packets */
501 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1);
502 
503 	/* Enable VXLAN tunneling mode */
504 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0);
505 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1);
506 
507 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n");
508 }
509 
510 static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata)
511 {
512 	if (!pdata->hw_feat.vxn)
513 		return;
514 
515 	/* Disable tunneling mode */
516 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0);
517 
518 	/* Clear IPv6/UDP zero-checksum VXLAN packets setting */
519 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0);
520 
521 	/* Clear the VXLAN port */
522 	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0);
523 
524 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n");
525 }
526 
527 static unsigned int xgbe_get_fc_queue_count(struct xgbe_prv_data *pdata)
528 {
529 	unsigned int max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
530 
531 	/* From MAC ver 30H the TFCR is per priority, instead of per queue */
532 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) >= 0x30)
533 		return max_q_count;
534 	else
535 		return min_t(unsigned int, pdata->tx_q_count, max_q_count);
536 }
537 
538 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
539 {
540 	unsigned int reg, reg_val;
541 	unsigned int i, q_count;
542 
543 	/* Clear MTL flow control */
544 	for (i = 0; i < pdata->rx_q_count; i++)
545 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
546 
547 	/* Clear MAC flow control */
548 	q_count = xgbe_get_fc_queue_count(pdata);
549 	reg = MAC_Q0TFCR;
550 	for (i = 0; i < q_count; i++) {
551 		reg_val = XGMAC_IOREAD(pdata, reg);
552 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
553 		XGMAC_IOWRITE(pdata, reg, reg_val);
554 
555 		reg += MAC_QTFCR_INC;
556 	}
557 
558 	return 0;
559 }
560 
561 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
562 {
563 	struct ieee_pfc *pfc = pdata->pfc;
564 	struct ieee_ets *ets = pdata->ets;
565 	unsigned int reg, reg_val;
566 	unsigned int i, q_count;
567 
568 	/* Set MTL flow control */
569 	for (i = 0; i < pdata->rx_q_count; i++) {
570 		unsigned int ehfc = 0;
571 
572 		if (pdata->rx_rfd[i]) {
573 			/* Flow control thresholds are established */
574 			if (pfc && ets) {
575 				if (xgbe_is_pfc_queue(pdata, i))
576 					ehfc = 1;
577 			} else {
578 				ehfc = 1;
579 			}
580 		}
581 
582 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
583 
584 		netif_dbg(pdata, drv, pdata->netdev,
585 			  "flow control %s for RXq%u\n",
586 			  ehfc ? "enabled" : "disabled", i);
587 	}
588 
589 	/* Set MAC flow control */
590 	q_count = xgbe_get_fc_queue_count(pdata);
591 	reg = MAC_Q0TFCR;
592 	for (i = 0; i < q_count; i++) {
593 		reg_val = XGMAC_IOREAD(pdata, reg);
594 
595 		/* Enable transmit flow control */
596 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
597 		/* Set pause time */
598 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
599 
600 		XGMAC_IOWRITE(pdata, reg, reg_val);
601 
602 		reg += MAC_QTFCR_INC;
603 	}
604 
605 	return 0;
606 }
607 
608 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
609 {
610 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
611 
612 	return 0;
613 }
614 
615 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
616 {
617 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
618 
619 	return 0;
620 }
621 
622 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
623 {
624 	struct ieee_pfc *pfc = pdata->pfc;
625 
626 	if (pdata->tx_pause || (pfc && pfc->pfc_en))
627 		xgbe_enable_tx_flow_control(pdata);
628 	else
629 		xgbe_disable_tx_flow_control(pdata);
630 
631 	return 0;
632 }
633 
634 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
635 {
636 	struct ieee_pfc *pfc = pdata->pfc;
637 
638 	if (pdata->rx_pause || (pfc && pfc->pfc_en))
639 		xgbe_enable_rx_flow_control(pdata);
640 	else
641 		xgbe_disable_rx_flow_control(pdata);
642 
643 	return 0;
644 }
645 
646 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
647 {
648 	struct ieee_pfc *pfc = pdata->pfc;
649 
650 	xgbe_config_tx_flow_control(pdata);
651 	xgbe_config_rx_flow_control(pdata);
652 
653 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
654 			   (pfc && pfc->pfc_en) ? 1 : 0);
655 }
656 
657 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
658 {
659 	struct xgbe_channel *channel;
660 	unsigned int i, ver;
661 
662 	/* Set the interrupt mode if supported */
663 	if (pdata->channel_irq_mode)
664 		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
665 				   pdata->channel_irq_mode);
666 
667 	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
668 
669 	for (i = 0; i < pdata->channel_count; i++) {
670 		channel = pdata->channel[i];
671 
672 		/* Clear all the interrupts which are set */
673 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
674 				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
675 
676 		/* Clear all interrupt enable bits */
677 		channel->curr_ier = 0;
678 
679 		/* Enable following interrupts
680 		 *   NIE  - Normal Interrupt Summary Enable
681 		 *   AIE  - Abnormal Interrupt Summary Enable
682 		 *   FBEE - Fatal Bus Error Enable
683 		 */
684 		if (ver < 0x21) {
685 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
686 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
687 		} else {
688 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
689 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
690 		}
691 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
692 
693 		if (channel->tx_ring) {
694 			/* Enable the following Tx interrupts
695 			 *   TIE  - Transmit Interrupt Enable (unless using
696 			 *          per channel interrupts in edge triggered
697 			 *          mode)
698 			 */
699 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
700 				XGMAC_SET_BITS(channel->curr_ier,
701 					       DMA_CH_IER, TIE, 1);
702 		}
703 		if (channel->rx_ring) {
704 			/* Enable following Rx interrupts
705 			 *   RBUE - Receive Buffer Unavailable Enable
706 			 *   RIE  - Receive Interrupt Enable (unless using
707 			 *          per channel interrupts in edge triggered
708 			 *          mode)
709 			 */
710 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
711 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
712 				XGMAC_SET_BITS(channel->curr_ier,
713 					       DMA_CH_IER, RIE, 1);
714 		}
715 
716 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
717 	}
718 }
719 
720 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
721 {
722 	unsigned int mtl_q_isr;
723 	unsigned int q_count, i;
724 
725 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
726 	for (i = 0; i < q_count; i++) {
727 		/* Clear all the interrupts which are set */
728 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
729 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
730 
731 		/* No MTL interrupts to be enabled */
732 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
733 	}
734 }
735 
736 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
737 {
738 	unsigned int mac_ier = 0;
739 
740 	/* Enable Timestamp interrupt */
741 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
742 
743 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
744 
745 	/* Enable all counter interrupts */
746 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
747 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
748 
749 	/* Enable MDIO single command completion interrupt */
750 	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
751 }
752 
753 static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
754 {
755 	unsigned int ecc_isr, ecc_ier = 0;
756 
757 	if (!pdata->vdata->ecc_support)
758 		return;
759 
760 	/* Clear all the interrupts which are set */
761 	ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
762 	XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
763 
764 	/* Enable ECC interrupts */
765 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
766 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
767 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
768 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
769 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
770 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
771 
772 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
773 }
774 
775 static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
776 {
777 	unsigned int ecc_ier;
778 
779 	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
780 
781 	/* Disable ECC DED interrupts */
782 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
783 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
784 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
785 
786 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
787 }
788 
789 static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
790 				 enum xgbe_ecc_sec sec)
791 {
792 	unsigned int ecc_ier;
793 
794 	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
795 
796 	/* Disable ECC SEC interrupt */
797 	switch (sec) {
798 	case XGBE_ECC_SEC_TX:
799 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
800 		break;
801 	case XGBE_ECC_SEC_RX:
802 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
803 		break;
804 	case XGBE_ECC_SEC_DESC:
805 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
806 		break;
807 	}
808 
809 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
810 }
811 
812 static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
813 {
814 	unsigned int ss;
815 
816 	switch (speed) {
817 	case SPEED_1000:
818 		ss = 0x03;
819 		break;
820 	case SPEED_2500:
821 		ss = 0x02;
822 		break;
823 	case SPEED_10000:
824 		ss = 0x00;
825 		break;
826 	default:
827 		return -EINVAL;
828 	}
829 
830 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
831 		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
832 
833 	return 0;
834 }
835 
836 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
837 {
838 	/* Put the VLAN tag in the Rx descriptor */
839 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
840 
841 	/* Don't check the VLAN type */
842 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
843 
844 	/* Check only C-TAG (0x8100) packets */
845 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
846 
847 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
848 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
849 
850 	/* Enable VLAN tag stripping */
851 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
852 
853 	return 0;
854 }
855 
856 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
857 {
858 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
859 
860 	return 0;
861 }
862 
863 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
864 {
865 	/* Enable VLAN filtering */
866 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
867 
868 	/* Enable VLAN Hash Table filtering */
869 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
870 
871 	/* Disable VLAN tag inverse matching */
872 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
873 
874 	/* Only filter on the lower 12-bits of the VLAN tag */
875 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
876 
877 	/* In order for the VLAN Hash Table filtering to be effective,
878 	 * the VLAN tag identifier in the VLAN Tag Register must not
879 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
880 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
881 	 * 1 will always pass filtering.
882 	 */
883 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
884 
885 	return 0;
886 }
887 
888 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
889 {
890 	/* Disable VLAN filtering */
891 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
892 
893 	return 0;
894 }
895 
896 static u32 xgbe_vid_crc32_le(__le16 vid_le)
897 {
898 	u32 crc = ~0;
899 	u32 temp = 0;
900 	unsigned char *data = (unsigned char *)&vid_le;
901 	unsigned char data_byte = 0;
902 	int i, bits;
903 
904 	bits = get_bitmask_order(VLAN_VID_MASK);
905 	for (i = 0; i < bits; i++) {
906 		if ((i % 8) == 0)
907 			data_byte = data[i / 8];
908 
909 		temp = ((crc & 1) ^ data_byte) & 1;
910 		crc >>= 1;
911 		data_byte >>= 1;
912 
913 		if (temp)
914 			crc ^= CRC32_POLY_LE;
915 	}
916 
917 	return crc;
918 }
919 
920 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
921 {
922 	u32 crc;
923 	u16 vid;
924 	__le16 vid_le;
925 	u16 vlan_hash_table = 0;
926 
927 	/* Generate the VLAN Hash Table value */
928 	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
929 		/* Get the CRC32 value of the VLAN ID */
930 		vid_le = cpu_to_le16(vid);
931 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
932 
933 		vlan_hash_table |= (1 << crc);
934 	}
935 
936 	/* Set the VLAN Hash Table filtering register */
937 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
938 
939 	return 0;
940 }
941 
942 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
943 				     unsigned int enable)
944 {
945 	unsigned int val = enable ? 1 : 0;
946 
947 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
948 		return 0;
949 
950 	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
951 		  enable ? "entering" : "leaving");
952 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
953 
954 	/* Hardware will still perform VLAN filtering in promiscuous mode */
955 	if (enable) {
956 		xgbe_disable_rx_vlan_filtering(pdata);
957 	} else {
958 		if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
959 			xgbe_enable_rx_vlan_filtering(pdata);
960 	}
961 
962 	return 0;
963 }
964 
965 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
966 				       unsigned int enable)
967 {
968 	unsigned int val = enable ? 1 : 0;
969 
970 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
971 		return 0;
972 
973 	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
974 		  enable ? "entering" : "leaving");
975 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
976 
977 	return 0;
978 }
979 
980 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
981 			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
982 {
983 	unsigned int mac_addr_hi, mac_addr_lo;
984 	u8 *mac_addr;
985 
986 	mac_addr_lo = 0;
987 	mac_addr_hi = 0;
988 
989 	if (ha) {
990 		mac_addr = (u8 *)&mac_addr_lo;
991 		mac_addr[0] = ha->addr[0];
992 		mac_addr[1] = ha->addr[1];
993 		mac_addr[2] = ha->addr[2];
994 		mac_addr[3] = ha->addr[3];
995 		mac_addr = (u8 *)&mac_addr_hi;
996 		mac_addr[0] = ha->addr[4];
997 		mac_addr[1] = ha->addr[5];
998 
999 		netif_dbg(pdata, drv, pdata->netdev,
1000 			  "adding mac address %pM at %#x\n",
1001 			  ha->addr, *mac_reg);
1002 
1003 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
1004 	}
1005 
1006 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
1007 	*mac_reg += MAC_MACA_INC;
1008 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
1009 	*mac_reg += MAC_MACA_INC;
1010 }
1011 
1012 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
1013 {
1014 	struct net_device *netdev = pdata->netdev;
1015 	struct netdev_hw_addr *ha;
1016 	unsigned int mac_reg;
1017 	unsigned int addn_macs;
1018 
1019 	mac_reg = MAC_MACA1HR;
1020 	addn_macs = pdata->hw_feat.addn_mac;
1021 
1022 	if (netdev_uc_count(netdev) > addn_macs) {
1023 		xgbe_set_promiscuous_mode(pdata, 1);
1024 	} else {
1025 		netdev_for_each_uc_addr(ha, netdev) {
1026 			xgbe_set_mac_reg(pdata, ha, &mac_reg);
1027 			addn_macs--;
1028 		}
1029 
1030 		if (netdev_mc_count(netdev) > addn_macs) {
1031 			xgbe_set_all_multicast_mode(pdata, 1);
1032 		} else {
1033 			netdev_for_each_mc_addr(ha, netdev) {
1034 				xgbe_set_mac_reg(pdata, ha, &mac_reg);
1035 				addn_macs--;
1036 			}
1037 		}
1038 	}
1039 
1040 	/* Clear remaining additional MAC address entries */
1041 	while (addn_macs--)
1042 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1043 }
1044 
1045 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1046 {
1047 	struct net_device *netdev = pdata->netdev;
1048 	struct netdev_hw_addr *ha;
1049 	unsigned int hash_reg;
1050 	unsigned int hash_table_shift, hash_table_count;
1051 	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1052 	u32 crc;
1053 	unsigned int i;
1054 
1055 	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1056 	hash_table_count = pdata->hw_feat.hash_table_size / 32;
1057 	memset(hash_table, 0, sizeof(hash_table));
1058 
1059 	/* Build the MAC Hash Table register values */
1060 	netdev_for_each_uc_addr(ha, netdev) {
1061 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1062 		crc >>= hash_table_shift;
1063 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1064 	}
1065 
1066 	netdev_for_each_mc_addr(ha, netdev) {
1067 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1068 		crc >>= hash_table_shift;
1069 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1070 	}
1071 
1072 	/* Set the MAC Hash Table registers */
1073 	hash_reg = MAC_HTR0;
1074 	for (i = 0; i < hash_table_count; i++) {
1075 		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1076 		hash_reg += MAC_HTR_INC;
1077 	}
1078 }
1079 
1080 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1081 {
1082 	if (pdata->hw_feat.hash_table_size)
1083 		xgbe_set_mac_hash_table(pdata);
1084 	else
1085 		xgbe_set_mac_addn_addrs(pdata);
1086 
1087 	return 0;
1088 }
1089 
1090 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, const u8 *addr)
1091 {
1092 	unsigned int mac_addr_hi, mac_addr_lo;
1093 
1094 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
1095 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1096 		      (addr[1] <<  8) | (addr[0] <<  0);
1097 
1098 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1099 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1100 
1101 	return 0;
1102 }
1103 
1104 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1105 {
1106 	struct net_device *netdev = pdata->netdev;
1107 	unsigned int pr_mode, am_mode;
1108 
1109 	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1110 	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1111 
1112 	xgbe_set_promiscuous_mode(pdata, pr_mode);
1113 	xgbe_set_all_multicast_mode(pdata, am_mode);
1114 
1115 	xgbe_add_mac_addresses(pdata);
1116 
1117 	return 0;
1118 }
1119 
1120 static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1121 {
1122 	unsigned int reg;
1123 
1124 	if (gpio > 15)
1125 		return -EINVAL;
1126 
1127 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1128 
1129 	reg &= ~(1 << (gpio + 16));
1130 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1131 
1132 	return 0;
1133 }
1134 
1135 static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1136 {
1137 	unsigned int reg;
1138 
1139 	if (gpio > 15)
1140 		return -EINVAL;
1141 
1142 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1143 
1144 	reg |= (1 << (gpio + 16));
1145 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1146 
1147 	return 0;
1148 }
1149 
1150 static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1151 				 int mmd_reg)
1152 {
1153 	unsigned long flags;
1154 	unsigned int mmd_address, index, offset;
1155 	int mmd_data;
1156 
1157 	if (mmd_reg & MII_ADDR_C45)
1158 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1159 	else
1160 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1161 
1162 	/* The PCS registers are accessed using mmio. The underlying
1163 	 * management interface uses indirect addressing to access the MMD
1164 	 * register sets. This requires accessing of the PCS register in two
1165 	 * phases, an address phase and a data phase.
1166 	 *
1167 	 * The mmio interface is based on 16-bit offsets and values. All
1168 	 * register offsets must therefore be adjusted by left shifting the
1169 	 * offset 1 bit and reading 16 bits of data.
1170 	 */
1171 	mmd_address <<= 1;
1172 	index = mmd_address & ~pdata->xpcs_window_mask;
1173 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1174 
1175 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1176 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1177 	mmd_data = XPCS16_IOREAD(pdata, offset);
1178 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1179 
1180 	return mmd_data;
1181 }
1182 
1183 static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1184 				   int mmd_reg, int mmd_data)
1185 {
1186 	unsigned long flags;
1187 	unsigned int mmd_address, index, offset;
1188 
1189 	if (mmd_reg & MII_ADDR_C45)
1190 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1191 	else
1192 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1193 
1194 	/* The PCS registers are accessed using mmio. The underlying
1195 	 * management interface uses indirect addressing to access the MMD
1196 	 * register sets. This requires accessing of the PCS register in two
1197 	 * phases, an address phase and a data phase.
1198 	 *
1199 	 * The mmio interface is based on 16-bit offsets and values. All
1200 	 * register offsets must therefore be adjusted by left shifting the
1201 	 * offset 1 bit and writing 16 bits of data.
1202 	 */
1203 	mmd_address <<= 1;
1204 	index = mmd_address & ~pdata->xpcs_window_mask;
1205 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1206 
1207 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1208 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1209 	XPCS16_IOWRITE(pdata, offset, mmd_data);
1210 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1211 }
1212 
1213 static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1214 				 int mmd_reg)
1215 {
1216 	unsigned long flags;
1217 	unsigned int mmd_address;
1218 	int mmd_data;
1219 
1220 	if (mmd_reg & MII_ADDR_C45)
1221 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1222 	else
1223 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1224 
1225 	/* The PCS registers are accessed using mmio. The underlying APB3
1226 	 * management interface uses indirect addressing to access the MMD
1227 	 * register sets. This requires accessing of the PCS register in two
1228 	 * phases, an address phase and a data phase.
1229 	 *
1230 	 * The mmio interface is based on 32-bit offsets and values. All
1231 	 * register offsets must therefore be adjusted by left shifting the
1232 	 * offset 2 bits and reading 32 bits of data.
1233 	 */
1234 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1235 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1236 	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1237 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1238 
1239 	return mmd_data;
1240 }
1241 
1242 static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1243 				   int mmd_reg, int mmd_data)
1244 {
1245 	unsigned int mmd_address;
1246 	unsigned long flags;
1247 
1248 	if (mmd_reg & MII_ADDR_C45)
1249 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1250 	else
1251 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1252 
1253 	/* The PCS registers are accessed using mmio. The underlying APB3
1254 	 * management interface uses indirect addressing to access the MMD
1255 	 * register sets. This requires accessing of the PCS register in two
1256 	 * phases, an address phase and a data phase.
1257 	 *
1258 	 * The mmio interface is based on 32-bit offsets and values. All
1259 	 * register offsets must therefore be adjusted by left shifting the
1260 	 * offset 2 bits and writing 32 bits of data.
1261 	 */
1262 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1263 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1264 	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1265 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1266 }
1267 
1268 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1269 			      int mmd_reg)
1270 {
1271 	switch (pdata->vdata->xpcs_access) {
1272 	case XGBE_XPCS_ACCESS_V1:
1273 		return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1274 
1275 	case XGBE_XPCS_ACCESS_V2:
1276 	default:
1277 		return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1278 	}
1279 }
1280 
1281 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1282 				int mmd_reg, int mmd_data)
1283 {
1284 	switch (pdata->vdata->xpcs_access) {
1285 	case XGBE_XPCS_ACCESS_V1:
1286 		return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1287 
1288 	case XGBE_XPCS_ACCESS_V2:
1289 	default:
1290 		return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1291 	}
1292 }
1293 
1294 static unsigned int xgbe_create_mdio_sca(int port, int reg)
1295 {
1296 	unsigned int mdio_sca, da;
1297 
1298 	da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1299 
1300 	mdio_sca = 0;
1301 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1302 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1303 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1304 
1305 	return mdio_sca;
1306 }
1307 
1308 static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1309 				   int reg, u16 val)
1310 {
1311 	unsigned int mdio_sca, mdio_sccd;
1312 
1313 	reinit_completion(&pdata->mdio_complete);
1314 
1315 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1316 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1317 
1318 	mdio_sccd = 0;
1319 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1320 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1321 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1322 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1323 
1324 	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1325 		netdev_err(pdata->netdev, "mdio write operation timed out\n");
1326 		return -ETIMEDOUT;
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1333 				  int reg)
1334 {
1335 	unsigned int mdio_sca, mdio_sccd;
1336 
1337 	reinit_completion(&pdata->mdio_complete);
1338 
1339 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1340 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1341 
1342 	mdio_sccd = 0;
1343 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1344 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1345 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1346 
1347 	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1348 		netdev_err(pdata->netdev, "mdio read operation timed out\n");
1349 		return -ETIMEDOUT;
1350 	}
1351 
1352 	return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1353 }
1354 
1355 static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1356 				 enum xgbe_mdio_mode mode)
1357 {
1358 	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1359 
1360 	switch (mode) {
1361 	case XGBE_MDIO_MODE_CL22:
1362 		if (port > XGMAC_MAX_C22_PORT)
1363 			return -EINVAL;
1364 		reg_val |= (1 << port);
1365 		break;
1366 	case XGBE_MDIO_MODE_CL45:
1367 		break;
1368 	default:
1369 		return -EINVAL;
1370 	}
1371 
1372 	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1373 
1374 	return 0;
1375 }
1376 
1377 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1378 {
1379 	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1380 }
1381 
1382 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1383 {
1384 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1385 
1386 	return 0;
1387 }
1388 
1389 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1390 {
1391 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1392 
1393 	return 0;
1394 }
1395 
1396 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1397 {
1398 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1399 
1400 	/* Reset the Tx descriptor
1401 	 *   Set buffer 1 (lo) address to zero
1402 	 *   Set buffer 1 (hi) address to zero
1403 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1404 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1405 	 */
1406 	rdesc->desc0 = 0;
1407 	rdesc->desc1 = 0;
1408 	rdesc->desc2 = 0;
1409 	rdesc->desc3 = 0;
1410 
1411 	/* Make sure ownership is written to the descriptor */
1412 	dma_wmb();
1413 }
1414 
1415 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1416 {
1417 	struct xgbe_ring *ring = channel->tx_ring;
1418 	struct xgbe_ring_data *rdata;
1419 	int i;
1420 	int start_index = ring->cur;
1421 
1422 	DBGPR("-->tx_desc_init\n");
1423 
1424 	/* Initialze all descriptors */
1425 	for (i = 0; i < ring->rdesc_count; i++) {
1426 		rdata = XGBE_GET_DESC_DATA(ring, i);
1427 
1428 		/* Initialize Tx descriptor */
1429 		xgbe_tx_desc_reset(rdata);
1430 	}
1431 
1432 	/* Update the total number of Tx descriptors */
1433 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1434 
1435 	/* Update the starting address of descriptor ring */
1436 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1437 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1438 			  upper_32_bits(rdata->rdesc_dma));
1439 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1440 			  lower_32_bits(rdata->rdesc_dma));
1441 
1442 	DBGPR("<--tx_desc_init\n");
1443 }
1444 
1445 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1446 			       struct xgbe_ring_data *rdata, unsigned int index)
1447 {
1448 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1449 	unsigned int rx_usecs = pdata->rx_usecs;
1450 	unsigned int rx_frames = pdata->rx_frames;
1451 	unsigned int inte;
1452 	dma_addr_t hdr_dma, buf_dma;
1453 
1454 	if (!rx_usecs && !rx_frames) {
1455 		/* No coalescing, interrupt for every descriptor */
1456 		inte = 1;
1457 	} else {
1458 		/* Set interrupt based on Rx frame coalescing setting */
1459 		if (rx_frames && !((index + 1) % rx_frames))
1460 			inte = 1;
1461 		else
1462 			inte = 0;
1463 	}
1464 
1465 	/* Reset the Rx descriptor
1466 	 *   Set buffer 1 (lo) address to header dma address (lo)
1467 	 *   Set buffer 1 (hi) address to header dma address (hi)
1468 	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1469 	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1470 	 *     set control bits OWN and INTE
1471 	 */
1472 	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1473 	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1474 	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1475 	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1476 	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1477 	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1478 
1479 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1480 
1481 	/* Since the Rx DMA engine is likely running, make sure everything
1482 	 * is written to the descriptor(s) before setting the OWN bit
1483 	 * for the descriptor
1484 	 */
1485 	dma_wmb();
1486 
1487 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1488 
1489 	/* Make sure ownership is written to the descriptor */
1490 	dma_wmb();
1491 }
1492 
1493 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1494 {
1495 	struct xgbe_prv_data *pdata = channel->pdata;
1496 	struct xgbe_ring *ring = channel->rx_ring;
1497 	struct xgbe_ring_data *rdata;
1498 	unsigned int start_index = ring->cur;
1499 	unsigned int i;
1500 
1501 	DBGPR("-->rx_desc_init\n");
1502 
1503 	/* Initialize all descriptors */
1504 	for (i = 0; i < ring->rdesc_count; i++) {
1505 		rdata = XGBE_GET_DESC_DATA(ring, i);
1506 
1507 		/* Initialize Rx descriptor */
1508 		xgbe_rx_desc_reset(pdata, rdata, i);
1509 	}
1510 
1511 	/* Update the total number of Rx descriptors */
1512 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1513 
1514 	/* Update the starting address of descriptor ring */
1515 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1516 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1517 			  upper_32_bits(rdata->rdesc_dma));
1518 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1519 			  lower_32_bits(rdata->rdesc_dma));
1520 
1521 	/* Update the Rx Descriptor Tail Pointer */
1522 	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1523 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1524 			  lower_32_bits(rdata->rdesc_dma));
1525 
1526 	DBGPR("<--rx_desc_init\n");
1527 }
1528 
1529 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1530 				      unsigned int addend)
1531 {
1532 	unsigned int count = 10000;
1533 
1534 	/* Set the addend register value and tell the device */
1535 	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1536 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1537 
1538 	/* Wait for addend update to complete */
1539 	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1540 		udelay(5);
1541 
1542 	if (!count)
1543 		netdev_err(pdata->netdev,
1544 			   "timed out updating timestamp addend register\n");
1545 }
1546 
1547 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1548 				 unsigned int nsec)
1549 {
1550 	unsigned int count = 10000;
1551 
1552 	/* Set the time values and tell the device */
1553 	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1554 	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1555 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1556 
1557 	/* Wait for time update to complete */
1558 	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1559 		udelay(5);
1560 
1561 	if (!count)
1562 		netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1563 }
1564 
1565 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1566 {
1567 	u64 nsec;
1568 
1569 	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1570 	nsec *= NSEC_PER_SEC;
1571 	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1572 
1573 	return nsec;
1574 }
1575 
1576 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1577 {
1578 	unsigned int tx_snr, tx_ssr;
1579 	u64 nsec;
1580 
1581 	if (pdata->vdata->tx_tstamp_workaround) {
1582 		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1583 		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1584 	} else {
1585 		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1586 		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1587 	}
1588 
1589 	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1590 		return 0;
1591 
1592 	nsec = tx_ssr;
1593 	nsec *= NSEC_PER_SEC;
1594 	nsec += tx_snr;
1595 
1596 	return nsec;
1597 }
1598 
1599 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1600 			       struct xgbe_ring_desc *rdesc)
1601 {
1602 	u64 nsec;
1603 
1604 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1605 	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1606 		nsec = le32_to_cpu(rdesc->desc1);
1607 		nsec <<= 32;
1608 		nsec |= le32_to_cpu(rdesc->desc0);
1609 		if (nsec != 0xffffffffffffffffULL) {
1610 			packet->rx_tstamp = nsec;
1611 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1612 				       RX_TSTAMP, 1);
1613 		}
1614 	}
1615 }
1616 
1617 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1618 			      unsigned int mac_tscr)
1619 {
1620 	/* Set one nano-second accuracy */
1621 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1622 
1623 	/* Set fine timestamp update */
1624 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1625 
1626 	/* Overwrite earlier timestamps */
1627 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1628 
1629 	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1630 
1631 	/* Exit if timestamping is not enabled */
1632 	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1633 		return 0;
1634 
1635 	/* Initialize time registers */
1636 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1637 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1638 	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1639 	xgbe_set_tstamp_time(pdata, 0, 0);
1640 
1641 	/* Initialize the timecounter */
1642 	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1643 			 ktime_to_ns(ktime_get_real()));
1644 
1645 	return 0;
1646 }
1647 
1648 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1649 			       struct xgbe_ring *ring)
1650 {
1651 	struct xgbe_prv_data *pdata = channel->pdata;
1652 	struct xgbe_ring_data *rdata;
1653 
1654 	/* Make sure everything is written before the register write */
1655 	wmb();
1656 
1657 	/* Issue a poll command to Tx DMA by writing address
1658 	 * of next immediate free descriptor */
1659 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1660 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1661 			  lower_32_bits(rdata->rdesc_dma));
1662 
1663 	/* Start the Tx timer */
1664 	if (pdata->tx_usecs && !channel->tx_timer_active) {
1665 		channel->tx_timer_active = 1;
1666 		mod_timer(&channel->tx_timer,
1667 			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1668 	}
1669 
1670 	ring->tx.xmit_more = 0;
1671 }
1672 
1673 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1674 {
1675 	struct xgbe_prv_data *pdata = channel->pdata;
1676 	struct xgbe_ring *ring = channel->tx_ring;
1677 	struct xgbe_ring_data *rdata;
1678 	struct xgbe_ring_desc *rdesc;
1679 	struct xgbe_packet_data *packet = &ring->packet_data;
1680 	unsigned int tx_packets, tx_bytes;
1681 	unsigned int csum, tso, vlan, vxlan;
1682 	unsigned int tso_context, vlan_context;
1683 	unsigned int tx_set_ic;
1684 	int start_index = ring->cur;
1685 	int cur_index = ring->cur;
1686 	int i;
1687 
1688 	DBGPR("-->xgbe_dev_xmit\n");
1689 
1690 	tx_packets = packet->tx_packets;
1691 	tx_bytes = packet->tx_bytes;
1692 
1693 	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1694 			      CSUM_ENABLE);
1695 	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1696 			     TSO_ENABLE);
1697 	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1698 			      VLAN_CTAG);
1699 	vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1700 			       VXLAN);
1701 
1702 	if (tso && (packet->mss != ring->tx.cur_mss))
1703 		tso_context = 1;
1704 	else
1705 		tso_context = 0;
1706 
1707 	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1708 		vlan_context = 1;
1709 	else
1710 		vlan_context = 0;
1711 
1712 	/* Determine if an interrupt should be generated for this Tx:
1713 	 *   Interrupt:
1714 	 *     - Tx frame count exceeds the frame count setting
1715 	 *     - Addition of Tx frame count to the frame count since the
1716 	 *       last interrupt was set exceeds the frame count setting
1717 	 *   No interrupt:
1718 	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1719 	 *     - Addition of Tx frame count to the frame count since the
1720 	 *       last interrupt was set does not exceed the frame count setting
1721 	 */
1722 	ring->coalesce_count += tx_packets;
1723 	if (!pdata->tx_frames)
1724 		tx_set_ic = 0;
1725 	else if (tx_packets > pdata->tx_frames)
1726 		tx_set_ic = 1;
1727 	else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets)
1728 		tx_set_ic = 1;
1729 	else
1730 		tx_set_ic = 0;
1731 
1732 	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1733 	rdesc = rdata->rdesc;
1734 
1735 	/* Create a context descriptor if this is a TSO packet */
1736 	if (tso_context || vlan_context) {
1737 		if (tso_context) {
1738 			netif_dbg(pdata, tx_queued, pdata->netdev,
1739 				  "TSO context descriptor, mss=%u\n",
1740 				  packet->mss);
1741 
1742 			/* Set the MSS size */
1743 			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1744 					  MSS, packet->mss);
1745 
1746 			/* Mark it as a CONTEXT descriptor */
1747 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1748 					  CTXT, 1);
1749 
1750 			/* Indicate this descriptor contains the MSS */
1751 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1752 					  TCMSSV, 1);
1753 
1754 			ring->tx.cur_mss = packet->mss;
1755 		}
1756 
1757 		if (vlan_context) {
1758 			netif_dbg(pdata, tx_queued, pdata->netdev,
1759 				  "VLAN context descriptor, ctag=%u\n",
1760 				  packet->vlan_ctag);
1761 
1762 			/* Mark it as a CONTEXT descriptor */
1763 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1764 					  CTXT, 1);
1765 
1766 			/* Set the VLAN tag */
1767 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1768 					  VT, packet->vlan_ctag);
1769 
1770 			/* Indicate this descriptor contains the VLAN tag */
1771 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1772 					  VLTV, 1);
1773 
1774 			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1775 		}
1776 
1777 		cur_index++;
1778 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1779 		rdesc = rdata->rdesc;
1780 	}
1781 
1782 	/* Update buffer address (for TSO this is the header) */
1783 	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1784 	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1785 
1786 	/* Update the buffer length */
1787 	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1788 			  rdata->skb_dma_len);
1789 
1790 	/* VLAN tag insertion check */
1791 	if (vlan)
1792 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1793 				  TX_NORMAL_DESC2_VLAN_INSERT);
1794 
1795 	/* Timestamp enablement check */
1796 	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1797 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1798 
1799 	/* Mark it as First Descriptor */
1800 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1801 
1802 	/* Mark it as a NORMAL descriptor */
1803 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1804 
1805 	/* Set OWN bit if not the first descriptor */
1806 	if (cur_index != start_index)
1807 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1808 
1809 	if (tso) {
1810 		/* Enable TSO */
1811 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1812 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1813 				  packet->tcp_payload_len);
1814 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1815 				  packet->tcp_header_len / 4);
1816 
1817 		pdata->ext_stats.tx_tso_packets += tx_packets;
1818 	} else {
1819 		/* Enable CRC and Pad Insertion */
1820 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1821 
1822 		/* Enable HW CSUM */
1823 		if (csum)
1824 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1825 					  CIC, 0x3);
1826 
1827 		/* Set the total length to be transmitted */
1828 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1829 				  packet->length);
1830 	}
1831 
1832 	if (vxlan) {
1833 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP,
1834 				  TX_NORMAL_DESC3_VXLAN_PACKET);
1835 
1836 		pdata->ext_stats.tx_vxlan_packets += packet->tx_packets;
1837 	}
1838 
1839 	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1840 		cur_index++;
1841 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1842 		rdesc = rdata->rdesc;
1843 
1844 		/* Update buffer address */
1845 		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1846 		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1847 
1848 		/* Update the buffer length */
1849 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1850 				  rdata->skb_dma_len);
1851 
1852 		/* Set OWN bit */
1853 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1854 
1855 		/* Mark it as NORMAL descriptor */
1856 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1857 
1858 		/* Enable HW CSUM */
1859 		if (csum)
1860 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1861 					  CIC, 0x3);
1862 	}
1863 
1864 	/* Set LAST bit for the last descriptor */
1865 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1866 
1867 	/* Set IC bit based on Tx coalescing settings */
1868 	if (tx_set_ic)
1869 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1870 
1871 	/* Save the Tx info to report back during cleanup */
1872 	rdata->tx.packets = tx_packets;
1873 	rdata->tx.bytes = tx_bytes;
1874 
1875 	pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets;
1876 	pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes;
1877 
1878 	/* In case the Tx DMA engine is running, make sure everything
1879 	 * is written to the descriptor(s) before setting the OWN bit
1880 	 * for the first descriptor
1881 	 */
1882 	dma_wmb();
1883 
1884 	/* Set OWN bit for the first descriptor */
1885 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1886 	rdesc = rdata->rdesc;
1887 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1888 
1889 	if (netif_msg_tx_queued(pdata))
1890 		xgbe_dump_tx_desc(pdata, ring, start_index,
1891 				  packet->rdesc_count, 1);
1892 
1893 	/* Make sure ownership is written to the descriptor */
1894 	smp_wmb();
1895 
1896 	ring->cur = cur_index + 1;
1897 	if (!netdev_xmit_more() ||
1898 	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1899 						   channel->queue_index)))
1900 		xgbe_tx_start_xmit(channel, ring);
1901 	else
1902 		ring->tx.xmit_more = 1;
1903 
1904 	DBGPR("  %s: descriptors %u to %u written\n",
1905 	      channel->name, start_index & (ring->rdesc_count - 1),
1906 	      (ring->cur - 1) & (ring->rdesc_count - 1));
1907 
1908 	DBGPR("<--xgbe_dev_xmit\n");
1909 }
1910 
1911 static int xgbe_dev_read(struct xgbe_channel *channel)
1912 {
1913 	struct xgbe_prv_data *pdata = channel->pdata;
1914 	struct xgbe_ring *ring = channel->rx_ring;
1915 	struct xgbe_ring_data *rdata;
1916 	struct xgbe_ring_desc *rdesc;
1917 	struct xgbe_packet_data *packet = &ring->packet_data;
1918 	struct net_device *netdev = pdata->netdev;
1919 	unsigned int err, etlt, l34t;
1920 
1921 	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1922 
1923 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1924 	rdesc = rdata->rdesc;
1925 
1926 	/* Check for data availability */
1927 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1928 		return 1;
1929 
1930 	/* Make sure descriptor fields are read after reading the OWN bit */
1931 	dma_rmb();
1932 
1933 	if (netif_msg_rx_status(pdata))
1934 		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1935 
1936 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1937 		/* Timestamp Context Descriptor */
1938 		xgbe_get_rx_tstamp(packet, rdesc);
1939 
1940 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1941 			       CONTEXT, 1);
1942 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1943 			       CONTEXT_NEXT, 0);
1944 		return 0;
1945 	}
1946 
1947 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1948 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1949 
1950 	/* Indicate if a Context Descriptor is next */
1951 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1952 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1953 			       CONTEXT_NEXT, 1);
1954 
1955 	/* Get the header length */
1956 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1957 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1958 			       FIRST, 1);
1959 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1960 						      RX_NORMAL_DESC2, HL);
1961 		if (rdata->rx.hdr_len)
1962 			pdata->ext_stats.rx_split_header_packets++;
1963 	} else {
1964 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1965 			       FIRST, 0);
1966 	}
1967 
1968 	/* Get the RSS hash */
1969 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1970 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1971 			       RSS_HASH, 1);
1972 
1973 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1974 
1975 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1976 		switch (l34t) {
1977 		case RX_DESC3_L34T_IPV4_TCP:
1978 		case RX_DESC3_L34T_IPV4_UDP:
1979 		case RX_DESC3_L34T_IPV6_TCP:
1980 		case RX_DESC3_L34T_IPV6_UDP:
1981 			packet->rss_hash_type = PKT_HASH_TYPE_L4;
1982 			break;
1983 		default:
1984 			packet->rss_hash_type = PKT_HASH_TYPE_L3;
1985 		}
1986 	}
1987 
1988 	/* Not all the data has been transferred for this packet */
1989 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
1990 		return 0;
1991 
1992 	/* This is the last of the data for this packet */
1993 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1994 		       LAST, 1);
1995 
1996 	/* Get the packet length */
1997 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1998 
1999 	/* Set checksum done indicator as appropriate */
2000 	if (netdev->features & NETIF_F_RXCSUM) {
2001 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2002 			       CSUM_DONE, 1);
2003 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2004 			       TNPCSUM_DONE, 1);
2005 	}
2006 
2007 	/* Set the tunneled packet indicator */
2008 	if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) {
2009 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2010 			       TNP, 1);
2011 		pdata->ext_stats.rx_vxlan_packets++;
2012 
2013 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2014 		switch (l34t) {
2015 		case RX_DESC3_L34T_IPV4_UNKNOWN:
2016 		case RX_DESC3_L34T_IPV6_UNKNOWN:
2017 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2018 				       TNPCSUM_DONE, 0);
2019 			break;
2020 		}
2021 	}
2022 
2023 	/* Check for errors (only valid in last descriptor) */
2024 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
2025 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
2026 	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
2027 
2028 	if (!err || !etlt) {
2029 		/* No error if err is 0 or etlt is 0 */
2030 		if ((etlt == 0x09) &&
2031 		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
2032 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2033 				       VLAN_CTAG, 1);
2034 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
2035 							      RX_NORMAL_DESC0,
2036 							      OVT);
2037 			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
2038 				  packet->vlan_ctag);
2039 		}
2040 	} else {
2041 		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
2042 						  RX_PACKET_ATTRIBUTES, TNP);
2043 
2044 		if ((etlt == 0x05) || (etlt == 0x06)) {
2045 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2046 				       CSUM_DONE, 0);
2047 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2048 				       TNPCSUM_DONE, 0);
2049 			pdata->ext_stats.rx_csum_errors++;
2050 		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
2051 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2052 				       CSUM_DONE, 0);
2053 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2054 				       TNPCSUM_DONE, 0);
2055 			pdata->ext_stats.rx_vxlan_csum_errors++;
2056 		} else {
2057 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
2058 				       FRAME, 1);
2059 		}
2060 	}
2061 
2062 	pdata->ext_stats.rxq_packets[channel->queue_index]++;
2063 	pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len;
2064 
2065 	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
2066 	      ring->cur & (ring->rdesc_count - 1), ring->cur);
2067 
2068 	return 0;
2069 }
2070 
2071 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
2072 {
2073 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
2074 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
2075 }
2076 
2077 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
2078 {
2079 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
2080 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
2081 }
2082 
2083 static int xgbe_enable_int(struct xgbe_channel *channel,
2084 			   enum xgbe_int int_id)
2085 {
2086 	switch (int_id) {
2087 	case XGMAC_INT_DMA_CH_SR_TI:
2088 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2089 		break;
2090 	case XGMAC_INT_DMA_CH_SR_TPS:
2091 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
2092 		break;
2093 	case XGMAC_INT_DMA_CH_SR_TBU:
2094 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
2095 		break;
2096 	case XGMAC_INT_DMA_CH_SR_RI:
2097 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2098 		break;
2099 	case XGMAC_INT_DMA_CH_SR_RBU:
2100 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
2101 		break;
2102 	case XGMAC_INT_DMA_CH_SR_RPS:
2103 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
2104 		break;
2105 	case XGMAC_INT_DMA_CH_SR_TI_RI:
2106 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2107 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2108 		break;
2109 	case XGMAC_INT_DMA_CH_SR_FBE:
2110 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
2111 		break;
2112 	case XGMAC_INT_DMA_ALL:
2113 		channel->curr_ier |= channel->saved_ier;
2114 		break;
2115 	default:
2116 		return -1;
2117 	}
2118 
2119 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2120 
2121 	return 0;
2122 }
2123 
2124 static int xgbe_disable_int(struct xgbe_channel *channel,
2125 			    enum xgbe_int int_id)
2126 {
2127 	switch (int_id) {
2128 	case XGMAC_INT_DMA_CH_SR_TI:
2129 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2130 		break;
2131 	case XGMAC_INT_DMA_CH_SR_TPS:
2132 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
2133 		break;
2134 	case XGMAC_INT_DMA_CH_SR_TBU:
2135 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
2136 		break;
2137 	case XGMAC_INT_DMA_CH_SR_RI:
2138 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2139 		break;
2140 	case XGMAC_INT_DMA_CH_SR_RBU:
2141 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
2142 		break;
2143 	case XGMAC_INT_DMA_CH_SR_RPS:
2144 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
2145 		break;
2146 	case XGMAC_INT_DMA_CH_SR_TI_RI:
2147 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2148 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2149 		break;
2150 	case XGMAC_INT_DMA_CH_SR_FBE:
2151 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
2152 		break;
2153 	case XGMAC_INT_DMA_ALL:
2154 		channel->saved_ier = channel->curr_ier;
2155 		channel->curr_ier = 0;
2156 		break;
2157 	default:
2158 		return -1;
2159 	}
2160 
2161 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2162 
2163 	return 0;
2164 }
2165 
2166 static int __xgbe_exit(struct xgbe_prv_data *pdata)
2167 {
2168 	unsigned int count = 2000;
2169 
2170 	DBGPR("-->xgbe_exit\n");
2171 
2172 	/* Issue a software reset */
2173 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2174 	usleep_range(10, 15);
2175 
2176 	/* Poll Until Poll Condition */
2177 	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2178 		usleep_range(500, 600);
2179 
2180 	if (!count)
2181 		return -EBUSY;
2182 
2183 	DBGPR("<--xgbe_exit\n");
2184 
2185 	return 0;
2186 }
2187 
2188 static int xgbe_exit(struct xgbe_prv_data *pdata)
2189 {
2190 	int ret;
2191 
2192 	/* To guard against possible incorrectly generated interrupts,
2193 	 * issue the software reset twice.
2194 	 */
2195 	ret = __xgbe_exit(pdata);
2196 	if (ret)
2197 		return ret;
2198 
2199 	return __xgbe_exit(pdata);
2200 }
2201 
2202 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2203 {
2204 	unsigned int i, count;
2205 
2206 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2207 		return 0;
2208 
2209 	for (i = 0; i < pdata->tx_q_count; i++)
2210 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2211 
2212 	/* Poll Until Poll Condition */
2213 	for (i = 0; i < pdata->tx_q_count; i++) {
2214 		count = 2000;
2215 		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2216 							MTL_Q_TQOMR, FTQ))
2217 			usleep_range(500, 600);
2218 
2219 		if (!count)
2220 			return -EBUSY;
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2227 {
2228 	unsigned int sbmr;
2229 
2230 	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2231 
2232 	/* Set enhanced addressing mode */
2233 	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2234 
2235 	/* Set the System Bus mode */
2236 	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2237 	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2238 	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2239 	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2240 	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2241 
2242 	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2243 
2244 	/* Set descriptor fetching threshold */
2245 	if (pdata->vdata->tx_desc_prefetch)
2246 		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2247 				   pdata->vdata->tx_desc_prefetch);
2248 
2249 	if (pdata->vdata->rx_desc_prefetch)
2250 		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2251 				   pdata->vdata->rx_desc_prefetch);
2252 }
2253 
2254 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2255 {
2256 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2257 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2258 	if (pdata->awarcr)
2259 		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
2260 }
2261 
2262 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2263 {
2264 	unsigned int i;
2265 
2266 	/* Set Tx to weighted round robin scheduling algorithm */
2267 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2268 
2269 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
2270 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2271 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2272 				       MTL_TSA_ETS);
2273 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2274 	}
2275 
2276 	/* Set Rx to strict priority algorithm */
2277 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2278 }
2279 
2280 static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2281 					      unsigned int queue,
2282 					      unsigned int q_fifo_size)
2283 {
2284 	unsigned int frame_fifo_size;
2285 	unsigned int rfa, rfd;
2286 
2287 	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2288 
2289 	if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2290 		/* PFC is active for this queue */
2291 		rfa = pdata->pfc_rfa;
2292 		rfd = rfa + frame_fifo_size;
2293 		if (rfd > XGMAC_FLOW_CONTROL_MAX)
2294 			rfd = XGMAC_FLOW_CONTROL_MAX;
2295 		if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2296 			rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2297 	} else {
2298 		/* This path deals with just maximum frame sizes which are
2299 		 * limited to a jumbo frame of 9,000 (plus headers, etc.)
2300 		 * so we can never exceed the maximum allowable RFA/RFD
2301 		 * values.
2302 		 */
2303 		if (q_fifo_size <= 2048) {
2304 			/* rx_rfd to zero to signal no flow control */
2305 			pdata->rx_rfa[queue] = 0;
2306 			pdata->rx_rfd[queue] = 0;
2307 			return;
2308 		}
2309 
2310 		if (q_fifo_size <= 4096) {
2311 			/* Between 2048 and 4096 */
2312 			pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
2313 			pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
2314 			return;
2315 		}
2316 
2317 		if (q_fifo_size <= frame_fifo_size) {
2318 			/* Between 4096 and max-frame */
2319 			pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
2320 			pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
2321 			return;
2322 		}
2323 
2324 		if (q_fifo_size <= (frame_fifo_size * 3)) {
2325 			/* Between max-frame and 3 max-frames,
2326 			 * trigger if we get just over a frame of data and
2327 			 * resume when we have just under half a frame left.
2328 			 */
2329 			rfa = q_fifo_size - frame_fifo_size;
2330 			rfd = rfa + (frame_fifo_size / 2);
2331 		} else {
2332 			/* Above 3 max-frames - trigger when just over
2333 			 * 2 frames of space available
2334 			 */
2335 			rfa = frame_fifo_size * 2;
2336 			rfa += XGMAC_FLOW_CONTROL_UNIT;
2337 			rfd = rfa + frame_fifo_size;
2338 		}
2339 	}
2340 
2341 	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2342 	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2343 }
2344 
2345 static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2346 						  unsigned int *fifo)
2347 {
2348 	unsigned int q_fifo_size;
2349 	unsigned int i;
2350 
2351 	for (i = 0; i < pdata->rx_q_count; i++) {
2352 		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2353 
2354 		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2355 	}
2356 }
2357 
2358 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2359 {
2360 	unsigned int i;
2361 
2362 	for (i = 0; i < pdata->rx_q_count; i++) {
2363 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2364 				       pdata->rx_rfa[i]);
2365 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2366 				       pdata->rx_rfd[i]);
2367 	}
2368 }
2369 
2370 static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2371 {
2372 	/* The configured value may not be the actual amount of fifo RAM */
2373 	return min_t(unsigned int, pdata->tx_max_fifo_size,
2374 		     pdata->hw_feat.tx_fifo_size);
2375 }
2376 
2377 static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2378 {
2379 	/* The configured value may not be the actual amount of fifo RAM */
2380 	return min_t(unsigned int, pdata->rx_max_fifo_size,
2381 		     pdata->hw_feat.rx_fifo_size);
2382 }
2383 
2384 static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2385 				      unsigned int queue_count,
2386 				      unsigned int *fifo)
2387 {
2388 	unsigned int q_fifo_size;
2389 	unsigned int p_fifo;
2390 	unsigned int i;
2391 
2392 	q_fifo_size = fifo_size / queue_count;
2393 
2394 	/* Calculate the fifo setting by dividing the queue's fifo size
2395 	 * by the fifo allocation increment (with 0 representing the
2396 	 * base allocation increment so decrement the result by 1).
2397 	 */
2398 	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2399 	if (p_fifo)
2400 		p_fifo--;
2401 
2402 	/* Distribute the fifo equally amongst the queues */
2403 	for (i = 0; i < queue_count; i++)
2404 		fifo[i] = p_fifo;
2405 }
2406 
2407 static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2408 					   unsigned int queue_count,
2409 					   unsigned int *fifo)
2410 {
2411 	unsigned int i;
2412 
2413 	BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2414 
2415 	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2416 		return fifo_size;
2417 
2418 	/* Rx queues 9 and up are for specialized packets,
2419 	 * such as PTP or DCB control packets, etc. and
2420 	 * don't require a large fifo
2421 	 */
2422 	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2423 		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2424 		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2425 	}
2426 
2427 	return fifo_size;
2428 }
2429 
2430 static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2431 {
2432 	unsigned int delay;
2433 
2434 	/* If a delay has been provided, use that */
2435 	if (pdata->pfc->delay)
2436 		return pdata->pfc->delay / 8;
2437 
2438 	/* Allow for two maximum size frames */
2439 	delay = xgbe_get_max_frame(pdata);
2440 	delay += XGMAC_ETH_PREAMBLE;
2441 	delay *= 2;
2442 
2443 	/* Allow for PFC frame */
2444 	delay += XGMAC_PFC_DATA_LEN;
2445 	delay += ETH_HLEN + ETH_FCS_LEN;
2446 	delay += XGMAC_ETH_PREAMBLE;
2447 
2448 	/* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2449 	delay += XGMAC_PFC_DELAYS;
2450 
2451 	return delay;
2452 }
2453 
2454 static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2455 {
2456 	unsigned int count, prio_queues;
2457 	unsigned int i;
2458 
2459 	if (!pdata->pfc->pfc_en)
2460 		return 0;
2461 
2462 	count = 0;
2463 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2464 	for (i = 0; i < prio_queues; i++) {
2465 		if (!xgbe_is_pfc_queue(pdata, i))
2466 			continue;
2467 
2468 		pdata->pfcq[i] = 1;
2469 		count++;
2470 	}
2471 
2472 	return count;
2473 }
2474 
2475 static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2476 				    unsigned int fifo_size,
2477 				    unsigned int *fifo)
2478 {
2479 	unsigned int q_fifo_size, rem_fifo, addn_fifo;
2480 	unsigned int prio_queues;
2481 	unsigned int pfc_count;
2482 	unsigned int i;
2483 
2484 	q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2485 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2486 	pfc_count = xgbe_get_pfc_queues(pdata);
2487 
2488 	if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2489 		/* No traffic classes with PFC enabled or can't do lossless */
2490 		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2491 		return;
2492 	}
2493 
2494 	/* Calculate how much fifo we have to play with */
2495 	rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2496 
2497 	/* Calculate how much more than base fifo PFC needs, which also
2498 	 * becomes the threshold activation point (RFA)
2499 	 */
2500 	pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2501 	pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2502 
2503 	if (pdata->pfc_rfa > q_fifo_size) {
2504 		addn_fifo = pdata->pfc_rfa - q_fifo_size;
2505 		addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2506 	} else {
2507 		addn_fifo = 0;
2508 	}
2509 
2510 	/* Calculate DCB fifo settings:
2511 	 *   - distribute remaining fifo between the VLAN priority
2512 	 *     queues based on traffic class PFC enablement and overall
2513 	 *     priority (0 is lowest priority, so start at highest)
2514 	 */
2515 	i = prio_queues;
2516 	while (i > 0) {
2517 		i--;
2518 
2519 		fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2520 
2521 		if (!pdata->pfcq[i] || !addn_fifo)
2522 			continue;
2523 
2524 		if (addn_fifo > rem_fifo) {
2525 			netdev_warn(pdata->netdev,
2526 				    "RXq%u cannot set needed fifo size\n", i);
2527 			if (!rem_fifo)
2528 				continue;
2529 
2530 			addn_fifo = rem_fifo;
2531 		}
2532 
2533 		fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2534 		rem_fifo -= addn_fifo;
2535 	}
2536 
2537 	if (rem_fifo) {
2538 		unsigned int inc_fifo = rem_fifo / prio_queues;
2539 
2540 		/* Distribute remaining fifo across queues */
2541 		for (i = 0; i < prio_queues; i++)
2542 			fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2543 	}
2544 }
2545 
2546 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2547 {
2548 	unsigned int fifo_size;
2549 	unsigned int fifo[XGBE_MAX_QUEUES];
2550 	unsigned int i;
2551 
2552 	fifo_size = xgbe_get_tx_fifo_size(pdata);
2553 
2554 	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2555 
2556 	for (i = 0; i < pdata->tx_q_count; i++)
2557 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2558 
2559 	netif_info(pdata, drv, pdata->netdev,
2560 		   "%d Tx hardware queues, %d byte fifo per queue\n",
2561 		   pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2562 }
2563 
2564 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2565 {
2566 	unsigned int fifo_size;
2567 	unsigned int fifo[XGBE_MAX_QUEUES];
2568 	unsigned int prio_queues;
2569 	unsigned int i;
2570 
2571 	/* Clear any DCB related fifo/queue information */
2572 	memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2573 	pdata->pfc_rfa = 0;
2574 
2575 	fifo_size = xgbe_get_rx_fifo_size(pdata);
2576 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2577 
2578 	/* Assign a minimum fifo to the non-VLAN priority queues */
2579 	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2580 
2581 	if (pdata->pfc && pdata->ets)
2582 		xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2583 	else
2584 		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2585 
2586 	for (i = 0; i < pdata->rx_q_count; i++)
2587 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2588 
2589 	xgbe_calculate_flow_control_threshold(pdata, fifo);
2590 	xgbe_config_flow_control_threshold(pdata);
2591 
2592 	if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2593 		netif_info(pdata, drv, pdata->netdev,
2594 			   "%u Rx hardware queues\n", pdata->rx_q_count);
2595 		for (i = 0; i < pdata->rx_q_count; i++)
2596 			netif_info(pdata, drv, pdata->netdev,
2597 				   "RxQ%u, %u byte fifo queue\n", i,
2598 				   ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2599 	} else {
2600 		netif_info(pdata, drv, pdata->netdev,
2601 			   "%u Rx hardware queues, %u byte fifo per queue\n",
2602 			   pdata->rx_q_count,
2603 			   ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2604 	}
2605 }
2606 
2607 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2608 {
2609 	unsigned int qptc, qptc_extra, queue;
2610 	unsigned int prio_queues;
2611 	unsigned int ppq, ppq_extra, prio;
2612 	unsigned int mask;
2613 	unsigned int i, j, reg, reg_val;
2614 
2615 	/* Map the MTL Tx Queues to Traffic Classes
2616 	 *   Note: Tx Queues >= Traffic Classes
2617 	 */
2618 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2619 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2620 
2621 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2622 		for (j = 0; j < qptc; j++) {
2623 			netif_dbg(pdata, drv, pdata->netdev,
2624 				  "TXq%u mapped to TC%u\n", queue, i);
2625 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2626 					       Q2TCMAP, i);
2627 			pdata->q2tc_map[queue++] = i;
2628 		}
2629 
2630 		if (i < qptc_extra) {
2631 			netif_dbg(pdata, drv, pdata->netdev,
2632 				  "TXq%u mapped to TC%u\n", queue, i);
2633 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2634 					       Q2TCMAP, i);
2635 			pdata->q2tc_map[queue++] = i;
2636 		}
2637 	}
2638 
2639 	/* Map the 8 VLAN priority values to available MTL Rx queues */
2640 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2641 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2642 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2643 
2644 	reg = MAC_RQC2R;
2645 	reg_val = 0;
2646 	for (i = 0, prio = 0; i < prio_queues;) {
2647 		mask = 0;
2648 		for (j = 0; j < ppq; j++) {
2649 			netif_dbg(pdata, drv, pdata->netdev,
2650 				  "PRIO%u mapped to RXq%u\n", prio, i);
2651 			mask |= (1 << prio);
2652 			pdata->prio2q_map[prio++] = i;
2653 		}
2654 
2655 		if (i < ppq_extra) {
2656 			netif_dbg(pdata, drv, pdata->netdev,
2657 				  "PRIO%u mapped to RXq%u\n", prio, i);
2658 			mask |= (1 << prio);
2659 			pdata->prio2q_map[prio++] = i;
2660 		}
2661 
2662 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2663 
2664 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2665 			continue;
2666 
2667 		XGMAC_IOWRITE(pdata, reg, reg_val);
2668 		reg += MAC_RQC2_INC;
2669 		reg_val = 0;
2670 	}
2671 
2672 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2673 	reg = MTL_RQDCM0R;
2674 	reg_val = 0;
2675 	for (i = 0; i < pdata->rx_q_count;) {
2676 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2677 
2678 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2679 			continue;
2680 
2681 		XGMAC_IOWRITE(pdata, reg, reg_val);
2682 
2683 		reg += MTL_RQDCM_INC;
2684 		reg_val = 0;
2685 	}
2686 }
2687 
2688 static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2689 {
2690 	unsigned int offset, queue, prio;
2691 	u8 i;
2692 
2693 	netdev_reset_tc(pdata->netdev);
2694 	if (!pdata->num_tcs)
2695 		return;
2696 
2697 	netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2698 
2699 	for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2700 		while ((queue < pdata->tx_q_count) &&
2701 		       (pdata->q2tc_map[queue] == i))
2702 			queue++;
2703 
2704 		netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2705 			  i, offset, queue - 1);
2706 		netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2707 		offset = queue;
2708 	}
2709 
2710 	if (!pdata->ets)
2711 		return;
2712 
2713 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2714 		netdev_set_prio_tc_map(pdata->netdev, prio,
2715 				       pdata->ets->prio_tc[prio]);
2716 }
2717 
2718 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2719 {
2720 	struct ieee_ets *ets = pdata->ets;
2721 	unsigned int total_weight, min_weight, weight;
2722 	unsigned int mask, reg, reg_val;
2723 	unsigned int i, prio;
2724 
2725 	if (!ets)
2726 		return;
2727 
2728 	/* Set Tx to deficit weighted round robin scheduling algorithm (when
2729 	 * traffic class is using ETS algorithm)
2730 	 */
2731 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2732 
2733 	/* Set Traffic Class algorithms */
2734 	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2735 	min_weight = total_weight / 100;
2736 	if (!min_weight)
2737 		min_weight = 1;
2738 
2739 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2740 		/* Map the priorities to the traffic class */
2741 		mask = 0;
2742 		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2743 			if (ets->prio_tc[prio] == i)
2744 				mask |= (1 << prio);
2745 		}
2746 		mask &= 0xff;
2747 
2748 		netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2749 			  i, mask);
2750 		reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2751 		reg_val = XGMAC_IOREAD(pdata, reg);
2752 
2753 		reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2754 		reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2755 
2756 		XGMAC_IOWRITE(pdata, reg, reg_val);
2757 
2758 		/* Set the traffic class algorithm */
2759 		switch (ets->tc_tsa[i]) {
2760 		case IEEE_8021QAZ_TSA_STRICT:
2761 			netif_dbg(pdata, drv, pdata->netdev,
2762 				  "TC%u using SP\n", i);
2763 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2764 					       MTL_TSA_SP);
2765 			break;
2766 		case IEEE_8021QAZ_TSA_ETS:
2767 			weight = total_weight * ets->tc_tx_bw[i] / 100;
2768 			weight = clamp(weight, min_weight, total_weight);
2769 
2770 			netif_dbg(pdata, drv, pdata->netdev,
2771 				  "TC%u using DWRR (weight %u)\n", i, weight);
2772 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2773 					       MTL_TSA_ETS);
2774 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2775 					       weight);
2776 			break;
2777 		}
2778 	}
2779 
2780 	xgbe_config_tc(pdata);
2781 }
2782 
2783 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2784 {
2785 	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2786 		/* Just stop the Tx queues while Rx fifo is changed */
2787 		netif_tx_stop_all_queues(pdata->netdev);
2788 
2789 		/* Suspend Rx so that fifo's can be adjusted */
2790 		pdata->hw_if.disable_rx(pdata);
2791 	}
2792 
2793 	xgbe_config_rx_fifo_size(pdata);
2794 	xgbe_config_flow_control(pdata);
2795 
2796 	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2797 		/* Resume Rx */
2798 		pdata->hw_if.enable_rx(pdata);
2799 
2800 		/* Resume Tx queues */
2801 		netif_tx_start_all_queues(pdata->netdev);
2802 	}
2803 }
2804 
2805 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2806 {
2807 	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2808 
2809 	/* Filtering is done using perfect filtering and hash filtering */
2810 	if (pdata->hw_feat.hash_table_size) {
2811 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2812 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2813 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2814 	}
2815 }
2816 
2817 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2818 {
2819 	unsigned int val;
2820 
2821 	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2822 
2823 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2824 }
2825 
2826 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2827 {
2828 	xgbe_set_speed(pdata, pdata->phy_speed);
2829 }
2830 
2831 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2832 {
2833 	if (pdata->netdev->features & NETIF_F_RXCSUM)
2834 		xgbe_enable_rx_csum(pdata);
2835 	else
2836 		xgbe_disable_rx_csum(pdata);
2837 }
2838 
2839 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2840 {
2841 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2842 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2843 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2844 
2845 	/* Set the current VLAN Hash Table register value */
2846 	xgbe_update_vlan_hash_table(pdata);
2847 
2848 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2849 		xgbe_enable_rx_vlan_filtering(pdata);
2850 	else
2851 		xgbe_disable_rx_vlan_filtering(pdata);
2852 
2853 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2854 		xgbe_enable_rx_vlan_stripping(pdata);
2855 	else
2856 		xgbe_disable_rx_vlan_stripping(pdata);
2857 }
2858 
2859 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2860 {
2861 	bool read_hi;
2862 	u64 val;
2863 
2864 	if (pdata->vdata->mmc_64bit) {
2865 		switch (reg_lo) {
2866 		/* These registers are always 32 bit */
2867 		case MMC_RXRUNTERROR:
2868 		case MMC_RXJABBERERROR:
2869 		case MMC_RXUNDERSIZE_G:
2870 		case MMC_RXOVERSIZE_G:
2871 		case MMC_RXWATCHDOGERROR:
2872 			read_hi = false;
2873 			break;
2874 
2875 		default:
2876 			read_hi = true;
2877 		}
2878 	} else {
2879 		switch (reg_lo) {
2880 		/* These registers are always 64 bit */
2881 		case MMC_TXOCTETCOUNT_GB_LO:
2882 		case MMC_TXOCTETCOUNT_G_LO:
2883 		case MMC_RXOCTETCOUNT_GB_LO:
2884 		case MMC_RXOCTETCOUNT_G_LO:
2885 			read_hi = true;
2886 			break;
2887 
2888 		default:
2889 			read_hi = false;
2890 		}
2891 	}
2892 
2893 	val = XGMAC_IOREAD(pdata, reg_lo);
2894 
2895 	if (read_hi)
2896 		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2897 
2898 	return val;
2899 }
2900 
2901 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2902 {
2903 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2904 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2905 
2906 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2907 		stats->txoctetcount_gb +=
2908 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2909 
2910 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2911 		stats->txframecount_gb +=
2912 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2913 
2914 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2915 		stats->txbroadcastframes_g +=
2916 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2917 
2918 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2919 		stats->txmulticastframes_g +=
2920 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2921 
2922 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2923 		stats->tx64octets_gb +=
2924 			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2925 
2926 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2927 		stats->tx65to127octets_gb +=
2928 			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2929 
2930 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2931 		stats->tx128to255octets_gb +=
2932 			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2933 
2934 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2935 		stats->tx256to511octets_gb +=
2936 			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2937 
2938 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2939 		stats->tx512to1023octets_gb +=
2940 			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2941 
2942 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2943 		stats->tx1024tomaxoctets_gb +=
2944 			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2945 
2946 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2947 		stats->txunicastframes_gb +=
2948 			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2949 
2950 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2951 		stats->txmulticastframes_gb +=
2952 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2953 
2954 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2955 		stats->txbroadcastframes_g +=
2956 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2957 
2958 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2959 		stats->txunderflowerror +=
2960 			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2961 
2962 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2963 		stats->txoctetcount_g +=
2964 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2965 
2966 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2967 		stats->txframecount_g +=
2968 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2969 
2970 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2971 		stats->txpauseframes +=
2972 			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2973 
2974 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2975 		stats->txvlanframes_g +=
2976 			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2977 }
2978 
2979 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2980 {
2981 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2982 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2983 
2984 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2985 		stats->rxframecount_gb +=
2986 			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2987 
2988 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2989 		stats->rxoctetcount_gb +=
2990 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2991 
2992 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2993 		stats->rxoctetcount_g +=
2994 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2995 
2996 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2997 		stats->rxbroadcastframes_g +=
2998 			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2999 
3000 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
3001 		stats->rxmulticastframes_g +=
3002 			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3003 
3004 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
3005 		stats->rxcrcerror +=
3006 			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3007 
3008 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
3009 		stats->rxrunterror +=
3010 			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3011 
3012 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
3013 		stats->rxjabbererror +=
3014 			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3015 
3016 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
3017 		stats->rxundersize_g +=
3018 			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3019 
3020 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
3021 		stats->rxoversize_g +=
3022 			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3023 
3024 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
3025 		stats->rx64octets_gb +=
3026 			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3027 
3028 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
3029 		stats->rx65to127octets_gb +=
3030 			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3031 
3032 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
3033 		stats->rx128to255octets_gb +=
3034 			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3035 
3036 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
3037 		stats->rx256to511octets_gb +=
3038 			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3039 
3040 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
3041 		stats->rx512to1023octets_gb +=
3042 			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3043 
3044 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
3045 		stats->rx1024tomaxoctets_gb +=
3046 			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3047 
3048 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
3049 		stats->rxunicastframes_g +=
3050 			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3051 
3052 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
3053 		stats->rxlengtherror +=
3054 			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3055 
3056 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
3057 		stats->rxoutofrangetype +=
3058 			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3059 
3060 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
3061 		stats->rxpauseframes +=
3062 			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3063 
3064 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
3065 		stats->rxfifooverflow +=
3066 			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3067 
3068 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
3069 		stats->rxvlanframes_gb +=
3070 			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3071 
3072 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
3073 		stats->rxwatchdogerror +=
3074 			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3075 }
3076 
3077 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
3078 {
3079 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3080 
3081 	/* Freeze counters */
3082 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
3083 
3084 	stats->txoctetcount_gb +=
3085 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3086 
3087 	stats->txframecount_gb +=
3088 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3089 
3090 	stats->txbroadcastframes_g +=
3091 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3092 
3093 	stats->txmulticastframes_g +=
3094 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3095 
3096 	stats->tx64octets_gb +=
3097 		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3098 
3099 	stats->tx65to127octets_gb +=
3100 		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3101 
3102 	stats->tx128to255octets_gb +=
3103 		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3104 
3105 	stats->tx256to511octets_gb +=
3106 		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3107 
3108 	stats->tx512to1023octets_gb +=
3109 		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3110 
3111 	stats->tx1024tomaxoctets_gb +=
3112 		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3113 
3114 	stats->txunicastframes_gb +=
3115 		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3116 
3117 	stats->txmulticastframes_gb +=
3118 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3119 
3120 	stats->txbroadcastframes_g +=
3121 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3122 
3123 	stats->txunderflowerror +=
3124 		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3125 
3126 	stats->txoctetcount_g +=
3127 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3128 
3129 	stats->txframecount_g +=
3130 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3131 
3132 	stats->txpauseframes +=
3133 		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3134 
3135 	stats->txvlanframes_g +=
3136 		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3137 
3138 	stats->rxframecount_gb +=
3139 		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3140 
3141 	stats->rxoctetcount_gb +=
3142 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3143 
3144 	stats->rxoctetcount_g +=
3145 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3146 
3147 	stats->rxbroadcastframes_g +=
3148 		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3149 
3150 	stats->rxmulticastframes_g +=
3151 		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3152 
3153 	stats->rxcrcerror +=
3154 		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3155 
3156 	stats->rxrunterror +=
3157 		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3158 
3159 	stats->rxjabbererror +=
3160 		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3161 
3162 	stats->rxundersize_g +=
3163 		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3164 
3165 	stats->rxoversize_g +=
3166 		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3167 
3168 	stats->rx64octets_gb +=
3169 		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3170 
3171 	stats->rx65to127octets_gb +=
3172 		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3173 
3174 	stats->rx128to255octets_gb +=
3175 		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3176 
3177 	stats->rx256to511octets_gb +=
3178 		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3179 
3180 	stats->rx512to1023octets_gb +=
3181 		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3182 
3183 	stats->rx1024tomaxoctets_gb +=
3184 		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3185 
3186 	stats->rxunicastframes_g +=
3187 		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3188 
3189 	stats->rxlengtherror +=
3190 		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3191 
3192 	stats->rxoutofrangetype +=
3193 		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3194 
3195 	stats->rxpauseframes +=
3196 		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3197 
3198 	stats->rxfifooverflow +=
3199 		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3200 
3201 	stats->rxvlanframes_gb +=
3202 		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3203 
3204 	stats->rxwatchdogerror +=
3205 		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3206 
3207 	/* Un-freeze counters */
3208 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3209 }
3210 
3211 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3212 {
3213 	/* Set counters to reset on read */
3214 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3215 
3216 	/* Reset the counters */
3217 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3218 }
3219 
3220 static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3221 				     unsigned int queue)
3222 {
3223 	unsigned int tx_status;
3224 	unsigned long tx_timeout;
3225 
3226 	/* The Tx engine cannot be stopped if it is actively processing
3227 	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
3228 	 * wait forever though...
3229 	 */
3230 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3231 	while (time_before(jiffies, tx_timeout)) {
3232 		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3233 		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3234 		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3235 			break;
3236 
3237 		usleep_range(500, 1000);
3238 	}
3239 
3240 	if (!time_before(jiffies, tx_timeout))
3241 		netdev_info(pdata->netdev,
3242 			    "timed out waiting for Tx queue %u to empty\n",
3243 			    queue);
3244 }
3245 
3246 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3247 				 unsigned int queue)
3248 {
3249 	unsigned int tx_dsr, tx_pos, tx_qidx;
3250 	unsigned int tx_status;
3251 	unsigned long tx_timeout;
3252 
3253 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3254 		return xgbe_txq_prepare_tx_stop(pdata, queue);
3255 
3256 	/* Calculate the status register to read and the position within */
3257 	if (queue < DMA_DSRX_FIRST_QUEUE) {
3258 		tx_dsr = DMA_DSR0;
3259 		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3260 	} else {
3261 		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3262 
3263 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3264 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3265 			 DMA_DSRX_TPS_START;
3266 	}
3267 
3268 	/* The Tx engine cannot be stopped if it is actively processing
3269 	 * descriptors. Wait for the Tx engine to enter the stopped or
3270 	 * suspended state.  Don't wait forever though...
3271 	 */
3272 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3273 	while (time_before(jiffies, tx_timeout)) {
3274 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3275 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3276 		if ((tx_status == DMA_TPS_STOPPED) ||
3277 		    (tx_status == DMA_TPS_SUSPENDED))
3278 			break;
3279 
3280 		usleep_range(500, 1000);
3281 	}
3282 
3283 	if (!time_before(jiffies, tx_timeout))
3284 		netdev_info(pdata->netdev,
3285 			    "timed out waiting for Tx DMA channel %u to stop\n",
3286 			    queue);
3287 }
3288 
3289 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3290 {
3291 	unsigned int i;
3292 
3293 	/* Enable each Tx DMA channel */
3294 	for (i = 0; i < pdata->channel_count; i++) {
3295 		if (!pdata->channel[i]->tx_ring)
3296 			break;
3297 
3298 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3299 	}
3300 
3301 	/* Enable each Tx queue */
3302 	for (i = 0; i < pdata->tx_q_count; i++)
3303 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3304 				       MTL_Q_ENABLED);
3305 
3306 	/* Enable MAC Tx */
3307 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3308 }
3309 
3310 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3311 {
3312 	unsigned int i;
3313 
3314 	/* Prepare for Tx DMA channel stop */
3315 	for (i = 0; i < pdata->tx_q_count; i++)
3316 		xgbe_prepare_tx_stop(pdata, i);
3317 
3318 	/* Disable MAC Tx */
3319 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3320 
3321 	/* Disable each Tx queue */
3322 	for (i = 0; i < pdata->tx_q_count; i++)
3323 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3324 
3325 	/* Disable each Tx DMA channel */
3326 	for (i = 0; i < pdata->channel_count; i++) {
3327 		if (!pdata->channel[i]->tx_ring)
3328 			break;
3329 
3330 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3331 	}
3332 }
3333 
3334 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3335 				 unsigned int queue)
3336 {
3337 	unsigned int rx_status;
3338 	unsigned long rx_timeout;
3339 
3340 	/* The Rx engine cannot be stopped if it is actively processing
3341 	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
3342 	 * wait forever though...
3343 	 */
3344 	rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3345 	while (time_before(jiffies, rx_timeout)) {
3346 		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3347 		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3348 		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3349 			break;
3350 
3351 		usleep_range(500, 1000);
3352 	}
3353 
3354 	if (!time_before(jiffies, rx_timeout))
3355 		netdev_info(pdata->netdev,
3356 			    "timed out waiting for Rx queue %u to empty\n",
3357 			    queue);
3358 }
3359 
3360 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3361 {
3362 	unsigned int reg_val, i;
3363 
3364 	/* Enable each Rx DMA channel */
3365 	for (i = 0; i < pdata->channel_count; i++) {
3366 		if (!pdata->channel[i]->rx_ring)
3367 			break;
3368 
3369 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3370 	}
3371 
3372 	/* Enable each Rx queue */
3373 	reg_val = 0;
3374 	for (i = 0; i < pdata->rx_q_count; i++)
3375 		reg_val |= (0x02 << (i << 1));
3376 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3377 
3378 	/* Enable MAC Rx */
3379 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3380 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3381 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3382 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3383 }
3384 
3385 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3386 {
3387 	unsigned int i;
3388 
3389 	/* Disable MAC Rx */
3390 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3391 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3392 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3393 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3394 
3395 	/* Prepare for Rx DMA channel stop */
3396 	for (i = 0; i < pdata->rx_q_count; i++)
3397 		xgbe_prepare_rx_stop(pdata, i);
3398 
3399 	/* Disable each Rx queue */
3400 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3401 
3402 	/* Disable each Rx DMA channel */
3403 	for (i = 0; i < pdata->channel_count; i++) {
3404 		if (!pdata->channel[i]->rx_ring)
3405 			break;
3406 
3407 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3408 	}
3409 }
3410 
3411 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3412 {
3413 	unsigned int i;
3414 
3415 	/* Enable each Tx DMA channel */
3416 	for (i = 0; i < pdata->channel_count; i++) {
3417 		if (!pdata->channel[i]->tx_ring)
3418 			break;
3419 
3420 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3421 	}
3422 
3423 	/* Enable MAC Tx */
3424 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3425 }
3426 
3427 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3428 {
3429 	unsigned int i;
3430 
3431 	/* Prepare for Tx DMA channel stop */
3432 	for (i = 0; i < pdata->tx_q_count; i++)
3433 		xgbe_prepare_tx_stop(pdata, i);
3434 
3435 	/* Disable MAC Tx */
3436 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3437 
3438 	/* Disable each Tx DMA channel */
3439 	for (i = 0; i < pdata->channel_count; i++) {
3440 		if (!pdata->channel[i]->tx_ring)
3441 			break;
3442 
3443 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3444 	}
3445 }
3446 
3447 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3448 {
3449 	unsigned int i;
3450 
3451 	/* Enable each Rx DMA channel */
3452 	for (i = 0; i < pdata->channel_count; i++) {
3453 		if (!pdata->channel[i]->rx_ring)
3454 			break;
3455 
3456 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3457 	}
3458 }
3459 
3460 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3461 {
3462 	unsigned int i;
3463 
3464 	/* Disable each Rx DMA channel */
3465 	for (i = 0; i < pdata->channel_count; i++) {
3466 		if (!pdata->channel[i]->rx_ring)
3467 			break;
3468 
3469 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3470 	}
3471 }
3472 
3473 static int xgbe_init(struct xgbe_prv_data *pdata)
3474 {
3475 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
3476 	int ret;
3477 
3478 	DBGPR("-->xgbe_init\n");
3479 
3480 	/* Flush Tx queues */
3481 	ret = xgbe_flush_tx_queues(pdata);
3482 	if (ret) {
3483 		netdev_err(pdata->netdev, "error flushing TX queues\n");
3484 		return ret;
3485 	}
3486 
3487 	/*
3488 	 * Initialize DMA related features
3489 	 */
3490 	xgbe_config_dma_bus(pdata);
3491 	xgbe_config_dma_cache(pdata);
3492 	xgbe_config_osp_mode(pdata);
3493 	xgbe_config_pbl_val(pdata);
3494 	xgbe_config_rx_coalesce(pdata);
3495 	xgbe_config_tx_coalesce(pdata);
3496 	xgbe_config_rx_buffer_size(pdata);
3497 	xgbe_config_tso_mode(pdata);
3498 	xgbe_config_sph_mode(pdata);
3499 	xgbe_config_rss(pdata);
3500 	desc_if->wrapper_tx_desc_init(pdata);
3501 	desc_if->wrapper_rx_desc_init(pdata);
3502 	xgbe_enable_dma_interrupts(pdata);
3503 
3504 	/*
3505 	 * Initialize MTL related features
3506 	 */
3507 	xgbe_config_mtl_mode(pdata);
3508 	xgbe_config_queue_mapping(pdata);
3509 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3510 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3511 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3512 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3513 	xgbe_config_tx_fifo_size(pdata);
3514 	xgbe_config_rx_fifo_size(pdata);
3515 	/*TODO: Error Packet and undersized good Packet forwarding enable
3516 		(FEP and FUP)
3517 	 */
3518 	xgbe_config_dcb_tc(pdata);
3519 	xgbe_enable_mtl_interrupts(pdata);
3520 
3521 	/*
3522 	 * Initialize MAC related features
3523 	 */
3524 	xgbe_config_mac_address(pdata);
3525 	xgbe_config_rx_mode(pdata);
3526 	xgbe_config_jumbo_enable(pdata);
3527 	xgbe_config_flow_control(pdata);
3528 	xgbe_config_mac_speed(pdata);
3529 	xgbe_config_checksum_offload(pdata);
3530 	xgbe_config_vlan_support(pdata);
3531 	xgbe_config_mmc(pdata);
3532 	xgbe_enable_mac_interrupts(pdata);
3533 
3534 	/*
3535 	 * Initialize ECC related features
3536 	 */
3537 	xgbe_enable_ecc_interrupts(pdata);
3538 
3539 	DBGPR("<--xgbe_init\n");
3540 
3541 	return 0;
3542 }
3543 
3544 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3545 {
3546 	DBGPR("-->xgbe_init_function_ptrs\n");
3547 
3548 	hw_if->tx_complete = xgbe_tx_complete;
3549 
3550 	hw_if->set_mac_address = xgbe_set_mac_address;
3551 	hw_if->config_rx_mode = xgbe_config_rx_mode;
3552 
3553 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3554 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3555 
3556 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3557 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3558 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3559 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3560 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3561 
3562 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3563 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3564 
3565 	hw_if->set_speed = xgbe_set_speed;
3566 
3567 	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3568 	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
3569 	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
3570 
3571 	hw_if->set_gpio = xgbe_set_gpio;
3572 	hw_if->clr_gpio = xgbe_clr_gpio;
3573 
3574 	hw_if->enable_tx = xgbe_enable_tx;
3575 	hw_if->disable_tx = xgbe_disable_tx;
3576 	hw_if->enable_rx = xgbe_enable_rx;
3577 	hw_if->disable_rx = xgbe_disable_rx;
3578 
3579 	hw_if->powerup_tx = xgbe_powerup_tx;
3580 	hw_if->powerdown_tx = xgbe_powerdown_tx;
3581 	hw_if->powerup_rx = xgbe_powerup_rx;
3582 	hw_if->powerdown_rx = xgbe_powerdown_rx;
3583 
3584 	hw_if->dev_xmit = xgbe_dev_xmit;
3585 	hw_if->dev_read = xgbe_dev_read;
3586 	hw_if->enable_int = xgbe_enable_int;
3587 	hw_if->disable_int = xgbe_disable_int;
3588 	hw_if->init = xgbe_init;
3589 	hw_if->exit = xgbe_exit;
3590 
3591 	/* Descriptor related Sequences have to be initialized here */
3592 	hw_if->tx_desc_init = xgbe_tx_desc_init;
3593 	hw_if->rx_desc_init = xgbe_rx_desc_init;
3594 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3595 	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3596 	hw_if->is_last_desc = xgbe_is_last_desc;
3597 	hw_if->is_context_desc = xgbe_is_context_desc;
3598 	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3599 
3600 	/* For FLOW ctrl */
3601 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3602 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3603 
3604 	/* For RX coalescing */
3605 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3606 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3607 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3608 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3609 
3610 	/* For RX and TX threshold config */
3611 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3612 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3613 
3614 	/* For RX and TX Store and Forward Mode config */
3615 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3616 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3617 
3618 	/* For TX DMA Operating on Second Frame config */
3619 	hw_if->config_osp_mode = xgbe_config_osp_mode;
3620 
3621 	/* For MMC statistics support */
3622 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3623 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3624 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3625 
3626 	/* For PTP config */
3627 	hw_if->config_tstamp = xgbe_config_tstamp;
3628 	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3629 	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3630 	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3631 	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3632 
3633 	/* For Data Center Bridging config */
3634 	hw_if->config_tc = xgbe_config_tc;
3635 	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3636 	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3637 
3638 	/* For Receive Side Scaling */
3639 	hw_if->enable_rss = xgbe_enable_rss;
3640 	hw_if->disable_rss = xgbe_disable_rss;
3641 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3642 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3643 
3644 	/* For ECC */
3645 	hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3646 	hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3647 
3648 	/* For VXLAN */
3649 	hw_if->enable_vxlan = xgbe_enable_vxlan;
3650 	hw_if->disable_vxlan = xgbe_disable_vxlan;
3651 	hw_if->set_vxlan_id = xgbe_set_vxlan_id;
3652 
3653 	DBGPR("<--xgbe_init_function_ptrs\n");
3654 }
3655