1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * This file is available to you under your choice of the following two
5  * licenses:
6  *
7  * License 1: GPLv2
8  *
9  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
60  * All rights reserved.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions are met:
64  *     * Redistributions of source code must retain the above copyright
65  *       notice, this list of conditions and the following disclaimer.
66  *     * Redistributions in binary form must reproduce the above copyright
67  *       notice, this list of conditions and the following disclaimer in the
68  *       documentation and/or other materials provided with the distribution.
69  *     * Neither the name of Advanced Micro Devices, Inc. nor the
70  *       names of its contributors may be used to endorse or promote products
71  *       derived from this software without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83  *
84  * This file incorporates work covered by the following copyright and
85  * permission notice:
86  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89  *     and you.
90  *
91  *     The Software IS NOT an item of Licensed Software or Licensed Product
92  *     under any End User Software License Agreement or Agreement for Licensed
93  *     Product with Synopsys or any supplement thereto.  Permission is hereby
94  *     granted, free of charge, to any person obtaining a copy of this software
95  *     annotated with this license and the Software, to deal in the Software
96  *     without restriction, including without limitation the rights to use,
97  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98  *     of the Software, and to permit persons to whom the Software is furnished
99  *     to do so, subject to the following conditions:
100  *
101  *     The above copyright notice and this permission notice shall be included
102  *     in all copies or substantial portions of the Software.
103  *
104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114  *     THE POSSIBILITY OF SUCH DAMAGE.
115  */
116 
117 #include <linux/phy.h>
118 #include <linux/mdio.h>
119 #include <linux/clk.h>
120 #include <linux/bitrev.h>
121 #include <linux/crc32.h>
122 #include <linux/crc32poly.h>
123 
124 #include "xgbe.h"
125 #include "xgbe-common.h"
126 
127 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
128 {
129 	return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
130 }
131 
132 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
133 				      unsigned int usec)
134 {
135 	unsigned long rate;
136 	unsigned int ret;
137 
138 	DBGPR("-->xgbe_usec_to_riwt\n");
139 
140 	rate = pdata->sysclk_rate;
141 
142 	/*
143 	 * Convert the input usec value to the watchdog timer value. Each
144 	 * watchdog timer value is equivalent to 256 clock cycles.
145 	 * Calculate the required value as:
146 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
147 	 */
148 	ret = (usec * (rate / 1000000)) / 256;
149 
150 	DBGPR("<--xgbe_usec_to_riwt\n");
151 
152 	return ret;
153 }
154 
155 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
156 				      unsigned int riwt)
157 {
158 	unsigned long rate;
159 	unsigned int ret;
160 
161 	DBGPR("-->xgbe_riwt_to_usec\n");
162 
163 	rate = pdata->sysclk_rate;
164 
165 	/*
166 	 * Convert the input watchdog timer value to the usec value. Each
167 	 * watchdog timer value is equivalent to 256 clock cycles.
168 	 * Calculate the required value as:
169 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
170 	 */
171 	ret = (riwt * 256) / (rate / 1000000);
172 
173 	DBGPR("<--xgbe_riwt_to_usec\n");
174 
175 	return ret;
176 }
177 
178 static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
179 {
180 	unsigned int pblx8, pbl;
181 	unsigned int i;
182 
183 	pblx8 = DMA_PBL_X8_DISABLE;
184 	pbl = pdata->pbl;
185 
186 	if (pdata->pbl > 32) {
187 		pblx8 = DMA_PBL_X8_ENABLE;
188 		pbl >>= 3;
189 	}
190 
191 	for (i = 0; i < pdata->channel_count; i++) {
192 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
193 				       pblx8);
194 
195 		if (pdata->channel[i]->tx_ring)
196 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
197 					       PBL, pbl);
198 
199 		if (pdata->channel[i]->rx_ring)
200 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
201 					       PBL, pbl);
202 	}
203 
204 	return 0;
205 }
206 
207 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < pdata->channel_count; i++) {
212 		if (!pdata->channel[i]->tx_ring)
213 			break;
214 
215 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
216 				       pdata->tx_osp_mode);
217 	}
218 
219 	return 0;
220 }
221 
222 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
223 {
224 	unsigned int i;
225 
226 	for (i = 0; i < pdata->rx_q_count; i++)
227 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
228 
229 	return 0;
230 }
231 
232 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
233 {
234 	unsigned int i;
235 
236 	for (i = 0; i < pdata->tx_q_count; i++)
237 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
238 
239 	return 0;
240 }
241 
242 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
243 				    unsigned int val)
244 {
245 	unsigned int i;
246 
247 	for (i = 0; i < pdata->rx_q_count; i++)
248 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
249 
250 	return 0;
251 }
252 
253 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
254 				    unsigned int val)
255 {
256 	unsigned int i;
257 
258 	for (i = 0; i < pdata->tx_q_count; i++)
259 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
260 
261 	return 0;
262 }
263 
264 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
265 {
266 	unsigned int i;
267 
268 	for (i = 0; i < pdata->channel_count; i++) {
269 		if (!pdata->channel[i]->rx_ring)
270 			break;
271 
272 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
273 				       pdata->rx_riwt);
274 	}
275 
276 	return 0;
277 }
278 
279 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
280 {
281 	return 0;
282 }
283 
284 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
285 {
286 	unsigned int i;
287 
288 	for (i = 0; i < pdata->channel_count; i++) {
289 		if (!pdata->channel[i]->rx_ring)
290 			break;
291 
292 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
293 				       pdata->rx_buf_size);
294 	}
295 }
296 
297 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
298 {
299 	unsigned int i;
300 
301 	for (i = 0; i < pdata->channel_count; i++) {
302 		if (!pdata->channel[i]->tx_ring)
303 			break;
304 
305 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
306 	}
307 }
308 
309 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
310 {
311 	unsigned int i;
312 
313 	for (i = 0; i < pdata->channel_count; i++) {
314 		if (!pdata->channel[i]->rx_ring)
315 			break;
316 
317 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
318 	}
319 
320 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
321 }
322 
323 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
324 			      unsigned int index, unsigned int val)
325 {
326 	unsigned int wait;
327 	int ret = 0;
328 
329 	mutex_lock(&pdata->rss_mutex);
330 
331 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
332 		ret = -EBUSY;
333 		goto unlock;
334 	}
335 
336 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
337 
338 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
339 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
340 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
341 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
342 
343 	wait = 1000;
344 	while (wait--) {
345 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
346 			goto unlock;
347 
348 		usleep_range(1000, 1500);
349 	}
350 
351 	ret = -EBUSY;
352 
353 unlock:
354 	mutex_unlock(&pdata->rss_mutex);
355 
356 	return ret;
357 }
358 
359 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
360 {
361 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
362 	unsigned int *key = (unsigned int *)&pdata->rss_key;
363 	int ret;
364 
365 	while (key_regs--) {
366 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
367 					 key_regs, *key++);
368 		if (ret)
369 			return ret;
370 	}
371 
372 	return 0;
373 }
374 
375 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
376 {
377 	unsigned int i;
378 	int ret;
379 
380 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
381 		ret = xgbe_write_rss_reg(pdata,
382 					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
383 					 pdata->rss_table[i]);
384 		if (ret)
385 			return ret;
386 	}
387 
388 	return 0;
389 }
390 
391 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
392 {
393 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
394 
395 	return xgbe_write_rss_hash_key(pdata);
396 }
397 
398 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
399 				     const u32 *table)
400 {
401 	unsigned int i;
402 
403 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
404 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
405 
406 	return xgbe_write_rss_lookup_table(pdata);
407 }
408 
409 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
410 {
411 	int ret;
412 
413 	if (!pdata->hw_feat.rss)
414 		return -EOPNOTSUPP;
415 
416 	/* Program the hash key */
417 	ret = xgbe_write_rss_hash_key(pdata);
418 	if (ret)
419 		return ret;
420 
421 	/* Program the lookup table */
422 	ret = xgbe_write_rss_lookup_table(pdata);
423 	if (ret)
424 		return ret;
425 
426 	/* Set the RSS options */
427 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
428 
429 	/* Enable RSS */
430 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
431 
432 	return 0;
433 }
434 
435 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
436 {
437 	if (!pdata->hw_feat.rss)
438 		return -EOPNOTSUPP;
439 
440 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
441 
442 	return 0;
443 }
444 
445 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
446 {
447 	int ret;
448 
449 	if (!pdata->hw_feat.rss)
450 		return;
451 
452 	if (pdata->netdev->features & NETIF_F_RXHASH)
453 		ret = xgbe_enable_rss(pdata);
454 	else
455 		ret = xgbe_disable_rss(pdata);
456 
457 	if (ret)
458 		netdev_err(pdata->netdev,
459 			   "error configuring RSS, RSS disabled\n");
460 }
461 
462 static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
463 			      unsigned int queue)
464 {
465 	unsigned int prio, tc;
466 
467 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
468 		/* Does this queue handle the priority? */
469 		if (pdata->prio2q_map[prio] != queue)
470 			continue;
471 
472 		/* Get the Traffic Class for this priority */
473 		tc = pdata->ets->prio_tc[prio];
474 
475 		/* Check if PFC is enabled for this traffic class */
476 		if (pdata->pfc->pfc_en & (1 << tc))
477 			return true;
478 	}
479 
480 	return false;
481 }
482 
483 static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata)
484 {
485 	/* Program the VXLAN port */
486 	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port);
487 
488 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n",
489 		  pdata->vxlan_port);
490 }
491 
492 static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata)
493 {
494 	if (!pdata->hw_feat.vxn)
495 		return;
496 
497 	/* Program the VXLAN port */
498 	xgbe_set_vxlan_id(pdata);
499 
500 	/* Allow for IPv6/UDP zero-checksum VXLAN packets */
501 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1);
502 
503 	/* Enable VXLAN tunneling mode */
504 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0);
505 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1);
506 
507 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n");
508 }
509 
510 static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata)
511 {
512 	if (!pdata->hw_feat.vxn)
513 		return;
514 
515 	/* Disable tunneling mode */
516 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0);
517 
518 	/* Clear IPv6/UDP zero-checksum VXLAN packets setting */
519 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0);
520 
521 	/* Clear the VXLAN port */
522 	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0);
523 
524 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n");
525 }
526 
527 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
528 {
529 	unsigned int max_q_count, q_count;
530 	unsigned int reg, reg_val;
531 	unsigned int i;
532 
533 	/* Clear MTL flow control */
534 	for (i = 0; i < pdata->rx_q_count; i++)
535 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
536 
537 	/* Clear MAC flow control */
538 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
539 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
540 	reg = MAC_Q0TFCR;
541 	for (i = 0; i < q_count; i++) {
542 		reg_val = XGMAC_IOREAD(pdata, reg);
543 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
544 		XGMAC_IOWRITE(pdata, reg, reg_val);
545 
546 		reg += MAC_QTFCR_INC;
547 	}
548 
549 	return 0;
550 }
551 
552 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
553 {
554 	struct ieee_pfc *pfc = pdata->pfc;
555 	struct ieee_ets *ets = pdata->ets;
556 	unsigned int max_q_count, q_count;
557 	unsigned int reg, reg_val;
558 	unsigned int i;
559 
560 	/* Set MTL flow control */
561 	for (i = 0; i < pdata->rx_q_count; i++) {
562 		unsigned int ehfc = 0;
563 
564 		if (pdata->rx_rfd[i]) {
565 			/* Flow control thresholds are established */
566 			if (pfc && ets) {
567 				if (xgbe_is_pfc_queue(pdata, i))
568 					ehfc = 1;
569 			} else {
570 				ehfc = 1;
571 			}
572 		}
573 
574 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
575 
576 		netif_dbg(pdata, drv, pdata->netdev,
577 			  "flow control %s for RXq%u\n",
578 			  ehfc ? "enabled" : "disabled", i);
579 	}
580 
581 	/* Set MAC flow control */
582 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
583 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
584 	reg = MAC_Q0TFCR;
585 	for (i = 0; i < q_count; i++) {
586 		reg_val = XGMAC_IOREAD(pdata, reg);
587 
588 		/* Enable transmit flow control */
589 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
590 		/* Set pause time */
591 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
592 
593 		XGMAC_IOWRITE(pdata, reg, reg_val);
594 
595 		reg += MAC_QTFCR_INC;
596 	}
597 
598 	return 0;
599 }
600 
601 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
602 {
603 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
604 
605 	return 0;
606 }
607 
608 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
609 {
610 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
611 
612 	return 0;
613 }
614 
615 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
616 {
617 	struct ieee_pfc *pfc = pdata->pfc;
618 
619 	if (pdata->tx_pause || (pfc && pfc->pfc_en))
620 		xgbe_enable_tx_flow_control(pdata);
621 	else
622 		xgbe_disable_tx_flow_control(pdata);
623 
624 	return 0;
625 }
626 
627 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
628 {
629 	struct ieee_pfc *pfc = pdata->pfc;
630 
631 	if (pdata->rx_pause || (pfc && pfc->pfc_en))
632 		xgbe_enable_rx_flow_control(pdata);
633 	else
634 		xgbe_disable_rx_flow_control(pdata);
635 
636 	return 0;
637 }
638 
639 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
640 {
641 	struct ieee_pfc *pfc = pdata->pfc;
642 
643 	xgbe_config_tx_flow_control(pdata);
644 	xgbe_config_rx_flow_control(pdata);
645 
646 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
647 			   (pfc && pfc->pfc_en) ? 1 : 0);
648 }
649 
650 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
651 {
652 	struct xgbe_channel *channel;
653 	unsigned int i, ver;
654 
655 	/* Set the interrupt mode if supported */
656 	if (pdata->channel_irq_mode)
657 		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
658 				   pdata->channel_irq_mode);
659 
660 	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
661 
662 	for (i = 0; i < pdata->channel_count; i++) {
663 		channel = pdata->channel[i];
664 
665 		/* Clear all the interrupts which are set */
666 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
667 				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
668 
669 		/* Clear all interrupt enable bits */
670 		channel->curr_ier = 0;
671 
672 		/* Enable following interrupts
673 		 *   NIE  - Normal Interrupt Summary Enable
674 		 *   AIE  - Abnormal Interrupt Summary Enable
675 		 *   FBEE - Fatal Bus Error Enable
676 		 */
677 		if (ver < 0x21) {
678 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
679 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
680 		} else {
681 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
682 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
683 		}
684 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
685 
686 		if (channel->tx_ring) {
687 			/* Enable the following Tx interrupts
688 			 *   TIE  - Transmit Interrupt Enable (unless using
689 			 *          per channel interrupts in edge triggered
690 			 *          mode)
691 			 */
692 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
693 				XGMAC_SET_BITS(channel->curr_ier,
694 					       DMA_CH_IER, TIE, 1);
695 		}
696 		if (channel->rx_ring) {
697 			/* Enable following Rx interrupts
698 			 *   RBUE - Receive Buffer Unavailable Enable
699 			 *   RIE  - Receive Interrupt Enable (unless using
700 			 *          per channel interrupts in edge triggered
701 			 *          mode)
702 			 */
703 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
704 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
705 				XGMAC_SET_BITS(channel->curr_ier,
706 					       DMA_CH_IER, RIE, 1);
707 		}
708 
709 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
710 	}
711 }
712 
713 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
714 {
715 	unsigned int mtl_q_isr;
716 	unsigned int q_count, i;
717 
718 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
719 	for (i = 0; i < q_count; i++) {
720 		/* Clear all the interrupts which are set */
721 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
722 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
723 
724 		/* No MTL interrupts to be enabled */
725 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
726 	}
727 }
728 
729 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
730 {
731 	unsigned int mac_ier = 0;
732 
733 	/* Enable Timestamp interrupt */
734 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
735 
736 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
737 
738 	/* Enable all counter interrupts */
739 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
740 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
741 
742 	/* Enable MDIO single command completion interrupt */
743 	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
744 }
745 
746 static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
747 {
748 	unsigned int ecc_isr, ecc_ier = 0;
749 
750 	if (!pdata->vdata->ecc_support)
751 		return;
752 
753 	/* Clear all the interrupts which are set */
754 	ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
755 	XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
756 
757 	/* Enable ECC interrupts */
758 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
759 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
760 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
761 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
762 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
763 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
764 
765 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
766 }
767 
768 static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
769 {
770 	unsigned int ecc_ier;
771 
772 	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
773 
774 	/* Disable ECC DED interrupts */
775 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
776 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
777 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
778 
779 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
780 }
781 
782 static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
783 				 enum xgbe_ecc_sec sec)
784 {
785 	unsigned int ecc_ier;
786 
787 	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
788 
789 	/* Disable ECC SEC interrupt */
790 	switch (sec) {
791 	case XGBE_ECC_SEC_TX:
792 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
793 		break;
794 	case XGBE_ECC_SEC_RX:
795 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
796 		break;
797 	case XGBE_ECC_SEC_DESC:
798 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
799 		break;
800 	}
801 
802 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
803 }
804 
805 static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
806 {
807 	unsigned int ss;
808 
809 	switch (speed) {
810 	case SPEED_1000:
811 		ss = 0x03;
812 		break;
813 	case SPEED_2500:
814 		ss = 0x02;
815 		break;
816 	case SPEED_10000:
817 		ss = 0x00;
818 		break;
819 	default:
820 		return -EINVAL;
821 	}
822 
823 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
824 		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
825 
826 	return 0;
827 }
828 
829 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
830 {
831 	/* Put the VLAN tag in the Rx descriptor */
832 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
833 
834 	/* Don't check the VLAN type */
835 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
836 
837 	/* Check only C-TAG (0x8100) packets */
838 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
839 
840 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
841 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
842 
843 	/* Enable VLAN tag stripping */
844 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
845 
846 	return 0;
847 }
848 
849 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
850 {
851 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
852 
853 	return 0;
854 }
855 
856 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
857 {
858 	/* Enable VLAN filtering */
859 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
860 
861 	/* Enable VLAN Hash Table filtering */
862 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
863 
864 	/* Disable VLAN tag inverse matching */
865 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
866 
867 	/* Only filter on the lower 12-bits of the VLAN tag */
868 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
869 
870 	/* In order for the VLAN Hash Table filtering to be effective,
871 	 * the VLAN tag identifier in the VLAN Tag Register must not
872 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
873 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
874 	 * 1 will always pass filtering.
875 	 */
876 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
877 
878 	return 0;
879 }
880 
881 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
882 {
883 	/* Disable VLAN filtering */
884 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
885 
886 	return 0;
887 }
888 
889 static u32 xgbe_vid_crc32_le(__le16 vid_le)
890 {
891 	u32 crc = ~0;
892 	u32 temp = 0;
893 	unsigned char *data = (unsigned char *)&vid_le;
894 	unsigned char data_byte = 0;
895 	int i, bits;
896 
897 	bits = get_bitmask_order(VLAN_VID_MASK);
898 	for (i = 0; i < bits; i++) {
899 		if ((i % 8) == 0)
900 			data_byte = data[i / 8];
901 
902 		temp = ((crc & 1) ^ data_byte) & 1;
903 		crc >>= 1;
904 		data_byte >>= 1;
905 
906 		if (temp)
907 			crc ^= CRC32_POLY_LE;
908 	}
909 
910 	return crc;
911 }
912 
913 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
914 {
915 	u32 crc;
916 	u16 vid;
917 	__le16 vid_le;
918 	u16 vlan_hash_table = 0;
919 
920 	/* Generate the VLAN Hash Table value */
921 	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
922 		/* Get the CRC32 value of the VLAN ID */
923 		vid_le = cpu_to_le16(vid);
924 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
925 
926 		vlan_hash_table |= (1 << crc);
927 	}
928 
929 	/* Set the VLAN Hash Table filtering register */
930 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
931 
932 	return 0;
933 }
934 
935 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
936 				     unsigned int enable)
937 {
938 	unsigned int val = enable ? 1 : 0;
939 
940 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
941 		return 0;
942 
943 	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
944 		  enable ? "entering" : "leaving");
945 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
946 
947 	/* Hardware will still perform VLAN filtering in promiscuous mode */
948 	if (enable) {
949 		xgbe_disable_rx_vlan_filtering(pdata);
950 	} else {
951 		if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
952 			xgbe_enable_rx_vlan_filtering(pdata);
953 	}
954 
955 	return 0;
956 }
957 
958 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
959 				       unsigned int enable)
960 {
961 	unsigned int val = enable ? 1 : 0;
962 
963 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
964 		return 0;
965 
966 	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
967 		  enable ? "entering" : "leaving");
968 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
969 
970 	return 0;
971 }
972 
973 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
974 			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
975 {
976 	unsigned int mac_addr_hi, mac_addr_lo;
977 	u8 *mac_addr;
978 
979 	mac_addr_lo = 0;
980 	mac_addr_hi = 0;
981 
982 	if (ha) {
983 		mac_addr = (u8 *)&mac_addr_lo;
984 		mac_addr[0] = ha->addr[0];
985 		mac_addr[1] = ha->addr[1];
986 		mac_addr[2] = ha->addr[2];
987 		mac_addr[3] = ha->addr[3];
988 		mac_addr = (u8 *)&mac_addr_hi;
989 		mac_addr[0] = ha->addr[4];
990 		mac_addr[1] = ha->addr[5];
991 
992 		netif_dbg(pdata, drv, pdata->netdev,
993 			  "adding mac address %pM at %#x\n",
994 			  ha->addr, *mac_reg);
995 
996 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
997 	}
998 
999 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
1000 	*mac_reg += MAC_MACA_INC;
1001 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
1002 	*mac_reg += MAC_MACA_INC;
1003 }
1004 
1005 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
1006 {
1007 	struct net_device *netdev = pdata->netdev;
1008 	struct netdev_hw_addr *ha;
1009 	unsigned int mac_reg;
1010 	unsigned int addn_macs;
1011 
1012 	mac_reg = MAC_MACA1HR;
1013 	addn_macs = pdata->hw_feat.addn_mac;
1014 
1015 	if (netdev_uc_count(netdev) > addn_macs) {
1016 		xgbe_set_promiscuous_mode(pdata, 1);
1017 	} else {
1018 		netdev_for_each_uc_addr(ha, netdev) {
1019 			xgbe_set_mac_reg(pdata, ha, &mac_reg);
1020 			addn_macs--;
1021 		}
1022 
1023 		if (netdev_mc_count(netdev) > addn_macs) {
1024 			xgbe_set_all_multicast_mode(pdata, 1);
1025 		} else {
1026 			netdev_for_each_mc_addr(ha, netdev) {
1027 				xgbe_set_mac_reg(pdata, ha, &mac_reg);
1028 				addn_macs--;
1029 			}
1030 		}
1031 	}
1032 
1033 	/* Clear remaining additional MAC address entries */
1034 	while (addn_macs--)
1035 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1036 }
1037 
1038 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1039 {
1040 	struct net_device *netdev = pdata->netdev;
1041 	struct netdev_hw_addr *ha;
1042 	unsigned int hash_reg;
1043 	unsigned int hash_table_shift, hash_table_count;
1044 	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1045 	u32 crc;
1046 	unsigned int i;
1047 
1048 	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1049 	hash_table_count = pdata->hw_feat.hash_table_size / 32;
1050 	memset(hash_table, 0, sizeof(hash_table));
1051 
1052 	/* Build the MAC Hash Table register values */
1053 	netdev_for_each_uc_addr(ha, netdev) {
1054 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1055 		crc >>= hash_table_shift;
1056 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1057 	}
1058 
1059 	netdev_for_each_mc_addr(ha, netdev) {
1060 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1061 		crc >>= hash_table_shift;
1062 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1063 	}
1064 
1065 	/* Set the MAC Hash Table registers */
1066 	hash_reg = MAC_HTR0;
1067 	for (i = 0; i < hash_table_count; i++) {
1068 		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1069 		hash_reg += MAC_HTR_INC;
1070 	}
1071 }
1072 
1073 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1074 {
1075 	if (pdata->hw_feat.hash_table_size)
1076 		xgbe_set_mac_hash_table(pdata);
1077 	else
1078 		xgbe_set_mac_addn_addrs(pdata);
1079 
1080 	return 0;
1081 }
1082 
1083 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
1084 {
1085 	unsigned int mac_addr_hi, mac_addr_lo;
1086 
1087 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
1088 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1089 		      (addr[1] <<  8) | (addr[0] <<  0);
1090 
1091 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1092 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1093 
1094 	return 0;
1095 }
1096 
1097 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1098 {
1099 	struct net_device *netdev = pdata->netdev;
1100 	unsigned int pr_mode, am_mode;
1101 
1102 	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1103 	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1104 
1105 	xgbe_set_promiscuous_mode(pdata, pr_mode);
1106 	xgbe_set_all_multicast_mode(pdata, am_mode);
1107 
1108 	xgbe_add_mac_addresses(pdata);
1109 
1110 	return 0;
1111 }
1112 
1113 static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1114 {
1115 	unsigned int reg;
1116 
1117 	if (gpio > 15)
1118 		return -EINVAL;
1119 
1120 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1121 
1122 	reg &= ~(1 << (gpio + 16));
1123 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1124 
1125 	return 0;
1126 }
1127 
1128 static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1129 {
1130 	unsigned int reg;
1131 
1132 	if (gpio > 15)
1133 		return -EINVAL;
1134 
1135 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1136 
1137 	reg |= (1 << (gpio + 16));
1138 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1139 
1140 	return 0;
1141 }
1142 
1143 static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1144 				 int mmd_reg)
1145 {
1146 	unsigned long flags;
1147 	unsigned int mmd_address, index, offset;
1148 	int mmd_data;
1149 
1150 	if (mmd_reg & MII_ADDR_C45)
1151 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1152 	else
1153 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1154 
1155 	/* The PCS registers are accessed using mmio. The underlying
1156 	 * management interface uses indirect addressing to access the MMD
1157 	 * register sets. This requires accessing of the PCS register in two
1158 	 * phases, an address phase and a data phase.
1159 	 *
1160 	 * The mmio interface is based on 16-bit offsets and values. All
1161 	 * register offsets must therefore be adjusted by left shifting the
1162 	 * offset 1 bit and reading 16 bits of data.
1163 	 */
1164 	mmd_address <<= 1;
1165 	index = mmd_address & ~pdata->xpcs_window_mask;
1166 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1167 
1168 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1169 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1170 	mmd_data = XPCS16_IOREAD(pdata, offset);
1171 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1172 
1173 	return mmd_data;
1174 }
1175 
1176 static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1177 				   int mmd_reg, int mmd_data)
1178 {
1179 	unsigned long flags;
1180 	unsigned int mmd_address, index, offset;
1181 
1182 	if (mmd_reg & MII_ADDR_C45)
1183 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1184 	else
1185 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1186 
1187 	/* The PCS registers are accessed using mmio. The underlying
1188 	 * management interface uses indirect addressing to access the MMD
1189 	 * register sets. This requires accessing of the PCS register in two
1190 	 * phases, an address phase and a data phase.
1191 	 *
1192 	 * The mmio interface is based on 16-bit offsets and values. All
1193 	 * register offsets must therefore be adjusted by left shifting the
1194 	 * offset 1 bit and writing 16 bits of data.
1195 	 */
1196 	mmd_address <<= 1;
1197 	index = mmd_address & ~pdata->xpcs_window_mask;
1198 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1199 
1200 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1201 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1202 	XPCS16_IOWRITE(pdata, offset, mmd_data);
1203 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1204 }
1205 
1206 static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1207 				 int mmd_reg)
1208 {
1209 	unsigned long flags;
1210 	unsigned int mmd_address;
1211 	int mmd_data;
1212 
1213 	if (mmd_reg & MII_ADDR_C45)
1214 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1215 	else
1216 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1217 
1218 	/* The PCS registers are accessed using mmio. The underlying APB3
1219 	 * management interface uses indirect addressing to access the MMD
1220 	 * register sets. This requires accessing of the PCS register in two
1221 	 * phases, an address phase and a data phase.
1222 	 *
1223 	 * The mmio interface is based on 32-bit offsets and values. All
1224 	 * register offsets must therefore be adjusted by left shifting the
1225 	 * offset 2 bits and reading 32 bits of data.
1226 	 */
1227 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1228 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1229 	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1230 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1231 
1232 	return mmd_data;
1233 }
1234 
1235 static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1236 				   int mmd_reg, int mmd_data)
1237 {
1238 	unsigned int mmd_address;
1239 	unsigned long flags;
1240 
1241 	if (mmd_reg & MII_ADDR_C45)
1242 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1243 	else
1244 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1245 
1246 	/* The PCS registers are accessed using mmio. The underlying APB3
1247 	 * management interface uses indirect addressing to access the MMD
1248 	 * register sets. This requires accessing of the PCS register in two
1249 	 * phases, an address phase and a data phase.
1250 	 *
1251 	 * The mmio interface is based on 32-bit offsets and values. All
1252 	 * register offsets must therefore be adjusted by left shifting the
1253 	 * offset 2 bits and writing 32 bits of data.
1254 	 */
1255 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1256 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1257 	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1258 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1259 }
1260 
1261 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1262 			      int mmd_reg)
1263 {
1264 	switch (pdata->vdata->xpcs_access) {
1265 	case XGBE_XPCS_ACCESS_V1:
1266 		return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1267 
1268 	case XGBE_XPCS_ACCESS_V2:
1269 	default:
1270 		return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1271 	}
1272 }
1273 
1274 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1275 				int mmd_reg, int mmd_data)
1276 {
1277 	switch (pdata->vdata->xpcs_access) {
1278 	case XGBE_XPCS_ACCESS_V1:
1279 		return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1280 
1281 	case XGBE_XPCS_ACCESS_V2:
1282 	default:
1283 		return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1284 	}
1285 }
1286 
1287 static unsigned int xgbe_create_mdio_sca(int port, int reg)
1288 {
1289 	unsigned int mdio_sca, da;
1290 
1291 	da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1292 
1293 	mdio_sca = 0;
1294 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1295 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1296 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1297 
1298 	return mdio_sca;
1299 }
1300 
1301 static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1302 				   int reg, u16 val)
1303 {
1304 	unsigned int mdio_sca, mdio_sccd;
1305 
1306 	reinit_completion(&pdata->mdio_complete);
1307 
1308 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1309 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1310 
1311 	mdio_sccd = 0;
1312 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1313 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1314 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1315 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1316 
1317 	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1318 		netdev_err(pdata->netdev, "mdio write operation timed out\n");
1319 		return -ETIMEDOUT;
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1326 				  int reg)
1327 {
1328 	unsigned int mdio_sca, mdio_sccd;
1329 
1330 	reinit_completion(&pdata->mdio_complete);
1331 
1332 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1333 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1334 
1335 	mdio_sccd = 0;
1336 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1337 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1338 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1339 
1340 	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1341 		netdev_err(pdata->netdev, "mdio read operation timed out\n");
1342 		return -ETIMEDOUT;
1343 	}
1344 
1345 	return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1346 }
1347 
1348 static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1349 				 enum xgbe_mdio_mode mode)
1350 {
1351 	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1352 
1353 	switch (mode) {
1354 	case XGBE_MDIO_MODE_CL22:
1355 		if (port > XGMAC_MAX_C22_PORT)
1356 			return -EINVAL;
1357 		reg_val |= (1 << port);
1358 		break;
1359 	case XGBE_MDIO_MODE_CL45:
1360 		break;
1361 	default:
1362 		return -EINVAL;
1363 	}
1364 
1365 	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1366 
1367 	return 0;
1368 }
1369 
1370 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1371 {
1372 	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1373 }
1374 
1375 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1376 {
1377 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1378 
1379 	return 0;
1380 }
1381 
1382 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1383 {
1384 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1385 
1386 	return 0;
1387 }
1388 
1389 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1390 {
1391 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1392 
1393 	/* Reset the Tx descriptor
1394 	 *   Set buffer 1 (lo) address to zero
1395 	 *   Set buffer 1 (hi) address to zero
1396 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1397 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1398 	 */
1399 	rdesc->desc0 = 0;
1400 	rdesc->desc1 = 0;
1401 	rdesc->desc2 = 0;
1402 	rdesc->desc3 = 0;
1403 
1404 	/* Make sure ownership is written to the descriptor */
1405 	dma_wmb();
1406 }
1407 
1408 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1409 {
1410 	struct xgbe_ring *ring = channel->tx_ring;
1411 	struct xgbe_ring_data *rdata;
1412 	int i;
1413 	int start_index = ring->cur;
1414 
1415 	DBGPR("-->tx_desc_init\n");
1416 
1417 	/* Initialze all descriptors */
1418 	for (i = 0; i < ring->rdesc_count; i++) {
1419 		rdata = XGBE_GET_DESC_DATA(ring, i);
1420 
1421 		/* Initialize Tx descriptor */
1422 		xgbe_tx_desc_reset(rdata);
1423 	}
1424 
1425 	/* Update the total number of Tx descriptors */
1426 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1427 
1428 	/* Update the starting address of descriptor ring */
1429 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1430 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1431 			  upper_32_bits(rdata->rdesc_dma));
1432 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1433 			  lower_32_bits(rdata->rdesc_dma));
1434 
1435 	DBGPR("<--tx_desc_init\n");
1436 }
1437 
1438 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1439 			       struct xgbe_ring_data *rdata, unsigned int index)
1440 {
1441 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1442 	unsigned int rx_usecs = pdata->rx_usecs;
1443 	unsigned int rx_frames = pdata->rx_frames;
1444 	unsigned int inte;
1445 	dma_addr_t hdr_dma, buf_dma;
1446 
1447 	if (!rx_usecs && !rx_frames) {
1448 		/* No coalescing, interrupt for every descriptor */
1449 		inte = 1;
1450 	} else {
1451 		/* Set interrupt based on Rx frame coalescing setting */
1452 		if (rx_frames && !((index + 1) % rx_frames))
1453 			inte = 1;
1454 		else
1455 			inte = 0;
1456 	}
1457 
1458 	/* Reset the Rx descriptor
1459 	 *   Set buffer 1 (lo) address to header dma address (lo)
1460 	 *   Set buffer 1 (hi) address to header dma address (hi)
1461 	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1462 	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1463 	 *     set control bits OWN and INTE
1464 	 */
1465 	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1466 	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1467 	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1468 	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1469 	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1470 	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1471 
1472 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1473 
1474 	/* Since the Rx DMA engine is likely running, make sure everything
1475 	 * is written to the descriptor(s) before setting the OWN bit
1476 	 * for the descriptor
1477 	 */
1478 	dma_wmb();
1479 
1480 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1481 
1482 	/* Make sure ownership is written to the descriptor */
1483 	dma_wmb();
1484 }
1485 
1486 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1487 {
1488 	struct xgbe_prv_data *pdata = channel->pdata;
1489 	struct xgbe_ring *ring = channel->rx_ring;
1490 	struct xgbe_ring_data *rdata;
1491 	unsigned int start_index = ring->cur;
1492 	unsigned int i;
1493 
1494 	DBGPR("-->rx_desc_init\n");
1495 
1496 	/* Initialize all descriptors */
1497 	for (i = 0; i < ring->rdesc_count; i++) {
1498 		rdata = XGBE_GET_DESC_DATA(ring, i);
1499 
1500 		/* Initialize Rx descriptor */
1501 		xgbe_rx_desc_reset(pdata, rdata, i);
1502 	}
1503 
1504 	/* Update the total number of Rx descriptors */
1505 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1506 
1507 	/* Update the starting address of descriptor ring */
1508 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1509 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1510 			  upper_32_bits(rdata->rdesc_dma));
1511 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1512 			  lower_32_bits(rdata->rdesc_dma));
1513 
1514 	/* Update the Rx Descriptor Tail Pointer */
1515 	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1516 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1517 			  lower_32_bits(rdata->rdesc_dma));
1518 
1519 	DBGPR("<--rx_desc_init\n");
1520 }
1521 
1522 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1523 				      unsigned int addend)
1524 {
1525 	unsigned int count = 10000;
1526 
1527 	/* Set the addend register value and tell the device */
1528 	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1529 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1530 
1531 	/* Wait for addend update to complete */
1532 	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1533 		udelay(5);
1534 
1535 	if (!count)
1536 		netdev_err(pdata->netdev,
1537 			   "timed out updating timestamp addend register\n");
1538 }
1539 
1540 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1541 				 unsigned int nsec)
1542 {
1543 	unsigned int count = 10000;
1544 
1545 	/* Set the time values and tell the device */
1546 	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1547 	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1548 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1549 
1550 	/* Wait for time update to complete */
1551 	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1552 		udelay(5);
1553 
1554 	if (!count)
1555 		netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1556 }
1557 
1558 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1559 {
1560 	u64 nsec;
1561 
1562 	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1563 	nsec *= NSEC_PER_SEC;
1564 	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1565 
1566 	return nsec;
1567 }
1568 
1569 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1570 {
1571 	unsigned int tx_snr, tx_ssr;
1572 	u64 nsec;
1573 
1574 	if (pdata->vdata->tx_tstamp_workaround) {
1575 		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1576 		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1577 	} else {
1578 		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1579 		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1580 	}
1581 
1582 	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1583 		return 0;
1584 
1585 	nsec = tx_ssr;
1586 	nsec *= NSEC_PER_SEC;
1587 	nsec += tx_snr;
1588 
1589 	return nsec;
1590 }
1591 
1592 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1593 			       struct xgbe_ring_desc *rdesc)
1594 {
1595 	u64 nsec;
1596 
1597 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1598 	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1599 		nsec = le32_to_cpu(rdesc->desc1);
1600 		nsec <<= 32;
1601 		nsec |= le32_to_cpu(rdesc->desc0);
1602 		if (nsec != 0xffffffffffffffffULL) {
1603 			packet->rx_tstamp = nsec;
1604 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1605 				       RX_TSTAMP, 1);
1606 		}
1607 	}
1608 }
1609 
1610 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1611 			      unsigned int mac_tscr)
1612 {
1613 	/* Set one nano-second accuracy */
1614 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1615 
1616 	/* Set fine timestamp update */
1617 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1618 
1619 	/* Overwrite earlier timestamps */
1620 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1621 
1622 	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1623 
1624 	/* Exit if timestamping is not enabled */
1625 	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1626 		return 0;
1627 
1628 	/* Initialize time registers */
1629 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1630 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1631 	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1632 	xgbe_set_tstamp_time(pdata, 0, 0);
1633 
1634 	/* Initialize the timecounter */
1635 	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1636 			 ktime_to_ns(ktime_get_real()));
1637 
1638 	return 0;
1639 }
1640 
1641 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1642 			       struct xgbe_ring *ring)
1643 {
1644 	struct xgbe_prv_data *pdata = channel->pdata;
1645 	struct xgbe_ring_data *rdata;
1646 
1647 	/* Make sure everything is written before the register write */
1648 	wmb();
1649 
1650 	/* Issue a poll command to Tx DMA by writing address
1651 	 * of next immediate free descriptor */
1652 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1653 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1654 			  lower_32_bits(rdata->rdesc_dma));
1655 
1656 	/* Start the Tx timer */
1657 	if (pdata->tx_usecs && !channel->tx_timer_active) {
1658 		channel->tx_timer_active = 1;
1659 		mod_timer(&channel->tx_timer,
1660 			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1661 	}
1662 
1663 	ring->tx.xmit_more = 0;
1664 }
1665 
1666 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1667 {
1668 	struct xgbe_prv_data *pdata = channel->pdata;
1669 	struct xgbe_ring *ring = channel->tx_ring;
1670 	struct xgbe_ring_data *rdata;
1671 	struct xgbe_ring_desc *rdesc;
1672 	struct xgbe_packet_data *packet = &ring->packet_data;
1673 	unsigned int tx_packets, tx_bytes;
1674 	unsigned int csum, tso, vlan, vxlan;
1675 	unsigned int tso_context, vlan_context;
1676 	unsigned int tx_set_ic;
1677 	int start_index = ring->cur;
1678 	int cur_index = ring->cur;
1679 	int i;
1680 
1681 	DBGPR("-->xgbe_dev_xmit\n");
1682 
1683 	tx_packets = packet->tx_packets;
1684 	tx_bytes = packet->tx_bytes;
1685 
1686 	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1687 			      CSUM_ENABLE);
1688 	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1689 			     TSO_ENABLE);
1690 	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1691 			      VLAN_CTAG);
1692 	vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1693 			       VXLAN);
1694 
1695 	if (tso && (packet->mss != ring->tx.cur_mss))
1696 		tso_context = 1;
1697 	else
1698 		tso_context = 0;
1699 
1700 	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1701 		vlan_context = 1;
1702 	else
1703 		vlan_context = 0;
1704 
1705 	/* Determine if an interrupt should be generated for this Tx:
1706 	 *   Interrupt:
1707 	 *     - Tx frame count exceeds the frame count setting
1708 	 *     - Addition of Tx frame count to the frame count since the
1709 	 *       last interrupt was set exceeds the frame count setting
1710 	 *   No interrupt:
1711 	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1712 	 *     - Addition of Tx frame count to the frame count since the
1713 	 *       last interrupt was set does not exceed the frame count setting
1714 	 */
1715 	ring->coalesce_count += tx_packets;
1716 	if (!pdata->tx_frames)
1717 		tx_set_ic = 0;
1718 	else if (tx_packets > pdata->tx_frames)
1719 		tx_set_ic = 1;
1720 	else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets)
1721 		tx_set_ic = 1;
1722 	else
1723 		tx_set_ic = 0;
1724 
1725 	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1726 	rdesc = rdata->rdesc;
1727 
1728 	/* Create a context descriptor if this is a TSO packet */
1729 	if (tso_context || vlan_context) {
1730 		if (tso_context) {
1731 			netif_dbg(pdata, tx_queued, pdata->netdev,
1732 				  "TSO context descriptor, mss=%u\n",
1733 				  packet->mss);
1734 
1735 			/* Set the MSS size */
1736 			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1737 					  MSS, packet->mss);
1738 
1739 			/* Mark it as a CONTEXT descriptor */
1740 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1741 					  CTXT, 1);
1742 
1743 			/* Indicate this descriptor contains the MSS */
1744 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1745 					  TCMSSV, 1);
1746 
1747 			ring->tx.cur_mss = packet->mss;
1748 		}
1749 
1750 		if (vlan_context) {
1751 			netif_dbg(pdata, tx_queued, pdata->netdev,
1752 				  "VLAN context descriptor, ctag=%u\n",
1753 				  packet->vlan_ctag);
1754 
1755 			/* Mark it as a CONTEXT descriptor */
1756 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1757 					  CTXT, 1);
1758 
1759 			/* Set the VLAN tag */
1760 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1761 					  VT, packet->vlan_ctag);
1762 
1763 			/* Indicate this descriptor contains the VLAN tag */
1764 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1765 					  VLTV, 1);
1766 
1767 			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1768 		}
1769 
1770 		cur_index++;
1771 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1772 		rdesc = rdata->rdesc;
1773 	}
1774 
1775 	/* Update buffer address (for TSO this is the header) */
1776 	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1777 	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1778 
1779 	/* Update the buffer length */
1780 	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1781 			  rdata->skb_dma_len);
1782 
1783 	/* VLAN tag insertion check */
1784 	if (vlan)
1785 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1786 				  TX_NORMAL_DESC2_VLAN_INSERT);
1787 
1788 	/* Timestamp enablement check */
1789 	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1790 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1791 
1792 	/* Mark it as First Descriptor */
1793 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1794 
1795 	/* Mark it as a NORMAL descriptor */
1796 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1797 
1798 	/* Set OWN bit if not the first descriptor */
1799 	if (cur_index != start_index)
1800 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1801 
1802 	if (tso) {
1803 		/* Enable TSO */
1804 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1805 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1806 				  packet->tcp_payload_len);
1807 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1808 				  packet->tcp_header_len / 4);
1809 
1810 		pdata->ext_stats.tx_tso_packets += tx_packets;
1811 	} else {
1812 		/* Enable CRC and Pad Insertion */
1813 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1814 
1815 		/* Enable HW CSUM */
1816 		if (csum)
1817 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1818 					  CIC, 0x3);
1819 
1820 		/* Set the total length to be transmitted */
1821 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1822 				  packet->length);
1823 	}
1824 
1825 	if (vxlan) {
1826 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP,
1827 				  TX_NORMAL_DESC3_VXLAN_PACKET);
1828 
1829 		pdata->ext_stats.tx_vxlan_packets += packet->tx_packets;
1830 	}
1831 
1832 	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1833 		cur_index++;
1834 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1835 		rdesc = rdata->rdesc;
1836 
1837 		/* Update buffer address */
1838 		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1839 		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1840 
1841 		/* Update the buffer length */
1842 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1843 				  rdata->skb_dma_len);
1844 
1845 		/* Set OWN bit */
1846 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1847 
1848 		/* Mark it as NORMAL descriptor */
1849 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1850 
1851 		/* Enable HW CSUM */
1852 		if (csum)
1853 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1854 					  CIC, 0x3);
1855 	}
1856 
1857 	/* Set LAST bit for the last descriptor */
1858 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1859 
1860 	/* Set IC bit based on Tx coalescing settings */
1861 	if (tx_set_ic)
1862 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1863 
1864 	/* Save the Tx info to report back during cleanup */
1865 	rdata->tx.packets = tx_packets;
1866 	rdata->tx.bytes = tx_bytes;
1867 
1868 	pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets;
1869 	pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes;
1870 
1871 	/* In case the Tx DMA engine is running, make sure everything
1872 	 * is written to the descriptor(s) before setting the OWN bit
1873 	 * for the first descriptor
1874 	 */
1875 	dma_wmb();
1876 
1877 	/* Set OWN bit for the first descriptor */
1878 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1879 	rdesc = rdata->rdesc;
1880 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1881 
1882 	if (netif_msg_tx_queued(pdata))
1883 		xgbe_dump_tx_desc(pdata, ring, start_index,
1884 				  packet->rdesc_count, 1);
1885 
1886 	/* Make sure ownership is written to the descriptor */
1887 	smp_wmb();
1888 
1889 	ring->cur = cur_index + 1;
1890 	if (!packet->skb->xmit_more ||
1891 	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1892 						   channel->queue_index)))
1893 		xgbe_tx_start_xmit(channel, ring);
1894 	else
1895 		ring->tx.xmit_more = 1;
1896 
1897 	DBGPR("  %s: descriptors %u to %u written\n",
1898 	      channel->name, start_index & (ring->rdesc_count - 1),
1899 	      (ring->cur - 1) & (ring->rdesc_count - 1));
1900 
1901 	DBGPR("<--xgbe_dev_xmit\n");
1902 }
1903 
1904 static int xgbe_dev_read(struct xgbe_channel *channel)
1905 {
1906 	struct xgbe_prv_data *pdata = channel->pdata;
1907 	struct xgbe_ring *ring = channel->rx_ring;
1908 	struct xgbe_ring_data *rdata;
1909 	struct xgbe_ring_desc *rdesc;
1910 	struct xgbe_packet_data *packet = &ring->packet_data;
1911 	struct net_device *netdev = pdata->netdev;
1912 	unsigned int err, etlt, l34t;
1913 
1914 	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1915 
1916 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1917 	rdesc = rdata->rdesc;
1918 
1919 	/* Check for data availability */
1920 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1921 		return 1;
1922 
1923 	/* Make sure descriptor fields are read after reading the OWN bit */
1924 	dma_rmb();
1925 
1926 	if (netif_msg_rx_status(pdata))
1927 		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1928 
1929 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1930 		/* Timestamp Context Descriptor */
1931 		xgbe_get_rx_tstamp(packet, rdesc);
1932 
1933 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1934 			       CONTEXT, 1);
1935 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1936 			       CONTEXT_NEXT, 0);
1937 		return 0;
1938 	}
1939 
1940 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1941 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1942 
1943 	/* Indicate if a Context Descriptor is next */
1944 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1945 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1946 			       CONTEXT_NEXT, 1);
1947 
1948 	/* Get the header length */
1949 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1950 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1951 			       FIRST, 1);
1952 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1953 						      RX_NORMAL_DESC2, HL);
1954 		if (rdata->rx.hdr_len)
1955 			pdata->ext_stats.rx_split_header_packets++;
1956 	} else {
1957 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1958 			       FIRST, 0);
1959 	}
1960 
1961 	/* Get the RSS hash */
1962 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1963 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1964 			       RSS_HASH, 1);
1965 
1966 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1967 
1968 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1969 		switch (l34t) {
1970 		case RX_DESC3_L34T_IPV4_TCP:
1971 		case RX_DESC3_L34T_IPV4_UDP:
1972 		case RX_DESC3_L34T_IPV6_TCP:
1973 		case RX_DESC3_L34T_IPV6_UDP:
1974 			packet->rss_hash_type = PKT_HASH_TYPE_L4;
1975 			break;
1976 		default:
1977 			packet->rss_hash_type = PKT_HASH_TYPE_L3;
1978 		}
1979 	}
1980 
1981 	/* Not all the data has been transferred for this packet */
1982 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
1983 		return 0;
1984 
1985 	/* This is the last of the data for this packet */
1986 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1987 		       LAST, 1);
1988 
1989 	/* Get the packet length */
1990 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1991 
1992 	/* Set checksum done indicator as appropriate */
1993 	if (netdev->features & NETIF_F_RXCSUM) {
1994 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1995 			       CSUM_DONE, 1);
1996 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1997 			       TNPCSUM_DONE, 1);
1998 	}
1999 
2000 	/* Set the tunneled packet indicator */
2001 	if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) {
2002 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2003 			       TNP, 1);
2004 		pdata->ext_stats.rx_vxlan_packets++;
2005 
2006 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2007 		switch (l34t) {
2008 		case RX_DESC3_L34T_IPV4_UNKNOWN:
2009 		case RX_DESC3_L34T_IPV6_UNKNOWN:
2010 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2011 				       TNPCSUM_DONE, 0);
2012 			break;
2013 		}
2014 	}
2015 
2016 	/* Check for errors (only valid in last descriptor) */
2017 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
2018 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
2019 	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
2020 
2021 	if (!err || !etlt) {
2022 		/* No error if err is 0 or etlt is 0 */
2023 		if ((etlt == 0x09) &&
2024 		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
2025 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2026 				       VLAN_CTAG, 1);
2027 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
2028 							      RX_NORMAL_DESC0,
2029 							      OVT);
2030 			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
2031 				  packet->vlan_ctag);
2032 		}
2033 	} else {
2034 		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
2035 						  RX_PACKET_ATTRIBUTES, TNP);
2036 
2037 		if ((etlt == 0x05) || (etlt == 0x06)) {
2038 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2039 				       CSUM_DONE, 0);
2040 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2041 				       TNPCSUM_DONE, 0);
2042 			pdata->ext_stats.rx_csum_errors++;
2043 		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
2044 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2045 				       CSUM_DONE, 0);
2046 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2047 				       TNPCSUM_DONE, 0);
2048 			pdata->ext_stats.rx_vxlan_csum_errors++;
2049 		} else {
2050 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
2051 				       FRAME, 1);
2052 		}
2053 	}
2054 
2055 	pdata->ext_stats.rxq_packets[channel->queue_index]++;
2056 	pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len;
2057 
2058 	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
2059 	      ring->cur & (ring->rdesc_count - 1), ring->cur);
2060 
2061 	return 0;
2062 }
2063 
2064 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
2065 {
2066 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
2067 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
2068 }
2069 
2070 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
2071 {
2072 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
2073 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
2074 }
2075 
2076 static int xgbe_enable_int(struct xgbe_channel *channel,
2077 			   enum xgbe_int int_id)
2078 {
2079 	switch (int_id) {
2080 	case XGMAC_INT_DMA_CH_SR_TI:
2081 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2082 		break;
2083 	case XGMAC_INT_DMA_CH_SR_TPS:
2084 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
2085 		break;
2086 	case XGMAC_INT_DMA_CH_SR_TBU:
2087 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
2088 		break;
2089 	case XGMAC_INT_DMA_CH_SR_RI:
2090 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2091 		break;
2092 	case XGMAC_INT_DMA_CH_SR_RBU:
2093 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
2094 		break;
2095 	case XGMAC_INT_DMA_CH_SR_RPS:
2096 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
2097 		break;
2098 	case XGMAC_INT_DMA_CH_SR_TI_RI:
2099 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2100 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2101 		break;
2102 	case XGMAC_INT_DMA_CH_SR_FBE:
2103 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
2104 		break;
2105 	case XGMAC_INT_DMA_ALL:
2106 		channel->curr_ier |= channel->saved_ier;
2107 		break;
2108 	default:
2109 		return -1;
2110 	}
2111 
2112 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2113 
2114 	return 0;
2115 }
2116 
2117 static int xgbe_disable_int(struct xgbe_channel *channel,
2118 			    enum xgbe_int int_id)
2119 {
2120 	switch (int_id) {
2121 	case XGMAC_INT_DMA_CH_SR_TI:
2122 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2123 		break;
2124 	case XGMAC_INT_DMA_CH_SR_TPS:
2125 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
2126 		break;
2127 	case XGMAC_INT_DMA_CH_SR_TBU:
2128 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
2129 		break;
2130 	case XGMAC_INT_DMA_CH_SR_RI:
2131 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2132 		break;
2133 	case XGMAC_INT_DMA_CH_SR_RBU:
2134 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
2135 		break;
2136 	case XGMAC_INT_DMA_CH_SR_RPS:
2137 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
2138 		break;
2139 	case XGMAC_INT_DMA_CH_SR_TI_RI:
2140 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2141 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2142 		break;
2143 	case XGMAC_INT_DMA_CH_SR_FBE:
2144 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
2145 		break;
2146 	case XGMAC_INT_DMA_ALL:
2147 		channel->saved_ier = channel->curr_ier;
2148 		channel->curr_ier = 0;
2149 		break;
2150 	default:
2151 		return -1;
2152 	}
2153 
2154 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2155 
2156 	return 0;
2157 }
2158 
2159 static int __xgbe_exit(struct xgbe_prv_data *pdata)
2160 {
2161 	unsigned int count = 2000;
2162 
2163 	DBGPR("-->xgbe_exit\n");
2164 
2165 	/* Issue a software reset */
2166 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2167 	usleep_range(10, 15);
2168 
2169 	/* Poll Until Poll Condition */
2170 	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2171 		usleep_range(500, 600);
2172 
2173 	if (!count)
2174 		return -EBUSY;
2175 
2176 	DBGPR("<--xgbe_exit\n");
2177 
2178 	return 0;
2179 }
2180 
2181 static int xgbe_exit(struct xgbe_prv_data *pdata)
2182 {
2183 	int ret;
2184 
2185 	/* To guard against possible incorrectly generated interrupts,
2186 	 * issue the software reset twice.
2187 	 */
2188 	ret = __xgbe_exit(pdata);
2189 	if (ret)
2190 		return ret;
2191 
2192 	return __xgbe_exit(pdata);
2193 }
2194 
2195 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2196 {
2197 	unsigned int i, count;
2198 
2199 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2200 		return 0;
2201 
2202 	for (i = 0; i < pdata->tx_q_count; i++)
2203 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2204 
2205 	/* Poll Until Poll Condition */
2206 	for (i = 0; i < pdata->tx_q_count; i++) {
2207 		count = 2000;
2208 		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2209 							MTL_Q_TQOMR, FTQ))
2210 			usleep_range(500, 600);
2211 
2212 		if (!count)
2213 			return -EBUSY;
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2220 {
2221 	unsigned int sbmr;
2222 
2223 	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2224 
2225 	/* Set enhanced addressing mode */
2226 	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2227 
2228 	/* Set the System Bus mode */
2229 	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2230 	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2231 	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2232 	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2233 	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2234 
2235 	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2236 
2237 	/* Set descriptor fetching threshold */
2238 	if (pdata->vdata->tx_desc_prefetch)
2239 		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2240 				   pdata->vdata->tx_desc_prefetch);
2241 
2242 	if (pdata->vdata->rx_desc_prefetch)
2243 		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2244 				   pdata->vdata->rx_desc_prefetch);
2245 }
2246 
2247 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2248 {
2249 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2250 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2251 	if (pdata->awarcr)
2252 		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
2253 }
2254 
2255 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2256 {
2257 	unsigned int i;
2258 
2259 	/* Set Tx to weighted round robin scheduling algorithm */
2260 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2261 
2262 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
2263 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2264 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2265 				       MTL_TSA_ETS);
2266 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2267 	}
2268 
2269 	/* Set Rx to strict priority algorithm */
2270 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2271 }
2272 
2273 static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2274 					      unsigned int queue,
2275 					      unsigned int q_fifo_size)
2276 {
2277 	unsigned int frame_fifo_size;
2278 	unsigned int rfa, rfd;
2279 
2280 	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2281 
2282 	if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2283 		/* PFC is active for this queue */
2284 		rfa = pdata->pfc_rfa;
2285 		rfd = rfa + frame_fifo_size;
2286 		if (rfd > XGMAC_FLOW_CONTROL_MAX)
2287 			rfd = XGMAC_FLOW_CONTROL_MAX;
2288 		if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2289 			rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2290 	} else {
2291 		/* This path deals with just maximum frame sizes which are
2292 		 * limited to a jumbo frame of 9,000 (plus headers, etc.)
2293 		 * so we can never exceed the maximum allowable RFA/RFD
2294 		 * values.
2295 		 */
2296 		if (q_fifo_size <= 2048) {
2297 			/* rx_rfd to zero to signal no flow control */
2298 			pdata->rx_rfa[queue] = 0;
2299 			pdata->rx_rfd[queue] = 0;
2300 			return;
2301 		}
2302 
2303 		if (q_fifo_size <= 4096) {
2304 			/* Between 2048 and 4096 */
2305 			pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
2306 			pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
2307 			return;
2308 		}
2309 
2310 		if (q_fifo_size <= frame_fifo_size) {
2311 			/* Between 4096 and max-frame */
2312 			pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
2313 			pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
2314 			return;
2315 		}
2316 
2317 		if (q_fifo_size <= (frame_fifo_size * 3)) {
2318 			/* Between max-frame and 3 max-frames,
2319 			 * trigger if we get just over a frame of data and
2320 			 * resume when we have just under half a frame left.
2321 			 */
2322 			rfa = q_fifo_size - frame_fifo_size;
2323 			rfd = rfa + (frame_fifo_size / 2);
2324 		} else {
2325 			/* Above 3 max-frames - trigger when just over
2326 			 * 2 frames of space available
2327 			 */
2328 			rfa = frame_fifo_size * 2;
2329 			rfa += XGMAC_FLOW_CONTROL_UNIT;
2330 			rfd = rfa + frame_fifo_size;
2331 		}
2332 	}
2333 
2334 	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2335 	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2336 }
2337 
2338 static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2339 						  unsigned int *fifo)
2340 {
2341 	unsigned int q_fifo_size;
2342 	unsigned int i;
2343 
2344 	for (i = 0; i < pdata->rx_q_count; i++) {
2345 		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2346 
2347 		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2348 	}
2349 }
2350 
2351 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2352 {
2353 	unsigned int i;
2354 
2355 	for (i = 0; i < pdata->rx_q_count; i++) {
2356 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2357 				       pdata->rx_rfa[i]);
2358 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2359 				       pdata->rx_rfd[i]);
2360 	}
2361 }
2362 
2363 static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2364 {
2365 	/* The configured value may not be the actual amount of fifo RAM */
2366 	return min_t(unsigned int, pdata->tx_max_fifo_size,
2367 		     pdata->hw_feat.tx_fifo_size);
2368 }
2369 
2370 static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2371 {
2372 	/* The configured value may not be the actual amount of fifo RAM */
2373 	return min_t(unsigned int, pdata->rx_max_fifo_size,
2374 		     pdata->hw_feat.rx_fifo_size);
2375 }
2376 
2377 static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2378 				      unsigned int queue_count,
2379 				      unsigned int *fifo)
2380 {
2381 	unsigned int q_fifo_size;
2382 	unsigned int p_fifo;
2383 	unsigned int i;
2384 
2385 	q_fifo_size = fifo_size / queue_count;
2386 
2387 	/* Calculate the fifo setting by dividing the queue's fifo size
2388 	 * by the fifo allocation increment (with 0 representing the
2389 	 * base allocation increment so decrement the result by 1).
2390 	 */
2391 	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2392 	if (p_fifo)
2393 		p_fifo--;
2394 
2395 	/* Distribute the fifo equally amongst the queues */
2396 	for (i = 0; i < queue_count; i++)
2397 		fifo[i] = p_fifo;
2398 }
2399 
2400 static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2401 					   unsigned int queue_count,
2402 					   unsigned int *fifo)
2403 {
2404 	unsigned int i;
2405 
2406 	BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2407 
2408 	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2409 		return fifo_size;
2410 
2411 	/* Rx queues 9 and up are for specialized packets,
2412 	 * such as PTP or DCB control packets, etc. and
2413 	 * don't require a large fifo
2414 	 */
2415 	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2416 		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2417 		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2418 	}
2419 
2420 	return fifo_size;
2421 }
2422 
2423 static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2424 {
2425 	unsigned int delay;
2426 
2427 	/* If a delay has been provided, use that */
2428 	if (pdata->pfc->delay)
2429 		return pdata->pfc->delay / 8;
2430 
2431 	/* Allow for two maximum size frames */
2432 	delay = xgbe_get_max_frame(pdata);
2433 	delay += XGMAC_ETH_PREAMBLE;
2434 	delay *= 2;
2435 
2436 	/* Allow for PFC frame */
2437 	delay += XGMAC_PFC_DATA_LEN;
2438 	delay += ETH_HLEN + ETH_FCS_LEN;
2439 	delay += XGMAC_ETH_PREAMBLE;
2440 
2441 	/* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2442 	delay += XGMAC_PFC_DELAYS;
2443 
2444 	return delay;
2445 }
2446 
2447 static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2448 {
2449 	unsigned int count, prio_queues;
2450 	unsigned int i;
2451 
2452 	if (!pdata->pfc->pfc_en)
2453 		return 0;
2454 
2455 	count = 0;
2456 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2457 	for (i = 0; i < prio_queues; i++) {
2458 		if (!xgbe_is_pfc_queue(pdata, i))
2459 			continue;
2460 
2461 		pdata->pfcq[i] = 1;
2462 		count++;
2463 	}
2464 
2465 	return count;
2466 }
2467 
2468 static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2469 				    unsigned int fifo_size,
2470 				    unsigned int *fifo)
2471 {
2472 	unsigned int q_fifo_size, rem_fifo, addn_fifo;
2473 	unsigned int prio_queues;
2474 	unsigned int pfc_count;
2475 	unsigned int i;
2476 
2477 	q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2478 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2479 	pfc_count = xgbe_get_pfc_queues(pdata);
2480 
2481 	if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2482 		/* No traffic classes with PFC enabled or can't do lossless */
2483 		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2484 		return;
2485 	}
2486 
2487 	/* Calculate how much fifo we have to play with */
2488 	rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2489 
2490 	/* Calculate how much more than base fifo PFC needs, which also
2491 	 * becomes the threshold activation point (RFA)
2492 	 */
2493 	pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2494 	pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2495 
2496 	if (pdata->pfc_rfa > q_fifo_size) {
2497 		addn_fifo = pdata->pfc_rfa - q_fifo_size;
2498 		addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2499 	} else {
2500 		addn_fifo = 0;
2501 	}
2502 
2503 	/* Calculate DCB fifo settings:
2504 	 *   - distribute remaining fifo between the VLAN priority
2505 	 *     queues based on traffic class PFC enablement and overall
2506 	 *     priority (0 is lowest priority, so start at highest)
2507 	 */
2508 	i = prio_queues;
2509 	while (i > 0) {
2510 		i--;
2511 
2512 		fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2513 
2514 		if (!pdata->pfcq[i] || !addn_fifo)
2515 			continue;
2516 
2517 		if (addn_fifo > rem_fifo) {
2518 			netdev_warn(pdata->netdev,
2519 				    "RXq%u cannot set needed fifo size\n", i);
2520 			if (!rem_fifo)
2521 				continue;
2522 
2523 			addn_fifo = rem_fifo;
2524 		}
2525 
2526 		fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2527 		rem_fifo -= addn_fifo;
2528 	}
2529 
2530 	if (rem_fifo) {
2531 		unsigned int inc_fifo = rem_fifo / prio_queues;
2532 
2533 		/* Distribute remaining fifo across queues */
2534 		for (i = 0; i < prio_queues; i++)
2535 			fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2536 	}
2537 }
2538 
2539 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2540 {
2541 	unsigned int fifo_size;
2542 	unsigned int fifo[XGBE_MAX_QUEUES];
2543 	unsigned int i;
2544 
2545 	fifo_size = xgbe_get_tx_fifo_size(pdata);
2546 
2547 	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2548 
2549 	for (i = 0; i < pdata->tx_q_count; i++)
2550 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2551 
2552 	netif_info(pdata, drv, pdata->netdev,
2553 		   "%d Tx hardware queues, %d byte fifo per queue\n",
2554 		   pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2555 }
2556 
2557 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2558 {
2559 	unsigned int fifo_size;
2560 	unsigned int fifo[XGBE_MAX_QUEUES];
2561 	unsigned int prio_queues;
2562 	unsigned int i;
2563 
2564 	/* Clear any DCB related fifo/queue information */
2565 	memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2566 	pdata->pfc_rfa = 0;
2567 
2568 	fifo_size = xgbe_get_rx_fifo_size(pdata);
2569 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2570 
2571 	/* Assign a minimum fifo to the non-VLAN priority queues */
2572 	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2573 
2574 	if (pdata->pfc && pdata->ets)
2575 		xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2576 	else
2577 		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2578 
2579 	for (i = 0; i < pdata->rx_q_count; i++)
2580 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2581 
2582 	xgbe_calculate_flow_control_threshold(pdata, fifo);
2583 	xgbe_config_flow_control_threshold(pdata);
2584 
2585 	if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2586 		netif_info(pdata, drv, pdata->netdev,
2587 			   "%u Rx hardware queues\n", pdata->rx_q_count);
2588 		for (i = 0; i < pdata->rx_q_count; i++)
2589 			netif_info(pdata, drv, pdata->netdev,
2590 				   "RxQ%u, %u byte fifo queue\n", i,
2591 				   ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2592 	} else {
2593 		netif_info(pdata, drv, pdata->netdev,
2594 			   "%u Rx hardware queues, %u byte fifo per queue\n",
2595 			   pdata->rx_q_count,
2596 			   ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2597 	}
2598 }
2599 
2600 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2601 {
2602 	unsigned int qptc, qptc_extra, queue;
2603 	unsigned int prio_queues;
2604 	unsigned int ppq, ppq_extra, prio;
2605 	unsigned int mask;
2606 	unsigned int i, j, reg, reg_val;
2607 
2608 	/* Map the MTL Tx Queues to Traffic Classes
2609 	 *   Note: Tx Queues >= Traffic Classes
2610 	 */
2611 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2612 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2613 
2614 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2615 		for (j = 0; j < qptc; j++) {
2616 			netif_dbg(pdata, drv, pdata->netdev,
2617 				  "TXq%u mapped to TC%u\n", queue, i);
2618 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2619 					       Q2TCMAP, i);
2620 			pdata->q2tc_map[queue++] = i;
2621 		}
2622 
2623 		if (i < qptc_extra) {
2624 			netif_dbg(pdata, drv, pdata->netdev,
2625 				  "TXq%u mapped to TC%u\n", queue, i);
2626 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2627 					       Q2TCMAP, i);
2628 			pdata->q2tc_map[queue++] = i;
2629 		}
2630 	}
2631 
2632 	/* Map the 8 VLAN priority values to available MTL Rx queues */
2633 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2634 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2635 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2636 
2637 	reg = MAC_RQC2R;
2638 	reg_val = 0;
2639 	for (i = 0, prio = 0; i < prio_queues;) {
2640 		mask = 0;
2641 		for (j = 0; j < ppq; j++) {
2642 			netif_dbg(pdata, drv, pdata->netdev,
2643 				  "PRIO%u mapped to RXq%u\n", prio, i);
2644 			mask |= (1 << prio);
2645 			pdata->prio2q_map[prio++] = i;
2646 		}
2647 
2648 		if (i < ppq_extra) {
2649 			netif_dbg(pdata, drv, pdata->netdev,
2650 				  "PRIO%u mapped to RXq%u\n", prio, i);
2651 			mask |= (1 << prio);
2652 			pdata->prio2q_map[prio++] = i;
2653 		}
2654 
2655 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2656 
2657 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2658 			continue;
2659 
2660 		XGMAC_IOWRITE(pdata, reg, reg_val);
2661 		reg += MAC_RQC2_INC;
2662 		reg_val = 0;
2663 	}
2664 
2665 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2666 	reg = MTL_RQDCM0R;
2667 	reg_val = 0;
2668 	for (i = 0; i < pdata->rx_q_count;) {
2669 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2670 
2671 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2672 			continue;
2673 
2674 		XGMAC_IOWRITE(pdata, reg, reg_val);
2675 
2676 		reg += MTL_RQDCM_INC;
2677 		reg_val = 0;
2678 	}
2679 }
2680 
2681 static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2682 {
2683 	unsigned int offset, queue, prio;
2684 	u8 i;
2685 
2686 	netdev_reset_tc(pdata->netdev);
2687 	if (!pdata->num_tcs)
2688 		return;
2689 
2690 	netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2691 
2692 	for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2693 		while ((queue < pdata->tx_q_count) &&
2694 		       (pdata->q2tc_map[queue] == i))
2695 			queue++;
2696 
2697 		netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2698 			  i, offset, queue - 1);
2699 		netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2700 		offset = queue;
2701 	}
2702 
2703 	if (!pdata->ets)
2704 		return;
2705 
2706 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2707 		netdev_set_prio_tc_map(pdata->netdev, prio,
2708 				       pdata->ets->prio_tc[prio]);
2709 }
2710 
2711 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2712 {
2713 	struct ieee_ets *ets = pdata->ets;
2714 	unsigned int total_weight, min_weight, weight;
2715 	unsigned int mask, reg, reg_val;
2716 	unsigned int i, prio;
2717 
2718 	if (!ets)
2719 		return;
2720 
2721 	/* Set Tx to deficit weighted round robin scheduling algorithm (when
2722 	 * traffic class is using ETS algorithm)
2723 	 */
2724 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2725 
2726 	/* Set Traffic Class algorithms */
2727 	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2728 	min_weight = total_weight / 100;
2729 	if (!min_weight)
2730 		min_weight = 1;
2731 
2732 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2733 		/* Map the priorities to the traffic class */
2734 		mask = 0;
2735 		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2736 			if (ets->prio_tc[prio] == i)
2737 				mask |= (1 << prio);
2738 		}
2739 		mask &= 0xff;
2740 
2741 		netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2742 			  i, mask);
2743 		reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2744 		reg_val = XGMAC_IOREAD(pdata, reg);
2745 
2746 		reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2747 		reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2748 
2749 		XGMAC_IOWRITE(pdata, reg, reg_val);
2750 
2751 		/* Set the traffic class algorithm */
2752 		switch (ets->tc_tsa[i]) {
2753 		case IEEE_8021QAZ_TSA_STRICT:
2754 			netif_dbg(pdata, drv, pdata->netdev,
2755 				  "TC%u using SP\n", i);
2756 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2757 					       MTL_TSA_SP);
2758 			break;
2759 		case IEEE_8021QAZ_TSA_ETS:
2760 			weight = total_weight * ets->tc_tx_bw[i] / 100;
2761 			weight = clamp(weight, min_weight, total_weight);
2762 
2763 			netif_dbg(pdata, drv, pdata->netdev,
2764 				  "TC%u using DWRR (weight %u)\n", i, weight);
2765 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2766 					       MTL_TSA_ETS);
2767 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2768 					       weight);
2769 			break;
2770 		}
2771 	}
2772 
2773 	xgbe_config_tc(pdata);
2774 }
2775 
2776 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2777 {
2778 	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2779 		/* Just stop the Tx queues while Rx fifo is changed */
2780 		netif_tx_stop_all_queues(pdata->netdev);
2781 
2782 		/* Suspend Rx so that fifo's can be adjusted */
2783 		pdata->hw_if.disable_rx(pdata);
2784 	}
2785 
2786 	xgbe_config_rx_fifo_size(pdata);
2787 	xgbe_config_flow_control(pdata);
2788 
2789 	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2790 		/* Resume Rx */
2791 		pdata->hw_if.enable_rx(pdata);
2792 
2793 		/* Resume Tx queues */
2794 		netif_tx_start_all_queues(pdata->netdev);
2795 	}
2796 }
2797 
2798 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2799 {
2800 	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2801 
2802 	/* Filtering is done using perfect filtering and hash filtering */
2803 	if (pdata->hw_feat.hash_table_size) {
2804 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2805 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2806 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2807 	}
2808 }
2809 
2810 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2811 {
2812 	unsigned int val;
2813 
2814 	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2815 
2816 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2817 }
2818 
2819 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2820 {
2821 	xgbe_set_speed(pdata, pdata->phy_speed);
2822 }
2823 
2824 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2825 {
2826 	if (pdata->netdev->features & NETIF_F_RXCSUM)
2827 		xgbe_enable_rx_csum(pdata);
2828 	else
2829 		xgbe_disable_rx_csum(pdata);
2830 }
2831 
2832 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2833 {
2834 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2835 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2836 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2837 
2838 	/* Set the current VLAN Hash Table register value */
2839 	xgbe_update_vlan_hash_table(pdata);
2840 
2841 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2842 		xgbe_enable_rx_vlan_filtering(pdata);
2843 	else
2844 		xgbe_disable_rx_vlan_filtering(pdata);
2845 
2846 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2847 		xgbe_enable_rx_vlan_stripping(pdata);
2848 	else
2849 		xgbe_disable_rx_vlan_stripping(pdata);
2850 }
2851 
2852 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2853 {
2854 	bool read_hi;
2855 	u64 val;
2856 
2857 	if (pdata->vdata->mmc_64bit) {
2858 		switch (reg_lo) {
2859 		/* These registers are always 32 bit */
2860 		case MMC_RXRUNTERROR:
2861 		case MMC_RXJABBERERROR:
2862 		case MMC_RXUNDERSIZE_G:
2863 		case MMC_RXOVERSIZE_G:
2864 		case MMC_RXWATCHDOGERROR:
2865 			read_hi = false;
2866 			break;
2867 
2868 		default:
2869 			read_hi = true;
2870 		}
2871 	} else {
2872 		switch (reg_lo) {
2873 		/* These registers are always 64 bit */
2874 		case MMC_TXOCTETCOUNT_GB_LO:
2875 		case MMC_TXOCTETCOUNT_G_LO:
2876 		case MMC_RXOCTETCOUNT_GB_LO:
2877 		case MMC_RXOCTETCOUNT_G_LO:
2878 			read_hi = true;
2879 			break;
2880 
2881 		default:
2882 			read_hi = false;
2883 		}
2884 	}
2885 
2886 	val = XGMAC_IOREAD(pdata, reg_lo);
2887 
2888 	if (read_hi)
2889 		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2890 
2891 	return val;
2892 }
2893 
2894 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2895 {
2896 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2897 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2898 
2899 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2900 		stats->txoctetcount_gb +=
2901 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2902 
2903 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2904 		stats->txframecount_gb +=
2905 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2906 
2907 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2908 		stats->txbroadcastframes_g +=
2909 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2910 
2911 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2912 		stats->txmulticastframes_g +=
2913 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2914 
2915 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2916 		stats->tx64octets_gb +=
2917 			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2918 
2919 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2920 		stats->tx65to127octets_gb +=
2921 			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2922 
2923 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2924 		stats->tx128to255octets_gb +=
2925 			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2926 
2927 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2928 		stats->tx256to511octets_gb +=
2929 			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2930 
2931 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2932 		stats->tx512to1023octets_gb +=
2933 			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2934 
2935 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2936 		stats->tx1024tomaxoctets_gb +=
2937 			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2938 
2939 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2940 		stats->txunicastframes_gb +=
2941 			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2942 
2943 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2944 		stats->txmulticastframes_gb +=
2945 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2946 
2947 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2948 		stats->txbroadcastframes_g +=
2949 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2950 
2951 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2952 		stats->txunderflowerror +=
2953 			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2954 
2955 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2956 		stats->txoctetcount_g +=
2957 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2958 
2959 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2960 		stats->txframecount_g +=
2961 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2962 
2963 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2964 		stats->txpauseframes +=
2965 			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2966 
2967 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2968 		stats->txvlanframes_g +=
2969 			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2970 }
2971 
2972 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2973 {
2974 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2975 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2976 
2977 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2978 		stats->rxframecount_gb +=
2979 			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2980 
2981 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2982 		stats->rxoctetcount_gb +=
2983 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2984 
2985 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2986 		stats->rxoctetcount_g +=
2987 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2988 
2989 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2990 		stats->rxbroadcastframes_g +=
2991 			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2992 
2993 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2994 		stats->rxmulticastframes_g +=
2995 			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2996 
2997 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2998 		stats->rxcrcerror +=
2999 			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3000 
3001 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
3002 		stats->rxrunterror +=
3003 			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3004 
3005 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
3006 		stats->rxjabbererror +=
3007 			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3008 
3009 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
3010 		stats->rxundersize_g +=
3011 			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3012 
3013 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
3014 		stats->rxoversize_g +=
3015 			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3016 
3017 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
3018 		stats->rx64octets_gb +=
3019 			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3020 
3021 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
3022 		stats->rx65to127octets_gb +=
3023 			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3024 
3025 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
3026 		stats->rx128to255octets_gb +=
3027 			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3028 
3029 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
3030 		stats->rx256to511octets_gb +=
3031 			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3032 
3033 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
3034 		stats->rx512to1023octets_gb +=
3035 			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3036 
3037 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
3038 		stats->rx1024tomaxoctets_gb +=
3039 			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3040 
3041 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
3042 		stats->rxunicastframes_g +=
3043 			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3044 
3045 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
3046 		stats->rxlengtherror +=
3047 			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3048 
3049 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
3050 		stats->rxoutofrangetype +=
3051 			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3052 
3053 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
3054 		stats->rxpauseframes +=
3055 			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3056 
3057 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
3058 		stats->rxfifooverflow +=
3059 			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3060 
3061 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
3062 		stats->rxvlanframes_gb +=
3063 			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3064 
3065 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
3066 		stats->rxwatchdogerror +=
3067 			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3068 }
3069 
3070 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
3071 {
3072 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3073 
3074 	/* Freeze counters */
3075 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
3076 
3077 	stats->txoctetcount_gb +=
3078 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3079 
3080 	stats->txframecount_gb +=
3081 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3082 
3083 	stats->txbroadcastframes_g +=
3084 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3085 
3086 	stats->txmulticastframes_g +=
3087 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3088 
3089 	stats->tx64octets_gb +=
3090 		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3091 
3092 	stats->tx65to127octets_gb +=
3093 		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3094 
3095 	stats->tx128to255octets_gb +=
3096 		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3097 
3098 	stats->tx256to511octets_gb +=
3099 		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3100 
3101 	stats->tx512to1023octets_gb +=
3102 		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3103 
3104 	stats->tx1024tomaxoctets_gb +=
3105 		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3106 
3107 	stats->txunicastframes_gb +=
3108 		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3109 
3110 	stats->txmulticastframes_gb +=
3111 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3112 
3113 	stats->txbroadcastframes_g +=
3114 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3115 
3116 	stats->txunderflowerror +=
3117 		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3118 
3119 	stats->txoctetcount_g +=
3120 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3121 
3122 	stats->txframecount_g +=
3123 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3124 
3125 	stats->txpauseframes +=
3126 		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3127 
3128 	stats->txvlanframes_g +=
3129 		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3130 
3131 	stats->rxframecount_gb +=
3132 		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3133 
3134 	stats->rxoctetcount_gb +=
3135 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3136 
3137 	stats->rxoctetcount_g +=
3138 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3139 
3140 	stats->rxbroadcastframes_g +=
3141 		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3142 
3143 	stats->rxmulticastframes_g +=
3144 		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3145 
3146 	stats->rxcrcerror +=
3147 		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3148 
3149 	stats->rxrunterror +=
3150 		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3151 
3152 	stats->rxjabbererror +=
3153 		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3154 
3155 	stats->rxundersize_g +=
3156 		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3157 
3158 	stats->rxoversize_g +=
3159 		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3160 
3161 	stats->rx64octets_gb +=
3162 		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3163 
3164 	stats->rx65to127octets_gb +=
3165 		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3166 
3167 	stats->rx128to255octets_gb +=
3168 		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3169 
3170 	stats->rx256to511octets_gb +=
3171 		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3172 
3173 	stats->rx512to1023octets_gb +=
3174 		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3175 
3176 	stats->rx1024tomaxoctets_gb +=
3177 		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3178 
3179 	stats->rxunicastframes_g +=
3180 		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3181 
3182 	stats->rxlengtherror +=
3183 		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3184 
3185 	stats->rxoutofrangetype +=
3186 		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3187 
3188 	stats->rxpauseframes +=
3189 		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3190 
3191 	stats->rxfifooverflow +=
3192 		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3193 
3194 	stats->rxvlanframes_gb +=
3195 		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3196 
3197 	stats->rxwatchdogerror +=
3198 		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3199 
3200 	/* Un-freeze counters */
3201 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3202 }
3203 
3204 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3205 {
3206 	/* Set counters to reset on read */
3207 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3208 
3209 	/* Reset the counters */
3210 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3211 }
3212 
3213 static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3214 				     unsigned int queue)
3215 {
3216 	unsigned int tx_status;
3217 	unsigned long tx_timeout;
3218 
3219 	/* The Tx engine cannot be stopped if it is actively processing
3220 	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
3221 	 * wait forever though...
3222 	 */
3223 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3224 	while (time_before(jiffies, tx_timeout)) {
3225 		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3226 		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3227 		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3228 			break;
3229 
3230 		usleep_range(500, 1000);
3231 	}
3232 
3233 	if (!time_before(jiffies, tx_timeout))
3234 		netdev_info(pdata->netdev,
3235 			    "timed out waiting for Tx queue %u to empty\n",
3236 			    queue);
3237 }
3238 
3239 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3240 				 unsigned int queue)
3241 {
3242 	unsigned int tx_dsr, tx_pos, tx_qidx;
3243 	unsigned int tx_status;
3244 	unsigned long tx_timeout;
3245 
3246 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3247 		return xgbe_txq_prepare_tx_stop(pdata, queue);
3248 
3249 	/* Calculate the status register to read and the position within */
3250 	if (queue < DMA_DSRX_FIRST_QUEUE) {
3251 		tx_dsr = DMA_DSR0;
3252 		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3253 	} else {
3254 		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3255 
3256 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3257 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3258 			 DMA_DSRX_TPS_START;
3259 	}
3260 
3261 	/* The Tx engine cannot be stopped if it is actively processing
3262 	 * descriptors. Wait for the Tx engine to enter the stopped or
3263 	 * suspended state.  Don't wait forever though...
3264 	 */
3265 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3266 	while (time_before(jiffies, tx_timeout)) {
3267 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3268 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3269 		if ((tx_status == DMA_TPS_STOPPED) ||
3270 		    (tx_status == DMA_TPS_SUSPENDED))
3271 			break;
3272 
3273 		usleep_range(500, 1000);
3274 	}
3275 
3276 	if (!time_before(jiffies, tx_timeout))
3277 		netdev_info(pdata->netdev,
3278 			    "timed out waiting for Tx DMA channel %u to stop\n",
3279 			    queue);
3280 }
3281 
3282 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3283 {
3284 	unsigned int i;
3285 
3286 	/* Enable each Tx DMA channel */
3287 	for (i = 0; i < pdata->channel_count; i++) {
3288 		if (!pdata->channel[i]->tx_ring)
3289 			break;
3290 
3291 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3292 	}
3293 
3294 	/* Enable each Tx queue */
3295 	for (i = 0; i < pdata->tx_q_count; i++)
3296 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3297 				       MTL_Q_ENABLED);
3298 
3299 	/* Enable MAC Tx */
3300 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3301 }
3302 
3303 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3304 {
3305 	unsigned int i;
3306 
3307 	/* Prepare for Tx DMA channel stop */
3308 	for (i = 0; i < pdata->tx_q_count; i++)
3309 		xgbe_prepare_tx_stop(pdata, i);
3310 
3311 	/* Disable MAC Tx */
3312 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3313 
3314 	/* Disable each Tx queue */
3315 	for (i = 0; i < pdata->tx_q_count; i++)
3316 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3317 
3318 	/* Disable each Tx DMA channel */
3319 	for (i = 0; i < pdata->channel_count; i++) {
3320 		if (!pdata->channel[i]->tx_ring)
3321 			break;
3322 
3323 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3324 	}
3325 }
3326 
3327 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3328 				 unsigned int queue)
3329 {
3330 	unsigned int rx_status;
3331 	unsigned long rx_timeout;
3332 
3333 	/* The Rx engine cannot be stopped if it is actively processing
3334 	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
3335 	 * wait forever though...
3336 	 */
3337 	rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3338 	while (time_before(jiffies, rx_timeout)) {
3339 		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3340 		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3341 		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3342 			break;
3343 
3344 		usleep_range(500, 1000);
3345 	}
3346 
3347 	if (!time_before(jiffies, rx_timeout))
3348 		netdev_info(pdata->netdev,
3349 			    "timed out waiting for Rx queue %u to empty\n",
3350 			    queue);
3351 }
3352 
3353 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3354 {
3355 	unsigned int reg_val, i;
3356 
3357 	/* Enable each Rx DMA channel */
3358 	for (i = 0; i < pdata->channel_count; i++) {
3359 		if (!pdata->channel[i]->rx_ring)
3360 			break;
3361 
3362 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3363 	}
3364 
3365 	/* Enable each Rx queue */
3366 	reg_val = 0;
3367 	for (i = 0; i < pdata->rx_q_count; i++)
3368 		reg_val |= (0x02 << (i << 1));
3369 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3370 
3371 	/* Enable MAC Rx */
3372 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3373 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3374 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3375 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3376 }
3377 
3378 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3379 {
3380 	unsigned int i;
3381 
3382 	/* Disable MAC Rx */
3383 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3384 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3385 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3386 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3387 
3388 	/* Prepare for Rx DMA channel stop */
3389 	for (i = 0; i < pdata->rx_q_count; i++)
3390 		xgbe_prepare_rx_stop(pdata, i);
3391 
3392 	/* Disable each Rx queue */
3393 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3394 
3395 	/* Disable each Rx DMA channel */
3396 	for (i = 0; i < pdata->channel_count; i++) {
3397 		if (!pdata->channel[i]->rx_ring)
3398 			break;
3399 
3400 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3401 	}
3402 }
3403 
3404 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3405 {
3406 	unsigned int i;
3407 
3408 	/* Enable each Tx DMA channel */
3409 	for (i = 0; i < pdata->channel_count; i++) {
3410 		if (!pdata->channel[i]->tx_ring)
3411 			break;
3412 
3413 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3414 	}
3415 
3416 	/* Enable MAC Tx */
3417 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3418 }
3419 
3420 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3421 {
3422 	unsigned int i;
3423 
3424 	/* Prepare for Tx DMA channel stop */
3425 	for (i = 0; i < pdata->tx_q_count; i++)
3426 		xgbe_prepare_tx_stop(pdata, i);
3427 
3428 	/* Disable MAC Tx */
3429 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3430 
3431 	/* Disable each Tx DMA channel */
3432 	for (i = 0; i < pdata->channel_count; i++) {
3433 		if (!pdata->channel[i]->tx_ring)
3434 			break;
3435 
3436 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3437 	}
3438 }
3439 
3440 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3441 {
3442 	unsigned int i;
3443 
3444 	/* Enable each Rx DMA channel */
3445 	for (i = 0; i < pdata->channel_count; i++) {
3446 		if (!pdata->channel[i]->rx_ring)
3447 			break;
3448 
3449 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3450 	}
3451 }
3452 
3453 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3454 {
3455 	unsigned int i;
3456 
3457 	/* Disable each Rx DMA channel */
3458 	for (i = 0; i < pdata->channel_count; i++) {
3459 		if (!pdata->channel[i]->rx_ring)
3460 			break;
3461 
3462 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3463 	}
3464 }
3465 
3466 static int xgbe_init(struct xgbe_prv_data *pdata)
3467 {
3468 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
3469 	int ret;
3470 
3471 	DBGPR("-->xgbe_init\n");
3472 
3473 	/* Flush Tx queues */
3474 	ret = xgbe_flush_tx_queues(pdata);
3475 	if (ret) {
3476 		netdev_err(pdata->netdev, "error flushing TX queues\n");
3477 		return ret;
3478 	}
3479 
3480 	/*
3481 	 * Initialize DMA related features
3482 	 */
3483 	xgbe_config_dma_bus(pdata);
3484 	xgbe_config_dma_cache(pdata);
3485 	xgbe_config_osp_mode(pdata);
3486 	xgbe_config_pbl_val(pdata);
3487 	xgbe_config_rx_coalesce(pdata);
3488 	xgbe_config_tx_coalesce(pdata);
3489 	xgbe_config_rx_buffer_size(pdata);
3490 	xgbe_config_tso_mode(pdata);
3491 	xgbe_config_sph_mode(pdata);
3492 	xgbe_config_rss(pdata);
3493 	desc_if->wrapper_tx_desc_init(pdata);
3494 	desc_if->wrapper_rx_desc_init(pdata);
3495 	xgbe_enable_dma_interrupts(pdata);
3496 
3497 	/*
3498 	 * Initialize MTL related features
3499 	 */
3500 	xgbe_config_mtl_mode(pdata);
3501 	xgbe_config_queue_mapping(pdata);
3502 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3503 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3504 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3505 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3506 	xgbe_config_tx_fifo_size(pdata);
3507 	xgbe_config_rx_fifo_size(pdata);
3508 	/*TODO: Error Packet and undersized good Packet forwarding enable
3509 		(FEP and FUP)
3510 	 */
3511 	xgbe_config_dcb_tc(pdata);
3512 	xgbe_enable_mtl_interrupts(pdata);
3513 
3514 	/*
3515 	 * Initialize MAC related features
3516 	 */
3517 	xgbe_config_mac_address(pdata);
3518 	xgbe_config_rx_mode(pdata);
3519 	xgbe_config_jumbo_enable(pdata);
3520 	xgbe_config_flow_control(pdata);
3521 	xgbe_config_mac_speed(pdata);
3522 	xgbe_config_checksum_offload(pdata);
3523 	xgbe_config_vlan_support(pdata);
3524 	xgbe_config_mmc(pdata);
3525 	xgbe_enable_mac_interrupts(pdata);
3526 
3527 	/*
3528 	 * Initialize ECC related features
3529 	 */
3530 	xgbe_enable_ecc_interrupts(pdata);
3531 
3532 	DBGPR("<--xgbe_init\n");
3533 
3534 	return 0;
3535 }
3536 
3537 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3538 {
3539 	DBGPR("-->xgbe_init_function_ptrs\n");
3540 
3541 	hw_if->tx_complete = xgbe_tx_complete;
3542 
3543 	hw_if->set_mac_address = xgbe_set_mac_address;
3544 	hw_if->config_rx_mode = xgbe_config_rx_mode;
3545 
3546 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3547 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3548 
3549 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3550 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3551 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3552 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3553 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3554 
3555 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3556 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3557 
3558 	hw_if->set_speed = xgbe_set_speed;
3559 
3560 	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3561 	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
3562 	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
3563 
3564 	hw_if->set_gpio = xgbe_set_gpio;
3565 	hw_if->clr_gpio = xgbe_clr_gpio;
3566 
3567 	hw_if->enable_tx = xgbe_enable_tx;
3568 	hw_if->disable_tx = xgbe_disable_tx;
3569 	hw_if->enable_rx = xgbe_enable_rx;
3570 	hw_if->disable_rx = xgbe_disable_rx;
3571 
3572 	hw_if->powerup_tx = xgbe_powerup_tx;
3573 	hw_if->powerdown_tx = xgbe_powerdown_tx;
3574 	hw_if->powerup_rx = xgbe_powerup_rx;
3575 	hw_if->powerdown_rx = xgbe_powerdown_rx;
3576 
3577 	hw_if->dev_xmit = xgbe_dev_xmit;
3578 	hw_if->dev_read = xgbe_dev_read;
3579 	hw_if->enable_int = xgbe_enable_int;
3580 	hw_if->disable_int = xgbe_disable_int;
3581 	hw_if->init = xgbe_init;
3582 	hw_if->exit = xgbe_exit;
3583 
3584 	/* Descriptor related Sequences have to be initialized here */
3585 	hw_if->tx_desc_init = xgbe_tx_desc_init;
3586 	hw_if->rx_desc_init = xgbe_rx_desc_init;
3587 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3588 	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3589 	hw_if->is_last_desc = xgbe_is_last_desc;
3590 	hw_if->is_context_desc = xgbe_is_context_desc;
3591 	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3592 
3593 	/* For FLOW ctrl */
3594 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3595 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3596 
3597 	/* For RX coalescing */
3598 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3599 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3600 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3601 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3602 
3603 	/* For RX and TX threshold config */
3604 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3605 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3606 
3607 	/* For RX and TX Store and Forward Mode config */
3608 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3609 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3610 
3611 	/* For TX DMA Operating on Second Frame config */
3612 	hw_if->config_osp_mode = xgbe_config_osp_mode;
3613 
3614 	/* For MMC statistics support */
3615 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3616 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3617 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3618 
3619 	/* For PTP config */
3620 	hw_if->config_tstamp = xgbe_config_tstamp;
3621 	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3622 	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3623 	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3624 	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3625 
3626 	/* For Data Center Bridging config */
3627 	hw_if->config_tc = xgbe_config_tc;
3628 	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3629 	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3630 
3631 	/* For Receive Side Scaling */
3632 	hw_if->enable_rss = xgbe_enable_rss;
3633 	hw_if->disable_rss = xgbe_disable_rss;
3634 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3635 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3636 
3637 	/* For ECC */
3638 	hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3639 	hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3640 
3641 	/* For VXLAN */
3642 	hw_if->enable_vxlan = xgbe_enable_vxlan;
3643 	hw_if->disable_vxlan = xgbe_disable_vxlan;
3644 	hw_if->set_vxlan_id = xgbe_set_vxlan_id;
3645 
3646 	DBGPR("<--xgbe_init_function_ptrs\n");
3647 }
3648