1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * This file is available to you under your choice of the following two
5  * licenses:
6  *
7  * License 1: GPLv2
8  *
9  * Copyright (c) 2014 Advanced Micro Devices, Inc.
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Copyright (c) 2014 Advanced Micro Devices, Inc.
60  * All rights reserved.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions are met:
64  *     * Redistributions of source code must retain the above copyright
65  *       notice, this list of conditions and the following disclaimer.
66  *     * Redistributions in binary form must reproduce the above copyright
67  *       notice, this list of conditions and the following disclaimer in the
68  *       documentation and/or other materials provided with the distribution.
69  *     * Neither the name of Advanced Micro Devices, Inc. nor the
70  *       names of its contributors may be used to endorse or promote products
71  *       derived from this software without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83  *
84  * This file incorporates work covered by the following copyright and
85  * permission notice:
86  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89  *     and you.
90  *
91  *     The Software IS NOT an item of Licensed Software or Licensed Product
92  *     under any End User Software License Agreement or Agreement for Licensed
93  *     Product with Synopsys or any supplement thereto.  Permission is hereby
94  *     granted, free of charge, to any person obtaining a copy of this software
95  *     annotated with this license and the Software, to deal in the Software
96  *     without restriction, including without limitation the rights to use,
97  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98  *     of the Software, and to permit persons to whom the Software is furnished
99  *     to do so, subject to the following conditions:
100  *
101  *     The above copyright notice and this permission notice shall be included
102  *     in all copies or substantial portions of the Software.
103  *
104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114  *     THE POSSIBILITY OF SUCH DAMAGE.
115  */
116 
117 #include <linux/phy.h>
118 #include <linux/mdio.h>
119 #include <linux/clk.h>
120 #include <linux/bitrev.h>
121 #include <linux/crc32.h>
122 
123 #include "xgbe.h"
124 #include "xgbe-common.h"
125 
126 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
127 				      unsigned int usec)
128 {
129 	unsigned long rate;
130 	unsigned int ret;
131 
132 	DBGPR("-->xgbe_usec_to_riwt\n");
133 
134 	rate = pdata->sysclk_rate;
135 
136 	/*
137 	 * Convert the input usec value to the watchdog timer value. Each
138 	 * watchdog timer value is equivalent to 256 clock cycles.
139 	 * Calculate the required value as:
140 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
141 	 */
142 	ret = (usec * (rate / 1000000)) / 256;
143 
144 	DBGPR("<--xgbe_usec_to_riwt\n");
145 
146 	return ret;
147 }
148 
149 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
150 				      unsigned int riwt)
151 {
152 	unsigned long rate;
153 	unsigned int ret;
154 
155 	DBGPR("-->xgbe_riwt_to_usec\n");
156 
157 	rate = pdata->sysclk_rate;
158 
159 	/*
160 	 * Convert the input watchdog timer value to the usec value. Each
161 	 * watchdog timer value is equivalent to 256 clock cycles.
162 	 * Calculate the required value as:
163 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
164 	 */
165 	ret = (riwt * 256) / (rate / 1000000);
166 
167 	DBGPR("<--xgbe_riwt_to_usec\n");
168 
169 	return ret;
170 }
171 
172 static int xgbe_config_pblx8(struct xgbe_prv_data *pdata)
173 {
174 	struct xgbe_channel *channel;
175 	unsigned int i;
176 
177 	channel = pdata->channel;
178 	for (i = 0; i < pdata->channel_count; i++, channel++)
179 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, PBLX8,
180 				       pdata->pblx8);
181 
182 	return 0;
183 }
184 
185 static int xgbe_get_tx_pbl_val(struct xgbe_prv_data *pdata)
186 {
187 	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_TCR, PBL);
188 }
189 
190 static int xgbe_config_tx_pbl_val(struct xgbe_prv_data *pdata)
191 {
192 	struct xgbe_channel *channel;
193 	unsigned int i;
194 
195 	channel = pdata->channel;
196 	for (i = 0; i < pdata->channel_count; i++, channel++) {
197 		if (!channel->tx_ring)
198 			break;
199 
200 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, PBL,
201 				       pdata->tx_pbl);
202 	}
203 
204 	return 0;
205 }
206 
207 static int xgbe_get_rx_pbl_val(struct xgbe_prv_data *pdata)
208 {
209 	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_RCR, PBL);
210 }
211 
212 static int xgbe_config_rx_pbl_val(struct xgbe_prv_data *pdata)
213 {
214 	struct xgbe_channel *channel;
215 	unsigned int i;
216 
217 	channel = pdata->channel;
218 	for (i = 0; i < pdata->channel_count; i++, channel++) {
219 		if (!channel->rx_ring)
220 			break;
221 
222 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, PBL,
223 				       pdata->rx_pbl);
224 	}
225 
226 	return 0;
227 }
228 
229 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
230 {
231 	struct xgbe_channel *channel;
232 	unsigned int i;
233 
234 	channel = pdata->channel;
235 	for (i = 0; i < pdata->channel_count; i++, channel++) {
236 		if (!channel->tx_ring)
237 			break;
238 
239 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, OSP,
240 				       pdata->tx_osp_mode);
241 	}
242 
243 	return 0;
244 }
245 
246 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
247 {
248 	unsigned int i;
249 
250 	for (i = 0; i < pdata->rx_q_count; i++)
251 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
252 
253 	return 0;
254 }
255 
256 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
257 {
258 	unsigned int i;
259 
260 	for (i = 0; i < pdata->tx_q_count; i++)
261 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
262 
263 	return 0;
264 }
265 
266 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
267 				    unsigned int val)
268 {
269 	unsigned int i;
270 
271 	for (i = 0; i < pdata->rx_q_count; i++)
272 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
273 
274 	return 0;
275 }
276 
277 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
278 				    unsigned int val)
279 {
280 	unsigned int i;
281 
282 	for (i = 0; i < pdata->tx_q_count; i++)
283 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
284 
285 	return 0;
286 }
287 
288 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
289 {
290 	struct xgbe_channel *channel;
291 	unsigned int i;
292 
293 	channel = pdata->channel;
294 	for (i = 0; i < pdata->channel_count; i++, channel++) {
295 		if (!channel->rx_ring)
296 			break;
297 
298 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RIWT, RWT,
299 				       pdata->rx_riwt);
300 	}
301 
302 	return 0;
303 }
304 
305 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
306 {
307 	return 0;
308 }
309 
310 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
311 {
312 	struct xgbe_channel *channel;
313 	unsigned int i;
314 
315 	channel = pdata->channel;
316 	for (i = 0; i < pdata->channel_count; i++, channel++) {
317 		if (!channel->rx_ring)
318 			break;
319 
320 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, RBSZ,
321 				       pdata->rx_buf_size);
322 	}
323 }
324 
325 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
326 {
327 	struct xgbe_channel *channel;
328 	unsigned int i;
329 
330 	channel = pdata->channel;
331 	for (i = 0; i < pdata->channel_count; i++, channel++) {
332 		if (!channel->tx_ring)
333 			break;
334 
335 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, TSE, 1);
336 	}
337 }
338 
339 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
340 {
341 	struct xgbe_channel *channel;
342 	unsigned int i;
343 
344 	channel = pdata->channel;
345 	for (i = 0; i < pdata->channel_count; i++, channel++) {
346 		if (!channel->rx_ring)
347 			break;
348 
349 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, SPH, 1);
350 	}
351 
352 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
353 }
354 
355 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
356 			      unsigned int index, unsigned int val)
357 {
358 	unsigned int wait;
359 	int ret = 0;
360 
361 	mutex_lock(&pdata->rss_mutex);
362 
363 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
364 		ret = -EBUSY;
365 		goto unlock;
366 	}
367 
368 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
369 
370 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
371 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
372 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
373 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
374 
375 	wait = 1000;
376 	while (wait--) {
377 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
378 			goto unlock;
379 
380 		usleep_range(1000, 1500);
381 	}
382 
383 	ret = -EBUSY;
384 
385 unlock:
386 	mutex_unlock(&pdata->rss_mutex);
387 
388 	return ret;
389 }
390 
391 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
392 {
393 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
394 	unsigned int *key = (unsigned int *)&pdata->rss_key;
395 	int ret;
396 
397 	while (key_regs--) {
398 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
399 					 key_regs, *key++);
400 		if (ret)
401 			return ret;
402 	}
403 
404 	return 0;
405 }
406 
407 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
408 {
409 	unsigned int i;
410 	int ret;
411 
412 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
413 		ret = xgbe_write_rss_reg(pdata,
414 					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
415 					 pdata->rss_table[i]);
416 		if (ret)
417 			return ret;
418 	}
419 
420 	return 0;
421 }
422 
423 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
424 {
425 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
426 
427 	return xgbe_write_rss_hash_key(pdata);
428 }
429 
430 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
431 				     const u32 *table)
432 {
433 	unsigned int i;
434 
435 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
436 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
437 
438 	return xgbe_write_rss_lookup_table(pdata);
439 }
440 
441 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
442 {
443 	int ret;
444 
445 	if (!pdata->hw_feat.rss)
446 		return -EOPNOTSUPP;
447 
448 	/* Program the hash key */
449 	ret = xgbe_write_rss_hash_key(pdata);
450 	if (ret)
451 		return ret;
452 
453 	/* Program the lookup table */
454 	ret = xgbe_write_rss_lookup_table(pdata);
455 	if (ret)
456 		return ret;
457 
458 	/* Set the RSS options */
459 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
460 
461 	/* Enable RSS */
462 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
463 
464 	return 0;
465 }
466 
467 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
468 {
469 	if (!pdata->hw_feat.rss)
470 		return -EOPNOTSUPP;
471 
472 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
473 
474 	return 0;
475 }
476 
477 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
478 {
479 	int ret;
480 
481 	if (!pdata->hw_feat.rss)
482 		return;
483 
484 	if (pdata->netdev->features & NETIF_F_RXHASH)
485 		ret = xgbe_enable_rss(pdata);
486 	else
487 		ret = xgbe_disable_rss(pdata);
488 
489 	if (ret)
490 		netdev_err(pdata->netdev,
491 			   "error configuring RSS, RSS disabled\n");
492 }
493 
494 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
495 {
496 	unsigned int max_q_count, q_count;
497 	unsigned int reg, reg_val;
498 	unsigned int i;
499 
500 	/* Clear MTL flow control */
501 	for (i = 0; i < pdata->rx_q_count; i++)
502 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
503 
504 	/* Clear MAC flow control */
505 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
506 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
507 	reg = MAC_Q0TFCR;
508 	for (i = 0; i < q_count; i++) {
509 		reg_val = XGMAC_IOREAD(pdata, reg);
510 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
511 		XGMAC_IOWRITE(pdata, reg, reg_val);
512 
513 		reg += MAC_QTFCR_INC;
514 	}
515 
516 	return 0;
517 }
518 
519 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
520 {
521 	unsigned int max_q_count, q_count;
522 	unsigned int reg, reg_val;
523 	unsigned int i;
524 
525 	/* Set MTL flow control */
526 	for (i = 0; i < pdata->rx_q_count; i++)
527 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 1);
528 
529 	/* Set MAC flow control */
530 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
531 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
532 	reg = MAC_Q0TFCR;
533 	for (i = 0; i < q_count; i++) {
534 		reg_val = XGMAC_IOREAD(pdata, reg);
535 
536 		/* Enable transmit flow control */
537 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
538 		/* Set pause time */
539 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
540 
541 		XGMAC_IOWRITE(pdata, reg, reg_val);
542 
543 		reg += MAC_QTFCR_INC;
544 	}
545 
546 	return 0;
547 }
548 
549 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
550 {
551 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
552 
553 	return 0;
554 }
555 
556 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
557 {
558 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
559 
560 	return 0;
561 }
562 
563 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
564 {
565 	struct ieee_pfc *pfc = pdata->pfc;
566 
567 	if (pdata->tx_pause || (pfc && pfc->pfc_en))
568 		xgbe_enable_tx_flow_control(pdata);
569 	else
570 		xgbe_disable_tx_flow_control(pdata);
571 
572 	return 0;
573 }
574 
575 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
576 {
577 	struct ieee_pfc *pfc = pdata->pfc;
578 
579 	if (pdata->rx_pause || (pfc && pfc->pfc_en))
580 		xgbe_enable_rx_flow_control(pdata);
581 	else
582 		xgbe_disable_rx_flow_control(pdata);
583 
584 	return 0;
585 }
586 
587 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
588 {
589 	struct ieee_pfc *pfc = pdata->pfc;
590 
591 	xgbe_config_tx_flow_control(pdata);
592 	xgbe_config_rx_flow_control(pdata);
593 
594 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
595 			   (pfc && pfc->pfc_en) ? 1 : 0);
596 }
597 
598 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
599 {
600 	struct xgbe_channel *channel;
601 	unsigned int dma_ch_isr, dma_ch_ier;
602 	unsigned int i;
603 
604 	channel = pdata->channel;
605 	for (i = 0; i < pdata->channel_count; i++, channel++) {
606 		/* Clear all the interrupts which are set */
607 		dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR);
608 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr);
609 
610 		/* Clear all interrupt enable bits */
611 		dma_ch_ier = 0;
612 
613 		/* Enable following interrupts
614 		 *   NIE  - Normal Interrupt Summary Enable
615 		 *   AIE  - Abnormal Interrupt Summary Enable
616 		 *   FBEE - Fatal Bus Error Enable
617 		 */
618 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, NIE, 1);
619 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, AIE, 1);
620 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
621 
622 		if (channel->tx_ring) {
623 			/* Enable the following Tx interrupts
624 			 *   TIE  - Transmit Interrupt Enable (unless using
625 			 *          per channel interrupts)
626 			 */
627 			if (!pdata->per_channel_irq)
628 				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
629 		}
630 		if (channel->rx_ring) {
631 			/* Enable following Rx interrupts
632 			 *   RBUE - Receive Buffer Unavailable Enable
633 			 *   RIE  - Receive Interrupt Enable (unless using
634 			 *          per channel interrupts)
635 			 */
636 			XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
637 			if (!pdata->per_channel_irq)
638 				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
639 		}
640 
641 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
642 	}
643 }
644 
645 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
646 {
647 	unsigned int mtl_q_isr;
648 	unsigned int q_count, i;
649 
650 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
651 	for (i = 0; i < q_count; i++) {
652 		/* Clear all the interrupts which are set */
653 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
654 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
655 
656 		/* No MTL interrupts to be enabled */
657 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
658 	}
659 }
660 
661 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
662 {
663 	unsigned int mac_ier = 0;
664 
665 	/* Enable Timestamp interrupt */
666 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
667 
668 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
669 
670 	/* Enable all counter interrupts */
671 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
672 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
673 }
674 
675 static int xgbe_set_gmii_speed(struct xgbe_prv_data *pdata)
676 {
677 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x3)
678 		return 0;
679 
680 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x3);
681 
682 	return 0;
683 }
684 
685 static int xgbe_set_gmii_2500_speed(struct xgbe_prv_data *pdata)
686 {
687 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x2)
688 		return 0;
689 
690 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x2);
691 
692 	return 0;
693 }
694 
695 static int xgbe_set_xgmii_speed(struct xgbe_prv_data *pdata)
696 {
697 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0)
698 		return 0;
699 
700 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0);
701 
702 	return 0;
703 }
704 
705 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
706 				     unsigned int enable)
707 {
708 	unsigned int val = enable ? 1 : 0;
709 
710 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
711 		return 0;
712 
713 	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
714 		  enable ? "entering" : "leaving");
715 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
716 
717 	return 0;
718 }
719 
720 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
721 				       unsigned int enable)
722 {
723 	unsigned int val = enable ? 1 : 0;
724 
725 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
726 		return 0;
727 
728 	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
729 		  enable ? "entering" : "leaving");
730 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
731 
732 	return 0;
733 }
734 
735 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
736 			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
737 {
738 	unsigned int mac_addr_hi, mac_addr_lo;
739 	u8 *mac_addr;
740 
741 	mac_addr_lo = 0;
742 	mac_addr_hi = 0;
743 
744 	if (ha) {
745 		mac_addr = (u8 *)&mac_addr_lo;
746 		mac_addr[0] = ha->addr[0];
747 		mac_addr[1] = ha->addr[1];
748 		mac_addr[2] = ha->addr[2];
749 		mac_addr[3] = ha->addr[3];
750 		mac_addr = (u8 *)&mac_addr_hi;
751 		mac_addr[0] = ha->addr[4];
752 		mac_addr[1] = ha->addr[5];
753 
754 		netif_dbg(pdata, drv, pdata->netdev,
755 			  "adding mac address %pM at %#x\n",
756 			  ha->addr, *mac_reg);
757 
758 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
759 	}
760 
761 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
762 	*mac_reg += MAC_MACA_INC;
763 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
764 	*mac_reg += MAC_MACA_INC;
765 }
766 
767 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
768 {
769 	struct net_device *netdev = pdata->netdev;
770 	struct netdev_hw_addr *ha;
771 	unsigned int mac_reg;
772 	unsigned int addn_macs;
773 
774 	mac_reg = MAC_MACA1HR;
775 	addn_macs = pdata->hw_feat.addn_mac;
776 
777 	if (netdev_uc_count(netdev) > addn_macs) {
778 		xgbe_set_promiscuous_mode(pdata, 1);
779 	} else {
780 		netdev_for_each_uc_addr(ha, netdev) {
781 			xgbe_set_mac_reg(pdata, ha, &mac_reg);
782 			addn_macs--;
783 		}
784 
785 		if (netdev_mc_count(netdev) > addn_macs) {
786 			xgbe_set_all_multicast_mode(pdata, 1);
787 		} else {
788 			netdev_for_each_mc_addr(ha, netdev) {
789 				xgbe_set_mac_reg(pdata, ha, &mac_reg);
790 				addn_macs--;
791 			}
792 		}
793 	}
794 
795 	/* Clear remaining additional MAC address entries */
796 	while (addn_macs--)
797 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
798 }
799 
800 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
801 {
802 	struct net_device *netdev = pdata->netdev;
803 	struct netdev_hw_addr *ha;
804 	unsigned int hash_reg;
805 	unsigned int hash_table_shift, hash_table_count;
806 	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
807 	u32 crc;
808 	unsigned int i;
809 
810 	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
811 	hash_table_count = pdata->hw_feat.hash_table_size / 32;
812 	memset(hash_table, 0, sizeof(hash_table));
813 
814 	/* Build the MAC Hash Table register values */
815 	netdev_for_each_uc_addr(ha, netdev) {
816 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
817 		crc >>= hash_table_shift;
818 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
819 	}
820 
821 	netdev_for_each_mc_addr(ha, netdev) {
822 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
823 		crc >>= hash_table_shift;
824 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
825 	}
826 
827 	/* Set the MAC Hash Table registers */
828 	hash_reg = MAC_HTR0;
829 	for (i = 0; i < hash_table_count; i++) {
830 		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
831 		hash_reg += MAC_HTR_INC;
832 	}
833 }
834 
835 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
836 {
837 	if (pdata->hw_feat.hash_table_size)
838 		xgbe_set_mac_hash_table(pdata);
839 	else
840 		xgbe_set_mac_addn_addrs(pdata);
841 
842 	return 0;
843 }
844 
845 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
846 {
847 	unsigned int mac_addr_hi, mac_addr_lo;
848 
849 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
850 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
851 		      (addr[1] <<  8) | (addr[0] <<  0);
852 
853 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
854 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
855 
856 	return 0;
857 }
858 
859 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
860 {
861 	struct net_device *netdev = pdata->netdev;
862 	unsigned int pr_mode, am_mode;
863 
864 	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
865 	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
866 
867 	xgbe_set_promiscuous_mode(pdata, pr_mode);
868 	xgbe_set_all_multicast_mode(pdata, am_mode);
869 
870 	xgbe_add_mac_addresses(pdata);
871 
872 	return 0;
873 }
874 
875 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
876 			      int mmd_reg)
877 {
878 	unsigned int mmd_address;
879 	int mmd_data;
880 
881 	if (mmd_reg & MII_ADDR_C45)
882 		mmd_address = mmd_reg & ~MII_ADDR_C45;
883 	else
884 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
885 
886 	/* The PCS registers are accessed using mmio. The underlying APB3
887 	 * management interface uses indirect addressing to access the MMD
888 	 * register sets. This requires accessing of the PCS register in two
889 	 * phases, an address phase and a data phase.
890 	 *
891 	 * The mmio interface is based on 32-bit offsets and values. All
892 	 * register offsets must therefore be adjusted by left shifting the
893 	 * offset 2 bits and reading 32 bits of data.
894 	 */
895 	mutex_lock(&pdata->xpcs_mutex);
896 	XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8);
897 	mmd_data = XPCS_IOREAD(pdata, (mmd_address & 0xff) << 2);
898 	mutex_unlock(&pdata->xpcs_mutex);
899 
900 	return mmd_data;
901 }
902 
903 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
904 				int mmd_reg, int mmd_data)
905 {
906 	unsigned int mmd_address;
907 
908 	if (mmd_reg & MII_ADDR_C45)
909 		mmd_address = mmd_reg & ~MII_ADDR_C45;
910 	else
911 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
912 
913 	/* The PCS registers are accessed using mmio. The underlying APB3
914 	 * management interface uses indirect addressing to access the MMD
915 	 * register sets. This requires accessing of the PCS register in two
916 	 * phases, an address phase and a data phase.
917 	 *
918 	 * The mmio interface is based on 32-bit offsets and values. All
919 	 * register offsets must therefore be adjusted by left shifting the
920 	 * offset 2 bits and reading 32 bits of data.
921 	 */
922 	mutex_lock(&pdata->xpcs_mutex);
923 	XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8);
924 	XPCS_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
925 	mutex_unlock(&pdata->xpcs_mutex);
926 }
927 
928 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
929 {
930 	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
931 }
932 
933 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
934 {
935 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
936 
937 	return 0;
938 }
939 
940 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
941 {
942 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
943 
944 	return 0;
945 }
946 
947 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
948 {
949 	/* Put the VLAN tag in the Rx descriptor */
950 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
951 
952 	/* Don't check the VLAN type */
953 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
954 
955 	/* Check only C-TAG (0x8100) packets */
956 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
957 
958 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
959 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
960 
961 	/* Enable VLAN tag stripping */
962 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
963 
964 	return 0;
965 }
966 
967 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
968 {
969 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
970 
971 	return 0;
972 }
973 
974 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
975 {
976 	/* Enable VLAN filtering */
977 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
978 
979 	/* Enable VLAN Hash Table filtering */
980 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
981 
982 	/* Disable VLAN tag inverse matching */
983 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
984 
985 	/* Only filter on the lower 12-bits of the VLAN tag */
986 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
987 
988 	/* In order for the VLAN Hash Table filtering to be effective,
989 	 * the VLAN tag identifier in the VLAN Tag Register must not
990 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
991 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
992 	 * 1 will always pass filtering.
993 	 */
994 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
995 
996 	return 0;
997 }
998 
999 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
1000 {
1001 	/* Disable VLAN filtering */
1002 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
1003 
1004 	return 0;
1005 }
1006 
1007 #ifndef CRCPOLY_LE
1008 #define CRCPOLY_LE 0xedb88320
1009 #endif
1010 static u32 xgbe_vid_crc32_le(__le16 vid_le)
1011 {
1012 	u32 poly = CRCPOLY_LE;
1013 	u32 crc = ~0;
1014 	u32 temp = 0;
1015 	unsigned char *data = (unsigned char *)&vid_le;
1016 	unsigned char data_byte = 0;
1017 	int i, bits;
1018 
1019 	bits = get_bitmask_order(VLAN_VID_MASK);
1020 	for (i = 0; i < bits; i++) {
1021 		if ((i % 8) == 0)
1022 			data_byte = data[i / 8];
1023 
1024 		temp = ((crc & 1) ^ data_byte) & 1;
1025 		crc >>= 1;
1026 		data_byte >>= 1;
1027 
1028 		if (temp)
1029 			crc ^= poly;
1030 	}
1031 
1032 	return crc;
1033 }
1034 
1035 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
1036 {
1037 	u32 crc;
1038 	u16 vid;
1039 	__le16 vid_le;
1040 	u16 vlan_hash_table = 0;
1041 
1042 	/* Generate the VLAN Hash Table value */
1043 	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
1044 		/* Get the CRC32 value of the VLAN ID */
1045 		vid_le = cpu_to_le16(vid);
1046 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
1047 
1048 		vlan_hash_table |= (1 << crc);
1049 	}
1050 
1051 	/* Set the VLAN Hash Table filtering register */
1052 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
1053 
1054 	return 0;
1055 }
1056 
1057 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1058 {
1059 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1060 
1061 	/* Reset the Tx descriptor
1062 	 *   Set buffer 1 (lo) address to zero
1063 	 *   Set buffer 1 (hi) address to zero
1064 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1065 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1066 	 */
1067 	rdesc->desc0 = 0;
1068 	rdesc->desc1 = 0;
1069 	rdesc->desc2 = 0;
1070 	rdesc->desc3 = 0;
1071 
1072 	/* Make sure ownership is written to the descriptor */
1073 	dma_wmb();
1074 }
1075 
1076 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1077 {
1078 	struct xgbe_ring *ring = channel->tx_ring;
1079 	struct xgbe_ring_data *rdata;
1080 	int i;
1081 	int start_index = ring->cur;
1082 
1083 	DBGPR("-->tx_desc_init\n");
1084 
1085 	/* Initialze all descriptors */
1086 	for (i = 0; i < ring->rdesc_count; i++) {
1087 		rdata = XGBE_GET_DESC_DATA(ring, i);
1088 
1089 		/* Initialize Tx descriptor */
1090 		xgbe_tx_desc_reset(rdata);
1091 	}
1092 
1093 	/* Update the total number of Tx descriptors */
1094 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1095 
1096 	/* Update the starting address of descriptor ring */
1097 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1098 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1099 			  upper_32_bits(rdata->rdesc_dma));
1100 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1101 			  lower_32_bits(rdata->rdesc_dma));
1102 
1103 	DBGPR("<--tx_desc_init\n");
1104 }
1105 
1106 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1107 			       struct xgbe_ring_data *rdata, unsigned int index)
1108 {
1109 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1110 	unsigned int rx_usecs = pdata->rx_usecs;
1111 	unsigned int rx_frames = pdata->rx_frames;
1112 	unsigned int inte;
1113 	dma_addr_t hdr_dma, buf_dma;
1114 
1115 	if (!rx_usecs && !rx_frames) {
1116 		/* No coalescing, interrupt for every descriptor */
1117 		inte = 1;
1118 	} else {
1119 		/* Set interrupt based on Rx frame coalescing setting */
1120 		if (rx_frames && !((index + 1) % rx_frames))
1121 			inte = 1;
1122 		else
1123 			inte = 0;
1124 	}
1125 
1126 	/* Reset the Rx descriptor
1127 	 *   Set buffer 1 (lo) address to header dma address (lo)
1128 	 *   Set buffer 1 (hi) address to header dma address (hi)
1129 	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1130 	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1131 	 *     set control bits OWN and INTE
1132 	 */
1133 	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1134 	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1135 	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1136 	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1137 	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1138 	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1139 
1140 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1141 
1142 	/* Since the Rx DMA engine is likely running, make sure everything
1143 	 * is written to the descriptor(s) before setting the OWN bit
1144 	 * for the descriptor
1145 	 */
1146 	dma_wmb();
1147 
1148 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1149 
1150 	/* Make sure ownership is written to the descriptor */
1151 	dma_wmb();
1152 }
1153 
1154 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1155 {
1156 	struct xgbe_prv_data *pdata = channel->pdata;
1157 	struct xgbe_ring *ring = channel->rx_ring;
1158 	struct xgbe_ring_data *rdata;
1159 	unsigned int start_index = ring->cur;
1160 	unsigned int i;
1161 
1162 	DBGPR("-->rx_desc_init\n");
1163 
1164 	/* Initialize all descriptors */
1165 	for (i = 0; i < ring->rdesc_count; i++) {
1166 		rdata = XGBE_GET_DESC_DATA(ring, i);
1167 
1168 		/* Initialize Rx descriptor */
1169 		xgbe_rx_desc_reset(pdata, rdata, i);
1170 	}
1171 
1172 	/* Update the total number of Rx descriptors */
1173 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1174 
1175 	/* Update the starting address of descriptor ring */
1176 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1177 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1178 			  upper_32_bits(rdata->rdesc_dma));
1179 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1180 			  lower_32_bits(rdata->rdesc_dma));
1181 
1182 	/* Update the Rx Descriptor Tail Pointer */
1183 	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1184 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1185 			  lower_32_bits(rdata->rdesc_dma));
1186 
1187 	DBGPR("<--rx_desc_init\n");
1188 }
1189 
1190 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1191 				      unsigned int addend)
1192 {
1193 	/* Set the addend register value and tell the device */
1194 	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1195 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1196 
1197 	/* Wait for addend update to complete */
1198 	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1199 		udelay(5);
1200 }
1201 
1202 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1203 				 unsigned int nsec)
1204 {
1205 	/* Set the time values and tell the device */
1206 	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1207 	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1208 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1209 
1210 	/* Wait for time update to complete */
1211 	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1212 		udelay(5);
1213 }
1214 
1215 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1216 {
1217 	u64 nsec;
1218 
1219 	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1220 	nsec *= NSEC_PER_SEC;
1221 	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1222 
1223 	return nsec;
1224 }
1225 
1226 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1227 {
1228 	unsigned int tx_snr;
1229 	u64 nsec;
1230 
1231 	tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1232 	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1233 		return 0;
1234 
1235 	nsec = XGMAC_IOREAD(pdata, MAC_TXSSR);
1236 	nsec *= NSEC_PER_SEC;
1237 	nsec += tx_snr;
1238 
1239 	return nsec;
1240 }
1241 
1242 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1243 			       struct xgbe_ring_desc *rdesc)
1244 {
1245 	u64 nsec;
1246 
1247 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1248 	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1249 		nsec = le32_to_cpu(rdesc->desc1);
1250 		nsec <<= 32;
1251 		nsec |= le32_to_cpu(rdesc->desc0);
1252 		if (nsec != 0xffffffffffffffffULL) {
1253 			packet->rx_tstamp = nsec;
1254 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1255 				       RX_TSTAMP, 1);
1256 		}
1257 	}
1258 }
1259 
1260 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1261 			      unsigned int mac_tscr)
1262 {
1263 	/* Set one nano-second accuracy */
1264 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1265 
1266 	/* Set fine timestamp update */
1267 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1268 
1269 	/* Overwrite earlier timestamps */
1270 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1271 
1272 	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1273 
1274 	/* Exit if timestamping is not enabled */
1275 	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1276 		return 0;
1277 
1278 	/* Initialize time registers */
1279 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1280 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1281 	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1282 	xgbe_set_tstamp_time(pdata, 0, 0);
1283 
1284 	/* Initialize the timecounter */
1285 	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1286 			 ktime_to_ns(ktime_get_real()));
1287 
1288 	return 0;
1289 }
1290 
1291 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
1292 {
1293 	struct ieee_ets *ets = pdata->ets;
1294 	unsigned int total_weight, min_weight, weight;
1295 	unsigned int i;
1296 
1297 	if (!ets)
1298 		return;
1299 
1300 	/* Set Tx to deficit weighted round robin scheduling algorithm (when
1301 	 * traffic class is using ETS algorithm)
1302 	 */
1303 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
1304 
1305 	/* Set Traffic Class algorithms */
1306 	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
1307 	min_weight = total_weight / 100;
1308 	if (!min_weight)
1309 		min_weight = 1;
1310 
1311 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1312 		switch (ets->tc_tsa[i]) {
1313 		case IEEE_8021QAZ_TSA_STRICT:
1314 			netif_dbg(pdata, drv, pdata->netdev,
1315 				  "TC%u using SP\n", i);
1316 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1317 					       MTL_TSA_SP);
1318 			break;
1319 		case IEEE_8021QAZ_TSA_ETS:
1320 			weight = total_weight * ets->tc_tx_bw[i] / 100;
1321 			weight = clamp(weight, min_weight, total_weight);
1322 
1323 			netif_dbg(pdata, drv, pdata->netdev,
1324 				  "TC%u using DWRR (weight %u)\n", i, weight);
1325 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1326 					       MTL_TSA_ETS);
1327 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
1328 					       weight);
1329 			break;
1330 		}
1331 	}
1332 }
1333 
1334 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
1335 {
1336 	struct ieee_pfc *pfc = pdata->pfc;
1337 	struct ieee_ets *ets = pdata->ets;
1338 	unsigned int mask, reg, reg_val;
1339 	unsigned int tc, prio;
1340 
1341 	if (!pfc || !ets)
1342 		return;
1343 
1344 	for (tc = 0; tc < pdata->hw_feat.tc_cnt; tc++) {
1345 		mask = 0;
1346 		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
1347 			if ((pfc->pfc_en & (1 << prio)) &&
1348 			    (ets->prio_tc[prio] == tc))
1349 				mask |= (1 << prio);
1350 		}
1351 		mask &= 0xff;
1352 
1353 		netif_dbg(pdata, drv, pdata->netdev, "TC%u PFC mask=%#x\n",
1354 			  tc, mask);
1355 		reg = MTL_TCPM0R + (MTL_TCPM_INC * (tc / MTL_TCPM_TC_PER_REG));
1356 		reg_val = XGMAC_IOREAD(pdata, reg);
1357 
1358 		reg_val &= ~(0xff << ((tc % MTL_TCPM_TC_PER_REG) << 3));
1359 		reg_val |= (mask << ((tc % MTL_TCPM_TC_PER_REG) << 3));
1360 
1361 		XGMAC_IOWRITE(pdata, reg, reg_val);
1362 	}
1363 
1364 	xgbe_config_flow_control(pdata);
1365 }
1366 
1367 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1368 			       struct xgbe_ring *ring)
1369 {
1370 	struct xgbe_prv_data *pdata = channel->pdata;
1371 	struct xgbe_ring_data *rdata;
1372 
1373 	/* Make sure everything is written before the register write */
1374 	wmb();
1375 
1376 	/* Issue a poll command to Tx DMA by writing address
1377 	 * of next immediate free descriptor */
1378 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1379 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1380 			  lower_32_bits(rdata->rdesc_dma));
1381 
1382 	/* Start the Tx timer */
1383 	if (pdata->tx_usecs && !channel->tx_timer_active) {
1384 		channel->tx_timer_active = 1;
1385 		mod_timer(&channel->tx_timer,
1386 			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1387 	}
1388 
1389 	ring->tx.xmit_more = 0;
1390 }
1391 
1392 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1393 {
1394 	struct xgbe_prv_data *pdata = channel->pdata;
1395 	struct xgbe_ring *ring = channel->tx_ring;
1396 	struct xgbe_ring_data *rdata;
1397 	struct xgbe_ring_desc *rdesc;
1398 	struct xgbe_packet_data *packet = &ring->packet_data;
1399 	unsigned int csum, tso, vlan;
1400 	unsigned int tso_context, vlan_context;
1401 	unsigned int tx_set_ic;
1402 	int start_index = ring->cur;
1403 	int cur_index = ring->cur;
1404 	int i;
1405 
1406 	DBGPR("-->xgbe_dev_xmit\n");
1407 
1408 	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1409 			      CSUM_ENABLE);
1410 	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1411 			     TSO_ENABLE);
1412 	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1413 			      VLAN_CTAG);
1414 
1415 	if (tso && (packet->mss != ring->tx.cur_mss))
1416 		tso_context = 1;
1417 	else
1418 		tso_context = 0;
1419 
1420 	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1421 		vlan_context = 1;
1422 	else
1423 		vlan_context = 0;
1424 
1425 	/* Determine if an interrupt should be generated for this Tx:
1426 	 *   Interrupt:
1427 	 *     - Tx frame count exceeds the frame count setting
1428 	 *     - Addition of Tx frame count to the frame count since the
1429 	 *       last interrupt was set exceeds the frame count setting
1430 	 *   No interrupt:
1431 	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1432 	 *     - Addition of Tx frame count to the frame count since the
1433 	 *       last interrupt was set does not exceed the frame count setting
1434 	 */
1435 	ring->coalesce_count += packet->tx_packets;
1436 	if (!pdata->tx_frames)
1437 		tx_set_ic = 0;
1438 	else if (packet->tx_packets > pdata->tx_frames)
1439 		tx_set_ic = 1;
1440 	else if ((ring->coalesce_count % pdata->tx_frames) <
1441 		 packet->tx_packets)
1442 		tx_set_ic = 1;
1443 	else
1444 		tx_set_ic = 0;
1445 
1446 	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1447 	rdesc = rdata->rdesc;
1448 
1449 	/* Create a context descriptor if this is a TSO packet */
1450 	if (tso_context || vlan_context) {
1451 		if (tso_context) {
1452 			netif_dbg(pdata, tx_queued, pdata->netdev,
1453 				  "TSO context descriptor, mss=%u\n",
1454 				  packet->mss);
1455 
1456 			/* Set the MSS size */
1457 			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1458 					  MSS, packet->mss);
1459 
1460 			/* Mark it as a CONTEXT descriptor */
1461 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1462 					  CTXT, 1);
1463 
1464 			/* Indicate this descriptor contains the MSS */
1465 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1466 					  TCMSSV, 1);
1467 
1468 			ring->tx.cur_mss = packet->mss;
1469 		}
1470 
1471 		if (vlan_context) {
1472 			netif_dbg(pdata, tx_queued, pdata->netdev,
1473 				  "VLAN context descriptor, ctag=%u\n",
1474 				  packet->vlan_ctag);
1475 
1476 			/* Mark it as a CONTEXT descriptor */
1477 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1478 					  CTXT, 1);
1479 
1480 			/* Set the VLAN tag */
1481 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1482 					  VT, packet->vlan_ctag);
1483 
1484 			/* Indicate this descriptor contains the VLAN tag */
1485 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1486 					  VLTV, 1);
1487 
1488 			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1489 		}
1490 
1491 		cur_index++;
1492 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1493 		rdesc = rdata->rdesc;
1494 	}
1495 
1496 	/* Update buffer address (for TSO this is the header) */
1497 	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1498 	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1499 
1500 	/* Update the buffer length */
1501 	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1502 			  rdata->skb_dma_len);
1503 
1504 	/* VLAN tag insertion check */
1505 	if (vlan)
1506 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1507 				  TX_NORMAL_DESC2_VLAN_INSERT);
1508 
1509 	/* Timestamp enablement check */
1510 	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1511 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1512 
1513 	/* Mark it as First Descriptor */
1514 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1515 
1516 	/* Mark it as a NORMAL descriptor */
1517 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1518 
1519 	/* Set OWN bit if not the first descriptor */
1520 	if (cur_index != start_index)
1521 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1522 
1523 	if (tso) {
1524 		/* Enable TSO */
1525 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1526 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1527 				  packet->tcp_payload_len);
1528 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1529 				  packet->tcp_header_len / 4);
1530 
1531 		pdata->ext_stats.tx_tso_packets++;
1532 	} else {
1533 		/* Enable CRC and Pad Insertion */
1534 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1535 
1536 		/* Enable HW CSUM */
1537 		if (csum)
1538 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1539 					  CIC, 0x3);
1540 
1541 		/* Set the total length to be transmitted */
1542 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1543 				  packet->length);
1544 	}
1545 
1546 	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1547 		cur_index++;
1548 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1549 		rdesc = rdata->rdesc;
1550 
1551 		/* Update buffer address */
1552 		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1553 		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1554 
1555 		/* Update the buffer length */
1556 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1557 				  rdata->skb_dma_len);
1558 
1559 		/* Set OWN bit */
1560 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1561 
1562 		/* Mark it as NORMAL descriptor */
1563 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1564 
1565 		/* Enable HW CSUM */
1566 		if (csum)
1567 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1568 					  CIC, 0x3);
1569 	}
1570 
1571 	/* Set LAST bit for the last descriptor */
1572 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1573 
1574 	/* Set IC bit based on Tx coalescing settings */
1575 	if (tx_set_ic)
1576 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1577 
1578 	/* Save the Tx info to report back during cleanup */
1579 	rdata->tx.packets = packet->tx_packets;
1580 	rdata->tx.bytes = packet->tx_bytes;
1581 
1582 	/* In case the Tx DMA engine is running, make sure everything
1583 	 * is written to the descriptor(s) before setting the OWN bit
1584 	 * for the first descriptor
1585 	 */
1586 	dma_wmb();
1587 
1588 	/* Set OWN bit for the first descriptor */
1589 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1590 	rdesc = rdata->rdesc;
1591 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1592 
1593 	if (netif_msg_tx_queued(pdata))
1594 		xgbe_dump_tx_desc(pdata, ring, start_index,
1595 				  packet->rdesc_count, 1);
1596 
1597 	/* Make sure ownership is written to the descriptor */
1598 	smp_wmb();
1599 
1600 	ring->cur = cur_index + 1;
1601 	if (!packet->skb->xmit_more ||
1602 	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1603 						   channel->queue_index)))
1604 		xgbe_tx_start_xmit(channel, ring);
1605 	else
1606 		ring->tx.xmit_more = 1;
1607 
1608 	DBGPR("  %s: descriptors %u to %u written\n",
1609 	      channel->name, start_index & (ring->rdesc_count - 1),
1610 	      (ring->cur - 1) & (ring->rdesc_count - 1));
1611 
1612 	DBGPR("<--xgbe_dev_xmit\n");
1613 }
1614 
1615 static int xgbe_dev_read(struct xgbe_channel *channel)
1616 {
1617 	struct xgbe_prv_data *pdata = channel->pdata;
1618 	struct xgbe_ring *ring = channel->rx_ring;
1619 	struct xgbe_ring_data *rdata;
1620 	struct xgbe_ring_desc *rdesc;
1621 	struct xgbe_packet_data *packet = &ring->packet_data;
1622 	struct net_device *netdev = pdata->netdev;
1623 	unsigned int err, etlt, l34t;
1624 
1625 	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1626 
1627 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1628 	rdesc = rdata->rdesc;
1629 
1630 	/* Check for data availability */
1631 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1632 		return 1;
1633 
1634 	/* Make sure descriptor fields are read after reading the OWN bit */
1635 	dma_rmb();
1636 
1637 	if (netif_msg_rx_status(pdata))
1638 		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1639 
1640 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1641 		/* Timestamp Context Descriptor */
1642 		xgbe_get_rx_tstamp(packet, rdesc);
1643 
1644 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1645 			       CONTEXT, 1);
1646 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1647 			       CONTEXT_NEXT, 0);
1648 		return 0;
1649 	}
1650 
1651 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1652 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1653 
1654 	/* Indicate if a Context Descriptor is next */
1655 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1656 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1657 			       CONTEXT_NEXT, 1);
1658 
1659 	/* Get the header length */
1660 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1661 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1662 						      RX_NORMAL_DESC2, HL);
1663 		if (rdata->rx.hdr_len)
1664 			pdata->ext_stats.rx_split_header_packets++;
1665 	}
1666 
1667 	/* Get the RSS hash */
1668 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1669 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1670 			       RSS_HASH, 1);
1671 
1672 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1673 
1674 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1675 		switch (l34t) {
1676 		case RX_DESC3_L34T_IPV4_TCP:
1677 		case RX_DESC3_L34T_IPV4_UDP:
1678 		case RX_DESC3_L34T_IPV6_TCP:
1679 		case RX_DESC3_L34T_IPV6_UDP:
1680 			packet->rss_hash_type = PKT_HASH_TYPE_L4;
1681 			break;
1682 		default:
1683 			packet->rss_hash_type = PKT_HASH_TYPE_L3;
1684 		}
1685 	}
1686 
1687 	/* Get the packet length */
1688 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1689 
1690 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1691 		/* Not all the data has been transferred for this packet */
1692 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1693 			       INCOMPLETE, 1);
1694 		return 0;
1695 	}
1696 
1697 	/* This is the last of the data for this packet */
1698 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1699 		       INCOMPLETE, 0);
1700 
1701 	/* Set checksum done indicator as appropriate */
1702 	if (netdev->features & NETIF_F_RXCSUM)
1703 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1704 			       CSUM_DONE, 1);
1705 
1706 	/* Check for errors (only valid in last descriptor) */
1707 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1708 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1709 	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
1710 
1711 	if (!err || !etlt) {
1712 		/* No error if err is 0 or etlt is 0 */
1713 		if ((etlt == 0x09) &&
1714 		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1715 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1716 				       VLAN_CTAG, 1);
1717 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1718 							      RX_NORMAL_DESC0,
1719 							      OVT);
1720 			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
1721 				  packet->vlan_ctag);
1722 		}
1723 	} else {
1724 		if ((etlt == 0x05) || (etlt == 0x06))
1725 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1726 				       CSUM_DONE, 0);
1727 		else
1728 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1729 				       FRAME, 1);
1730 	}
1731 
1732 	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
1733 	      ring->cur & (ring->rdesc_count - 1), ring->cur);
1734 
1735 	return 0;
1736 }
1737 
1738 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1739 {
1740 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1741 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
1742 }
1743 
1744 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1745 {
1746 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1747 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
1748 }
1749 
1750 static int xgbe_enable_int(struct xgbe_channel *channel,
1751 			   enum xgbe_int int_id)
1752 {
1753 	unsigned int dma_ch_ier;
1754 
1755 	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1756 
1757 	switch (int_id) {
1758 	case XGMAC_INT_DMA_CH_SR_TI:
1759 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1760 		break;
1761 	case XGMAC_INT_DMA_CH_SR_TPS:
1762 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 1);
1763 		break;
1764 	case XGMAC_INT_DMA_CH_SR_TBU:
1765 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 1);
1766 		break;
1767 	case XGMAC_INT_DMA_CH_SR_RI:
1768 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1769 		break;
1770 	case XGMAC_INT_DMA_CH_SR_RBU:
1771 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
1772 		break;
1773 	case XGMAC_INT_DMA_CH_SR_RPS:
1774 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 1);
1775 		break;
1776 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1777 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1778 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1779 		break;
1780 	case XGMAC_INT_DMA_CH_SR_FBE:
1781 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
1782 		break;
1783 	case XGMAC_INT_DMA_ALL:
1784 		dma_ch_ier |= channel->saved_ier;
1785 		break;
1786 	default:
1787 		return -1;
1788 	}
1789 
1790 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
1791 
1792 	return 0;
1793 }
1794 
1795 static int xgbe_disable_int(struct xgbe_channel *channel,
1796 			    enum xgbe_int int_id)
1797 {
1798 	unsigned int dma_ch_ier;
1799 
1800 	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1801 
1802 	switch (int_id) {
1803 	case XGMAC_INT_DMA_CH_SR_TI:
1804 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
1805 		break;
1806 	case XGMAC_INT_DMA_CH_SR_TPS:
1807 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 0);
1808 		break;
1809 	case XGMAC_INT_DMA_CH_SR_TBU:
1810 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 0);
1811 		break;
1812 	case XGMAC_INT_DMA_CH_SR_RI:
1813 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
1814 		break;
1815 	case XGMAC_INT_DMA_CH_SR_RBU:
1816 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 0);
1817 		break;
1818 	case XGMAC_INT_DMA_CH_SR_RPS:
1819 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 0);
1820 		break;
1821 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1822 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
1823 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
1824 		break;
1825 	case XGMAC_INT_DMA_CH_SR_FBE:
1826 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 0);
1827 		break;
1828 	case XGMAC_INT_DMA_ALL:
1829 		channel->saved_ier = dma_ch_ier & XGBE_DMA_INTERRUPT_MASK;
1830 		dma_ch_ier &= ~XGBE_DMA_INTERRUPT_MASK;
1831 		break;
1832 	default:
1833 		return -1;
1834 	}
1835 
1836 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
1837 
1838 	return 0;
1839 }
1840 
1841 static int xgbe_exit(struct xgbe_prv_data *pdata)
1842 {
1843 	unsigned int count = 2000;
1844 
1845 	DBGPR("-->xgbe_exit\n");
1846 
1847 	/* Issue a software reset */
1848 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1849 	usleep_range(10, 15);
1850 
1851 	/* Poll Until Poll Condition */
1852 	while (count-- && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1853 		usleep_range(500, 600);
1854 
1855 	if (!count)
1856 		return -EBUSY;
1857 
1858 	DBGPR("<--xgbe_exit\n");
1859 
1860 	return 0;
1861 }
1862 
1863 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1864 {
1865 	unsigned int i, count;
1866 
1867 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1868 		return 0;
1869 
1870 	for (i = 0; i < pdata->tx_q_count; i++)
1871 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1872 
1873 	/* Poll Until Poll Condition */
1874 	for (i = 0; i < pdata->tx_q_count; i++) {
1875 		count = 2000;
1876 		while (count-- && XGMAC_MTL_IOREAD_BITS(pdata, i,
1877 							MTL_Q_TQOMR, FTQ))
1878 			usleep_range(500, 600);
1879 
1880 		if (!count)
1881 			return -EBUSY;
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1888 {
1889 	/* Set enhanced addressing mode */
1890 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, EAME, 1);
1891 
1892 	/* Set the System Bus mode */
1893 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, UNDEF, 1);
1894 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, BLEN_256, 1);
1895 }
1896 
1897 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1898 {
1899 	unsigned int arcache, awcache;
1900 
1901 	arcache = 0;
1902 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRC, pdata->arcache);
1903 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRD, pdata->axdomain);
1904 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TEC, pdata->arcache);
1905 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TED, pdata->axdomain);
1906 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THC, pdata->arcache);
1907 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THD, pdata->axdomain);
1908 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, arcache);
1909 
1910 	awcache = 0;
1911 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWC, pdata->awcache);
1912 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWD, pdata->axdomain);
1913 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPC, pdata->awcache);
1914 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPD, pdata->axdomain);
1915 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHC, pdata->awcache);
1916 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHD, pdata->axdomain);
1917 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDC, pdata->awcache);
1918 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDD, pdata->axdomain);
1919 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, awcache);
1920 }
1921 
1922 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1923 {
1924 	unsigned int i;
1925 
1926 	/* Set Tx to weighted round robin scheduling algorithm */
1927 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1928 
1929 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
1930 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1931 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1932 				       MTL_TSA_ETS);
1933 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1934 	}
1935 
1936 	/* Set Rx to strict priority algorithm */
1937 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
1938 }
1939 
1940 static unsigned int xgbe_calculate_per_queue_fifo(unsigned int fifo_size,
1941 						  unsigned int queue_count)
1942 {
1943 	unsigned int q_fifo_size;
1944 	unsigned int p_fifo;
1945 
1946 	/* Calculate the configured fifo size */
1947 	q_fifo_size = 1 << (fifo_size + 7);
1948 
1949 	/* The configured value may not be the actual amount of fifo RAM */
1950 	q_fifo_size = min_t(unsigned int, XGBE_FIFO_MAX, q_fifo_size);
1951 
1952 	q_fifo_size = q_fifo_size / queue_count;
1953 
1954 	/* Each increment in the queue fifo size represents 256 bytes of
1955 	 * fifo, with 0 representing 256 bytes. Distribute the fifo equally
1956 	 * between the queues.
1957 	 */
1958 	p_fifo = q_fifo_size / 256;
1959 	if (p_fifo)
1960 		p_fifo--;
1961 
1962 	return p_fifo;
1963 }
1964 
1965 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
1966 {
1967 	unsigned int fifo_size;
1968 	unsigned int i;
1969 
1970 	fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.tx_fifo_size,
1971 						  pdata->tx_q_count);
1972 
1973 	for (i = 0; i < pdata->tx_q_count; i++)
1974 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo_size);
1975 
1976 	netif_info(pdata, drv, pdata->netdev,
1977 		   "%d Tx hardware queues, %d byte fifo per queue\n",
1978 		   pdata->tx_q_count, ((fifo_size + 1) * 256));
1979 }
1980 
1981 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
1982 {
1983 	unsigned int fifo_size;
1984 	unsigned int i;
1985 
1986 	fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.rx_fifo_size,
1987 						  pdata->rx_q_count);
1988 
1989 	for (i = 0; i < pdata->rx_q_count; i++)
1990 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo_size);
1991 
1992 	netif_info(pdata, drv, pdata->netdev,
1993 		   "%d Rx hardware queues, %d byte fifo per queue\n",
1994 		   pdata->rx_q_count, ((fifo_size + 1) * 256));
1995 }
1996 
1997 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
1998 {
1999 	unsigned int qptc, qptc_extra, queue;
2000 	unsigned int prio_queues;
2001 	unsigned int ppq, ppq_extra, prio;
2002 	unsigned int mask;
2003 	unsigned int i, j, reg, reg_val;
2004 
2005 	/* Map the MTL Tx Queues to Traffic Classes
2006 	 *   Note: Tx Queues >= Traffic Classes
2007 	 */
2008 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2009 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2010 
2011 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2012 		for (j = 0; j < qptc; j++) {
2013 			netif_dbg(pdata, drv, pdata->netdev,
2014 				  "TXq%u mapped to TC%u\n", queue, i);
2015 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2016 					       Q2TCMAP, i);
2017 			pdata->q2tc_map[queue++] = i;
2018 		}
2019 
2020 		if (i < qptc_extra) {
2021 			netif_dbg(pdata, drv, pdata->netdev,
2022 				  "TXq%u mapped to TC%u\n", queue, i);
2023 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2024 					       Q2TCMAP, i);
2025 			pdata->q2tc_map[queue++] = i;
2026 		}
2027 	}
2028 
2029 	/* Map the 8 VLAN priority values to available MTL Rx queues */
2030 	prio_queues = min_t(unsigned int, IEEE_8021QAZ_MAX_TCS,
2031 			    pdata->rx_q_count);
2032 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2033 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2034 
2035 	reg = MAC_RQC2R;
2036 	reg_val = 0;
2037 	for (i = 0, prio = 0; i < prio_queues;) {
2038 		mask = 0;
2039 		for (j = 0; j < ppq; j++) {
2040 			netif_dbg(pdata, drv, pdata->netdev,
2041 				  "PRIO%u mapped to RXq%u\n", prio, i);
2042 			mask |= (1 << prio);
2043 			pdata->prio2q_map[prio++] = i;
2044 		}
2045 
2046 		if (i < ppq_extra) {
2047 			netif_dbg(pdata, drv, pdata->netdev,
2048 				  "PRIO%u mapped to RXq%u\n", prio, i);
2049 			mask |= (1 << prio);
2050 			pdata->prio2q_map[prio++] = i;
2051 		}
2052 
2053 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2054 
2055 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2056 			continue;
2057 
2058 		XGMAC_IOWRITE(pdata, reg, reg_val);
2059 		reg += MAC_RQC2_INC;
2060 		reg_val = 0;
2061 	}
2062 
2063 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2064 	reg = MTL_RQDCM0R;
2065 	reg_val = 0;
2066 	for (i = 0; i < pdata->rx_q_count;) {
2067 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2068 
2069 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2070 			continue;
2071 
2072 		XGMAC_IOWRITE(pdata, reg, reg_val);
2073 
2074 		reg += MTL_RQDCM_INC;
2075 		reg_val = 0;
2076 	}
2077 }
2078 
2079 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2080 {
2081 	unsigned int i;
2082 
2083 	for (i = 0; i < pdata->rx_q_count; i++) {
2084 		/* Activate flow control when less than 4k left in fifo */
2085 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA, 2);
2086 
2087 		/* De-activate flow control when more than 6k left in fifo */
2088 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD, 4);
2089 	}
2090 }
2091 
2092 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2093 {
2094 	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2095 
2096 	/* Filtering is done using perfect filtering and hash filtering */
2097 	if (pdata->hw_feat.hash_table_size) {
2098 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2099 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2100 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2101 	}
2102 }
2103 
2104 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2105 {
2106 	unsigned int val;
2107 
2108 	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2109 
2110 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2111 }
2112 
2113 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2114 {
2115 	switch (pdata->phy_speed) {
2116 	case SPEED_10000:
2117 		xgbe_set_xgmii_speed(pdata);
2118 		break;
2119 
2120 	case SPEED_2500:
2121 		xgbe_set_gmii_2500_speed(pdata);
2122 		break;
2123 
2124 	case SPEED_1000:
2125 		xgbe_set_gmii_speed(pdata);
2126 		break;
2127 	}
2128 }
2129 
2130 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2131 {
2132 	if (pdata->netdev->features & NETIF_F_RXCSUM)
2133 		xgbe_enable_rx_csum(pdata);
2134 	else
2135 		xgbe_disable_rx_csum(pdata);
2136 }
2137 
2138 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2139 {
2140 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2141 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2142 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2143 
2144 	/* Set the current VLAN Hash Table register value */
2145 	xgbe_update_vlan_hash_table(pdata);
2146 
2147 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2148 		xgbe_enable_rx_vlan_filtering(pdata);
2149 	else
2150 		xgbe_disable_rx_vlan_filtering(pdata);
2151 
2152 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2153 		xgbe_enable_rx_vlan_stripping(pdata);
2154 	else
2155 		xgbe_disable_rx_vlan_stripping(pdata);
2156 }
2157 
2158 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2159 {
2160 	bool read_hi;
2161 	u64 val;
2162 
2163 	switch (reg_lo) {
2164 	/* These registers are always 64 bit */
2165 	case MMC_TXOCTETCOUNT_GB_LO:
2166 	case MMC_TXOCTETCOUNT_G_LO:
2167 	case MMC_RXOCTETCOUNT_GB_LO:
2168 	case MMC_RXOCTETCOUNT_G_LO:
2169 		read_hi = true;
2170 		break;
2171 
2172 	default:
2173 		read_hi = false;
2174 	}
2175 
2176 	val = XGMAC_IOREAD(pdata, reg_lo);
2177 
2178 	if (read_hi)
2179 		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2180 
2181 	return val;
2182 }
2183 
2184 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2185 {
2186 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2187 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2188 
2189 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2190 		stats->txoctetcount_gb +=
2191 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2192 
2193 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2194 		stats->txframecount_gb +=
2195 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2196 
2197 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2198 		stats->txbroadcastframes_g +=
2199 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2200 
2201 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2202 		stats->txmulticastframes_g +=
2203 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2204 
2205 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2206 		stats->tx64octets_gb +=
2207 			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2208 
2209 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2210 		stats->tx65to127octets_gb +=
2211 			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2212 
2213 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2214 		stats->tx128to255octets_gb +=
2215 			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2216 
2217 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2218 		stats->tx256to511octets_gb +=
2219 			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2220 
2221 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2222 		stats->tx512to1023octets_gb +=
2223 			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2224 
2225 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2226 		stats->tx1024tomaxoctets_gb +=
2227 			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2228 
2229 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2230 		stats->txunicastframes_gb +=
2231 			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2232 
2233 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2234 		stats->txmulticastframes_gb +=
2235 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2236 
2237 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2238 		stats->txbroadcastframes_g +=
2239 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2240 
2241 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2242 		stats->txunderflowerror +=
2243 			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2244 
2245 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2246 		stats->txoctetcount_g +=
2247 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2248 
2249 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2250 		stats->txframecount_g +=
2251 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2252 
2253 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2254 		stats->txpauseframes +=
2255 			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2256 
2257 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2258 		stats->txvlanframes_g +=
2259 			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2260 }
2261 
2262 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2263 {
2264 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2265 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2266 
2267 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2268 		stats->rxframecount_gb +=
2269 			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2270 
2271 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2272 		stats->rxoctetcount_gb +=
2273 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2274 
2275 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2276 		stats->rxoctetcount_g +=
2277 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2278 
2279 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2280 		stats->rxbroadcastframes_g +=
2281 			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2282 
2283 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2284 		stats->rxmulticastframes_g +=
2285 			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2286 
2287 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2288 		stats->rxcrcerror +=
2289 			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2290 
2291 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2292 		stats->rxrunterror +=
2293 			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2294 
2295 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2296 		stats->rxjabbererror +=
2297 			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2298 
2299 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2300 		stats->rxundersize_g +=
2301 			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2302 
2303 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2304 		stats->rxoversize_g +=
2305 			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2306 
2307 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2308 		stats->rx64octets_gb +=
2309 			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2310 
2311 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2312 		stats->rx65to127octets_gb +=
2313 			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2314 
2315 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2316 		stats->rx128to255octets_gb +=
2317 			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2318 
2319 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2320 		stats->rx256to511octets_gb +=
2321 			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2322 
2323 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2324 		stats->rx512to1023octets_gb +=
2325 			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2326 
2327 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2328 		stats->rx1024tomaxoctets_gb +=
2329 			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2330 
2331 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2332 		stats->rxunicastframes_g +=
2333 			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2334 
2335 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2336 		stats->rxlengtherror +=
2337 			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2338 
2339 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2340 		stats->rxoutofrangetype +=
2341 			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2342 
2343 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2344 		stats->rxpauseframes +=
2345 			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2346 
2347 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2348 		stats->rxfifooverflow +=
2349 			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2350 
2351 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2352 		stats->rxvlanframes_gb +=
2353 			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2354 
2355 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2356 		stats->rxwatchdogerror +=
2357 			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2358 }
2359 
2360 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2361 {
2362 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2363 
2364 	/* Freeze counters */
2365 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2366 
2367 	stats->txoctetcount_gb +=
2368 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2369 
2370 	stats->txframecount_gb +=
2371 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2372 
2373 	stats->txbroadcastframes_g +=
2374 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2375 
2376 	stats->txmulticastframes_g +=
2377 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2378 
2379 	stats->tx64octets_gb +=
2380 		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2381 
2382 	stats->tx65to127octets_gb +=
2383 		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2384 
2385 	stats->tx128to255octets_gb +=
2386 		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2387 
2388 	stats->tx256to511octets_gb +=
2389 		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2390 
2391 	stats->tx512to1023octets_gb +=
2392 		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2393 
2394 	stats->tx1024tomaxoctets_gb +=
2395 		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2396 
2397 	stats->txunicastframes_gb +=
2398 		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2399 
2400 	stats->txmulticastframes_gb +=
2401 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2402 
2403 	stats->txbroadcastframes_g +=
2404 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2405 
2406 	stats->txunderflowerror +=
2407 		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2408 
2409 	stats->txoctetcount_g +=
2410 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2411 
2412 	stats->txframecount_g +=
2413 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2414 
2415 	stats->txpauseframes +=
2416 		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2417 
2418 	stats->txvlanframes_g +=
2419 		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2420 
2421 	stats->rxframecount_gb +=
2422 		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2423 
2424 	stats->rxoctetcount_gb +=
2425 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2426 
2427 	stats->rxoctetcount_g +=
2428 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2429 
2430 	stats->rxbroadcastframes_g +=
2431 		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2432 
2433 	stats->rxmulticastframes_g +=
2434 		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2435 
2436 	stats->rxcrcerror +=
2437 		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2438 
2439 	stats->rxrunterror +=
2440 		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2441 
2442 	stats->rxjabbererror +=
2443 		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2444 
2445 	stats->rxundersize_g +=
2446 		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2447 
2448 	stats->rxoversize_g +=
2449 		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2450 
2451 	stats->rx64octets_gb +=
2452 		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2453 
2454 	stats->rx65to127octets_gb +=
2455 		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2456 
2457 	stats->rx128to255octets_gb +=
2458 		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2459 
2460 	stats->rx256to511octets_gb +=
2461 		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2462 
2463 	stats->rx512to1023octets_gb +=
2464 		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2465 
2466 	stats->rx1024tomaxoctets_gb +=
2467 		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2468 
2469 	stats->rxunicastframes_g +=
2470 		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2471 
2472 	stats->rxlengtherror +=
2473 		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2474 
2475 	stats->rxoutofrangetype +=
2476 		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2477 
2478 	stats->rxpauseframes +=
2479 		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2480 
2481 	stats->rxfifooverflow +=
2482 		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2483 
2484 	stats->rxvlanframes_gb +=
2485 		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2486 
2487 	stats->rxwatchdogerror +=
2488 		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2489 
2490 	/* Un-freeze counters */
2491 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2492 }
2493 
2494 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
2495 {
2496 	/* Set counters to reset on read */
2497 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2498 
2499 	/* Reset the counters */
2500 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2501 }
2502 
2503 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
2504 				 struct xgbe_channel *channel)
2505 {
2506 	unsigned int tx_dsr, tx_pos, tx_qidx;
2507 	unsigned int tx_status;
2508 	unsigned long tx_timeout;
2509 
2510 	/* Calculate the status register to read and the position within */
2511 	if (channel->queue_index < DMA_DSRX_FIRST_QUEUE) {
2512 		tx_dsr = DMA_DSR0;
2513 		tx_pos = (channel->queue_index * DMA_DSR_Q_WIDTH) +
2514 			 DMA_DSR0_TPS_START;
2515 	} else {
2516 		tx_qidx = channel->queue_index - DMA_DSRX_FIRST_QUEUE;
2517 
2518 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2519 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2520 			 DMA_DSRX_TPS_START;
2521 	}
2522 
2523 	/* The Tx engine cannot be stopped if it is actively processing
2524 	 * descriptors. Wait for the Tx engine to enter the stopped or
2525 	 * suspended state.  Don't wait forever though...
2526 	 */
2527 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
2528 	while (time_before(jiffies, tx_timeout)) {
2529 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2530 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2531 		if ((tx_status == DMA_TPS_STOPPED) ||
2532 		    (tx_status == DMA_TPS_SUSPENDED))
2533 			break;
2534 
2535 		usleep_range(500, 1000);
2536 	}
2537 
2538 	if (!time_before(jiffies, tx_timeout))
2539 		netdev_info(pdata->netdev,
2540 			    "timed out waiting for Tx DMA channel %u to stop\n",
2541 			    channel->queue_index);
2542 }
2543 
2544 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
2545 {
2546 	struct xgbe_channel *channel;
2547 	unsigned int i;
2548 
2549 	/* Enable each Tx DMA channel */
2550 	channel = pdata->channel;
2551 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2552 		if (!channel->tx_ring)
2553 			break;
2554 
2555 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
2556 	}
2557 
2558 	/* Enable each Tx queue */
2559 	for (i = 0; i < pdata->tx_q_count; i++)
2560 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2561 				       MTL_Q_ENABLED);
2562 
2563 	/* Enable MAC Tx */
2564 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2565 }
2566 
2567 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
2568 {
2569 	struct xgbe_channel *channel;
2570 	unsigned int i;
2571 
2572 	/* Prepare for Tx DMA channel stop */
2573 	channel = pdata->channel;
2574 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2575 		if (!channel->tx_ring)
2576 			break;
2577 
2578 		xgbe_prepare_tx_stop(pdata, channel);
2579 	}
2580 
2581 	/* Disable MAC Tx */
2582 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2583 
2584 	/* Disable each Tx queue */
2585 	for (i = 0; i < pdata->tx_q_count; i++)
2586 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2587 
2588 	/* Disable each Tx DMA channel */
2589 	channel = pdata->channel;
2590 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2591 		if (!channel->tx_ring)
2592 			break;
2593 
2594 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
2595 	}
2596 }
2597 
2598 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
2599 {
2600 	struct xgbe_channel *channel;
2601 	unsigned int reg_val, i;
2602 
2603 	/* Enable each Rx DMA channel */
2604 	channel = pdata->channel;
2605 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2606 		if (!channel->rx_ring)
2607 			break;
2608 
2609 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
2610 	}
2611 
2612 	/* Enable each Rx queue */
2613 	reg_val = 0;
2614 	for (i = 0; i < pdata->rx_q_count; i++)
2615 		reg_val |= (0x02 << (i << 1));
2616 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2617 
2618 	/* Enable MAC Rx */
2619 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2620 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2621 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2622 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2623 }
2624 
2625 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
2626 {
2627 	struct xgbe_channel *channel;
2628 	unsigned int i;
2629 
2630 	/* Disable MAC Rx */
2631 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2632 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2633 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2634 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2635 
2636 	/* Disable each Rx queue */
2637 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2638 
2639 	/* Disable each Rx DMA channel */
2640 	channel = pdata->channel;
2641 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2642 		if (!channel->rx_ring)
2643 			break;
2644 
2645 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
2646 	}
2647 }
2648 
2649 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2650 {
2651 	struct xgbe_channel *channel;
2652 	unsigned int i;
2653 
2654 	/* Enable each Tx DMA channel */
2655 	channel = pdata->channel;
2656 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2657 		if (!channel->tx_ring)
2658 			break;
2659 
2660 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
2661 	}
2662 
2663 	/* Enable MAC Tx */
2664 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2665 }
2666 
2667 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2668 {
2669 	struct xgbe_channel *channel;
2670 	unsigned int i;
2671 
2672 	/* Prepare for Tx DMA channel stop */
2673 	channel = pdata->channel;
2674 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2675 		if (!channel->tx_ring)
2676 			break;
2677 
2678 		xgbe_prepare_tx_stop(pdata, channel);
2679 	}
2680 
2681 	/* Disable MAC Tx */
2682 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2683 
2684 	/* Disable each Tx DMA channel */
2685 	channel = pdata->channel;
2686 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2687 		if (!channel->tx_ring)
2688 			break;
2689 
2690 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
2691 	}
2692 }
2693 
2694 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2695 {
2696 	struct xgbe_channel *channel;
2697 	unsigned int i;
2698 
2699 	/* Enable each Rx DMA channel */
2700 	channel = pdata->channel;
2701 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2702 		if (!channel->rx_ring)
2703 			break;
2704 
2705 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
2706 	}
2707 }
2708 
2709 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2710 {
2711 	struct xgbe_channel *channel;
2712 	unsigned int i;
2713 
2714 	/* Disable each Rx DMA channel */
2715 	channel = pdata->channel;
2716 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2717 		if (!channel->rx_ring)
2718 			break;
2719 
2720 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
2721 	}
2722 }
2723 
2724 static int xgbe_init(struct xgbe_prv_data *pdata)
2725 {
2726 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
2727 	int ret;
2728 
2729 	DBGPR("-->xgbe_init\n");
2730 
2731 	/* Flush Tx queues */
2732 	ret = xgbe_flush_tx_queues(pdata);
2733 	if (ret)
2734 		return ret;
2735 
2736 	/*
2737 	 * Initialize DMA related features
2738 	 */
2739 	xgbe_config_dma_bus(pdata);
2740 	xgbe_config_dma_cache(pdata);
2741 	xgbe_config_osp_mode(pdata);
2742 	xgbe_config_pblx8(pdata);
2743 	xgbe_config_tx_pbl_val(pdata);
2744 	xgbe_config_rx_pbl_val(pdata);
2745 	xgbe_config_rx_coalesce(pdata);
2746 	xgbe_config_tx_coalesce(pdata);
2747 	xgbe_config_rx_buffer_size(pdata);
2748 	xgbe_config_tso_mode(pdata);
2749 	xgbe_config_sph_mode(pdata);
2750 	xgbe_config_rss(pdata);
2751 	desc_if->wrapper_tx_desc_init(pdata);
2752 	desc_if->wrapper_rx_desc_init(pdata);
2753 	xgbe_enable_dma_interrupts(pdata);
2754 
2755 	/*
2756 	 * Initialize MTL related features
2757 	 */
2758 	xgbe_config_mtl_mode(pdata);
2759 	xgbe_config_queue_mapping(pdata);
2760 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2761 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2762 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2763 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2764 	xgbe_config_tx_fifo_size(pdata);
2765 	xgbe_config_rx_fifo_size(pdata);
2766 	xgbe_config_flow_control_threshold(pdata);
2767 	/*TODO: Error Packet and undersized good Packet forwarding enable
2768 		(FEP and FUP)
2769 	 */
2770 	xgbe_config_dcb_tc(pdata);
2771 	xgbe_config_dcb_pfc(pdata);
2772 	xgbe_enable_mtl_interrupts(pdata);
2773 
2774 	/*
2775 	 * Initialize MAC related features
2776 	 */
2777 	xgbe_config_mac_address(pdata);
2778 	xgbe_config_rx_mode(pdata);
2779 	xgbe_config_jumbo_enable(pdata);
2780 	xgbe_config_flow_control(pdata);
2781 	xgbe_config_mac_speed(pdata);
2782 	xgbe_config_checksum_offload(pdata);
2783 	xgbe_config_vlan_support(pdata);
2784 	xgbe_config_mmc(pdata);
2785 	xgbe_enable_mac_interrupts(pdata);
2786 
2787 	DBGPR("<--xgbe_init\n");
2788 
2789 	return 0;
2790 }
2791 
2792 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2793 {
2794 	DBGPR("-->xgbe_init_function_ptrs\n");
2795 
2796 	hw_if->tx_complete = xgbe_tx_complete;
2797 
2798 	hw_if->set_mac_address = xgbe_set_mac_address;
2799 	hw_if->config_rx_mode = xgbe_config_rx_mode;
2800 
2801 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2802 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2803 
2804 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2805 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2806 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2807 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2808 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2809 
2810 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2811 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2812 
2813 	hw_if->set_gmii_speed = xgbe_set_gmii_speed;
2814 	hw_if->set_gmii_2500_speed = xgbe_set_gmii_2500_speed;
2815 	hw_if->set_xgmii_speed = xgbe_set_xgmii_speed;
2816 
2817 	hw_if->enable_tx = xgbe_enable_tx;
2818 	hw_if->disable_tx = xgbe_disable_tx;
2819 	hw_if->enable_rx = xgbe_enable_rx;
2820 	hw_if->disable_rx = xgbe_disable_rx;
2821 
2822 	hw_if->powerup_tx = xgbe_powerup_tx;
2823 	hw_if->powerdown_tx = xgbe_powerdown_tx;
2824 	hw_if->powerup_rx = xgbe_powerup_rx;
2825 	hw_if->powerdown_rx = xgbe_powerdown_rx;
2826 
2827 	hw_if->dev_xmit = xgbe_dev_xmit;
2828 	hw_if->dev_read = xgbe_dev_read;
2829 	hw_if->enable_int = xgbe_enable_int;
2830 	hw_if->disable_int = xgbe_disable_int;
2831 	hw_if->init = xgbe_init;
2832 	hw_if->exit = xgbe_exit;
2833 
2834 	/* Descriptor related Sequences have to be initialized here */
2835 	hw_if->tx_desc_init = xgbe_tx_desc_init;
2836 	hw_if->rx_desc_init = xgbe_rx_desc_init;
2837 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2838 	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
2839 	hw_if->is_last_desc = xgbe_is_last_desc;
2840 	hw_if->is_context_desc = xgbe_is_context_desc;
2841 	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
2842 
2843 	/* For FLOW ctrl */
2844 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2845 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2846 
2847 	/* For RX coalescing */
2848 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2849 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2850 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2851 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2852 
2853 	/* For RX and TX threshold config */
2854 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2855 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2856 
2857 	/* For RX and TX Store and Forward Mode config */
2858 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2859 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2860 
2861 	/* For TX DMA Operating on Second Frame config */
2862 	hw_if->config_osp_mode = xgbe_config_osp_mode;
2863 
2864 	/* For RX and TX PBL config */
2865 	hw_if->config_rx_pbl_val = xgbe_config_rx_pbl_val;
2866 	hw_if->get_rx_pbl_val = xgbe_get_rx_pbl_val;
2867 	hw_if->config_tx_pbl_val = xgbe_config_tx_pbl_val;
2868 	hw_if->get_tx_pbl_val = xgbe_get_tx_pbl_val;
2869 	hw_if->config_pblx8 = xgbe_config_pblx8;
2870 
2871 	/* For MMC statistics support */
2872 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2873 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2874 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2875 
2876 	/* For PTP config */
2877 	hw_if->config_tstamp = xgbe_config_tstamp;
2878 	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
2879 	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
2880 	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
2881 	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
2882 
2883 	/* For Data Center Bridging config */
2884 	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
2885 	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
2886 
2887 	/* For Receive Side Scaling */
2888 	hw_if->enable_rss = xgbe_enable_rss;
2889 	hw_if->disable_rss = xgbe_disable_rss;
2890 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2891 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2892 
2893 	DBGPR("<--xgbe_init_function_ptrs\n");
2894 }
2895