1 /* 2 * AMD 10Gb Ethernet driver 3 * 4 * This file is available to you under your choice of the following two 5 * licenses: 6 * 7 * License 1: GPLv2 8 * 9 * Copyright (c) 2014 Advanced Micro Devices, Inc. 10 * 11 * This file is free software; you may copy, redistribute and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation, either version 2 of the License, or (at 14 * your option) any later version. 15 * 16 * This file is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program. If not, see <http://www.gnu.org/licenses/>. 23 * 24 * This file incorporates work covered by the following copyright and 25 * permission notice: 26 * The Synopsys DWC ETHER XGMAC Software Driver and documentation 27 * (hereinafter "Software") is an unsupported proprietary work of Synopsys, 28 * Inc. unless otherwise expressly agreed to in writing between Synopsys 29 * and you. 30 * 31 * The Software IS NOT an item of Licensed Software or Licensed Product 32 * under any End User Software License Agreement or Agreement for Licensed 33 * Product with Synopsys or any supplement thereto. Permission is hereby 34 * granted, free of charge, to any person obtaining a copy of this software 35 * annotated with this license and the Software, to deal in the Software 36 * without restriction, including without limitation the rights to use, 37 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies 38 * of the Software, and to permit persons to whom the Software is furnished 39 * to do so, subject to the following conditions: 40 * 41 * The above copyright notice and this permission notice shall be included 42 * in all copies or substantial portions of the Software. 43 * 44 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" 45 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 46 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 47 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS 48 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 49 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 50 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 51 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 52 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 53 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 54 * THE POSSIBILITY OF SUCH DAMAGE. 55 * 56 * 57 * License 2: Modified BSD 58 * 59 * Copyright (c) 2014 Advanced Micro Devices, Inc. 60 * All rights reserved. 61 * 62 * Redistribution and use in source and binary forms, with or without 63 * modification, are permitted provided that the following conditions are met: 64 * * Redistributions of source code must retain the above copyright 65 * notice, this list of conditions and the following disclaimer. 66 * * Redistributions in binary form must reproduce the above copyright 67 * notice, this list of conditions and the following disclaimer in the 68 * documentation and/or other materials provided with the distribution. 69 * * Neither the name of Advanced Micro Devices, Inc. nor the 70 * names of its contributors may be used to endorse or promote products 71 * derived from this software without specific prior written permission. 72 * 73 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 74 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 76 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY 77 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 78 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 80 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 81 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 82 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 83 * 84 * This file incorporates work covered by the following copyright and 85 * permission notice: 86 * The Synopsys DWC ETHER XGMAC Software Driver and documentation 87 * (hereinafter "Software") is an unsupported proprietary work of Synopsys, 88 * Inc. unless otherwise expressly agreed to in writing between Synopsys 89 * and you. 90 * 91 * The Software IS NOT an item of Licensed Software or Licensed Product 92 * under any End User Software License Agreement or Agreement for Licensed 93 * Product with Synopsys or any supplement thereto. Permission is hereby 94 * granted, free of charge, to any person obtaining a copy of this software 95 * annotated with this license and the Software, to deal in the Software 96 * without restriction, including without limitation the rights to use, 97 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies 98 * of the Software, and to permit persons to whom the Software is furnished 99 * to do so, subject to the following conditions: 100 * 101 * The above copyright notice and this permission notice shall be included 102 * in all copies or substantial portions of the Software. 103 * 104 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" 105 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 106 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 107 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS 108 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 109 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 110 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 111 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 112 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 113 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 114 * THE POSSIBILITY OF SUCH DAMAGE. 115 */ 116 117 #include <linux/phy.h> 118 #include <linux/mdio.h> 119 #include <linux/clk.h> 120 #include <linux/bitrev.h> 121 #include <linux/crc32.h> 122 123 #include "xgbe.h" 124 #include "xgbe-common.h" 125 126 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, 127 unsigned int usec) 128 { 129 unsigned long rate; 130 unsigned int ret; 131 132 DBGPR("-->xgbe_usec_to_riwt\n"); 133 134 rate = pdata->sysclk_rate; 135 136 /* 137 * Convert the input usec value to the watchdog timer value. Each 138 * watchdog timer value is equivalent to 256 clock cycles. 139 * Calculate the required value as: 140 * ( usec * ( system_clock_mhz / 10^6 ) / 256 141 */ 142 ret = (usec * (rate / 1000000)) / 256; 143 144 DBGPR("<--xgbe_usec_to_riwt\n"); 145 146 return ret; 147 } 148 149 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, 150 unsigned int riwt) 151 { 152 unsigned long rate; 153 unsigned int ret; 154 155 DBGPR("-->xgbe_riwt_to_usec\n"); 156 157 rate = pdata->sysclk_rate; 158 159 /* 160 * Convert the input watchdog timer value to the usec value. Each 161 * watchdog timer value is equivalent to 256 clock cycles. 162 * Calculate the required value as: 163 * ( riwt * 256 ) / ( system_clock_mhz / 10^6 ) 164 */ 165 ret = (riwt * 256) / (rate / 1000000); 166 167 DBGPR("<--xgbe_riwt_to_usec\n"); 168 169 return ret; 170 } 171 172 static int xgbe_config_pblx8(struct xgbe_prv_data *pdata) 173 { 174 struct xgbe_channel *channel; 175 unsigned int i; 176 177 channel = pdata->channel; 178 for (i = 0; i < pdata->channel_count; i++, channel++) 179 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, PBLX8, 180 pdata->pblx8); 181 182 return 0; 183 } 184 185 static int xgbe_get_tx_pbl_val(struct xgbe_prv_data *pdata) 186 { 187 return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_TCR, PBL); 188 } 189 190 static int xgbe_config_tx_pbl_val(struct xgbe_prv_data *pdata) 191 { 192 struct xgbe_channel *channel; 193 unsigned int i; 194 195 channel = pdata->channel; 196 for (i = 0; i < pdata->channel_count; i++, channel++) { 197 if (!channel->tx_ring) 198 break; 199 200 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, PBL, 201 pdata->tx_pbl); 202 } 203 204 return 0; 205 } 206 207 static int xgbe_get_rx_pbl_val(struct xgbe_prv_data *pdata) 208 { 209 return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_RCR, PBL); 210 } 211 212 static int xgbe_config_rx_pbl_val(struct xgbe_prv_data *pdata) 213 { 214 struct xgbe_channel *channel; 215 unsigned int i; 216 217 channel = pdata->channel; 218 for (i = 0; i < pdata->channel_count; i++, channel++) { 219 if (!channel->rx_ring) 220 break; 221 222 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, PBL, 223 pdata->rx_pbl); 224 } 225 226 return 0; 227 } 228 229 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata) 230 { 231 struct xgbe_channel *channel; 232 unsigned int i; 233 234 channel = pdata->channel; 235 for (i = 0; i < pdata->channel_count; i++, channel++) { 236 if (!channel->tx_ring) 237 break; 238 239 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, OSP, 240 pdata->tx_osp_mode); 241 } 242 243 return 0; 244 } 245 246 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val) 247 { 248 unsigned int i; 249 250 for (i = 0; i < pdata->rx_q_count; i++) 251 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val); 252 253 return 0; 254 } 255 256 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val) 257 { 258 unsigned int i; 259 260 for (i = 0; i < pdata->tx_q_count; i++) 261 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val); 262 263 return 0; 264 } 265 266 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, 267 unsigned int val) 268 { 269 unsigned int i; 270 271 for (i = 0; i < pdata->rx_q_count; i++) 272 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val); 273 274 return 0; 275 } 276 277 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, 278 unsigned int val) 279 { 280 unsigned int i; 281 282 for (i = 0; i < pdata->tx_q_count; i++) 283 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val); 284 285 return 0; 286 } 287 288 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata) 289 { 290 struct xgbe_channel *channel; 291 unsigned int i; 292 293 channel = pdata->channel; 294 for (i = 0; i < pdata->channel_count; i++, channel++) { 295 if (!channel->rx_ring) 296 break; 297 298 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RIWT, RWT, 299 pdata->rx_riwt); 300 } 301 302 return 0; 303 } 304 305 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata) 306 { 307 return 0; 308 } 309 310 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata) 311 { 312 struct xgbe_channel *channel; 313 unsigned int i; 314 315 channel = pdata->channel; 316 for (i = 0; i < pdata->channel_count; i++, channel++) { 317 if (!channel->rx_ring) 318 break; 319 320 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, RBSZ, 321 pdata->rx_buf_size); 322 } 323 } 324 325 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata) 326 { 327 struct xgbe_channel *channel; 328 unsigned int i; 329 330 channel = pdata->channel; 331 for (i = 0; i < pdata->channel_count; i++, channel++) { 332 if (!channel->tx_ring) 333 break; 334 335 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, TSE, 1); 336 } 337 } 338 339 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata) 340 { 341 struct xgbe_channel *channel; 342 unsigned int i; 343 344 channel = pdata->channel; 345 for (i = 0; i < pdata->channel_count; i++, channel++) { 346 if (!channel->rx_ring) 347 break; 348 349 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, SPH, 1); 350 } 351 352 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE); 353 } 354 355 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type, 356 unsigned int index, unsigned int val) 357 { 358 unsigned int wait; 359 int ret = 0; 360 361 mutex_lock(&pdata->rss_mutex); 362 363 if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) { 364 ret = -EBUSY; 365 goto unlock; 366 } 367 368 XGMAC_IOWRITE(pdata, MAC_RSSDR, val); 369 370 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index); 371 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type); 372 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0); 373 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1); 374 375 wait = 1000; 376 while (wait--) { 377 if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) 378 goto unlock; 379 380 usleep_range(1000, 1500); 381 } 382 383 ret = -EBUSY; 384 385 unlock: 386 mutex_unlock(&pdata->rss_mutex); 387 388 return ret; 389 } 390 391 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata) 392 { 393 unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32); 394 unsigned int *key = (unsigned int *)&pdata->rss_key; 395 int ret; 396 397 while (key_regs--) { 398 ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE, 399 key_regs, *key++); 400 if (ret) 401 return ret; 402 } 403 404 return 0; 405 } 406 407 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata) 408 { 409 unsigned int i; 410 int ret; 411 412 for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) { 413 ret = xgbe_write_rss_reg(pdata, 414 XGBE_RSS_LOOKUP_TABLE_TYPE, i, 415 pdata->rss_table[i]); 416 if (ret) 417 return ret; 418 } 419 420 return 0; 421 } 422 423 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key) 424 { 425 memcpy(pdata->rss_key, key, sizeof(pdata->rss_key)); 426 427 return xgbe_write_rss_hash_key(pdata); 428 } 429 430 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, 431 const u32 *table) 432 { 433 unsigned int i; 434 435 for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) 436 XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]); 437 438 return xgbe_write_rss_lookup_table(pdata); 439 } 440 441 static int xgbe_enable_rss(struct xgbe_prv_data *pdata) 442 { 443 int ret; 444 445 if (!pdata->hw_feat.rss) 446 return -EOPNOTSUPP; 447 448 /* Program the hash key */ 449 ret = xgbe_write_rss_hash_key(pdata); 450 if (ret) 451 return ret; 452 453 /* Program the lookup table */ 454 ret = xgbe_write_rss_lookup_table(pdata); 455 if (ret) 456 return ret; 457 458 /* Set the RSS options */ 459 XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options); 460 461 /* Enable RSS */ 462 XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1); 463 464 return 0; 465 } 466 467 static int xgbe_disable_rss(struct xgbe_prv_data *pdata) 468 { 469 if (!pdata->hw_feat.rss) 470 return -EOPNOTSUPP; 471 472 XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0); 473 474 return 0; 475 } 476 477 static void xgbe_config_rss(struct xgbe_prv_data *pdata) 478 { 479 int ret; 480 481 if (!pdata->hw_feat.rss) 482 return; 483 484 if (pdata->netdev->features & NETIF_F_RXHASH) 485 ret = xgbe_enable_rss(pdata); 486 else 487 ret = xgbe_disable_rss(pdata); 488 489 if (ret) 490 netdev_err(pdata->netdev, 491 "error configuring RSS, RSS disabled\n"); 492 } 493 494 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata) 495 { 496 unsigned int max_q_count, q_count; 497 unsigned int reg, reg_val; 498 unsigned int i; 499 500 /* Clear MTL flow control */ 501 for (i = 0; i < pdata->rx_q_count; i++) 502 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0); 503 504 /* Clear MAC flow control */ 505 max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES; 506 q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count); 507 reg = MAC_Q0TFCR; 508 for (i = 0; i < q_count; i++) { 509 reg_val = XGMAC_IOREAD(pdata, reg); 510 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0); 511 XGMAC_IOWRITE(pdata, reg, reg_val); 512 513 reg += MAC_QTFCR_INC; 514 } 515 516 return 0; 517 } 518 519 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata) 520 { 521 unsigned int max_q_count, q_count; 522 unsigned int reg, reg_val; 523 unsigned int i; 524 525 /* Set MTL flow control */ 526 for (i = 0; i < pdata->rx_q_count; i++) 527 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 1); 528 529 /* Set MAC flow control */ 530 max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES; 531 q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count); 532 reg = MAC_Q0TFCR; 533 for (i = 0; i < q_count; i++) { 534 reg_val = XGMAC_IOREAD(pdata, reg); 535 536 /* Enable transmit flow control */ 537 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1); 538 /* Set pause time */ 539 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff); 540 541 XGMAC_IOWRITE(pdata, reg, reg_val); 542 543 reg += MAC_QTFCR_INC; 544 } 545 546 return 0; 547 } 548 549 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata) 550 { 551 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0); 552 553 return 0; 554 } 555 556 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata) 557 { 558 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1); 559 560 return 0; 561 } 562 563 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata) 564 { 565 struct ieee_pfc *pfc = pdata->pfc; 566 567 if (pdata->tx_pause || (pfc && pfc->pfc_en)) 568 xgbe_enable_tx_flow_control(pdata); 569 else 570 xgbe_disable_tx_flow_control(pdata); 571 572 return 0; 573 } 574 575 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata) 576 { 577 struct ieee_pfc *pfc = pdata->pfc; 578 579 if (pdata->rx_pause || (pfc && pfc->pfc_en)) 580 xgbe_enable_rx_flow_control(pdata); 581 else 582 xgbe_disable_rx_flow_control(pdata); 583 584 return 0; 585 } 586 587 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata) 588 { 589 struct ieee_pfc *pfc = pdata->pfc; 590 591 xgbe_config_tx_flow_control(pdata); 592 xgbe_config_rx_flow_control(pdata); 593 594 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 595 (pfc && pfc->pfc_en) ? 1 : 0); 596 } 597 598 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata) 599 { 600 struct xgbe_channel *channel; 601 unsigned int dma_ch_isr, dma_ch_ier; 602 unsigned int i; 603 604 channel = pdata->channel; 605 for (i = 0; i < pdata->channel_count; i++, channel++) { 606 /* Clear all the interrupts which are set */ 607 dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR); 608 XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr); 609 610 /* Clear all interrupt enable bits */ 611 dma_ch_ier = 0; 612 613 /* Enable following interrupts 614 * NIE - Normal Interrupt Summary Enable 615 * AIE - Abnormal Interrupt Summary Enable 616 * FBEE - Fatal Bus Error Enable 617 */ 618 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, NIE, 1); 619 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, AIE, 1); 620 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1); 621 622 if (channel->tx_ring) { 623 /* Enable the following Tx interrupts 624 * TIE - Transmit Interrupt Enable (unless using 625 * per channel interrupts) 626 */ 627 if (!pdata->per_channel_irq) 628 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1); 629 } 630 if (channel->rx_ring) { 631 /* Enable following Rx interrupts 632 * RBUE - Receive Buffer Unavailable Enable 633 * RIE - Receive Interrupt Enable (unless using 634 * per channel interrupts) 635 */ 636 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1); 637 if (!pdata->per_channel_irq) 638 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1); 639 } 640 641 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier); 642 } 643 } 644 645 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata) 646 { 647 unsigned int mtl_q_isr; 648 unsigned int q_count, i; 649 650 q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt); 651 for (i = 0; i < q_count; i++) { 652 /* Clear all the interrupts which are set */ 653 mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR); 654 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr); 655 656 /* No MTL interrupts to be enabled */ 657 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0); 658 } 659 } 660 661 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata) 662 { 663 unsigned int mac_ier = 0; 664 665 /* Enable Timestamp interrupt */ 666 XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1); 667 668 XGMAC_IOWRITE(pdata, MAC_IER, mac_ier); 669 670 /* Enable all counter interrupts */ 671 XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff); 672 XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff); 673 } 674 675 static int xgbe_set_gmii_speed(struct xgbe_prv_data *pdata) 676 { 677 if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x3) 678 return 0; 679 680 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x3); 681 682 return 0; 683 } 684 685 static int xgbe_set_gmii_2500_speed(struct xgbe_prv_data *pdata) 686 { 687 if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x2) 688 return 0; 689 690 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x2); 691 692 return 0; 693 } 694 695 static int xgbe_set_xgmii_speed(struct xgbe_prv_data *pdata) 696 { 697 if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0) 698 return 0; 699 700 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0); 701 702 return 0; 703 } 704 705 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, 706 unsigned int enable) 707 { 708 unsigned int val = enable ? 1 : 0; 709 710 if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val) 711 return 0; 712 713 DBGPR(" %s promiscuous mode\n", enable ? "entering" : "leaving"); 714 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val); 715 716 return 0; 717 } 718 719 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, 720 unsigned int enable) 721 { 722 unsigned int val = enable ? 1 : 0; 723 724 if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val) 725 return 0; 726 727 DBGPR(" %s allmulti mode\n", enable ? "entering" : "leaving"); 728 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val); 729 730 return 0; 731 } 732 733 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata, 734 struct netdev_hw_addr *ha, unsigned int *mac_reg) 735 { 736 unsigned int mac_addr_hi, mac_addr_lo; 737 u8 *mac_addr; 738 739 mac_addr_lo = 0; 740 mac_addr_hi = 0; 741 742 if (ha) { 743 mac_addr = (u8 *)&mac_addr_lo; 744 mac_addr[0] = ha->addr[0]; 745 mac_addr[1] = ha->addr[1]; 746 mac_addr[2] = ha->addr[2]; 747 mac_addr[3] = ha->addr[3]; 748 mac_addr = (u8 *)&mac_addr_hi; 749 mac_addr[0] = ha->addr[4]; 750 mac_addr[1] = ha->addr[5]; 751 752 DBGPR(" adding mac address %pM at 0x%04x\n", ha->addr, 753 *mac_reg); 754 755 XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1); 756 } 757 758 XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi); 759 *mac_reg += MAC_MACA_INC; 760 XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo); 761 *mac_reg += MAC_MACA_INC; 762 } 763 764 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata) 765 { 766 struct net_device *netdev = pdata->netdev; 767 struct netdev_hw_addr *ha; 768 unsigned int mac_reg; 769 unsigned int addn_macs; 770 771 mac_reg = MAC_MACA1HR; 772 addn_macs = pdata->hw_feat.addn_mac; 773 774 if (netdev_uc_count(netdev) > addn_macs) { 775 xgbe_set_promiscuous_mode(pdata, 1); 776 } else { 777 netdev_for_each_uc_addr(ha, netdev) { 778 xgbe_set_mac_reg(pdata, ha, &mac_reg); 779 addn_macs--; 780 } 781 782 if (netdev_mc_count(netdev) > addn_macs) { 783 xgbe_set_all_multicast_mode(pdata, 1); 784 } else { 785 netdev_for_each_mc_addr(ha, netdev) { 786 xgbe_set_mac_reg(pdata, ha, &mac_reg); 787 addn_macs--; 788 } 789 } 790 } 791 792 /* Clear remaining additional MAC address entries */ 793 while (addn_macs--) 794 xgbe_set_mac_reg(pdata, NULL, &mac_reg); 795 } 796 797 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata) 798 { 799 struct net_device *netdev = pdata->netdev; 800 struct netdev_hw_addr *ha; 801 unsigned int hash_reg; 802 unsigned int hash_table_shift, hash_table_count; 803 u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE]; 804 u32 crc; 805 unsigned int i; 806 807 hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7); 808 hash_table_count = pdata->hw_feat.hash_table_size / 32; 809 memset(hash_table, 0, sizeof(hash_table)); 810 811 /* Build the MAC Hash Table register values */ 812 netdev_for_each_uc_addr(ha, netdev) { 813 crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN)); 814 crc >>= hash_table_shift; 815 hash_table[crc >> 5] |= (1 << (crc & 0x1f)); 816 } 817 818 netdev_for_each_mc_addr(ha, netdev) { 819 crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN)); 820 crc >>= hash_table_shift; 821 hash_table[crc >> 5] |= (1 << (crc & 0x1f)); 822 } 823 824 /* Set the MAC Hash Table registers */ 825 hash_reg = MAC_HTR0; 826 for (i = 0; i < hash_table_count; i++) { 827 XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]); 828 hash_reg += MAC_HTR_INC; 829 } 830 } 831 832 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata) 833 { 834 if (pdata->hw_feat.hash_table_size) 835 xgbe_set_mac_hash_table(pdata); 836 else 837 xgbe_set_mac_addn_addrs(pdata); 838 839 return 0; 840 } 841 842 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr) 843 { 844 unsigned int mac_addr_hi, mac_addr_lo; 845 846 mac_addr_hi = (addr[5] << 8) | (addr[4] << 0); 847 mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) | 848 (addr[1] << 8) | (addr[0] << 0); 849 850 XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi); 851 XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo); 852 853 return 0; 854 } 855 856 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata) 857 { 858 struct net_device *netdev = pdata->netdev; 859 unsigned int pr_mode, am_mode; 860 861 pr_mode = ((netdev->flags & IFF_PROMISC) != 0); 862 am_mode = ((netdev->flags & IFF_ALLMULTI) != 0); 863 864 xgbe_set_promiscuous_mode(pdata, pr_mode); 865 xgbe_set_all_multicast_mode(pdata, am_mode); 866 867 xgbe_add_mac_addresses(pdata); 868 869 return 0; 870 } 871 872 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, 873 int mmd_reg) 874 { 875 unsigned int mmd_address; 876 int mmd_data; 877 878 if (mmd_reg & MII_ADDR_C45) 879 mmd_address = mmd_reg & ~MII_ADDR_C45; 880 else 881 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); 882 883 /* The PCS registers are accessed using mmio. The underlying APB3 884 * management interface uses indirect addressing to access the MMD 885 * register sets. This requires accessing of the PCS register in two 886 * phases, an address phase and a data phase. 887 * 888 * The mmio interface is based on 32-bit offsets and values. All 889 * register offsets must therefore be adjusted by left shifting the 890 * offset 2 bits and reading 32 bits of data. 891 */ 892 mutex_lock(&pdata->xpcs_mutex); 893 XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8); 894 mmd_data = XPCS_IOREAD(pdata, (mmd_address & 0xff) << 2); 895 mutex_unlock(&pdata->xpcs_mutex); 896 897 return mmd_data; 898 } 899 900 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, 901 int mmd_reg, int mmd_data) 902 { 903 unsigned int mmd_address; 904 905 if (mmd_reg & MII_ADDR_C45) 906 mmd_address = mmd_reg & ~MII_ADDR_C45; 907 else 908 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); 909 910 /* If the PCS is changing modes, match the MAC speed to it */ 911 if (((mmd_address >> 16) == MDIO_MMD_PCS) && 912 ((mmd_address & 0xffff) == MDIO_CTRL2)) { 913 struct phy_device *phydev = pdata->phydev; 914 915 if (mmd_data & MDIO_PCS_CTRL2_TYPE) { 916 /* KX mode */ 917 if (phydev->supported & SUPPORTED_1000baseKX_Full) 918 xgbe_set_gmii_speed(pdata); 919 else 920 xgbe_set_gmii_2500_speed(pdata); 921 } else { 922 /* KR mode */ 923 xgbe_set_xgmii_speed(pdata); 924 } 925 } 926 927 /* The PCS registers are accessed using mmio. The underlying APB3 928 * management interface uses indirect addressing to access the MMD 929 * register sets. This requires accessing of the PCS register in two 930 * phases, an address phase and a data phase. 931 * 932 * The mmio interface is based on 32-bit offsets and values. All 933 * register offsets must therefore be adjusted by left shifting the 934 * offset 2 bits and reading 32 bits of data. 935 */ 936 mutex_lock(&pdata->xpcs_mutex); 937 XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8); 938 XPCS_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data); 939 mutex_unlock(&pdata->xpcs_mutex); 940 } 941 942 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc) 943 { 944 return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN); 945 } 946 947 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata) 948 { 949 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0); 950 951 return 0; 952 } 953 954 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata) 955 { 956 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1); 957 958 return 0; 959 } 960 961 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata) 962 { 963 /* Put the VLAN tag in the Rx descriptor */ 964 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1); 965 966 /* Don't check the VLAN type */ 967 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1); 968 969 /* Check only C-TAG (0x8100) packets */ 970 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0); 971 972 /* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */ 973 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0); 974 975 /* Enable VLAN tag stripping */ 976 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3); 977 978 return 0; 979 } 980 981 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata) 982 { 983 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0); 984 985 return 0; 986 } 987 988 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata) 989 { 990 /* Enable VLAN filtering */ 991 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1); 992 993 /* Enable VLAN Hash Table filtering */ 994 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1); 995 996 /* Disable VLAN tag inverse matching */ 997 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0); 998 999 /* Only filter on the lower 12-bits of the VLAN tag */ 1000 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1); 1001 1002 /* In order for the VLAN Hash Table filtering to be effective, 1003 * the VLAN tag identifier in the VLAN Tag Register must not 1004 * be zero. Set the VLAN tag identifier to "1" to enable the 1005 * VLAN Hash Table filtering. This implies that a VLAN tag of 1006 * 1 will always pass filtering. 1007 */ 1008 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1); 1009 1010 return 0; 1011 } 1012 1013 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata) 1014 { 1015 /* Disable VLAN filtering */ 1016 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0); 1017 1018 return 0; 1019 } 1020 1021 #ifndef CRCPOLY_LE 1022 #define CRCPOLY_LE 0xedb88320 1023 #endif 1024 static u32 xgbe_vid_crc32_le(__le16 vid_le) 1025 { 1026 u32 poly = CRCPOLY_LE; 1027 u32 crc = ~0; 1028 u32 temp = 0; 1029 unsigned char *data = (unsigned char *)&vid_le; 1030 unsigned char data_byte = 0; 1031 int i, bits; 1032 1033 bits = get_bitmask_order(VLAN_VID_MASK); 1034 for (i = 0; i < bits; i++) { 1035 if ((i % 8) == 0) 1036 data_byte = data[i / 8]; 1037 1038 temp = ((crc & 1) ^ data_byte) & 1; 1039 crc >>= 1; 1040 data_byte >>= 1; 1041 1042 if (temp) 1043 crc ^= poly; 1044 } 1045 1046 return crc; 1047 } 1048 1049 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata) 1050 { 1051 u32 crc; 1052 u16 vid; 1053 __le16 vid_le; 1054 u16 vlan_hash_table = 0; 1055 1056 /* Generate the VLAN Hash Table value */ 1057 for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) { 1058 /* Get the CRC32 value of the VLAN ID */ 1059 vid_le = cpu_to_le16(vid); 1060 crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28; 1061 1062 vlan_hash_table |= (1 << crc); 1063 } 1064 1065 /* Set the VLAN Hash Table filtering register */ 1066 XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table); 1067 1068 return 0; 1069 } 1070 1071 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata) 1072 { 1073 struct xgbe_ring_desc *rdesc = rdata->rdesc; 1074 1075 /* Reset the Tx descriptor 1076 * Set buffer 1 (lo) address to zero 1077 * Set buffer 1 (hi) address to zero 1078 * Reset all other control bits (IC, TTSE, B2L & B1L) 1079 * Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc) 1080 */ 1081 rdesc->desc0 = 0; 1082 rdesc->desc1 = 0; 1083 rdesc->desc2 = 0; 1084 rdesc->desc3 = 0; 1085 1086 /* Make sure ownership is written to the descriptor */ 1087 dma_wmb(); 1088 } 1089 1090 static void xgbe_tx_desc_init(struct xgbe_channel *channel) 1091 { 1092 struct xgbe_ring *ring = channel->tx_ring; 1093 struct xgbe_ring_data *rdata; 1094 int i; 1095 int start_index = ring->cur; 1096 1097 DBGPR("-->tx_desc_init\n"); 1098 1099 /* Initialze all descriptors */ 1100 for (i = 0; i < ring->rdesc_count; i++) { 1101 rdata = XGBE_GET_DESC_DATA(ring, i); 1102 1103 /* Initialize Tx descriptor */ 1104 xgbe_tx_desc_reset(rdata); 1105 } 1106 1107 /* Update the total number of Tx descriptors */ 1108 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1); 1109 1110 /* Update the starting address of descriptor ring */ 1111 rdata = XGBE_GET_DESC_DATA(ring, start_index); 1112 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI, 1113 upper_32_bits(rdata->rdesc_dma)); 1114 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO, 1115 lower_32_bits(rdata->rdesc_dma)); 1116 1117 DBGPR("<--tx_desc_init\n"); 1118 } 1119 1120 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata, 1121 struct xgbe_ring_data *rdata, unsigned int index) 1122 { 1123 struct xgbe_ring_desc *rdesc = rdata->rdesc; 1124 unsigned int rx_usecs = pdata->rx_usecs; 1125 unsigned int rx_frames = pdata->rx_frames; 1126 unsigned int inte; 1127 1128 if (!rx_usecs && !rx_frames) { 1129 /* No coalescing, interrupt for every descriptor */ 1130 inte = 1; 1131 } else { 1132 /* Set interrupt based on Rx frame coalescing setting */ 1133 if (rx_frames && !((index + 1) % rx_frames)) 1134 inte = 1; 1135 else 1136 inte = 0; 1137 } 1138 1139 /* Reset the Rx descriptor 1140 * Set buffer 1 (lo) address to header dma address (lo) 1141 * Set buffer 1 (hi) address to header dma address (hi) 1142 * Set buffer 2 (lo) address to buffer dma address (lo) 1143 * Set buffer 2 (hi) address to buffer dma address (hi) and 1144 * set control bits OWN and INTE 1145 */ 1146 rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->rx.hdr.dma)); 1147 rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->rx.hdr.dma)); 1148 rdesc->desc2 = cpu_to_le32(lower_32_bits(rdata->rx.buf.dma)); 1149 rdesc->desc3 = cpu_to_le32(upper_32_bits(rdata->rx.buf.dma)); 1150 1151 XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte); 1152 1153 /* Since the Rx DMA engine is likely running, make sure everything 1154 * is written to the descriptor(s) before setting the OWN bit 1155 * for the descriptor 1156 */ 1157 dma_wmb(); 1158 1159 XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1); 1160 1161 /* Make sure ownership is written to the descriptor */ 1162 dma_wmb(); 1163 } 1164 1165 static void xgbe_rx_desc_init(struct xgbe_channel *channel) 1166 { 1167 struct xgbe_prv_data *pdata = channel->pdata; 1168 struct xgbe_ring *ring = channel->rx_ring; 1169 struct xgbe_ring_data *rdata; 1170 unsigned int start_index = ring->cur; 1171 unsigned int i; 1172 1173 DBGPR("-->rx_desc_init\n"); 1174 1175 /* Initialize all descriptors */ 1176 for (i = 0; i < ring->rdesc_count; i++) { 1177 rdata = XGBE_GET_DESC_DATA(ring, i); 1178 1179 /* Initialize Rx descriptor */ 1180 xgbe_rx_desc_reset(pdata, rdata, i); 1181 } 1182 1183 /* Update the total number of Rx descriptors */ 1184 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1); 1185 1186 /* Update the starting address of descriptor ring */ 1187 rdata = XGBE_GET_DESC_DATA(ring, start_index); 1188 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI, 1189 upper_32_bits(rdata->rdesc_dma)); 1190 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO, 1191 lower_32_bits(rdata->rdesc_dma)); 1192 1193 /* Update the Rx Descriptor Tail Pointer */ 1194 rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1); 1195 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO, 1196 lower_32_bits(rdata->rdesc_dma)); 1197 1198 DBGPR("<--rx_desc_init\n"); 1199 } 1200 1201 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata, 1202 unsigned int addend) 1203 { 1204 /* Set the addend register value and tell the device */ 1205 XGMAC_IOWRITE(pdata, MAC_TSAR, addend); 1206 XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1); 1207 1208 /* Wait for addend update to complete */ 1209 while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG)) 1210 udelay(5); 1211 } 1212 1213 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec, 1214 unsigned int nsec) 1215 { 1216 /* Set the time values and tell the device */ 1217 XGMAC_IOWRITE(pdata, MAC_STSUR, sec); 1218 XGMAC_IOWRITE(pdata, MAC_STNUR, nsec); 1219 XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1); 1220 1221 /* Wait for time update to complete */ 1222 while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT)) 1223 udelay(5); 1224 } 1225 1226 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata) 1227 { 1228 u64 nsec; 1229 1230 nsec = XGMAC_IOREAD(pdata, MAC_STSR); 1231 nsec *= NSEC_PER_SEC; 1232 nsec += XGMAC_IOREAD(pdata, MAC_STNR); 1233 1234 return nsec; 1235 } 1236 1237 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata) 1238 { 1239 unsigned int tx_snr; 1240 u64 nsec; 1241 1242 tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR); 1243 if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS)) 1244 return 0; 1245 1246 nsec = XGMAC_IOREAD(pdata, MAC_TXSSR); 1247 nsec *= NSEC_PER_SEC; 1248 nsec += tx_snr; 1249 1250 return nsec; 1251 } 1252 1253 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet, 1254 struct xgbe_ring_desc *rdesc) 1255 { 1256 u64 nsec; 1257 1258 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) && 1259 !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) { 1260 nsec = le32_to_cpu(rdesc->desc1); 1261 nsec <<= 32; 1262 nsec |= le32_to_cpu(rdesc->desc0); 1263 if (nsec != 0xffffffffffffffffULL) { 1264 packet->rx_tstamp = nsec; 1265 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1266 RX_TSTAMP, 1); 1267 } 1268 } 1269 } 1270 1271 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata, 1272 unsigned int mac_tscr) 1273 { 1274 /* Set one nano-second accuracy */ 1275 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1); 1276 1277 /* Set fine timestamp update */ 1278 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1); 1279 1280 /* Overwrite earlier timestamps */ 1281 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1); 1282 1283 XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr); 1284 1285 /* Exit if timestamping is not enabled */ 1286 if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA)) 1287 return 0; 1288 1289 /* Initialize time registers */ 1290 XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC); 1291 XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC); 1292 xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend); 1293 xgbe_set_tstamp_time(pdata, 0, 0); 1294 1295 /* Initialize the timecounter */ 1296 timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc, 1297 ktime_to_ns(ktime_get_real())); 1298 1299 return 0; 1300 } 1301 1302 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata) 1303 { 1304 struct ieee_ets *ets = pdata->ets; 1305 unsigned int total_weight, min_weight, weight; 1306 unsigned int i; 1307 1308 if (!ets) 1309 return; 1310 1311 /* Set Tx to deficit weighted round robin scheduling algorithm (when 1312 * traffic class is using ETS algorithm) 1313 */ 1314 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR); 1315 1316 /* Set Traffic Class algorithms */ 1317 total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt; 1318 min_weight = total_weight / 100; 1319 if (!min_weight) 1320 min_weight = 1; 1321 1322 for (i = 0; i < pdata->hw_feat.tc_cnt; i++) { 1323 switch (ets->tc_tsa[i]) { 1324 case IEEE_8021QAZ_TSA_STRICT: 1325 DBGPR(" TC%u using SP\n", i); 1326 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, 1327 MTL_TSA_SP); 1328 break; 1329 case IEEE_8021QAZ_TSA_ETS: 1330 weight = total_weight * ets->tc_tx_bw[i] / 100; 1331 weight = clamp(weight, min_weight, total_weight); 1332 1333 DBGPR(" TC%u using DWRR (weight %u)\n", i, weight); 1334 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, 1335 MTL_TSA_ETS); 1336 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1337 weight); 1338 break; 1339 } 1340 } 1341 } 1342 1343 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata) 1344 { 1345 struct ieee_pfc *pfc = pdata->pfc; 1346 struct ieee_ets *ets = pdata->ets; 1347 unsigned int mask, reg, reg_val; 1348 unsigned int tc, prio; 1349 1350 if (!pfc || !ets) 1351 return; 1352 1353 for (tc = 0; tc < pdata->hw_feat.tc_cnt; tc++) { 1354 mask = 0; 1355 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) { 1356 if ((pfc->pfc_en & (1 << prio)) && 1357 (ets->prio_tc[prio] == tc)) 1358 mask |= (1 << prio); 1359 } 1360 mask &= 0xff; 1361 1362 DBGPR(" TC%u PFC mask=%#x\n", tc, mask); 1363 reg = MTL_TCPM0R + (MTL_TCPM_INC * (tc / MTL_TCPM_TC_PER_REG)); 1364 reg_val = XGMAC_IOREAD(pdata, reg); 1365 1366 reg_val &= ~(0xff << ((tc % MTL_TCPM_TC_PER_REG) << 3)); 1367 reg_val |= (mask << ((tc % MTL_TCPM_TC_PER_REG) << 3)); 1368 1369 XGMAC_IOWRITE(pdata, reg, reg_val); 1370 } 1371 1372 xgbe_config_flow_control(pdata); 1373 } 1374 1375 static void xgbe_tx_start_xmit(struct xgbe_channel *channel, 1376 struct xgbe_ring *ring) 1377 { 1378 struct xgbe_prv_data *pdata = channel->pdata; 1379 struct xgbe_ring_data *rdata; 1380 1381 /* Make sure everything is written before the register write */ 1382 wmb(); 1383 1384 /* Issue a poll command to Tx DMA by writing address 1385 * of next immediate free descriptor */ 1386 rdata = XGBE_GET_DESC_DATA(ring, ring->cur); 1387 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO, 1388 lower_32_bits(rdata->rdesc_dma)); 1389 1390 /* Start the Tx timer */ 1391 if (pdata->tx_usecs && !channel->tx_timer_active) { 1392 channel->tx_timer_active = 1; 1393 mod_timer(&channel->tx_timer, 1394 jiffies + usecs_to_jiffies(pdata->tx_usecs)); 1395 } 1396 1397 ring->tx.xmit_more = 0; 1398 } 1399 1400 static void xgbe_dev_xmit(struct xgbe_channel *channel) 1401 { 1402 struct xgbe_prv_data *pdata = channel->pdata; 1403 struct xgbe_ring *ring = channel->tx_ring; 1404 struct xgbe_ring_data *rdata; 1405 struct xgbe_ring_desc *rdesc; 1406 struct xgbe_packet_data *packet = &ring->packet_data; 1407 unsigned int csum, tso, vlan; 1408 unsigned int tso_context, vlan_context; 1409 unsigned int tx_set_ic; 1410 int start_index = ring->cur; 1411 int cur_index = ring->cur; 1412 int i; 1413 1414 DBGPR("-->xgbe_dev_xmit\n"); 1415 1416 csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1417 CSUM_ENABLE); 1418 tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1419 TSO_ENABLE); 1420 vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, 1421 VLAN_CTAG); 1422 1423 if (tso && (packet->mss != ring->tx.cur_mss)) 1424 tso_context = 1; 1425 else 1426 tso_context = 0; 1427 1428 if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag)) 1429 vlan_context = 1; 1430 else 1431 vlan_context = 0; 1432 1433 /* Determine if an interrupt should be generated for this Tx: 1434 * Interrupt: 1435 * - Tx frame count exceeds the frame count setting 1436 * - Addition of Tx frame count to the frame count since the 1437 * last interrupt was set exceeds the frame count setting 1438 * No interrupt: 1439 * - No frame count setting specified (ethtool -C ethX tx-frames 0) 1440 * - Addition of Tx frame count to the frame count since the 1441 * last interrupt was set does not exceed the frame count setting 1442 */ 1443 ring->coalesce_count += packet->tx_packets; 1444 if (!pdata->tx_frames) 1445 tx_set_ic = 0; 1446 else if (packet->tx_packets > pdata->tx_frames) 1447 tx_set_ic = 1; 1448 else if ((ring->coalesce_count % pdata->tx_frames) < 1449 packet->tx_packets) 1450 tx_set_ic = 1; 1451 else 1452 tx_set_ic = 0; 1453 1454 rdata = XGBE_GET_DESC_DATA(ring, cur_index); 1455 rdesc = rdata->rdesc; 1456 1457 /* Create a context descriptor if this is a TSO packet */ 1458 if (tso_context || vlan_context) { 1459 if (tso_context) { 1460 DBGPR(" TSO context descriptor, mss=%u\n", 1461 packet->mss); 1462 1463 /* Set the MSS size */ 1464 XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2, 1465 MSS, packet->mss); 1466 1467 /* Mark it as a CONTEXT descriptor */ 1468 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, 1469 CTXT, 1); 1470 1471 /* Indicate this descriptor contains the MSS */ 1472 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, 1473 TCMSSV, 1); 1474 1475 ring->tx.cur_mss = packet->mss; 1476 } 1477 1478 if (vlan_context) { 1479 DBGPR(" VLAN context descriptor, ctag=%u\n", 1480 packet->vlan_ctag); 1481 1482 /* Mark it as a CONTEXT descriptor */ 1483 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, 1484 CTXT, 1); 1485 1486 /* Set the VLAN tag */ 1487 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, 1488 VT, packet->vlan_ctag); 1489 1490 /* Indicate this descriptor contains the VLAN tag */ 1491 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, 1492 VLTV, 1); 1493 1494 ring->tx.cur_vlan_ctag = packet->vlan_ctag; 1495 } 1496 1497 cur_index++; 1498 rdata = XGBE_GET_DESC_DATA(ring, cur_index); 1499 rdesc = rdata->rdesc; 1500 } 1501 1502 /* Update buffer address (for TSO this is the header) */ 1503 rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma)); 1504 rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma)); 1505 1506 /* Update the buffer length */ 1507 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L, 1508 rdata->skb_dma_len); 1509 1510 /* VLAN tag insertion check */ 1511 if (vlan) 1512 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR, 1513 TX_NORMAL_DESC2_VLAN_INSERT); 1514 1515 /* Timestamp enablement check */ 1516 if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP)) 1517 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1); 1518 1519 /* Mark it as First Descriptor */ 1520 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1); 1521 1522 /* Mark it as a NORMAL descriptor */ 1523 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0); 1524 1525 /* Set OWN bit if not the first descriptor */ 1526 if (cur_index != start_index) 1527 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); 1528 1529 if (tso) { 1530 /* Enable TSO */ 1531 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1); 1532 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL, 1533 packet->tcp_payload_len); 1534 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN, 1535 packet->tcp_header_len / 4); 1536 } else { 1537 /* Enable CRC and Pad Insertion */ 1538 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0); 1539 1540 /* Enable HW CSUM */ 1541 if (csum) 1542 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, 1543 CIC, 0x3); 1544 1545 /* Set the total length to be transmitted */ 1546 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL, 1547 packet->length); 1548 } 1549 1550 for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) { 1551 cur_index++; 1552 rdata = XGBE_GET_DESC_DATA(ring, cur_index); 1553 rdesc = rdata->rdesc; 1554 1555 /* Update buffer address */ 1556 rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma)); 1557 rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma)); 1558 1559 /* Update the buffer length */ 1560 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L, 1561 rdata->skb_dma_len); 1562 1563 /* Set OWN bit */ 1564 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); 1565 1566 /* Mark it as NORMAL descriptor */ 1567 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0); 1568 1569 /* Enable HW CSUM */ 1570 if (csum) 1571 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, 1572 CIC, 0x3); 1573 } 1574 1575 /* Set LAST bit for the last descriptor */ 1576 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1); 1577 1578 /* Set IC bit based on Tx coalescing settings */ 1579 if (tx_set_ic) 1580 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1); 1581 1582 /* Save the Tx info to report back during cleanup */ 1583 rdata->tx.packets = packet->tx_packets; 1584 rdata->tx.bytes = packet->tx_bytes; 1585 1586 /* In case the Tx DMA engine is running, make sure everything 1587 * is written to the descriptor(s) before setting the OWN bit 1588 * for the first descriptor 1589 */ 1590 dma_wmb(); 1591 1592 /* Set OWN bit for the first descriptor */ 1593 rdata = XGBE_GET_DESC_DATA(ring, start_index); 1594 rdesc = rdata->rdesc; 1595 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); 1596 1597 #ifdef XGMAC_ENABLE_TX_DESC_DUMP 1598 xgbe_dump_tx_desc(ring, start_index, packet->rdesc_count, 1); 1599 #endif 1600 1601 /* Make sure ownership is written to the descriptor */ 1602 dma_wmb(); 1603 1604 ring->cur = cur_index + 1; 1605 if (!packet->skb->xmit_more || 1606 netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev, 1607 channel->queue_index))) 1608 xgbe_tx_start_xmit(channel, ring); 1609 else 1610 ring->tx.xmit_more = 1; 1611 1612 DBGPR(" %s: descriptors %u to %u written\n", 1613 channel->name, start_index & (ring->rdesc_count - 1), 1614 (ring->cur - 1) & (ring->rdesc_count - 1)); 1615 1616 DBGPR("<--xgbe_dev_xmit\n"); 1617 } 1618 1619 static int xgbe_dev_read(struct xgbe_channel *channel) 1620 { 1621 struct xgbe_ring *ring = channel->rx_ring; 1622 struct xgbe_ring_data *rdata; 1623 struct xgbe_ring_desc *rdesc; 1624 struct xgbe_packet_data *packet = &ring->packet_data; 1625 struct net_device *netdev = channel->pdata->netdev; 1626 unsigned int err, etlt, l34t; 1627 1628 DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur); 1629 1630 rdata = XGBE_GET_DESC_DATA(ring, ring->cur); 1631 rdesc = rdata->rdesc; 1632 1633 /* Check for data availability */ 1634 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN)) 1635 return 1; 1636 1637 /* Make sure descriptor fields are read after reading the OWN bit */ 1638 dma_rmb(); 1639 1640 #ifdef XGMAC_ENABLE_RX_DESC_DUMP 1641 xgbe_dump_rx_desc(ring, rdesc, ring->cur); 1642 #endif 1643 1644 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) { 1645 /* Timestamp Context Descriptor */ 1646 xgbe_get_rx_tstamp(packet, rdesc); 1647 1648 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1649 CONTEXT, 1); 1650 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1651 CONTEXT_NEXT, 0); 1652 return 0; 1653 } 1654 1655 /* Normal Descriptor, be sure Context Descriptor bit is off */ 1656 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0); 1657 1658 /* Indicate if a Context Descriptor is next */ 1659 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA)) 1660 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1661 CONTEXT_NEXT, 1); 1662 1663 /* Get the header length */ 1664 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) 1665 rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2, 1666 RX_NORMAL_DESC2, HL); 1667 1668 /* Get the RSS hash */ 1669 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) { 1670 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1671 RSS_HASH, 1); 1672 1673 packet->rss_hash = le32_to_cpu(rdesc->desc1); 1674 1675 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T); 1676 switch (l34t) { 1677 case RX_DESC3_L34T_IPV4_TCP: 1678 case RX_DESC3_L34T_IPV4_UDP: 1679 case RX_DESC3_L34T_IPV6_TCP: 1680 case RX_DESC3_L34T_IPV6_UDP: 1681 packet->rss_hash_type = PKT_HASH_TYPE_L4; 1682 break; 1683 default: 1684 packet->rss_hash_type = PKT_HASH_TYPE_L3; 1685 } 1686 } 1687 1688 /* Get the packet length */ 1689 rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL); 1690 1691 if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) { 1692 /* Not all the data has been transferred for this packet */ 1693 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1694 INCOMPLETE, 1); 1695 return 0; 1696 } 1697 1698 /* This is the last of the data for this packet */ 1699 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1700 INCOMPLETE, 0); 1701 1702 /* Set checksum done indicator as appropriate */ 1703 if (channel->pdata->netdev->features & NETIF_F_RXCSUM) 1704 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1705 CSUM_DONE, 1); 1706 1707 /* Check for errors (only valid in last descriptor) */ 1708 err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES); 1709 etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT); 1710 DBGPR(" err=%u, etlt=%#x\n", err, etlt); 1711 1712 if (!err || !etlt) { 1713 /* No error if err is 0 or etlt is 0 */ 1714 if ((etlt == 0x09) && 1715 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) { 1716 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1717 VLAN_CTAG, 1); 1718 packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0, 1719 RX_NORMAL_DESC0, 1720 OVT); 1721 DBGPR(" vlan-ctag=0x%04x\n", packet->vlan_ctag); 1722 } 1723 } else { 1724 if ((etlt == 0x05) || (etlt == 0x06)) 1725 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1726 CSUM_DONE, 0); 1727 else 1728 XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS, 1729 FRAME, 1); 1730 } 1731 1732 DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name, 1733 ring->cur & (ring->rdesc_count - 1), ring->cur); 1734 1735 return 0; 1736 } 1737 1738 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc) 1739 { 1740 /* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */ 1741 return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT); 1742 } 1743 1744 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc) 1745 { 1746 /* Rx and Tx share LD bit, so check TDES3.LD bit */ 1747 return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD); 1748 } 1749 1750 static int xgbe_enable_int(struct xgbe_channel *channel, 1751 enum xgbe_int int_id) 1752 { 1753 unsigned int dma_ch_ier; 1754 1755 dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER); 1756 1757 switch (int_id) { 1758 case XGMAC_INT_DMA_CH_SR_TI: 1759 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1); 1760 break; 1761 case XGMAC_INT_DMA_CH_SR_TPS: 1762 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 1); 1763 break; 1764 case XGMAC_INT_DMA_CH_SR_TBU: 1765 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 1); 1766 break; 1767 case XGMAC_INT_DMA_CH_SR_RI: 1768 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1); 1769 break; 1770 case XGMAC_INT_DMA_CH_SR_RBU: 1771 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1); 1772 break; 1773 case XGMAC_INT_DMA_CH_SR_RPS: 1774 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 1); 1775 break; 1776 case XGMAC_INT_DMA_CH_SR_TI_RI: 1777 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1); 1778 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1); 1779 break; 1780 case XGMAC_INT_DMA_CH_SR_FBE: 1781 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1); 1782 break; 1783 case XGMAC_INT_DMA_ALL: 1784 dma_ch_ier |= channel->saved_ier; 1785 break; 1786 default: 1787 return -1; 1788 } 1789 1790 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier); 1791 1792 return 0; 1793 } 1794 1795 static int xgbe_disable_int(struct xgbe_channel *channel, 1796 enum xgbe_int int_id) 1797 { 1798 unsigned int dma_ch_ier; 1799 1800 dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER); 1801 1802 switch (int_id) { 1803 case XGMAC_INT_DMA_CH_SR_TI: 1804 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0); 1805 break; 1806 case XGMAC_INT_DMA_CH_SR_TPS: 1807 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 0); 1808 break; 1809 case XGMAC_INT_DMA_CH_SR_TBU: 1810 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 0); 1811 break; 1812 case XGMAC_INT_DMA_CH_SR_RI: 1813 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0); 1814 break; 1815 case XGMAC_INT_DMA_CH_SR_RBU: 1816 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 0); 1817 break; 1818 case XGMAC_INT_DMA_CH_SR_RPS: 1819 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 0); 1820 break; 1821 case XGMAC_INT_DMA_CH_SR_TI_RI: 1822 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0); 1823 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0); 1824 break; 1825 case XGMAC_INT_DMA_CH_SR_FBE: 1826 XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 0); 1827 break; 1828 case XGMAC_INT_DMA_ALL: 1829 channel->saved_ier = dma_ch_ier & XGBE_DMA_INTERRUPT_MASK; 1830 dma_ch_ier &= ~XGBE_DMA_INTERRUPT_MASK; 1831 break; 1832 default: 1833 return -1; 1834 } 1835 1836 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier); 1837 1838 return 0; 1839 } 1840 1841 static int xgbe_exit(struct xgbe_prv_data *pdata) 1842 { 1843 unsigned int count = 2000; 1844 1845 DBGPR("-->xgbe_exit\n"); 1846 1847 /* Issue a software reset */ 1848 XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1); 1849 usleep_range(10, 15); 1850 1851 /* Poll Until Poll Condition */ 1852 while (count-- && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR)) 1853 usleep_range(500, 600); 1854 1855 if (!count) 1856 return -EBUSY; 1857 1858 DBGPR("<--xgbe_exit\n"); 1859 1860 return 0; 1861 } 1862 1863 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata) 1864 { 1865 unsigned int i, count; 1866 1867 if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21) 1868 return 0; 1869 1870 for (i = 0; i < pdata->tx_q_count; i++) 1871 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1); 1872 1873 /* Poll Until Poll Condition */ 1874 for (i = 0; i < pdata->tx_q_count; i++) { 1875 count = 2000; 1876 while (count-- && XGMAC_MTL_IOREAD_BITS(pdata, i, 1877 MTL_Q_TQOMR, FTQ)) 1878 usleep_range(500, 600); 1879 1880 if (!count) 1881 return -EBUSY; 1882 } 1883 1884 return 0; 1885 } 1886 1887 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata) 1888 { 1889 /* Set enhanced addressing mode */ 1890 XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, EAME, 1); 1891 1892 /* Set the System Bus mode */ 1893 XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, UNDEF, 1); 1894 XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, BLEN_256, 1); 1895 } 1896 1897 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata) 1898 { 1899 unsigned int arcache, awcache; 1900 1901 arcache = 0; 1902 XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRC, pdata->arcache); 1903 XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRD, pdata->axdomain); 1904 XGMAC_SET_BITS(arcache, DMA_AXIARCR, TEC, pdata->arcache); 1905 XGMAC_SET_BITS(arcache, DMA_AXIARCR, TED, pdata->axdomain); 1906 XGMAC_SET_BITS(arcache, DMA_AXIARCR, THC, pdata->arcache); 1907 XGMAC_SET_BITS(arcache, DMA_AXIARCR, THD, pdata->axdomain); 1908 XGMAC_IOWRITE(pdata, DMA_AXIARCR, arcache); 1909 1910 awcache = 0; 1911 XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWC, pdata->awcache); 1912 XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWD, pdata->axdomain); 1913 XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPC, pdata->awcache); 1914 XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPD, pdata->axdomain); 1915 XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHC, pdata->awcache); 1916 XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHD, pdata->axdomain); 1917 XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDC, pdata->awcache); 1918 XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDD, pdata->axdomain); 1919 XGMAC_IOWRITE(pdata, DMA_AXIAWCR, awcache); 1920 } 1921 1922 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata) 1923 { 1924 unsigned int i; 1925 1926 /* Set Tx to weighted round robin scheduling algorithm */ 1927 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR); 1928 1929 /* Set Tx traffic classes to use WRR algorithm with equal weights */ 1930 for (i = 0; i < pdata->hw_feat.tc_cnt; i++) { 1931 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, 1932 MTL_TSA_ETS); 1933 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1); 1934 } 1935 1936 /* Set Rx to strict priority algorithm */ 1937 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP); 1938 } 1939 1940 static unsigned int xgbe_calculate_per_queue_fifo(unsigned int fifo_size, 1941 unsigned int queue_count) 1942 { 1943 unsigned int q_fifo_size = 0; 1944 enum xgbe_mtl_fifo_size p_fifo = XGMAC_MTL_FIFO_SIZE_256; 1945 1946 /* Calculate Tx/Rx fifo share per queue */ 1947 switch (fifo_size) { 1948 case 0: 1949 q_fifo_size = XGBE_FIFO_SIZE_B(128); 1950 break; 1951 case 1: 1952 q_fifo_size = XGBE_FIFO_SIZE_B(256); 1953 break; 1954 case 2: 1955 q_fifo_size = XGBE_FIFO_SIZE_B(512); 1956 break; 1957 case 3: 1958 q_fifo_size = XGBE_FIFO_SIZE_KB(1); 1959 break; 1960 case 4: 1961 q_fifo_size = XGBE_FIFO_SIZE_KB(2); 1962 break; 1963 case 5: 1964 q_fifo_size = XGBE_FIFO_SIZE_KB(4); 1965 break; 1966 case 6: 1967 q_fifo_size = XGBE_FIFO_SIZE_KB(8); 1968 break; 1969 case 7: 1970 q_fifo_size = XGBE_FIFO_SIZE_KB(16); 1971 break; 1972 case 8: 1973 q_fifo_size = XGBE_FIFO_SIZE_KB(32); 1974 break; 1975 case 9: 1976 q_fifo_size = XGBE_FIFO_SIZE_KB(64); 1977 break; 1978 case 10: 1979 q_fifo_size = XGBE_FIFO_SIZE_KB(128); 1980 break; 1981 case 11: 1982 q_fifo_size = XGBE_FIFO_SIZE_KB(256); 1983 break; 1984 } 1985 1986 /* The configured value is not the actual amount of fifo RAM */ 1987 q_fifo_size = min_t(unsigned int, XGBE_FIFO_MAX, q_fifo_size); 1988 1989 q_fifo_size = q_fifo_size / queue_count; 1990 1991 /* Set the queue fifo size programmable value */ 1992 if (q_fifo_size >= XGBE_FIFO_SIZE_KB(256)) 1993 p_fifo = XGMAC_MTL_FIFO_SIZE_256K; 1994 else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(128)) 1995 p_fifo = XGMAC_MTL_FIFO_SIZE_128K; 1996 else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(64)) 1997 p_fifo = XGMAC_MTL_FIFO_SIZE_64K; 1998 else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(32)) 1999 p_fifo = XGMAC_MTL_FIFO_SIZE_32K; 2000 else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(16)) 2001 p_fifo = XGMAC_MTL_FIFO_SIZE_16K; 2002 else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(8)) 2003 p_fifo = XGMAC_MTL_FIFO_SIZE_8K; 2004 else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(4)) 2005 p_fifo = XGMAC_MTL_FIFO_SIZE_4K; 2006 else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(2)) 2007 p_fifo = XGMAC_MTL_FIFO_SIZE_2K; 2008 else if (q_fifo_size >= XGBE_FIFO_SIZE_KB(1)) 2009 p_fifo = XGMAC_MTL_FIFO_SIZE_1K; 2010 else if (q_fifo_size >= XGBE_FIFO_SIZE_B(512)) 2011 p_fifo = XGMAC_MTL_FIFO_SIZE_512; 2012 else if (q_fifo_size >= XGBE_FIFO_SIZE_B(256)) 2013 p_fifo = XGMAC_MTL_FIFO_SIZE_256; 2014 2015 return p_fifo; 2016 } 2017 2018 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata) 2019 { 2020 enum xgbe_mtl_fifo_size fifo_size; 2021 unsigned int i; 2022 2023 fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.tx_fifo_size, 2024 pdata->tx_q_count); 2025 2026 for (i = 0; i < pdata->tx_q_count; i++) 2027 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo_size); 2028 2029 netdev_notice(pdata->netdev, 2030 "%d Tx hardware queues, %d byte fifo per queue\n", 2031 pdata->tx_q_count, ((fifo_size + 1) * 256)); 2032 } 2033 2034 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata) 2035 { 2036 enum xgbe_mtl_fifo_size fifo_size; 2037 unsigned int i; 2038 2039 fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.rx_fifo_size, 2040 pdata->rx_q_count); 2041 2042 for (i = 0; i < pdata->rx_q_count; i++) 2043 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo_size); 2044 2045 netdev_notice(pdata->netdev, 2046 "%d Rx hardware queues, %d byte fifo per queue\n", 2047 pdata->rx_q_count, ((fifo_size + 1) * 256)); 2048 } 2049 2050 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata) 2051 { 2052 unsigned int qptc, qptc_extra, queue; 2053 unsigned int prio_queues; 2054 unsigned int ppq, ppq_extra, prio; 2055 unsigned int mask; 2056 unsigned int i, j, reg, reg_val; 2057 2058 /* Map the MTL Tx Queues to Traffic Classes 2059 * Note: Tx Queues >= Traffic Classes 2060 */ 2061 qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt; 2062 qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt; 2063 2064 for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) { 2065 for (j = 0; j < qptc; j++) { 2066 DBGPR(" TXq%u mapped to TC%u\n", queue, i); 2067 XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR, 2068 Q2TCMAP, i); 2069 pdata->q2tc_map[queue++] = i; 2070 } 2071 2072 if (i < qptc_extra) { 2073 DBGPR(" TXq%u mapped to TC%u\n", queue, i); 2074 XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR, 2075 Q2TCMAP, i); 2076 pdata->q2tc_map[queue++] = i; 2077 } 2078 } 2079 2080 /* Map the 8 VLAN priority values to available MTL Rx queues */ 2081 prio_queues = min_t(unsigned int, IEEE_8021QAZ_MAX_TCS, 2082 pdata->rx_q_count); 2083 ppq = IEEE_8021QAZ_MAX_TCS / prio_queues; 2084 ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues; 2085 2086 reg = MAC_RQC2R; 2087 reg_val = 0; 2088 for (i = 0, prio = 0; i < prio_queues;) { 2089 mask = 0; 2090 for (j = 0; j < ppq; j++) { 2091 DBGPR(" PRIO%u mapped to RXq%u\n", prio, i); 2092 mask |= (1 << prio); 2093 pdata->prio2q_map[prio++] = i; 2094 } 2095 2096 if (i < ppq_extra) { 2097 DBGPR(" PRIO%u mapped to RXq%u\n", prio, i); 2098 mask |= (1 << prio); 2099 pdata->prio2q_map[prio++] = i; 2100 } 2101 2102 reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3)); 2103 2104 if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues)) 2105 continue; 2106 2107 XGMAC_IOWRITE(pdata, reg, reg_val); 2108 reg += MAC_RQC2_INC; 2109 reg_val = 0; 2110 } 2111 2112 /* Select dynamic mapping of MTL Rx queue to DMA Rx channel */ 2113 reg = MTL_RQDCM0R; 2114 reg_val = 0; 2115 for (i = 0; i < pdata->rx_q_count;) { 2116 reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3)); 2117 2118 if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count)) 2119 continue; 2120 2121 XGMAC_IOWRITE(pdata, reg, reg_val); 2122 2123 reg += MTL_RQDCM_INC; 2124 reg_val = 0; 2125 } 2126 } 2127 2128 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata) 2129 { 2130 unsigned int i; 2131 2132 for (i = 0; i < pdata->rx_q_count; i++) { 2133 /* Activate flow control when less than 4k left in fifo */ 2134 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA, 2); 2135 2136 /* De-activate flow control when more than 6k left in fifo */ 2137 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD, 4); 2138 } 2139 } 2140 2141 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata) 2142 { 2143 xgbe_set_mac_address(pdata, pdata->netdev->dev_addr); 2144 2145 /* Filtering is done using perfect filtering and hash filtering */ 2146 if (pdata->hw_feat.hash_table_size) { 2147 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1); 2148 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1); 2149 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1); 2150 } 2151 } 2152 2153 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata) 2154 { 2155 unsigned int val; 2156 2157 val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0; 2158 2159 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val); 2160 } 2161 2162 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata) 2163 { 2164 switch (pdata->phy_speed) { 2165 case SPEED_10000: 2166 xgbe_set_xgmii_speed(pdata); 2167 break; 2168 2169 case SPEED_2500: 2170 xgbe_set_gmii_2500_speed(pdata); 2171 break; 2172 2173 case SPEED_1000: 2174 xgbe_set_gmii_speed(pdata); 2175 break; 2176 } 2177 } 2178 2179 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata) 2180 { 2181 if (pdata->netdev->features & NETIF_F_RXCSUM) 2182 xgbe_enable_rx_csum(pdata); 2183 else 2184 xgbe_disable_rx_csum(pdata); 2185 } 2186 2187 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata) 2188 { 2189 /* Indicate that VLAN Tx CTAGs come from context descriptors */ 2190 XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0); 2191 XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1); 2192 2193 /* Set the current VLAN Hash Table register value */ 2194 xgbe_update_vlan_hash_table(pdata); 2195 2196 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER) 2197 xgbe_enable_rx_vlan_filtering(pdata); 2198 else 2199 xgbe_disable_rx_vlan_filtering(pdata); 2200 2201 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2202 xgbe_enable_rx_vlan_stripping(pdata); 2203 else 2204 xgbe_disable_rx_vlan_stripping(pdata); 2205 } 2206 2207 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo) 2208 { 2209 bool read_hi; 2210 u64 val; 2211 2212 switch (reg_lo) { 2213 /* These registers are always 64 bit */ 2214 case MMC_TXOCTETCOUNT_GB_LO: 2215 case MMC_TXOCTETCOUNT_G_LO: 2216 case MMC_RXOCTETCOUNT_GB_LO: 2217 case MMC_RXOCTETCOUNT_G_LO: 2218 read_hi = true; 2219 break; 2220 2221 default: 2222 read_hi = false; 2223 }; 2224 2225 val = XGMAC_IOREAD(pdata, reg_lo); 2226 2227 if (read_hi) 2228 val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32); 2229 2230 return val; 2231 } 2232 2233 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata) 2234 { 2235 struct xgbe_mmc_stats *stats = &pdata->mmc_stats; 2236 unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR); 2237 2238 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB)) 2239 stats->txoctetcount_gb += 2240 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO); 2241 2242 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB)) 2243 stats->txframecount_gb += 2244 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO); 2245 2246 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G)) 2247 stats->txbroadcastframes_g += 2248 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO); 2249 2250 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G)) 2251 stats->txmulticastframes_g += 2252 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO); 2253 2254 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB)) 2255 stats->tx64octets_gb += 2256 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO); 2257 2258 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB)) 2259 stats->tx65to127octets_gb += 2260 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO); 2261 2262 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB)) 2263 stats->tx128to255octets_gb += 2264 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO); 2265 2266 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB)) 2267 stats->tx256to511octets_gb += 2268 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO); 2269 2270 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB)) 2271 stats->tx512to1023octets_gb += 2272 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO); 2273 2274 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB)) 2275 stats->tx1024tomaxoctets_gb += 2276 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO); 2277 2278 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB)) 2279 stats->txunicastframes_gb += 2280 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO); 2281 2282 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB)) 2283 stats->txmulticastframes_gb += 2284 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO); 2285 2286 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB)) 2287 stats->txbroadcastframes_g += 2288 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO); 2289 2290 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR)) 2291 stats->txunderflowerror += 2292 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO); 2293 2294 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G)) 2295 stats->txoctetcount_g += 2296 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO); 2297 2298 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G)) 2299 stats->txframecount_g += 2300 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO); 2301 2302 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES)) 2303 stats->txpauseframes += 2304 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO); 2305 2306 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G)) 2307 stats->txvlanframes_g += 2308 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO); 2309 } 2310 2311 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata) 2312 { 2313 struct xgbe_mmc_stats *stats = &pdata->mmc_stats; 2314 unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR); 2315 2316 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB)) 2317 stats->rxframecount_gb += 2318 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO); 2319 2320 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB)) 2321 stats->rxoctetcount_gb += 2322 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO); 2323 2324 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G)) 2325 stats->rxoctetcount_g += 2326 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO); 2327 2328 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G)) 2329 stats->rxbroadcastframes_g += 2330 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO); 2331 2332 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G)) 2333 stats->rxmulticastframes_g += 2334 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO); 2335 2336 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR)) 2337 stats->rxcrcerror += 2338 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO); 2339 2340 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR)) 2341 stats->rxrunterror += 2342 xgbe_mmc_read(pdata, MMC_RXRUNTERROR); 2343 2344 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR)) 2345 stats->rxjabbererror += 2346 xgbe_mmc_read(pdata, MMC_RXJABBERERROR); 2347 2348 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G)) 2349 stats->rxundersize_g += 2350 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G); 2351 2352 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G)) 2353 stats->rxoversize_g += 2354 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G); 2355 2356 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB)) 2357 stats->rx64octets_gb += 2358 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO); 2359 2360 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB)) 2361 stats->rx65to127octets_gb += 2362 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO); 2363 2364 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB)) 2365 stats->rx128to255octets_gb += 2366 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO); 2367 2368 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB)) 2369 stats->rx256to511octets_gb += 2370 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO); 2371 2372 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB)) 2373 stats->rx512to1023octets_gb += 2374 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO); 2375 2376 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB)) 2377 stats->rx1024tomaxoctets_gb += 2378 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO); 2379 2380 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G)) 2381 stats->rxunicastframes_g += 2382 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO); 2383 2384 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR)) 2385 stats->rxlengtherror += 2386 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO); 2387 2388 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE)) 2389 stats->rxoutofrangetype += 2390 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO); 2391 2392 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES)) 2393 stats->rxpauseframes += 2394 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO); 2395 2396 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW)) 2397 stats->rxfifooverflow += 2398 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO); 2399 2400 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB)) 2401 stats->rxvlanframes_gb += 2402 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO); 2403 2404 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR)) 2405 stats->rxwatchdogerror += 2406 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR); 2407 } 2408 2409 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata) 2410 { 2411 struct xgbe_mmc_stats *stats = &pdata->mmc_stats; 2412 2413 /* Freeze counters */ 2414 XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1); 2415 2416 stats->txoctetcount_gb += 2417 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO); 2418 2419 stats->txframecount_gb += 2420 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO); 2421 2422 stats->txbroadcastframes_g += 2423 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO); 2424 2425 stats->txmulticastframes_g += 2426 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO); 2427 2428 stats->tx64octets_gb += 2429 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO); 2430 2431 stats->tx65to127octets_gb += 2432 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO); 2433 2434 stats->tx128to255octets_gb += 2435 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO); 2436 2437 stats->tx256to511octets_gb += 2438 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO); 2439 2440 stats->tx512to1023octets_gb += 2441 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO); 2442 2443 stats->tx1024tomaxoctets_gb += 2444 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO); 2445 2446 stats->txunicastframes_gb += 2447 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO); 2448 2449 stats->txmulticastframes_gb += 2450 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO); 2451 2452 stats->txbroadcastframes_g += 2453 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO); 2454 2455 stats->txunderflowerror += 2456 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO); 2457 2458 stats->txoctetcount_g += 2459 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO); 2460 2461 stats->txframecount_g += 2462 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO); 2463 2464 stats->txpauseframes += 2465 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO); 2466 2467 stats->txvlanframes_g += 2468 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO); 2469 2470 stats->rxframecount_gb += 2471 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO); 2472 2473 stats->rxoctetcount_gb += 2474 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO); 2475 2476 stats->rxoctetcount_g += 2477 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO); 2478 2479 stats->rxbroadcastframes_g += 2480 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO); 2481 2482 stats->rxmulticastframes_g += 2483 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO); 2484 2485 stats->rxcrcerror += 2486 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO); 2487 2488 stats->rxrunterror += 2489 xgbe_mmc_read(pdata, MMC_RXRUNTERROR); 2490 2491 stats->rxjabbererror += 2492 xgbe_mmc_read(pdata, MMC_RXJABBERERROR); 2493 2494 stats->rxundersize_g += 2495 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G); 2496 2497 stats->rxoversize_g += 2498 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G); 2499 2500 stats->rx64octets_gb += 2501 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO); 2502 2503 stats->rx65to127octets_gb += 2504 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO); 2505 2506 stats->rx128to255octets_gb += 2507 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO); 2508 2509 stats->rx256to511octets_gb += 2510 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO); 2511 2512 stats->rx512to1023octets_gb += 2513 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO); 2514 2515 stats->rx1024tomaxoctets_gb += 2516 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO); 2517 2518 stats->rxunicastframes_g += 2519 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO); 2520 2521 stats->rxlengtherror += 2522 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO); 2523 2524 stats->rxoutofrangetype += 2525 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO); 2526 2527 stats->rxpauseframes += 2528 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO); 2529 2530 stats->rxfifooverflow += 2531 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO); 2532 2533 stats->rxvlanframes_gb += 2534 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO); 2535 2536 stats->rxwatchdogerror += 2537 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR); 2538 2539 /* Un-freeze counters */ 2540 XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0); 2541 } 2542 2543 static void xgbe_config_mmc(struct xgbe_prv_data *pdata) 2544 { 2545 /* Set counters to reset on read */ 2546 XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1); 2547 2548 /* Reset the counters */ 2549 XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1); 2550 } 2551 2552 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, 2553 struct xgbe_channel *channel) 2554 { 2555 unsigned int tx_dsr, tx_pos, tx_qidx; 2556 unsigned int tx_status; 2557 unsigned long tx_timeout; 2558 2559 /* Calculate the status register to read and the position within */ 2560 if (channel->queue_index < DMA_DSRX_FIRST_QUEUE) { 2561 tx_dsr = DMA_DSR0; 2562 tx_pos = (channel->queue_index * DMA_DSR_Q_WIDTH) + 2563 DMA_DSR0_TPS_START; 2564 } else { 2565 tx_qidx = channel->queue_index - DMA_DSRX_FIRST_QUEUE; 2566 2567 tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC); 2568 tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) + 2569 DMA_DSRX_TPS_START; 2570 } 2571 2572 /* The Tx engine cannot be stopped if it is actively processing 2573 * descriptors. Wait for the Tx engine to enter the stopped or 2574 * suspended state. Don't wait forever though... 2575 */ 2576 tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ); 2577 while (time_before(jiffies, tx_timeout)) { 2578 tx_status = XGMAC_IOREAD(pdata, tx_dsr); 2579 tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH); 2580 if ((tx_status == DMA_TPS_STOPPED) || 2581 (tx_status == DMA_TPS_SUSPENDED)) 2582 break; 2583 2584 usleep_range(500, 1000); 2585 } 2586 2587 if (!time_before(jiffies, tx_timeout)) 2588 netdev_info(pdata->netdev, 2589 "timed out waiting for Tx DMA channel %u to stop\n", 2590 channel->queue_index); 2591 } 2592 2593 static void xgbe_enable_tx(struct xgbe_prv_data *pdata) 2594 { 2595 struct xgbe_channel *channel; 2596 unsigned int i; 2597 2598 /* Enable each Tx DMA channel */ 2599 channel = pdata->channel; 2600 for (i = 0; i < pdata->channel_count; i++, channel++) { 2601 if (!channel->tx_ring) 2602 break; 2603 2604 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1); 2605 } 2606 2607 /* Enable each Tx queue */ 2608 for (i = 0; i < pdata->tx_q_count; i++) 2609 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 2610 MTL_Q_ENABLED); 2611 2612 /* Enable MAC Tx */ 2613 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1); 2614 } 2615 2616 static void xgbe_disable_tx(struct xgbe_prv_data *pdata) 2617 { 2618 struct xgbe_channel *channel; 2619 unsigned int i; 2620 2621 /* Prepare for Tx DMA channel stop */ 2622 channel = pdata->channel; 2623 for (i = 0; i < pdata->channel_count; i++, channel++) { 2624 if (!channel->tx_ring) 2625 break; 2626 2627 xgbe_prepare_tx_stop(pdata, channel); 2628 } 2629 2630 /* Disable MAC Tx */ 2631 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0); 2632 2633 /* Disable each Tx queue */ 2634 for (i = 0; i < pdata->tx_q_count; i++) 2635 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0); 2636 2637 /* Disable each Tx DMA channel */ 2638 channel = pdata->channel; 2639 for (i = 0; i < pdata->channel_count; i++, channel++) { 2640 if (!channel->tx_ring) 2641 break; 2642 2643 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0); 2644 } 2645 } 2646 2647 static void xgbe_enable_rx(struct xgbe_prv_data *pdata) 2648 { 2649 struct xgbe_channel *channel; 2650 unsigned int reg_val, i; 2651 2652 /* Enable each Rx DMA channel */ 2653 channel = pdata->channel; 2654 for (i = 0; i < pdata->channel_count; i++, channel++) { 2655 if (!channel->rx_ring) 2656 break; 2657 2658 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1); 2659 } 2660 2661 /* Enable each Rx queue */ 2662 reg_val = 0; 2663 for (i = 0; i < pdata->rx_q_count; i++) 2664 reg_val |= (0x02 << (i << 1)); 2665 XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val); 2666 2667 /* Enable MAC Rx */ 2668 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1); 2669 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1); 2670 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1); 2671 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1); 2672 } 2673 2674 static void xgbe_disable_rx(struct xgbe_prv_data *pdata) 2675 { 2676 struct xgbe_channel *channel; 2677 unsigned int i; 2678 2679 /* Disable MAC Rx */ 2680 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0); 2681 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0); 2682 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0); 2683 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0); 2684 2685 /* Disable each Rx queue */ 2686 XGMAC_IOWRITE(pdata, MAC_RQC0R, 0); 2687 2688 /* Disable each Rx DMA channel */ 2689 channel = pdata->channel; 2690 for (i = 0; i < pdata->channel_count; i++, channel++) { 2691 if (!channel->rx_ring) 2692 break; 2693 2694 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0); 2695 } 2696 } 2697 2698 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata) 2699 { 2700 struct xgbe_channel *channel; 2701 unsigned int i; 2702 2703 /* Enable each Tx DMA channel */ 2704 channel = pdata->channel; 2705 for (i = 0; i < pdata->channel_count; i++, channel++) { 2706 if (!channel->tx_ring) 2707 break; 2708 2709 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1); 2710 } 2711 2712 /* Enable MAC Tx */ 2713 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1); 2714 } 2715 2716 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata) 2717 { 2718 struct xgbe_channel *channel; 2719 unsigned int i; 2720 2721 /* Prepare for Tx DMA channel stop */ 2722 channel = pdata->channel; 2723 for (i = 0; i < pdata->channel_count; i++, channel++) { 2724 if (!channel->tx_ring) 2725 break; 2726 2727 xgbe_prepare_tx_stop(pdata, channel); 2728 } 2729 2730 /* Disable MAC Tx */ 2731 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0); 2732 2733 /* Disable each Tx DMA channel */ 2734 channel = pdata->channel; 2735 for (i = 0; i < pdata->channel_count; i++, channel++) { 2736 if (!channel->tx_ring) 2737 break; 2738 2739 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0); 2740 } 2741 } 2742 2743 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata) 2744 { 2745 struct xgbe_channel *channel; 2746 unsigned int i; 2747 2748 /* Enable each Rx DMA channel */ 2749 channel = pdata->channel; 2750 for (i = 0; i < pdata->channel_count; i++, channel++) { 2751 if (!channel->rx_ring) 2752 break; 2753 2754 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1); 2755 } 2756 } 2757 2758 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata) 2759 { 2760 struct xgbe_channel *channel; 2761 unsigned int i; 2762 2763 /* Disable each Rx DMA channel */ 2764 channel = pdata->channel; 2765 for (i = 0; i < pdata->channel_count; i++, channel++) { 2766 if (!channel->rx_ring) 2767 break; 2768 2769 XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0); 2770 } 2771 } 2772 2773 static int xgbe_init(struct xgbe_prv_data *pdata) 2774 { 2775 struct xgbe_desc_if *desc_if = &pdata->desc_if; 2776 int ret; 2777 2778 DBGPR("-->xgbe_init\n"); 2779 2780 /* Flush Tx queues */ 2781 ret = xgbe_flush_tx_queues(pdata); 2782 if (ret) 2783 return ret; 2784 2785 /* 2786 * Initialize DMA related features 2787 */ 2788 xgbe_config_dma_bus(pdata); 2789 xgbe_config_dma_cache(pdata); 2790 xgbe_config_osp_mode(pdata); 2791 xgbe_config_pblx8(pdata); 2792 xgbe_config_tx_pbl_val(pdata); 2793 xgbe_config_rx_pbl_val(pdata); 2794 xgbe_config_rx_coalesce(pdata); 2795 xgbe_config_tx_coalesce(pdata); 2796 xgbe_config_rx_buffer_size(pdata); 2797 xgbe_config_tso_mode(pdata); 2798 xgbe_config_sph_mode(pdata); 2799 xgbe_config_rss(pdata); 2800 desc_if->wrapper_tx_desc_init(pdata); 2801 desc_if->wrapper_rx_desc_init(pdata); 2802 xgbe_enable_dma_interrupts(pdata); 2803 2804 /* 2805 * Initialize MTL related features 2806 */ 2807 xgbe_config_mtl_mode(pdata); 2808 xgbe_config_queue_mapping(pdata); 2809 xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode); 2810 xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode); 2811 xgbe_config_tx_threshold(pdata, pdata->tx_threshold); 2812 xgbe_config_rx_threshold(pdata, pdata->rx_threshold); 2813 xgbe_config_tx_fifo_size(pdata); 2814 xgbe_config_rx_fifo_size(pdata); 2815 xgbe_config_flow_control_threshold(pdata); 2816 /*TODO: Error Packet and undersized good Packet forwarding enable 2817 (FEP and FUP) 2818 */ 2819 xgbe_config_dcb_tc(pdata); 2820 xgbe_config_dcb_pfc(pdata); 2821 xgbe_enable_mtl_interrupts(pdata); 2822 2823 /* 2824 * Initialize MAC related features 2825 */ 2826 xgbe_config_mac_address(pdata); 2827 xgbe_config_rx_mode(pdata); 2828 xgbe_config_jumbo_enable(pdata); 2829 xgbe_config_flow_control(pdata); 2830 xgbe_config_mac_speed(pdata); 2831 xgbe_config_checksum_offload(pdata); 2832 xgbe_config_vlan_support(pdata); 2833 xgbe_config_mmc(pdata); 2834 xgbe_enable_mac_interrupts(pdata); 2835 2836 DBGPR("<--xgbe_init\n"); 2837 2838 return 0; 2839 } 2840 2841 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if) 2842 { 2843 DBGPR("-->xgbe_init_function_ptrs\n"); 2844 2845 hw_if->tx_complete = xgbe_tx_complete; 2846 2847 hw_if->set_mac_address = xgbe_set_mac_address; 2848 hw_if->config_rx_mode = xgbe_config_rx_mode; 2849 2850 hw_if->enable_rx_csum = xgbe_enable_rx_csum; 2851 hw_if->disable_rx_csum = xgbe_disable_rx_csum; 2852 2853 hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping; 2854 hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping; 2855 hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering; 2856 hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering; 2857 hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table; 2858 2859 hw_if->read_mmd_regs = xgbe_read_mmd_regs; 2860 hw_if->write_mmd_regs = xgbe_write_mmd_regs; 2861 2862 hw_if->set_gmii_speed = xgbe_set_gmii_speed; 2863 hw_if->set_gmii_2500_speed = xgbe_set_gmii_2500_speed; 2864 hw_if->set_xgmii_speed = xgbe_set_xgmii_speed; 2865 2866 hw_if->enable_tx = xgbe_enable_tx; 2867 hw_if->disable_tx = xgbe_disable_tx; 2868 hw_if->enable_rx = xgbe_enable_rx; 2869 hw_if->disable_rx = xgbe_disable_rx; 2870 2871 hw_if->powerup_tx = xgbe_powerup_tx; 2872 hw_if->powerdown_tx = xgbe_powerdown_tx; 2873 hw_if->powerup_rx = xgbe_powerup_rx; 2874 hw_if->powerdown_rx = xgbe_powerdown_rx; 2875 2876 hw_if->dev_xmit = xgbe_dev_xmit; 2877 hw_if->dev_read = xgbe_dev_read; 2878 hw_if->enable_int = xgbe_enable_int; 2879 hw_if->disable_int = xgbe_disable_int; 2880 hw_if->init = xgbe_init; 2881 hw_if->exit = xgbe_exit; 2882 2883 /* Descriptor related Sequences have to be initialized here */ 2884 hw_if->tx_desc_init = xgbe_tx_desc_init; 2885 hw_if->rx_desc_init = xgbe_rx_desc_init; 2886 hw_if->tx_desc_reset = xgbe_tx_desc_reset; 2887 hw_if->rx_desc_reset = xgbe_rx_desc_reset; 2888 hw_if->is_last_desc = xgbe_is_last_desc; 2889 hw_if->is_context_desc = xgbe_is_context_desc; 2890 hw_if->tx_start_xmit = xgbe_tx_start_xmit; 2891 2892 /* For FLOW ctrl */ 2893 hw_if->config_tx_flow_control = xgbe_config_tx_flow_control; 2894 hw_if->config_rx_flow_control = xgbe_config_rx_flow_control; 2895 2896 /* For RX coalescing */ 2897 hw_if->config_rx_coalesce = xgbe_config_rx_coalesce; 2898 hw_if->config_tx_coalesce = xgbe_config_tx_coalesce; 2899 hw_if->usec_to_riwt = xgbe_usec_to_riwt; 2900 hw_if->riwt_to_usec = xgbe_riwt_to_usec; 2901 2902 /* For RX and TX threshold config */ 2903 hw_if->config_rx_threshold = xgbe_config_rx_threshold; 2904 hw_if->config_tx_threshold = xgbe_config_tx_threshold; 2905 2906 /* For RX and TX Store and Forward Mode config */ 2907 hw_if->config_rsf_mode = xgbe_config_rsf_mode; 2908 hw_if->config_tsf_mode = xgbe_config_tsf_mode; 2909 2910 /* For TX DMA Operating on Second Frame config */ 2911 hw_if->config_osp_mode = xgbe_config_osp_mode; 2912 2913 /* For RX and TX PBL config */ 2914 hw_if->config_rx_pbl_val = xgbe_config_rx_pbl_val; 2915 hw_if->get_rx_pbl_val = xgbe_get_rx_pbl_val; 2916 hw_if->config_tx_pbl_val = xgbe_config_tx_pbl_val; 2917 hw_if->get_tx_pbl_val = xgbe_get_tx_pbl_val; 2918 hw_if->config_pblx8 = xgbe_config_pblx8; 2919 2920 /* For MMC statistics support */ 2921 hw_if->tx_mmc_int = xgbe_tx_mmc_int; 2922 hw_if->rx_mmc_int = xgbe_rx_mmc_int; 2923 hw_if->read_mmc_stats = xgbe_read_mmc_stats; 2924 2925 /* For PTP config */ 2926 hw_if->config_tstamp = xgbe_config_tstamp; 2927 hw_if->update_tstamp_addend = xgbe_update_tstamp_addend; 2928 hw_if->set_tstamp_time = xgbe_set_tstamp_time; 2929 hw_if->get_tstamp_time = xgbe_get_tstamp_time; 2930 hw_if->get_tx_tstamp = xgbe_get_tx_tstamp; 2931 2932 /* For Data Center Bridging config */ 2933 hw_if->config_dcb_tc = xgbe_config_dcb_tc; 2934 hw_if->config_dcb_pfc = xgbe_config_dcb_pfc; 2935 2936 /* For Receive Side Scaling */ 2937 hw_if->enable_rss = xgbe_enable_rss; 2938 hw_if->disable_rss = xgbe_disable_rss; 2939 hw_if->set_rss_hash_key = xgbe_set_rss_hash_key; 2940 hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table; 2941 2942 DBGPR("<--xgbe_init_function_ptrs\n"); 2943 } 2944