1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * This file is available to you under your choice of the following two
5  * licenses:
6  *
7  * License 1: GPLv2
8  *
9  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
60  * All rights reserved.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions are met:
64  *     * Redistributions of source code must retain the above copyright
65  *       notice, this list of conditions and the following disclaimer.
66  *     * Redistributions in binary form must reproduce the above copyright
67  *       notice, this list of conditions and the following disclaimer in the
68  *       documentation and/or other materials provided with the distribution.
69  *     * Neither the name of Advanced Micro Devices, Inc. nor the
70  *       names of its contributors may be used to endorse or promote products
71  *       derived from this software without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83  *
84  * This file incorporates work covered by the following copyright and
85  * permission notice:
86  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89  *     and you.
90  *
91  *     The Software IS NOT an item of Licensed Software or Licensed Product
92  *     under any End User Software License Agreement or Agreement for Licensed
93  *     Product with Synopsys or any supplement thereto.  Permission is hereby
94  *     granted, free of charge, to any person obtaining a copy of this software
95  *     annotated with this license and the Software, to deal in the Software
96  *     without restriction, including without limitation the rights to use,
97  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98  *     of the Software, and to permit persons to whom the Software is furnished
99  *     to do so, subject to the following conditions:
100  *
101  *     The above copyright notice and this permission notice shall be included
102  *     in all copies or substantial portions of the Software.
103  *
104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114  *     THE POSSIBILITY OF SUCH DAMAGE.
115  */
116 
117 #include <linux/phy.h>
118 #include <linux/mdio.h>
119 #include <linux/clk.h>
120 #include <linux/bitrev.h>
121 #include <linux/crc32.h>
122 #include <linux/crc32poly.h>
123 
124 #include "xgbe.h"
125 #include "xgbe-common.h"
126 
127 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
128 {
129 	return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
130 }
131 
132 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
133 				      unsigned int usec)
134 {
135 	unsigned long rate;
136 	unsigned int ret;
137 
138 	DBGPR("-->xgbe_usec_to_riwt\n");
139 
140 	rate = pdata->sysclk_rate;
141 
142 	/*
143 	 * Convert the input usec value to the watchdog timer value. Each
144 	 * watchdog timer value is equivalent to 256 clock cycles.
145 	 * Calculate the required value as:
146 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
147 	 */
148 	ret = (usec * (rate / 1000000)) / 256;
149 
150 	DBGPR("<--xgbe_usec_to_riwt\n");
151 
152 	return ret;
153 }
154 
155 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
156 				      unsigned int riwt)
157 {
158 	unsigned long rate;
159 	unsigned int ret;
160 
161 	DBGPR("-->xgbe_riwt_to_usec\n");
162 
163 	rate = pdata->sysclk_rate;
164 
165 	/*
166 	 * Convert the input watchdog timer value to the usec value. Each
167 	 * watchdog timer value is equivalent to 256 clock cycles.
168 	 * Calculate the required value as:
169 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
170 	 */
171 	ret = (riwt * 256) / (rate / 1000000);
172 
173 	DBGPR("<--xgbe_riwt_to_usec\n");
174 
175 	return ret;
176 }
177 
178 static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
179 {
180 	unsigned int pblx8, pbl;
181 	unsigned int i;
182 
183 	pblx8 = DMA_PBL_X8_DISABLE;
184 	pbl = pdata->pbl;
185 
186 	if (pdata->pbl > 32) {
187 		pblx8 = DMA_PBL_X8_ENABLE;
188 		pbl >>= 3;
189 	}
190 
191 	for (i = 0; i < pdata->channel_count; i++) {
192 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
193 				       pblx8);
194 
195 		if (pdata->channel[i]->tx_ring)
196 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
197 					       PBL, pbl);
198 
199 		if (pdata->channel[i]->rx_ring)
200 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
201 					       PBL, pbl);
202 	}
203 
204 	return 0;
205 }
206 
207 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < pdata->channel_count; i++) {
212 		if (!pdata->channel[i]->tx_ring)
213 			break;
214 
215 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
216 				       pdata->tx_osp_mode);
217 	}
218 
219 	return 0;
220 }
221 
222 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
223 {
224 	unsigned int i;
225 
226 	for (i = 0; i < pdata->rx_q_count; i++)
227 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
228 
229 	return 0;
230 }
231 
232 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
233 {
234 	unsigned int i;
235 
236 	for (i = 0; i < pdata->tx_q_count; i++)
237 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
238 
239 	return 0;
240 }
241 
242 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
243 				    unsigned int val)
244 {
245 	unsigned int i;
246 
247 	for (i = 0; i < pdata->rx_q_count; i++)
248 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
249 
250 	return 0;
251 }
252 
253 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
254 				    unsigned int val)
255 {
256 	unsigned int i;
257 
258 	for (i = 0; i < pdata->tx_q_count; i++)
259 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
260 
261 	return 0;
262 }
263 
264 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
265 {
266 	unsigned int i;
267 
268 	for (i = 0; i < pdata->channel_count; i++) {
269 		if (!pdata->channel[i]->rx_ring)
270 			break;
271 
272 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
273 				       pdata->rx_riwt);
274 	}
275 
276 	return 0;
277 }
278 
279 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
280 {
281 	return 0;
282 }
283 
284 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
285 {
286 	unsigned int i;
287 
288 	for (i = 0; i < pdata->channel_count; i++) {
289 		if (!pdata->channel[i]->rx_ring)
290 			break;
291 
292 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
293 				       pdata->rx_buf_size);
294 	}
295 }
296 
297 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
298 {
299 	unsigned int i;
300 
301 	for (i = 0; i < pdata->channel_count; i++) {
302 		if (!pdata->channel[i]->tx_ring)
303 			break;
304 
305 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
306 	}
307 }
308 
309 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
310 {
311 	unsigned int i;
312 
313 	for (i = 0; i < pdata->channel_count; i++) {
314 		if (!pdata->channel[i]->rx_ring)
315 			break;
316 
317 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
318 	}
319 
320 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
321 }
322 
323 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
324 			      unsigned int index, unsigned int val)
325 {
326 	unsigned int wait;
327 	int ret = 0;
328 
329 	mutex_lock(&pdata->rss_mutex);
330 
331 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
332 		ret = -EBUSY;
333 		goto unlock;
334 	}
335 
336 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
337 
338 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
339 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
340 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
341 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
342 
343 	wait = 1000;
344 	while (wait--) {
345 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
346 			goto unlock;
347 
348 		usleep_range(1000, 1500);
349 	}
350 
351 	ret = -EBUSY;
352 
353 unlock:
354 	mutex_unlock(&pdata->rss_mutex);
355 
356 	return ret;
357 }
358 
359 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
360 {
361 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
362 	unsigned int *key = (unsigned int *)&pdata->rss_key;
363 	int ret;
364 
365 	while (key_regs--) {
366 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
367 					 key_regs, *key++);
368 		if (ret)
369 			return ret;
370 	}
371 
372 	return 0;
373 }
374 
375 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
376 {
377 	unsigned int i;
378 	int ret;
379 
380 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
381 		ret = xgbe_write_rss_reg(pdata,
382 					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
383 					 pdata->rss_table[i]);
384 		if (ret)
385 			return ret;
386 	}
387 
388 	return 0;
389 }
390 
391 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
392 {
393 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
394 
395 	return xgbe_write_rss_hash_key(pdata);
396 }
397 
398 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
399 				     const u32 *table)
400 {
401 	unsigned int i;
402 
403 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
404 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
405 
406 	return xgbe_write_rss_lookup_table(pdata);
407 }
408 
409 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
410 {
411 	int ret;
412 
413 	if (!pdata->hw_feat.rss)
414 		return -EOPNOTSUPP;
415 
416 	/* Program the hash key */
417 	ret = xgbe_write_rss_hash_key(pdata);
418 	if (ret)
419 		return ret;
420 
421 	/* Program the lookup table */
422 	ret = xgbe_write_rss_lookup_table(pdata);
423 	if (ret)
424 		return ret;
425 
426 	/* Set the RSS options */
427 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
428 
429 	/* Enable RSS */
430 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
431 
432 	return 0;
433 }
434 
435 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
436 {
437 	if (!pdata->hw_feat.rss)
438 		return -EOPNOTSUPP;
439 
440 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
441 
442 	return 0;
443 }
444 
445 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
446 {
447 	int ret;
448 
449 	if (!pdata->hw_feat.rss)
450 		return;
451 
452 	if (pdata->netdev->features & NETIF_F_RXHASH)
453 		ret = xgbe_enable_rss(pdata);
454 	else
455 		ret = xgbe_disable_rss(pdata);
456 
457 	if (ret)
458 		netdev_err(pdata->netdev,
459 			   "error configuring RSS, RSS disabled\n");
460 }
461 
462 static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
463 			      unsigned int queue)
464 {
465 	unsigned int prio, tc;
466 
467 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
468 		/* Does this queue handle the priority? */
469 		if (pdata->prio2q_map[prio] != queue)
470 			continue;
471 
472 		/* Get the Traffic Class for this priority */
473 		tc = pdata->ets->prio_tc[prio];
474 
475 		/* Check if PFC is enabled for this traffic class */
476 		if (pdata->pfc->pfc_en & (1 << tc))
477 			return true;
478 	}
479 
480 	return false;
481 }
482 
483 static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata)
484 {
485 	/* Program the VXLAN port */
486 	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port);
487 
488 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n",
489 		  pdata->vxlan_port);
490 }
491 
492 static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata)
493 {
494 	if (!pdata->hw_feat.vxn)
495 		return;
496 
497 	/* Program the VXLAN port */
498 	xgbe_set_vxlan_id(pdata);
499 
500 	/* Allow for IPv6/UDP zero-checksum VXLAN packets */
501 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1);
502 
503 	/* Enable VXLAN tunneling mode */
504 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0);
505 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1);
506 
507 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n");
508 }
509 
510 static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata)
511 {
512 	if (!pdata->hw_feat.vxn)
513 		return;
514 
515 	/* Disable tunneling mode */
516 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0);
517 
518 	/* Clear IPv6/UDP zero-checksum VXLAN packets setting */
519 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0);
520 
521 	/* Clear the VXLAN port */
522 	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0);
523 
524 	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n");
525 }
526 
527 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
528 {
529 	unsigned int max_q_count, q_count;
530 	unsigned int reg, reg_val;
531 	unsigned int i;
532 
533 	/* Clear MTL flow control */
534 	for (i = 0; i < pdata->rx_q_count; i++)
535 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
536 
537 	/* Clear MAC flow control */
538 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
539 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
540 	reg = MAC_Q0TFCR;
541 	for (i = 0; i < q_count; i++) {
542 		reg_val = XGMAC_IOREAD(pdata, reg);
543 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
544 		XGMAC_IOWRITE(pdata, reg, reg_val);
545 
546 		reg += MAC_QTFCR_INC;
547 	}
548 
549 	return 0;
550 }
551 
552 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
553 {
554 	struct ieee_pfc *pfc = pdata->pfc;
555 	struct ieee_ets *ets = pdata->ets;
556 	unsigned int max_q_count, q_count;
557 	unsigned int reg, reg_val;
558 	unsigned int i;
559 
560 	/* Set MTL flow control */
561 	for (i = 0; i < pdata->rx_q_count; i++) {
562 		unsigned int ehfc = 0;
563 
564 		if (pdata->rx_rfd[i]) {
565 			/* Flow control thresholds are established */
566 			if (pfc && ets) {
567 				if (xgbe_is_pfc_queue(pdata, i))
568 					ehfc = 1;
569 			} else {
570 				ehfc = 1;
571 			}
572 		}
573 
574 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
575 
576 		netif_dbg(pdata, drv, pdata->netdev,
577 			  "flow control %s for RXq%u\n",
578 			  ehfc ? "enabled" : "disabled", i);
579 	}
580 
581 	/* Set MAC flow control */
582 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
583 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
584 	reg = MAC_Q0TFCR;
585 	for (i = 0; i < q_count; i++) {
586 		reg_val = XGMAC_IOREAD(pdata, reg);
587 
588 		/* Enable transmit flow control */
589 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
590 		/* Set pause time */
591 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
592 
593 		XGMAC_IOWRITE(pdata, reg, reg_val);
594 
595 		reg += MAC_QTFCR_INC;
596 	}
597 
598 	return 0;
599 }
600 
601 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
602 {
603 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
604 
605 	return 0;
606 }
607 
608 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
609 {
610 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
611 
612 	return 0;
613 }
614 
615 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
616 {
617 	struct ieee_pfc *pfc = pdata->pfc;
618 
619 	if (pdata->tx_pause || (pfc && pfc->pfc_en))
620 		xgbe_enable_tx_flow_control(pdata);
621 	else
622 		xgbe_disable_tx_flow_control(pdata);
623 
624 	return 0;
625 }
626 
627 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
628 {
629 	struct ieee_pfc *pfc = pdata->pfc;
630 
631 	if (pdata->rx_pause || (pfc && pfc->pfc_en))
632 		xgbe_enable_rx_flow_control(pdata);
633 	else
634 		xgbe_disable_rx_flow_control(pdata);
635 
636 	return 0;
637 }
638 
639 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
640 {
641 	struct ieee_pfc *pfc = pdata->pfc;
642 
643 	xgbe_config_tx_flow_control(pdata);
644 	xgbe_config_rx_flow_control(pdata);
645 
646 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
647 			   (pfc && pfc->pfc_en) ? 1 : 0);
648 }
649 
650 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
651 {
652 	struct xgbe_channel *channel;
653 	unsigned int i, ver;
654 
655 	/* Set the interrupt mode if supported */
656 	if (pdata->channel_irq_mode)
657 		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
658 				   pdata->channel_irq_mode);
659 
660 	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
661 
662 	for (i = 0; i < pdata->channel_count; i++) {
663 		channel = pdata->channel[i];
664 
665 		/* Clear all the interrupts which are set */
666 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
667 				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
668 
669 		/* Clear all interrupt enable bits */
670 		channel->curr_ier = 0;
671 
672 		/* Enable following interrupts
673 		 *   NIE  - Normal Interrupt Summary Enable
674 		 *   AIE  - Abnormal Interrupt Summary Enable
675 		 *   FBEE - Fatal Bus Error Enable
676 		 */
677 		if (ver < 0x21) {
678 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
679 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
680 		} else {
681 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
682 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
683 		}
684 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
685 
686 		if (channel->tx_ring) {
687 			/* Enable the following Tx interrupts
688 			 *   TIE  - Transmit Interrupt Enable (unless using
689 			 *          per channel interrupts in edge triggered
690 			 *          mode)
691 			 */
692 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
693 				XGMAC_SET_BITS(channel->curr_ier,
694 					       DMA_CH_IER, TIE, 1);
695 		}
696 		if (channel->rx_ring) {
697 			/* Enable following Rx interrupts
698 			 *   RBUE - Receive Buffer Unavailable Enable
699 			 *   RIE  - Receive Interrupt Enable (unless using
700 			 *          per channel interrupts in edge triggered
701 			 *          mode)
702 			 */
703 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
704 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
705 				XGMAC_SET_BITS(channel->curr_ier,
706 					       DMA_CH_IER, RIE, 1);
707 		}
708 
709 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
710 	}
711 }
712 
713 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
714 {
715 	unsigned int mtl_q_isr;
716 	unsigned int q_count, i;
717 
718 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
719 	for (i = 0; i < q_count; i++) {
720 		/* Clear all the interrupts which are set */
721 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
722 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
723 
724 		/* No MTL interrupts to be enabled */
725 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
726 	}
727 }
728 
729 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
730 {
731 	unsigned int mac_ier = 0;
732 
733 	/* Enable Timestamp interrupt */
734 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
735 
736 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
737 
738 	/* Enable all counter interrupts */
739 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
740 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
741 
742 	/* Enable MDIO single command completion interrupt */
743 	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
744 }
745 
746 static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
747 {
748 	unsigned int ecc_isr, ecc_ier = 0;
749 
750 	if (!pdata->vdata->ecc_support)
751 		return;
752 
753 	/* Clear all the interrupts which are set */
754 	ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
755 	XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
756 
757 	/* Enable ECC interrupts */
758 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
759 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
760 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
761 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
762 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
763 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
764 
765 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
766 }
767 
768 static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
769 {
770 	unsigned int ecc_ier;
771 
772 	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
773 
774 	/* Disable ECC DED interrupts */
775 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
776 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
777 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
778 
779 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
780 }
781 
782 static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
783 				 enum xgbe_ecc_sec sec)
784 {
785 	unsigned int ecc_ier;
786 
787 	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
788 
789 	/* Disable ECC SEC interrupt */
790 	switch (sec) {
791 	case XGBE_ECC_SEC_TX:
792 	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
793 		break;
794 	case XGBE_ECC_SEC_RX:
795 	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
796 		break;
797 	case XGBE_ECC_SEC_DESC:
798 	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
799 		break;
800 	}
801 
802 	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
803 }
804 
805 static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
806 {
807 	unsigned int ss;
808 
809 	switch (speed) {
810 	case SPEED_10:
811 		ss = 0x07;
812 		break;
813 	case SPEED_1000:
814 		ss = 0x03;
815 		break;
816 	case SPEED_2500:
817 		ss = 0x02;
818 		break;
819 	case SPEED_10000:
820 		ss = 0x00;
821 		break;
822 	default:
823 		return -EINVAL;
824 	}
825 
826 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
827 		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
828 
829 	return 0;
830 }
831 
832 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
833 {
834 	/* Put the VLAN tag in the Rx descriptor */
835 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
836 
837 	/* Don't check the VLAN type */
838 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
839 
840 	/* Check only C-TAG (0x8100) packets */
841 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
842 
843 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
844 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
845 
846 	/* Enable VLAN tag stripping */
847 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
848 
849 	return 0;
850 }
851 
852 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
853 {
854 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
855 
856 	return 0;
857 }
858 
859 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
860 {
861 	/* Enable VLAN filtering */
862 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
863 
864 	/* Enable VLAN Hash Table filtering */
865 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
866 
867 	/* Disable VLAN tag inverse matching */
868 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
869 
870 	/* Only filter on the lower 12-bits of the VLAN tag */
871 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
872 
873 	/* In order for the VLAN Hash Table filtering to be effective,
874 	 * the VLAN tag identifier in the VLAN Tag Register must not
875 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
876 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
877 	 * 1 will always pass filtering.
878 	 */
879 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
880 
881 	return 0;
882 }
883 
884 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
885 {
886 	/* Disable VLAN filtering */
887 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
888 
889 	return 0;
890 }
891 
892 static u32 xgbe_vid_crc32_le(__le16 vid_le)
893 {
894 	u32 crc = ~0;
895 	u32 temp = 0;
896 	unsigned char *data = (unsigned char *)&vid_le;
897 	unsigned char data_byte = 0;
898 	int i, bits;
899 
900 	bits = get_bitmask_order(VLAN_VID_MASK);
901 	for (i = 0; i < bits; i++) {
902 		if ((i % 8) == 0)
903 			data_byte = data[i / 8];
904 
905 		temp = ((crc & 1) ^ data_byte) & 1;
906 		crc >>= 1;
907 		data_byte >>= 1;
908 
909 		if (temp)
910 			crc ^= CRC32_POLY_LE;
911 	}
912 
913 	return crc;
914 }
915 
916 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
917 {
918 	u32 crc;
919 	u16 vid;
920 	__le16 vid_le;
921 	u16 vlan_hash_table = 0;
922 
923 	/* Generate the VLAN Hash Table value */
924 	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
925 		/* Get the CRC32 value of the VLAN ID */
926 		vid_le = cpu_to_le16(vid);
927 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
928 
929 		vlan_hash_table |= (1 << crc);
930 	}
931 
932 	/* Set the VLAN Hash Table filtering register */
933 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
934 
935 	return 0;
936 }
937 
938 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
939 				     unsigned int enable)
940 {
941 	unsigned int val = enable ? 1 : 0;
942 
943 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
944 		return 0;
945 
946 	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
947 		  enable ? "entering" : "leaving");
948 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
949 
950 	/* Hardware will still perform VLAN filtering in promiscuous mode */
951 	if (enable) {
952 		xgbe_disable_rx_vlan_filtering(pdata);
953 	} else {
954 		if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
955 			xgbe_enable_rx_vlan_filtering(pdata);
956 	}
957 
958 	return 0;
959 }
960 
961 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
962 				       unsigned int enable)
963 {
964 	unsigned int val = enable ? 1 : 0;
965 
966 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
967 		return 0;
968 
969 	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
970 		  enable ? "entering" : "leaving");
971 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
972 
973 	return 0;
974 }
975 
976 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
977 			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
978 {
979 	unsigned int mac_addr_hi, mac_addr_lo;
980 	u8 *mac_addr;
981 
982 	mac_addr_lo = 0;
983 	mac_addr_hi = 0;
984 
985 	if (ha) {
986 		mac_addr = (u8 *)&mac_addr_lo;
987 		mac_addr[0] = ha->addr[0];
988 		mac_addr[1] = ha->addr[1];
989 		mac_addr[2] = ha->addr[2];
990 		mac_addr[3] = ha->addr[3];
991 		mac_addr = (u8 *)&mac_addr_hi;
992 		mac_addr[0] = ha->addr[4];
993 		mac_addr[1] = ha->addr[5];
994 
995 		netif_dbg(pdata, drv, pdata->netdev,
996 			  "adding mac address %pM at %#x\n",
997 			  ha->addr, *mac_reg);
998 
999 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
1000 	}
1001 
1002 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
1003 	*mac_reg += MAC_MACA_INC;
1004 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
1005 	*mac_reg += MAC_MACA_INC;
1006 }
1007 
1008 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
1009 {
1010 	struct net_device *netdev = pdata->netdev;
1011 	struct netdev_hw_addr *ha;
1012 	unsigned int mac_reg;
1013 	unsigned int addn_macs;
1014 
1015 	mac_reg = MAC_MACA1HR;
1016 	addn_macs = pdata->hw_feat.addn_mac;
1017 
1018 	if (netdev_uc_count(netdev) > addn_macs) {
1019 		xgbe_set_promiscuous_mode(pdata, 1);
1020 	} else {
1021 		netdev_for_each_uc_addr(ha, netdev) {
1022 			xgbe_set_mac_reg(pdata, ha, &mac_reg);
1023 			addn_macs--;
1024 		}
1025 
1026 		if (netdev_mc_count(netdev) > addn_macs) {
1027 			xgbe_set_all_multicast_mode(pdata, 1);
1028 		} else {
1029 			netdev_for_each_mc_addr(ha, netdev) {
1030 				xgbe_set_mac_reg(pdata, ha, &mac_reg);
1031 				addn_macs--;
1032 			}
1033 		}
1034 	}
1035 
1036 	/* Clear remaining additional MAC address entries */
1037 	while (addn_macs--)
1038 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1039 }
1040 
1041 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1042 {
1043 	struct net_device *netdev = pdata->netdev;
1044 	struct netdev_hw_addr *ha;
1045 	unsigned int hash_reg;
1046 	unsigned int hash_table_shift, hash_table_count;
1047 	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1048 	u32 crc;
1049 	unsigned int i;
1050 
1051 	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1052 	hash_table_count = pdata->hw_feat.hash_table_size / 32;
1053 	memset(hash_table, 0, sizeof(hash_table));
1054 
1055 	/* Build the MAC Hash Table register values */
1056 	netdev_for_each_uc_addr(ha, netdev) {
1057 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1058 		crc >>= hash_table_shift;
1059 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1060 	}
1061 
1062 	netdev_for_each_mc_addr(ha, netdev) {
1063 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1064 		crc >>= hash_table_shift;
1065 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1066 	}
1067 
1068 	/* Set the MAC Hash Table registers */
1069 	hash_reg = MAC_HTR0;
1070 	for (i = 0; i < hash_table_count; i++) {
1071 		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1072 		hash_reg += MAC_HTR_INC;
1073 	}
1074 }
1075 
1076 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1077 {
1078 	if (pdata->hw_feat.hash_table_size)
1079 		xgbe_set_mac_hash_table(pdata);
1080 	else
1081 		xgbe_set_mac_addn_addrs(pdata);
1082 
1083 	return 0;
1084 }
1085 
1086 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, const u8 *addr)
1087 {
1088 	unsigned int mac_addr_hi, mac_addr_lo;
1089 
1090 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
1091 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1092 		      (addr[1] <<  8) | (addr[0] <<  0);
1093 
1094 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1095 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1096 
1097 	return 0;
1098 }
1099 
1100 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1101 {
1102 	struct net_device *netdev = pdata->netdev;
1103 	unsigned int pr_mode, am_mode;
1104 
1105 	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1106 	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1107 
1108 	xgbe_set_promiscuous_mode(pdata, pr_mode);
1109 	xgbe_set_all_multicast_mode(pdata, am_mode);
1110 
1111 	xgbe_add_mac_addresses(pdata);
1112 
1113 	return 0;
1114 }
1115 
1116 static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1117 {
1118 	unsigned int reg;
1119 
1120 	if (gpio > 15)
1121 		return -EINVAL;
1122 
1123 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1124 
1125 	reg &= ~(1 << (gpio + 16));
1126 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1127 
1128 	return 0;
1129 }
1130 
1131 static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1132 {
1133 	unsigned int reg;
1134 
1135 	if (gpio > 15)
1136 		return -EINVAL;
1137 
1138 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1139 
1140 	reg |= (1 << (gpio + 16));
1141 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1142 
1143 	return 0;
1144 }
1145 
1146 static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1147 				 int mmd_reg)
1148 {
1149 	unsigned long flags;
1150 	unsigned int mmd_address, index, offset;
1151 	int mmd_data;
1152 
1153 	if (mmd_reg & XGBE_ADDR_C45)
1154 		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1155 	else
1156 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1157 
1158 	/* The PCS registers are accessed using mmio. The underlying
1159 	 * management interface uses indirect addressing to access the MMD
1160 	 * register sets. This requires accessing of the PCS register in two
1161 	 * phases, an address phase and a data phase.
1162 	 *
1163 	 * The mmio interface is based on 16-bit offsets and values. All
1164 	 * register offsets must therefore be adjusted by left shifting the
1165 	 * offset 1 bit and reading 16 bits of data.
1166 	 */
1167 	mmd_address <<= 1;
1168 	index = mmd_address & ~pdata->xpcs_window_mask;
1169 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1170 
1171 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1172 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1173 	mmd_data = XPCS16_IOREAD(pdata, offset);
1174 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1175 
1176 	return mmd_data;
1177 }
1178 
1179 static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1180 				   int mmd_reg, int mmd_data)
1181 {
1182 	unsigned long flags;
1183 	unsigned int mmd_address, index, offset;
1184 
1185 	if (mmd_reg & XGBE_ADDR_C45)
1186 		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1187 	else
1188 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1189 
1190 	/* The PCS registers are accessed using mmio. The underlying
1191 	 * management interface uses indirect addressing to access the MMD
1192 	 * register sets. This requires accessing of the PCS register in two
1193 	 * phases, an address phase and a data phase.
1194 	 *
1195 	 * The mmio interface is based on 16-bit offsets and values. All
1196 	 * register offsets must therefore be adjusted by left shifting the
1197 	 * offset 1 bit and writing 16 bits of data.
1198 	 */
1199 	mmd_address <<= 1;
1200 	index = mmd_address & ~pdata->xpcs_window_mask;
1201 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1202 
1203 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1204 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1205 	XPCS16_IOWRITE(pdata, offset, mmd_data);
1206 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1207 }
1208 
1209 static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1210 				 int mmd_reg)
1211 {
1212 	unsigned long flags;
1213 	unsigned int mmd_address;
1214 	int mmd_data;
1215 
1216 	if (mmd_reg & XGBE_ADDR_C45)
1217 		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1218 	else
1219 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1220 
1221 	/* The PCS registers are accessed using mmio. The underlying APB3
1222 	 * management interface uses indirect addressing to access the MMD
1223 	 * register sets. This requires accessing of the PCS register in two
1224 	 * phases, an address phase and a data phase.
1225 	 *
1226 	 * The mmio interface is based on 32-bit offsets and values. All
1227 	 * register offsets must therefore be adjusted by left shifting the
1228 	 * offset 2 bits and reading 32 bits of data.
1229 	 */
1230 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1231 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1232 	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1233 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1234 
1235 	return mmd_data;
1236 }
1237 
1238 static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1239 				   int mmd_reg, int mmd_data)
1240 {
1241 	unsigned int mmd_address;
1242 	unsigned long flags;
1243 
1244 	if (mmd_reg & XGBE_ADDR_C45)
1245 		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1246 	else
1247 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1248 
1249 	/* The PCS registers are accessed using mmio. The underlying APB3
1250 	 * management interface uses indirect addressing to access the MMD
1251 	 * register sets. This requires accessing of the PCS register in two
1252 	 * phases, an address phase and a data phase.
1253 	 *
1254 	 * The mmio interface is based on 32-bit offsets and values. All
1255 	 * register offsets must therefore be adjusted by left shifting the
1256 	 * offset 2 bits and writing 32 bits of data.
1257 	 */
1258 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1259 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1260 	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1261 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1262 }
1263 
1264 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1265 			      int mmd_reg)
1266 {
1267 	switch (pdata->vdata->xpcs_access) {
1268 	case XGBE_XPCS_ACCESS_V1:
1269 		return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1270 
1271 	case XGBE_XPCS_ACCESS_V2:
1272 	default:
1273 		return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1274 	}
1275 }
1276 
1277 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1278 				int mmd_reg, int mmd_data)
1279 {
1280 	switch (pdata->vdata->xpcs_access) {
1281 	case XGBE_XPCS_ACCESS_V1:
1282 		return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1283 
1284 	case XGBE_XPCS_ACCESS_V2:
1285 	default:
1286 		return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1287 	}
1288 }
1289 
1290 static unsigned int xgbe_create_mdio_sca_c22(int port, int reg)
1291 {
1292 	unsigned int mdio_sca;
1293 
1294 	mdio_sca = 0;
1295 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1296 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1297 
1298 	return mdio_sca;
1299 }
1300 
1301 static unsigned int xgbe_create_mdio_sca_c45(int port, unsigned int da, int reg)
1302 {
1303 	unsigned int mdio_sca;
1304 
1305 	mdio_sca = 0;
1306 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1307 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1308 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1309 
1310 	return mdio_sca;
1311 }
1312 
1313 static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata,
1314 				   unsigned int mdio_sca, u16 val)
1315 {
1316 	unsigned int mdio_sccd;
1317 
1318 	reinit_completion(&pdata->mdio_complete);
1319 
1320 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1321 
1322 	mdio_sccd = 0;
1323 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1324 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1325 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1326 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1327 
1328 	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1329 		netdev_err(pdata->netdev, "mdio write operation timed out\n");
1330 		return -ETIMEDOUT;
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 static int xgbe_write_ext_mii_regs_c22(struct xgbe_prv_data *pdata, int addr,
1337 				       int reg, u16 val)
1338 {
1339 	unsigned int mdio_sca;
1340 
1341 	mdio_sca = xgbe_create_mdio_sca_c22(addr, reg);
1342 
1343 	return xgbe_write_ext_mii_regs(pdata, mdio_sca, val);
1344 }
1345 
1346 static int xgbe_write_ext_mii_regs_c45(struct xgbe_prv_data *pdata, int addr,
1347 				       int devad, int reg, u16 val)
1348 {
1349 	unsigned int mdio_sca;
1350 
1351 	mdio_sca = xgbe_create_mdio_sca_c45(addr, devad, reg);
1352 
1353 	return xgbe_write_ext_mii_regs(pdata, mdio_sca, val);
1354 }
1355 
1356 static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata,
1357 				  unsigned int mdio_sca)
1358 {
1359 	unsigned int mdio_sccd;
1360 
1361 	reinit_completion(&pdata->mdio_complete);
1362 
1363 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1364 
1365 	mdio_sccd = 0;
1366 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1367 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1368 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1369 
1370 	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1371 		netdev_err(pdata->netdev, "mdio read operation timed out\n");
1372 		return -ETIMEDOUT;
1373 	}
1374 
1375 	return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1376 }
1377 
1378 static int xgbe_read_ext_mii_regs_c22(struct xgbe_prv_data *pdata, int addr,
1379 				      int reg)
1380 {
1381 	unsigned int mdio_sca;
1382 
1383 	mdio_sca = xgbe_create_mdio_sca_c22(addr, reg);
1384 
1385 	return xgbe_read_ext_mii_regs(pdata, mdio_sca);
1386 }
1387 
1388 static int xgbe_read_ext_mii_regs_c45(struct xgbe_prv_data *pdata, int addr,
1389 				      int devad, int reg)
1390 {
1391 	unsigned int mdio_sca;
1392 
1393 	mdio_sca = xgbe_create_mdio_sca_c45(addr, devad, reg);
1394 
1395 	return xgbe_read_ext_mii_regs(pdata, mdio_sca);
1396 }
1397 
1398 static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1399 				 enum xgbe_mdio_mode mode)
1400 {
1401 	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1402 
1403 	switch (mode) {
1404 	case XGBE_MDIO_MODE_CL22:
1405 		if (port > XGMAC_MAX_C22_PORT)
1406 			return -EINVAL;
1407 		reg_val |= (1 << port);
1408 		break;
1409 	case XGBE_MDIO_MODE_CL45:
1410 		break;
1411 	default:
1412 		return -EINVAL;
1413 	}
1414 
1415 	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1416 
1417 	return 0;
1418 }
1419 
1420 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1421 {
1422 	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1423 }
1424 
1425 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1426 {
1427 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1428 
1429 	return 0;
1430 }
1431 
1432 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1433 {
1434 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1435 
1436 	return 0;
1437 }
1438 
1439 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1440 {
1441 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1442 
1443 	/* Reset the Tx descriptor
1444 	 *   Set buffer 1 (lo) address to zero
1445 	 *   Set buffer 1 (hi) address to zero
1446 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1447 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1448 	 */
1449 	rdesc->desc0 = 0;
1450 	rdesc->desc1 = 0;
1451 	rdesc->desc2 = 0;
1452 	rdesc->desc3 = 0;
1453 
1454 	/* Make sure ownership is written to the descriptor */
1455 	dma_wmb();
1456 }
1457 
1458 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1459 {
1460 	struct xgbe_ring *ring = channel->tx_ring;
1461 	struct xgbe_ring_data *rdata;
1462 	int i;
1463 	int start_index = ring->cur;
1464 
1465 	DBGPR("-->tx_desc_init\n");
1466 
1467 	/* Initialze all descriptors */
1468 	for (i = 0; i < ring->rdesc_count; i++) {
1469 		rdata = XGBE_GET_DESC_DATA(ring, i);
1470 
1471 		/* Initialize Tx descriptor */
1472 		xgbe_tx_desc_reset(rdata);
1473 	}
1474 
1475 	/* Update the total number of Tx descriptors */
1476 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1477 
1478 	/* Update the starting address of descriptor ring */
1479 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1480 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1481 			  upper_32_bits(rdata->rdesc_dma));
1482 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1483 			  lower_32_bits(rdata->rdesc_dma));
1484 
1485 	DBGPR("<--tx_desc_init\n");
1486 }
1487 
1488 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1489 			       struct xgbe_ring_data *rdata, unsigned int index)
1490 {
1491 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1492 	unsigned int rx_usecs = pdata->rx_usecs;
1493 	unsigned int rx_frames = pdata->rx_frames;
1494 	unsigned int inte;
1495 	dma_addr_t hdr_dma, buf_dma;
1496 
1497 	if (!rx_usecs && !rx_frames) {
1498 		/* No coalescing, interrupt for every descriptor */
1499 		inte = 1;
1500 	} else {
1501 		/* Set interrupt based on Rx frame coalescing setting */
1502 		if (rx_frames && !((index + 1) % rx_frames))
1503 			inte = 1;
1504 		else
1505 			inte = 0;
1506 	}
1507 
1508 	/* Reset the Rx descriptor
1509 	 *   Set buffer 1 (lo) address to header dma address (lo)
1510 	 *   Set buffer 1 (hi) address to header dma address (hi)
1511 	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1512 	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1513 	 *     set control bits OWN and INTE
1514 	 */
1515 	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1516 	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1517 	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1518 	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1519 	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1520 	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1521 
1522 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1523 
1524 	/* Since the Rx DMA engine is likely running, make sure everything
1525 	 * is written to the descriptor(s) before setting the OWN bit
1526 	 * for the descriptor
1527 	 */
1528 	dma_wmb();
1529 
1530 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1531 
1532 	/* Make sure ownership is written to the descriptor */
1533 	dma_wmb();
1534 }
1535 
1536 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1537 {
1538 	struct xgbe_prv_data *pdata = channel->pdata;
1539 	struct xgbe_ring *ring = channel->rx_ring;
1540 	struct xgbe_ring_data *rdata;
1541 	unsigned int start_index = ring->cur;
1542 	unsigned int i;
1543 
1544 	DBGPR("-->rx_desc_init\n");
1545 
1546 	/* Initialize all descriptors */
1547 	for (i = 0; i < ring->rdesc_count; i++) {
1548 		rdata = XGBE_GET_DESC_DATA(ring, i);
1549 
1550 		/* Initialize Rx descriptor */
1551 		xgbe_rx_desc_reset(pdata, rdata, i);
1552 	}
1553 
1554 	/* Update the total number of Rx descriptors */
1555 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1556 
1557 	/* Update the starting address of descriptor ring */
1558 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1559 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1560 			  upper_32_bits(rdata->rdesc_dma));
1561 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1562 			  lower_32_bits(rdata->rdesc_dma));
1563 
1564 	/* Update the Rx Descriptor Tail Pointer */
1565 	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1566 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1567 			  lower_32_bits(rdata->rdesc_dma));
1568 
1569 	DBGPR("<--rx_desc_init\n");
1570 }
1571 
1572 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1573 				      unsigned int addend)
1574 {
1575 	unsigned int count = 10000;
1576 
1577 	/* Set the addend register value and tell the device */
1578 	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1579 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1580 
1581 	/* Wait for addend update to complete */
1582 	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1583 		udelay(5);
1584 
1585 	if (!count)
1586 		netdev_err(pdata->netdev,
1587 			   "timed out updating timestamp addend register\n");
1588 }
1589 
1590 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1591 				 unsigned int nsec)
1592 {
1593 	unsigned int count = 10000;
1594 
1595 	/* Set the time values and tell the device */
1596 	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1597 	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1598 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1599 
1600 	/* Wait for time update to complete */
1601 	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1602 		udelay(5);
1603 
1604 	if (!count)
1605 		netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1606 }
1607 
1608 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1609 {
1610 	u64 nsec;
1611 
1612 	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1613 	nsec *= NSEC_PER_SEC;
1614 	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1615 
1616 	return nsec;
1617 }
1618 
1619 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1620 {
1621 	unsigned int tx_snr, tx_ssr;
1622 	u64 nsec;
1623 
1624 	if (pdata->vdata->tx_tstamp_workaround) {
1625 		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1626 		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1627 	} else {
1628 		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1629 		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1630 	}
1631 
1632 	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1633 		return 0;
1634 
1635 	nsec = tx_ssr;
1636 	nsec *= NSEC_PER_SEC;
1637 	nsec += tx_snr;
1638 
1639 	return nsec;
1640 }
1641 
1642 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1643 			       struct xgbe_ring_desc *rdesc)
1644 {
1645 	u64 nsec;
1646 
1647 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1648 	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1649 		nsec = le32_to_cpu(rdesc->desc1);
1650 		nsec <<= 32;
1651 		nsec |= le32_to_cpu(rdesc->desc0);
1652 		if (nsec != 0xffffffffffffffffULL) {
1653 			packet->rx_tstamp = nsec;
1654 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1655 				       RX_TSTAMP, 1);
1656 		}
1657 	}
1658 }
1659 
1660 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1661 			      unsigned int mac_tscr)
1662 {
1663 	/* Set one nano-second accuracy */
1664 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1665 
1666 	/* Set fine timestamp update */
1667 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1668 
1669 	/* Overwrite earlier timestamps */
1670 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1671 
1672 	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1673 
1674 	/* Exit if timestamping is not enabled */
1675 	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1676 		return 0;
1677 
1678 	/* Initialize time registers */
1679 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1680 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1681 	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1682 	xgbe_set_tstamp_time(pdata, 0, 0);
1683 
1684 	/* Initialize the timecounter */
1685 	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1686 			 ktime_to_ns(ktime_get_real()));
1687 
1688 	return 0;
1689 }
1690 
1691 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1692 			       struct xgbe_ring *ring)
1693 {
1694 	struct xgbe_prv_data *pdata = channel->pdata;
1695 	struct xgbe_ring_data *rdata;
1696 
1697 	/* Make sure everything is written before the register write */
1698 	wmb();
1699 
1700 	/* Issue a poll command to Tx DMA by writing address
1701 	 * of next immediate free descriptor */
1702 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1703 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1704 			  lower_32_bits(rdata->rdesc_dma));
1705 
1706 	/* Start the Tx timer */
1707 	if (pdata->tx_usecs && !channel->tx_timer_active) {
1708 		channel->tx_timer_active = 1;
1709 		mod_timer(&channel->tx_timer,
1710 			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1711 	}
1712 
1713 	ring->tx.xmit_more = 0;
1714 }
1715 
1716 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1717 {
1718 	struct xgbe_prv_data *pdata = channel->pdata;
1719 	struct xgbe_ring *ring = channel->tx_ring;
1720 	struct xgbe_ring_data *rdata;
1721 	struct xgbe_ring_desc *rdesc;
1722 	struct xgbe_packet_data *packet = &ring->packet_data;
1723 	unsigned int tx_packets, tx_bytes;
1724 	unsigned int csum, tso, vlan, vxlan;
1725 	unsigned int tso_context, vlan_context;
1726 	unsigned int tx_set_ic;
1727 	int start_index = ring->cur;
1728 	int cur_index = ring->cur;
1729 	int i;
1730 
1731 	DBGPR("-->xgbe_dev_xmit\n");
1732 
1733 	tx_packets = packet->tx_packets;
1734 	tx_bytes = packet->tx_bytes;
1735 
1736 	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1737 			      CSUM_ENABLE);
1738 	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1739 			     TSO_ENABLE);
1740 	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1741 			      VLAN_CTAG);
1742 	vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1743 			       VXLAN);
1744 
1745 	if (tso && (packet->mss != ring->tx.cur_mss))
1746 		tso_context = 1;
1747 	else
1748 		tso_context = 0;
1749 
1750 	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1751 		vlan_context = 1;
1752 	else
1753 		vlan_context = 0;
1754 
1755 	/* Determine if an interrupt should be generated for this Tx:
1756 	 *   Interrupt:
1757 	 *     - Tx frame count exceeds the frame count setting
1758 	 *     - Addition of Tx frame count to the frame count since the
1759 	 *       last interrupt was set exceeds the frame count setting
1760 	 *   No interrupt:
1761 	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1762 	 *     - Addition of Tx frame count to the frame count since the
1763 	 *       last interrupt was set does not exceed the frame count setting
1764 	 */
1765 	ring->coalesce_count += tx_packets;
1766 	if (!pdata->tx_frames)
1767 		tx_set_ic = 0;
1768 	else if (tx_packets > pdata->tx_frames)
1769 		tx_set_ic = 1;
1770 	else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets)
1771 		tx_set_ic = 1;
1772 	else
1773 		tx_set_ic = 0;
1774 
1775 	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1776 	rdesc = rdata->rdesc;
1777 
1778 	/* Create a context descriptor if this is a TSO packet */
1779 	if (tso_context || vlan_context) {
1780 		if (tso_context) {
1781 			netif_dbg(pdata, tx_queued, pdata->netdev,
1782 				  "TSO context descriptor, mss=%u\n",
1783 				  packet->mss);
1784 
1785 			/* Set the MSS size */
1786 			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1787 					  MSS, packet->mss);
1788 
1789 			/* Mark it as a CONTEXT descriptor */
1790 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1791 					  CTXT, 1);
1792 
1793 			/* Indicate this descriptor contains the MSS */
1794 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1795 					  TCMSSV, 1);
1796 
1797 			ring->tx.cur_mss = packet->mss;
1798 		}
1799 
1800 		if (vlan_context) {
1801 			netif_dbg(pdata, tx_queued, pdata->netdev,
1802 				  "VLAN context descriptor, ctag=%u\n",
1803 				  packet->vlan_ctag);
1804 
1805 			/* Mark it as a CONTEXT descriptor */
1806 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1807 					  CTXT, 1);
1808 
1809 			/* Set the VLAN tag */
1810 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1811 					  VT, packet->vlan_ctag);
1812 
1813 			/* Indicate this descriptor contains the VLAN tag */
1814 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1815 					  VLTV, 1);
1816 
1817 			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1818 		}
1819 
1820 		cur_index++;
1821 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1822 		rdesc = rdata->rdesc;
1823 	}
1824 
1825 	/* Update buffer address (for TSO this is the header) */
1826 	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1827 	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1828 
1829 	/* Update the buffer length */
1830 	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1831 			  rdata->skb_dma_len);
1832 
1833 	/* VLAN tag insertion check */
1834 	if (vlan)
1835 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1836 				  TX_NORMAL_DESC2_VLAN_INSERT);
1837 
1838 	/* Timestamp enablement check */
1839 	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1840 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1841 
1842 	/* Mark it as First Descriptor */
1843 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1844 
1845 	/* Mark it as a NORMAL descriptor */
1846 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1847 
1848 	/* Set OWN bit if not the first descriptor */
1849 	if (cur_index != start_index)
1850 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1851 
1852 	if (tso) {
1853 		/* Enable TSO */
1854 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1855 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1856 				  packet->tcp_payload_len);
1857 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1858 				  packet->tcp_header_len / 4);
1859 
1860 		pdata->ext_stats.tx_tso_packets += tx_packets;
1861 	} else {
1862 		/* Enable CRC and Pad Insertion */
1863 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1864 
1865 		/* Enable HW CSUM */
1866 		if (csum)
1867 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1868 					  CIC, 0x3);
1869 
1870 		/* Set the total length to be transmitted */
1871 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1872 				  packet->length);
1873 	}
1874 
1875 	if (vxlan) {
1876 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP,
1877 				  TX_NORMAL_DESC3_VXLAN_PACKET);
1878 
1879 		pdata->ext_stats.tx_vxlan_packets += packet->tx_packets;
1880 	}
1881 
1882 	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1883 		cur_index++;
1884 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1885 		rdesc = rdata->rdesc;
1886 
1887 		/* Update buffer address */
1888 		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1889 		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1890 
1891 		/* Update the buffer length */
1892 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1893 				  rdata->skb_dma_len);
1894 
1895 		/* Set OWN bit */
1896 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1897 
1898 		/* Mark it as NORMAL descriptor */
1899 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1900 
1901 		/* Enable HW CSUM */
1902 		if (csum)
1903 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1904 					  CIC, 0x3);
1905 	}
1906 
1907 	/* Set LAST bit for the last descriptor */
1908 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1909 
1910 	/* Set IC bit based on Tx coalescing settings */
1911 	if (tx_set_ic)
1912 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1913 
1914 	/* Save the Tx info to report back during cleanup */
1915 	rdata->tx.packets = tx_packets;
1916 	rdata->tx.bytes = tx_bytes;
1917 
1918 	pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets;
1919 	pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes;
1920 
1921 	/* In case the Tx DMA engine is running, make sure everything
1922 	 * is written to the descriptor(s) before setting the OWN bit
1923 	 * for the first descriptor
1924 	 */
1925 	dma_wmb();
1926 
1927 	/* Set OWN bit for the first descriptor */
1928 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1929 	rdesc = rdata->rdesc;
1930 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1931 
1932 	if (netif_msg_tx_queued(pdata))
1933 		xgbe_dump_tx_desc(pdata, ring, start_index,
1934 				  packet->rdesc_count, 1);
1935 
1936 	/* Make sure ownership is written to the descriptor */
1937 	smp_wmb();
1938 
1939 	ring->cur = cur_index + 1;
1940 	if (!netdev_xmit_more() ||
1941 	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1942 						   channel->queue_index)))
1943 		xgbe_tx_start_xmit(channel, ring);
1944 	else
1945 		ring->tx.xmit_more = 1;
1946 
1947 	DBGPR("  %s: descriptors %u to %u written\n",
1948 	      channel->name, start_index & (ring->rdesc_count - 1),
1949 	      (ring->cur - 1) & (ring->rdesc_count - 1));
1950 
1951 	DBGPR("<--xgbe_dev_xmit\n");
1952 }
1953 
1954 static int xgbe_dev_read(struct xgbe_channel *channel)
1955 {
1956 	struct xgbe_prv_data *pdata = channel->pdata;
1957 	struct xgbe_ring *ring = channel->rx_ring;
1958 	struct xgbe_ring_data *rdata;
1959 	struct xgbe_ring_desc *rdesc;
1960 	struct xgbe_packet_data *packet = &ring->packet_data;
1961 	struct net_device *netdev = pdata->netdev;
1962 	unsigned int err, etlt, l34t;
1963 
1964 	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1965 
1966 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1967 	rdesc = rdata->rdesc;
1968 
1969 	/* Check for data availability */
1970 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1971 		return 1;
1972 
1973 	/* Make sure descriptor fields are read after reading the OWN bit */
1974 	dma_rmb();
1975 
1976 	if (netif_msg_rx_status(pdata))
1977 		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1978 
1979 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1980 		/* Timestamp Context Descriptor */
1981 		xgbe_get_rx_tstamp(packet, rdesc);
1982 
1983 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1984 			       CONTEXT, 1);
1985 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1986 			       CONTEXT_NEXT, 0);
1987 		return 0;
1988 	}
1989 
1990 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1991 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1992 
1993 	/* Indicate if a Context Descriptor is next */
1994 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1995 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1996 			       CONTEXT_NEXT, 1);
1997 
1998 	/* Get the header length */
1999 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
2000 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2001 			       FIRST, 1);
2002 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
2003 						      RX_NORMAL_DESC2, HL);
2004 		if (rdata->rx.hdr_len)
2005 			pdata->ext_stats.rx_split_header_packets++;
2006 	} else {
2007 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2008 			       FIRST, 0);
2009 	}
2010 
2011 	/* Get the RSS hash */
2012 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
2013 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2014 			       RSS_HASH, 1);
2015 
2016 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
2017 
2018 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2019 		switch (l34t) {
2020 		case RX_DESC3_L34T_IPV4_TCP:
2021 		case RX_DESC3_L34T_IPV4_UDP:
2022 		case RX_DESC3_L34T_IPV6_TCP:
2023 		case RX_DESC3_L34T_IPV6_UDP:
2024 			packet->rss_hash_type = PKT_HASH_TYPE_L4;
2025 			break;
2026 		default:
2027 			packet->rss_hash_type = PKT_HASH_TYPE_L3;
2028 		}
2029 	}
2030 
2031 	/* Not all the data has been transferred for this packet */
2032 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
2033 		return 0;
2034 
2035 	/* This is the last of the data for this packet */
2036 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2037 		       LAST, 1);
2038 
2039 	/* Get the packet length */
2040 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
2041 
2042 	/* Set checksum done indicator as appropriate */
2043 	if (netdev->features & NETIF_F_RXCSUM) {
2044 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2045 			       CSUM_DONE, 1);
2046 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2047 			       TNPCSUM_DONE, 1);
2048 	}
2049 
2050 	/* Set the tunneled packet indicator */
2051 	if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) {
2052 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2053 			       TNP, 1);
2054 		pdata->ext_stats.rx_vxlan_packets++;
2055 
2056 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2057 		switch (l34t) {
2058 		case RX_DESC3_L34T_IPV4_UNKNOWN:
2059 		case RX_DESC3_L34T_IPV6_UNKNOWN:
2060 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2061 				       TNPCSUM_DONE, 0);
2062 			break;
2063 		}
2064 	}
2065 
2066 	/* Check for errors (only valid in last descriptor) */
2067 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
2068 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
2069 	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
2070 
2071 	if (!err || !etlt) {
2072 		/* No error if err is 0 or etlt is 0 */
2073 		if ((etlt == 0x09) &&
2074 		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
2075 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2076 				       VLAN_CTAG, 1);
2077 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
2078 							      RX_NORMAL_DESC0,
2079 							      OVT);
2080 			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
2081 				  packet->vlan_ctag);
2082 		}
2083 	} else {
2084 		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
2085 						  RX_PACKET_ATTRIBUTES, TNP);
2086 
2087 		if ((etlt == 0x05) || (etlt == 0x06)) {
2088 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2089 				       CSUM_DONE, 0);
2090 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2091 				       TNPCSUM_DONE, 0);
2092 			pdata->ext_stats.rx_csum_errors++;
2093 		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
2094 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2095 				       CSUM_DONE, 0);
2096 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2097 				       TNPCSUM_DONE, 0);
2098 			pdata->ext_stats.rx_vxlan_csum_errors++;
2099 		} else {
2100 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
2101 				       FRAME, 1);
2102 		}
2103 	}
2104 
2105 	pdata->ext_stats.rxq_packets[channel->queue_index]++;
2106 	pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len;
2107 
2108 	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
2109 	      ring->cur & (ring->rdesc_count - 1), ring->cur);
2110 
2111 	return 0;
2112 }
2113 
2114 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
2115 {
2116 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
2117 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
2118 }
2119 
2120 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
2121 {
2122 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
2123 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
2124 }
2125 
2126 static int xgbe_enable_int(struct xgbe_channel *channel,
2127 			   enum xgbe_int int_id)
2128 {
2129 	switch (int_id) {
2130 	case XGMAC_INT_DMA_CH_SR_TI:
2131 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2132 		break;
2133 	case XGMAC_INT_DMA_CH_SR_TPS:
2134 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
2135 		break;
2136 	case XGMAC_INT_DMA_CH_SR_TBU:
2137 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
2138 		break;
2139 	case XGMAC_INT_DMA_CH_SR_RI:
2140 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2141 		break;
2142 	case XGMAC_INT_DMA_CH_SR_RBU:
2143 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
2144 		break;
2145 	case XGMAC_INT_DMA_CH_SR_RPS:
2146 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
2147 		break;
2148 	case XGMAC_INT_DMA_CH_SR_TI_RI:
2149 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2150 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2151 		break;
2152 	case XGMAC_INT_DMA_CH_SR_FBE:
2153 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
2154 		break;
2155 	case XGMAC_INT_DMA_ALL:
2156 		channel->curr_ier |= channel->saved_ier;
2157 		break;
2158 	default:
2159 		return -1;
2160 	}
2161 
2162 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2163 
2164 	return 0;
2165 }
2166 
2167 static int xgbe_disable_int(struct xgbe_channel *channel,
2168 			    enum xgbe_int int_id)
2169 {
2170 	switch (int_id) {
2171 	case XGMAC_INT_DMA_CH_SR_TI:
2172 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2173 		break;
2174 	case XGMAC_INT_DMA_CH_SR_TPS:
2175 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
2176 		break;
2177 	case XGMAC_INT_DMA_CH_SR_TBU:
2178 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
2179 		break;
2180 	case XGMAC_INT_DMA_CH_SR_RI:
2181 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2182 		break;
2183 	case XGMAC_INT_DMA_CH_SR_RBU:
2184 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
2185 		break;
2186 	case XGMAC_INT_DMA_CH_SR_RPS:
2187 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
2188 		break;
2189 	case XGMAC_INT_DMA_CH_SR_TI_RI:
2190 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2191 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2192 		break;
2193 	case XGMAC_INT_DMA_CH_SR_FBE:
2194 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
2195 		break;
2196 	case XGMAC_INT_DMA_ALL:
2197 		channel->saved_ier = channel->curr_ier;
2198 		channel->curr_ier = 0;
2199 		break;
2200 	default:
2201 		return -1;
2202 	}
2203 
2204 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2205 
2206 	return 0;
2207 }
2208 
2209 static int __xgbe_exit(struct xgbe_prv_data *pdata)
2210 {
2211 	unsigned int count = 2000;
2212 
2213 	DBGPR("-->xgbe_exit\n");
2214 
2215 	/* Issue a software reset */
2216 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2217 	usleep_range(10, 15);
2218 
2219 	/* Poll Until Poll Condition */
2220 	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2221 		usleep_range(500, 600);
2222 
2223 	if (!count)
2224 		return -EBUSY;
2225 
2226 	DBGPR("<--xgbe_exit\n");
2227 
2228 	return 0;
2229 }
2230 
2231 static int xgbe_exit(struct xgbe_prv_data *pdata)
2232 {
2233 	int ret;
2234 
2235 	/* To guard against possible incorrectly generated interrupts,
2236 	 * issue the software reset twice.
2237 	 */
2238 	ret = __xgbe_exit(pdata);
2239 	if (ret)
2240 		return ret;
2241 
2242 	return __xgbe_exit(pdata);
2243 }
2244 
2245 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2246 {
2247 	unsigned int i, count;
2248 
2249 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2250 		return 0;
2251 
2252 	for (i = 0; i < pdata->tx_q_count; i++)
2253 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2254 
2255 	/* Poll Until Poll Condition */
2256 	for (i = 0; i < pdata->tx_q_count; i++) {
2257 		count = 2000;
2258 		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2259 							MTL_Q_TQOMR, FTQ))
2260 			usleep_range(500, 600);
2261 
2262 		if (!count)
2263 			return -EBUSY;
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2270 {
2271 	unsigned int sbmr;
2272 
2273 	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2274 
2275 	/* Set enhanced addressing mode */
2276 	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2277 
2278 	/* Set the System Bus mode */
2279 	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2280 	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2281 	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2282 	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2283 	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2284 
2285 	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2286 
2287 	/* Set descriptor fetching threshold */
2288 	if (pdata->vdata->tx_desc_prefetch)
2289 		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2290 				   pdata->vdata->tx_desc_prefetch);
2291 
2292 	if (pdata->vdata->rx_desc_prefetch)
2293 		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2294 				   pdata->vdata->rx_desc_prefetch);
2295 }
2296 
2297 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2298 {
2299 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2300 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2301 	if (pdata->awarcr)
2302 		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
2303 }
2304 
2305 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2306 {
2307 	unsigned int i;
2308 
2309 	/* Set Tx to weighted round robin scheduling algorithm */
2310 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2311 
2312 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
2313 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2314 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2315 				       MTL_TSA_ETS);
2316 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2317 	}
2318 
2319 	/* Set Rx to strict priority algorithm */
2320 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2321 }
2322 
2323 static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2324 					      unsigned int queue,
2325 					      unsigned int q_fifo_size)
2326 {
2327 	unsigned int frame_fifo_size;
2328 	unsigned int rfa, rfd;
2329 
2330 	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2331 
2332 	if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2333 		/* PFC is active for this queue */
2334 		rfa = pdata->pfc_rfa;
2335 		rfd = rfa + frame_fifo_size;
2336 		if (rfd > XGMAC_FLOW_CONTROL_MAX)
2337 			rfd = XGMAC_FLOW_CONTROL_MAX;
2338 		if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2339 			rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2340 	} else {
2341 		/* This path deals with just maximum frame sizes which are
2342 		 * limited to a jumbo frame of 9,000 (plus headers, etc.)
2343 		 * so we can never exceed the maximum allowable RFA/RFD
2344 		 * values.
2345 		 */
2346 		if (q_fifo_size <= 2048) {
2347 			/* rx_rfd to zero to signal no flow control */
2348 			pdata->rx_rfa[queue] = 0;
2349 			pdata->rx_rfd[queue] = 0;
2350 			return;
2351 		}
2352 
2353 		if (q_fifo_size <= 4096) {
2354 			/* Between 2048 and 4096 */
2355 			pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
2356 			pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
2357 			return;
2358 		}
2359 
2360 		if (q_fifo_size <= frame_fifo_size) {
2361 			/* Between 4096 and max-frame */
2362 			pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
2363 			pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
2364 			return;
2365 		}
2366 
2367 		if (q_fifo_size <= (frame_fifo_size * 3)) {
2368 			/* Between max-frame and 3 max-frames,
2369 			 * trigger if we get just over a frame of data and
2370 			 * resume when we have just under half a frame left.
2371 			 */
2372 			rfa = q_fifo_size - frame_fifo_size;
2373 			rfd = rfa + (frame_fifo_size / 2);
2374 		} else {
2375 			/* Above 3 max-frames - trigger when just over
2376 			 * 2 frames of space available
2377 			 */
2378 			rfa = frame_fifo_size * 2;
2379 			rfa += XGMAC_FLOW_CONTROL_UNIT;
2380 			rfd = rfa + frame_fifo_size;
2381 		}
2382 	}
2383 
2384 	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2385 	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2386 }
2387 
2388 static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2389 						  unsigned int *fifo)
2390 {
2391 	unsigned int q_fifo_size;
2392 	unsigned int i;
2393 
2394 	for (i = 0; i < pdata->rx_q_count; i++) {
2395 		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2396 
2397 		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2398 	}
2399 }
2400 
2401 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2402 {
2403 	unsigned int i;
2404 
2405 	for (i = 0; i < pdata->rx_q_count; i++) {
2406 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2407 				       pdata->rx_rfa[i]);
2408 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2409 				       pdata->rx_rfd[i]);
2410 	}
2411 }
2412 
2413 static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2414 {
2415 	/* The configured value may not be the actual amount of fifo RAM */
2416 	return min_t(unsigned int, pdata->tx_max_fifo_size,
2417 		     pdata->hw_feat.tx_fifo_size);
2418 }
2419 
2420 static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2421 {
2422 	/* The configured value may not be the actual amount of fifo RAM */
2423 	return min_t(unsigned int, pdata->rx_max_fifo_size,
2424 		     pdata->hw_feat.rx_fifo_size);
2425 }
2426 
2427 static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2428 				      unsigned int queue_count,
2429 				      unsigned int *fifo)
2430 {
2431 	unsigned int q_fifo_size;
2432 	unsigned int p_fifo;
2433 	unsigned int i;
2434 
2435 	q_fifo_size = fifo_size / queue_count;
2436 
2437 	/* Calculate the fifo setting by dividing the queue's fifo size
2438 	 * by the fifo allocation increment (with 0 representing the
2439 	 * base allocation increment so decrement the result by 1).
2440 	 */
2441 	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2442 	if (p_fifo)
2443 		p_fifo--;
2444 
2445 	/* Distribute the fifo equally amongst the queues */
2446 	for (i = 0; i < queue_count; i++)
2447 		fifo[i] = p_fifo;
2448 }
2449 
2450 static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2451 					   unsigned int queue_count,
2452 					   unsigned int *fifo)
2453 {
2454 	unsigned int i;
2455 
2456 	BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2457 
2458 	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2459 		return fifo_size;
2460 
2461 	/* Rx queues 9 and up are for specialized packets,
2462 	 * such as PTP or DCB control packets, etc. and
2463 	 * don't require a large fifo
2464 	 */
2465 	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2466 		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2467 		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2468 	}
2469 
2470 	return fifo_size;
2471 }
2472 
2473 static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2474 {
2475 	unsigned int delay;
2476 
2477 	/* If a delay has been provided, use that */
2478 	if (pdata->pfc->delay)
2479 		return pdata->pfc->delay / 8;
2480 
2481 	/* Allow for two maximum size frames */
2482 	delay = xgbe_get_max_frame(pdata);
2483 	delay += XGMAC_ETH_PREAMBLE;
2484 	delay *= 2;
2485 
2486 	/* Allow for PFC frame */
2487 	delay += XGMAC_PFC_DATA_LEN;
2488 	delay += ETH_HLEN + ETH_FCS_LEN;
2489 	delay += XGMAC_ETH_PREAMBLE;
2490 
2491 	/* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2492 	delay += XGMAC_PFC_DELAYS;
2493 
2494 	return delay;
2495 }
2496 
2497 static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2498 {
2499 	unsigned int count, prio_queues;
2500 	unsigned int i;
2501 
2502 	if (!pdata->pfc->pfc_en)
2503 		return 0;
2504 
2505 	count = 0;
2506 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2507 	for (i = 0; i < prio_queues; i++) {
2508 		if (!xgbe_is_pfc_queue(pdata, i))
2509 			continue;
2510 
2511 		pdata->pfcq[i] = 1;
2512 		count++;
2513 	}
2514 
2515 	return count;
2516 }
2517 
2518 static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2519 				    unsigned int fifo_size,
2520 				    unsigned int *fifo)
2521 {
2522 	unsigned int q_fifo_size, rem_fifo, addn_fifo;
2523 	unsigned int prio_queues;
2524 	unsigned int pfc_count;
2525 	unsigned int i;
2526 
2527 	q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2528 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2529 	pfc_count = xgbe_get_pfc_queues(pdata);
2530 
2531 	if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2532 		/* No traffic classes with PFC enabled or can't do lossless */
2533 		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2534 		return;
2535 	}
2536 
2537 	/* Calculate how much fifo we have to play with */
2538 	rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2539 
2540 	/* Calculate how much more than base fifo PFC needs, which also
2541 	 * becomes the threshold activation point (RFA)
2542 	 */
2543 	pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2544 	pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2545 
2546 	if (pdata->pfc_rfa > q_fifo_size) {
2547 		addn_fifo = pdata->pfc_rfa - q_fifo_size;
2548 		addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2549 	} else {
2550 		addn_fifo = 0;
2551 	}
2552 
2553 	/* Calculate DCB fifo settings:
2554 	 *   - distribute remaining fifo between the VLAN priority
2555 	 *     queues based on traffic class PFC enablement and overall
2556 	 *     priority (0 is lowest priority, so start at highest)
2557 	 */
2558 	i = prio_queues;
2559 	while (i > 0) {
2560 		i--;
2561 
2562 		fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2563 
2564 		if (!pdata->pfcq[i] || !addn_fifo)
2565 			continue;
2566 
2567 		if (addn_fifo > rem_fifo) {
2568 			netdev_warn(pdata->netdev,
2569 				    "RXq%u cannot set needed fifo size\n", i);
2570 			if (!rem_fifo)
2571 				continue;
2572 
2573 			addn_fifo = rem_fifo;
2574 		}
2575 
2576 		fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2577 		rem_fifo -= addn_fifo;
2578 	}
2579 
2580 	if (rem_fifo) {
2581 		unsigned int inc_fifo = rem_fifo / prio_queues;
2582 
2583 		/* Distribute remaining fifo across queues */
2584 		for (i = 0; i < prio_queues; i++)
2585 			fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2586 	}
2587 }
2588 
2589 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2590 {
2591 	unsigned int fifo_size;
2592 	unsigned int fifo[XGBE_MAX_QUEUES];
2593 	unsigned int i;
2594 
2595 	fifo_size = xgbe_get_tx_fifo_size(pdata);
2596 
2597 	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2598 
2599 	for (i = 0; i < pdata->tx_q_count; i++)
2600 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2601 
2602 	netif_info(pdata, drv, pdata->netdev,
2603 		   "%d Tx hardware queues, %d byte fifo per queue\n",
2604 		   pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2605 }
2606 
2607 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2608 {
2609 	unsigned int fifo_size;
2610 	unsigned int fifo[XGBE_MAX_QUEUES];
2611 	unsigned int prio_queues;
2612 	unsigned int i;
2613 
2614 	/* Clear any DCB related fifo/queue information */
2615 	memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2616 	pdata->pfc_rfa = 0;
2617 
2618 	fifo_size = xgbe_get_rx_fifo_size(pdata);
2619 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2620 
2621 	/* Assign a minimum fifo to the non-VLAN priority queues */
2622 	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2623 
2624 	if (pdata->pfc && pdata->ets)
2625 		xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2626 	else
2627 		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2628 
2629 	for (i = 0; i < pdata->rx_q_count; i++)
2630 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2631 
2632 	xgbe_calculate_flow_control_threshold(pdata, fifo);
2633 	xgbe_config_flow_control_threshold(pdata);
2634 
2635 	if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2636 		netif_info(pdata, drv, pdata->netdev,
2637 			   "%u Rx hardware queues\n", pdata->rx_q_count);
2638 		for (i = 0; i < pdata->rx_q_count; i++)
2639 			netif_info(pdata, drv, pdata->netdev,
2640 				   "RxQ%u, %u byte fifo queue\n", i,
2641 				   ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2642 	} else {
2643 		netif_info(pdata, drv, pdata->netdev,
2644 			   "%u Rx hardware queues, %u byte fifo per queue\n",
2645 			   pdata->rx_q_count,
2646 			   ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2647 	}
2648 }
2649 
2650 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2651 {
2652 	unsigned int qptc, qptc_extra, queue;
2653 	unsigned int prio_queues;
2654 	unsigned int ppq, ppq_extra, prio;
2655 	unsigned int mask;
2656 	unsigned int i, j, reg, reg_val;
2657 
2658 	/* Map the MTL Tx Queues to Traffic Classes
2659 	 *   Note: Tx Queues >= Traffic Classes
2660 	 */
2661 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2662 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2663 
2664 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2665 		for (j = 0; j < qptc; j++) {
2666 			netif_dbg(pdata, drv, pdata->netdev,
2667 				  "TXq%u mapped to TC%u\n", queue, i);
2668 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2669 					       Q2TCMAP, i);
2670 			pdata->q2tc_map[queue++] = i;
2671 		}
2672 
2673 		if (i < qptc_extra) {
2674 			netif_dbg(pdata, drv, pdata->netdev,
2675 				  "TXq%u mapped to TC%u\n", queue, i);
2676 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2677 					       Q2TCMAP, i);
2678 			pdata->q2tc_map[queue++] = i;
2679 		}
2680 	}
2681 
2682 	/* Map the 8 VLAN priority values to available MTL Rx queues */
2683 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2684 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2685 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2686 
2687 	reg = MAC_RQC2R;
2688 	reg_val = 0;
2689 	for (i = 0, prio = 0; i < prio_queues;) {
2690 		mask = 0;
2691 		for (j = 0; j < ppq; j++) {
2692 			netif_dbg(pdata, drv, pdata->netdev,
2693 				  "PRIO%u mapped to RXq%u\n", prio, i);
2694 			mask |= (1 << prio);
2695 			pdata->prio2q_map[prio++] = i;
2696 		}
2697 
2698 		if (i < ppq_extra) {
2699 			netif_dbg(pdata, drv, pdata->netdev,
2700 				  "PRIO%u mapped to RXq%u\n", prio, i);
2701 			mask |= (1 << prio);
2702 			pdata->prio2q_map[prio++] = i;
2703 		}
2704 
2705 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2706 
2707 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2708 			continue;
2709 
2710 		XGMAC_IOWRITE(pdata, reg, reg_val);
2711 		reg += MAC_RQC2_INC;
2712 		reg_val = 0;
2713 	}
2714 
2715 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2716 	reg = MTL_RQDCM0R;
2717 	reg_val = 0;
2718 	for (i = 0; i < pdata->rx_q_count;) {
2719 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2720 
2721 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2722 			continue;
2723 
2724 		XGMAC_IOWRITE(pdata, reg, reg_val);
2725 
2726 		reg += MTL_RQDCM_INC;
2727 		reg_val = 0;
2728 	}
2729 }
2730 
2731 static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2732 {
2733 	unsigned int offset, queue, prio;
2734 	u8 i;
2735 
2736 	netdev_reset_tc(pdata->netdev);
2737 	if (!pdata->num_tcs)
2738 		return;
2739 
2740 	netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2741 
2742 	for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2743 		while ((queue < pdata->tx_q_count) &&
2744 		       (pdata->q2tc_map[queue] == i))
2745 			queue++;
2746 
2747 		netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2748 			  i, offset, queue - 1);
2749 		netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2750 		offset = queue;
2751 	}
2752 
2753 	if (!pdata->ets)
2754 		return;
2755 
2756 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2757 		netdev_set_prio_tc_map(pdata->netdev, prio,
2758 				       pdata->ets->prio_tc[prio]);
2759 }
2760 
2761 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2762 {
2763 	struct ieee_ets *ets = pdata->ets;
2764 	unsigned int total_weight, min_weight, weight;
2765 	unsigned int mask, reg, reg_val;
2766 	unsigned int i, prio;
2767 
2768 	if (!ets)
2769 		return;
2770 
2771 	/* Set Tx to deficit weighted round robin scheduling algorithm (when
2772 	 * traffic class is using ETS algorithm)
2773 	 */
2774 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2775 
2776 	/* Set Traffic Class algorithms */
2777 	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2778 	min_weight = total_weight / 100;
2779 	if (!min_weight)
2780 		min_weight = 1;
2781 
2782 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2783 		/* Map the priorities to the traffic class */
2784 		mask = 0;
2785 		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2786 			if (ets->prio_tc[prio] == i)
2787 				mask |= (1 << prio);
2788 		}
2789 		mask &= 0xff;
2790 
2791 		netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2792 			  i, mask);
2793 		reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2794 		reg_val = XGMAC_IOREAD(pdata, reg);
2795 
2796 		reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2797 		reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2798 
2799 		XGMAC_IOWRITE(pdata, reg, reg_val);
2800 
2801 		/* Set the traffic class algorithm */
2802 		switch (ets->tc_tsa[i]) {
2803 		case IEEE_8021QAZ_TSA_STRICT:
2804 			netif_dbg(pdata, drv, pdata->netdev,
2805 				  "TC%u using SP\n", i);
2806 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2807 					       MTL_TSA_SP);
2808 			break;
2809 		case IEEE_8021QAZ_TSA_ETS:
2810 			weight = total_weight * ets->tc_tx_bw[i] / 100;
2811 			weight = clamp(weight, min_weight, total_weight);
2812 
2813 			netif_dbg(pdata, drv, pdata->netdev,
2814 				  "TC%u using DWRR (weight %u)\n", i, weight);
2815 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2816 					       MTL_TSA_ETS);
2817 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2818 					       weight);
2819 			break;
2820 		}
2821 	}
2822 
2823 	xgbe_config_tc(pdata);
2824 }
2825 
2826 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2827 {
2828 	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2829 		/* Just stop the Tx queues while Rx fifo is changed */
2830 		netif_tx_stop_all_queues(pdata->netdev);
2831 
2832 		/* Suspend Rx so that fifo's can be adjusted */
2833 		pdata->hw_if.disable_rx(pdata);
2834 	}
2835 
2836 	xgbe_config_rx_fifo_size(pdata);
2837 	xgbe_config_flow_control(pdata);
2838 
2839 	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2840 		/* Resume Rx */
2841 		pdata->hw_if.enable_rx(pdata);
2842 
2843 		/* Resume Tx queues */
2844 		netif_tx_start_all_queues(pdata->netdev);
2845 	}
2846 }
2847 
2848 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2849 {
2850 	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2851 
2852 	/* Filtering is done using perfect filtering and hash filtering */
2853 	if (pdata->hw_feat.hash_table_size) {
2854 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2855 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2856 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2857 	}
2858 }
2859 
2860 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2861 {
2862 	unsigned int val;
2863 
2864 	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2865 
2866 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2867 }
2868 
2869 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2870 {
2871 	xgbe_set_speed(pdata, pdata->phy_speed);
2872 }
2873 
2874 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2875 {
2876 	if (pdata->netdev->features & NETIF_F_RXCSUM)
2877 		xgbe_enable_rx_csum(pdata);
2878 	else
2879 		xgbe_disable_rx_csum(pdata);
2880 }
2881 
2882 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2883 {
2884 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2885 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2886 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2887 
2888 	/* Set the current VLAN Hash Table register value */
2889 	xgbe_update_vlan_hash_table(pdata);
2890 
2891 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2892 		xgbe_enable_rx_vlan_filtering(pdata);
2893 	else
2894 		xgbe_disable_rx_vlan_filtering(pdata);
2895 
2896 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2897 		xgbe_enable_rx_vlan_stripping(pdata);
2898 	else
2899 		xgbe_disable_rx_vlan_stripping(pdata);
2900 }
2901 
2902 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2903 {
2904 	bool read_hi;
2905 	u64 val;
2906 
2907 	if (pdata->vdata->mmc_64bit) {
2908 		switch (reg_lo) {
2909 		/* These registers are always 32 bit */
2910 		case MMC_RXRUNTERROR:
2911 		case MMC_RXJABBERERROR:
2912 		case MMC_RXUNDERSIZE_G:
2913 		case MMC_RXOVERSIZE_G:
2914 		case MMC_RXWATCHDOGERROR:
2915 			read_hi = false;
2916 			break;
2917 
2918 		default:
2919 			read_hi = true;
2920 		}
2921 	} else {
2922 		switch (reg_lo) {
2923 		/* These registers are always 64 bit */
2924 		case MMC_TXOCTETCOUNT_GB_LO:
2925 		case MMC_TXOCTETCOUNT_G_LO:
2926 		case MMC_RXOCTETCOUNT_GB_LO:
2927 		case MMC_RXOCTETCOUNT_G_LO:
2928 			read_hi = true;
2929 			break;
2930 
2931 		default:
2932 			read_hi = false;
2933 		}
2934 	}
2935 
2936 	val = XGMAC_IOREAD(pdata, reg_lo);
2937 
2938 	if (read_hi)
2939 		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2940 
2941 	return val;
2942 }
2943 
2944 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2945 {
2946 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2947 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2948 
2949 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2950 		stats->txoctetcount_gb +=
2951 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2952 
2953 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2954 		stats->txframecount_gb +=
2955 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2956 
2957 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2958 		stats->txbroadcastframes_g +=
2959 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2960 
2961 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2962 		stats->txmulticastframes_g +=
2963 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2964 
2965 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2966 		stats->tx64octets_gb +=
2967 			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2968 
2969 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2970 		stats->tx65to127octets_gb +=
2971 			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2972 
2973 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2974 		stats->tx128to255octets_gb +=
2975 			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2976 
2977 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2978 		stats->tx256to511octets_gb +=
2979 			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2980 
2981 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2982 		stats->tx512to1023octets_gb +=
2983 			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2984 
2985 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2986 		stats->tx1024tomaxoctets_gb +=
2987 			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2988 
2989 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2990 		stats->txunicastframes_gb +=
2991 			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2992 
2993 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2994 		stats->txmulticastframes_gb +=
2995 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2996 
2997 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2998 		stats->txbroadcastframes_g +=
2999 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3000 
3001 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
3002 		stats->txunderflowerror +=
3003 			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3004 
3005 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
3006 		stats->txoctetcount_g +=
3007 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3008 
3009 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
3010 		stats->txframecount_g +=
3011 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3012 
3013 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
3014 		stats->txpauseframes +=
3015 			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3016 
3017 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
3018 		stats->txvlanframes_g +=
3019 			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3020 }
3021 
3022 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
3023 {
3024 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3025 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
3026 
3027 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
3028 		stats->rxframecount_gb +=
3029 			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3030 
3031 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
3032 		stats->rxoctetcount_gb +=
3033 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3034 
3035 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
3036 		stats->rxoctetcount_g +=
3037 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3038 
3039 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
3040 		stats->rxbroadcastframes_g +=
3041 			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3042 
3043 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
3044 		stats->rxmulticastframes_g +=
3045 			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3046 
3047 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
3048 		stats->rxcrcerror +=
3049 			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3050 
3051 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
3052 		stats->rxrunterror +=
3053 			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3054 
3055 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
3056 		stats->rxjabbererror +=
3057 			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3058 
3059 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
3060 		stats->rxundersize_g +=
3061 			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3062 
3063 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
3064 		stats->rxoversize_g +=
3065 			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3066 
3067 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
3068 		stats->rx64octets_gb +=
3069 			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3070 
3071 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
3072 		stats->rx65to127octets_gb +=
3073 			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3074 
3075 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
3076 		stats->rx128to255octets_gb +=
3077 			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3078 
3079 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
3080 		stats->rx256to511octets_gb +=
3081 			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3082 
3083 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
3084 		stats->rx512to1023octets_gb +=
3085 			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3086 
3087 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
3088 		stats->rx1024tomaxoctets_gb +=
3089 			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3090 
3091 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
3092 		stats->rxunicastframes_g +=
3093 			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3094 
3095 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
3096 		stats->rxlengtherror +=
3097 			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3098 
3099 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
3100 		stats->rxoutofrangetype +=
3101 			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3102 
3103 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
3104 		stats->rxpauseframes +=
3105 			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3106 
3107 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
3108 		stats->rxfifooverflow +=
3109 			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3110 
3111 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
3112 		stats->rxvlanframes_gb +=
3113 			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3114 
3115 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
3116 		stats->rxwatchdogerror +=
3117 			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3118 }
3119 
3120 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
3121 {
3122 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3123 
3124 	/* Freeze counters */
3125 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
3126 
3127 	stats->txoctetcount_gb +=
3128 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3129 
3130 	stats->txframecount_gb +=
3131 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3132 
3133 	stats->txbroadcastframes_g +=
3134 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3135 
3136 	stats->txmulticastframes_g +=
3137 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3138 
3139 	stats->tx64octets_gb +=
3140 		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3141 
3142 	stats->tx65to127octets_gb +=
3143 		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3144 
3145 	stats->tx128to255octets_gb +=
3146 		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3147 
3148 	stats->tx256to511octets_gb +=
3149 		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3150 
3151 	stats->tx512to1023octets_gb +=
3152 		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3153 
3154 	stats->tx1024tomaxoctets_gb +=
3155 		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3156 
3157 	stats->txunicastframes_gb +=
3158 		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3159 
3160 	stats->txmulticastframes_gb +=
3161 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3162 
3163 	stats->txbroadcastframes_g +=
3164 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3165 
3166 	stats->txunderflowerror +=
3167 		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3168 
3169 	stats->txoctetcount_g +=
3170 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3171 
3172 	stats->txframecount_g +=
3173 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3174 
3175 	stats->txpauseframes +=
3176 		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3177 
3178 	stats->txvlanframes_g +=
3179 		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3180 
3181 	stats->rxframecount_gb +=
3182 		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3183 
3184 	stats->rxoctetcount_gb +=
3185 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3186 
3187 	stats->rxoctetcount_g +=
3188 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3189 
3190 	stats->rxbroadcastframes_g +=
3191 		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3192 
3193 	stats->rxmulticastframes_g +=
3194 		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3195 
3196 	stats->rxcrcerror +=
3197 		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3198 
3199 	stats->rxrunterror +=
3200 		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3201 
3202 	stats->rxjabbererror +=
3203 		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3204 
3205 	stats->rxundersize_g +=
3206 		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3207 
3208 	stats->rxoversize_g +=
3209 		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3210 
3211 	stats->rx64octets_gb +=
3212 		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3213 
3214 	stats->rx65to127octets_gb +=
3215 		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3216 
3217 	stats->rx128to255octets_gb +=
3218 		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3219 
3220 	stats->rx256to511octets_gb +=
3221 		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3222 
3223 	stats->rx512to1023octets_gb +=
3224 		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3225 
3226 	stats->rx1024tomaxoctets_gb +=
3227 		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3228 
3229 	stats->rxunicastframes_g +=
3230 		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3231 
3232 	stats->rxlengtherror +=
3233 		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3234 
3235 	stats->rxoutofrangetype +=
3236 		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3237 
3238 	stats->rxpauseframes +=
3239 		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3240 
3241 	stats->rxfifooverflow +=
3242 		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3243 
3244 	stats->rxvlanframes_gb +=
3245 		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3246 
3247 	stats->rxwatchdogerror +=
3248 		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3249 
3250 	/* Un-freeze counters */
3251 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3252 }
3253 
3254 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3255 {
3256 	/* Set counters to reset on read */
3257 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3258 
3259 	/* Reset the counters */
3260 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3261 }
3262 
3263 static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3264 				     unsigned int queue)
3265 {
3266 	unsigned int tx_status;
3267 	unsigned long tx_timeout;
3268 
3269 	/* The Tx engine cannot be stopped if it is actively processing
3270 	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
3271 	 * wait forever though...
3272 	 */
3273 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3274 	while (time_before(jiffies, tx_timeout)) {
3275 		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3276 		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3277 		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3278 			break;
3279 
3280 		usleep_range(500, 1000);
3281 	}
3282 
3283 	if (!time_before(jiffies, tx_timeout))
3284 		netdev_info(pdata->netdev,
3285 			    "timed out waiting for Tx queue %u to empty\n",
3286 			    queue);
3287 }
3288 
3289 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3290 				 unsigned int queue)
3291 {
3292 	unsigned int tx_dsr, tx_pos, tx_qidx;
3293 	unsigned int tx_status;
3294 	unsigned long tx_timeout;
3295 
3296 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3297 		return xgbe_txq_prepare_tx_stop(pdata, queue);
3298 
3299 	/* Calculate the status register to read and the position within */
3300 	if (queue < DMA_DSRX_FIRST_QUEUE) {
3301 		tx_dsr = DMA_DSR0;
3302 		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3303 	} else {
3304 		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3305 
3306 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3307 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3308 			 DMA_DSRX_TPS_START;
3309 	}
3310 
3311 	/* The Tx engine cannot be stopped if it is actively processing
3312 	 * descriptors. Wait for the Tx engine to enter the stopped or
3313 	 * suspended state.  Don't wait forever though...
3314 	 */
3315 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3316 	while (time_before(jiffies, tx_timeout)) {
3317 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3318 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3319 		if ((tx_status == DMA_TPS_STOPPED) ||
3320 		    (tx_status == DMA_TPS_SUSPENDED))
3321 			break;
3322 
3323 		usleep_range(500, 1000);
3324 	}
3325 
3326 	if (!time_before(jiffies, tx_timeout))
3327 		netdev_info(pdata->netdev,
3328 			    "timed out waiting for Tx DMA channel %u to stop\n",
3329 			    queue);
3330 }
3331 
3332 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3333 {
3334 	unsigned int i;
3335 
3336 	/* Enable each Tx DMA channel */
3337 	for (i = 0; i < pdata->channel_count; i++) {
3338 		if (!pdata->channel[i]->tx_ring)
3339 			break;
3340 
3341 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3342 	}
3343 
3344 	/* Enable each Tx queue */
3345 	for (i = 0; i < pdata->tx_q_count; i++)
3346 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3347 				       MTL_Q_ENABLED);
3348 
3349 	/* Enable MAC Tx */
3350 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3351 }
3352 
3353 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3354 {
3355 	unsigned int i;
3356 
3357 	/* Prepare for Tx DMA channel stop */
3358 	for (i = 0; i < pdata->tx_q_count; i++)
3359 		xgbe_prepare_tx_stop(pdata, i);
3360 
3361 	/* Disable MAC Tx */
3362 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3363 
3364 	/* Disable each Tx queue */
3365 	for (i = 0; i < pdata->tx_q_count; i++)
3366 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3367 
3368 	/* Disable each Tx DMA channel */
3369 	for (i = 0; i < pdata->channel_count; i++) {
3370 		if (!pdata->channel[i]->tx_ring)
3371 			break;
3372 
3373 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3374 	}
3375 }
3376 
3377 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3378 				 unsigned int queue)
3379 {
3380 	unsigned int rx_status;
3381 	unsigned long rx_timeout;
3382 
3383 	/* The Rx engine cannot be stopped if it is actively processing
3384 	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
3385 	 * wait forever though...
3386 	 */
3387 	rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3388 	while (time_before(jiffies, rx_timeout)) {
3389 		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3390 		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3391 		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3392 			break;
3393 
3394 		usleep_range(500, 1000);
3395 	}
3396 
3397 	if (!time_before(jiffies, rx_timeout))
3398 		netdev_info(pdata->netdev,
3399 			    "timed out waiting for Rx queue %u to empty\n",
3400 			    queue);
3401 }
3402 
3403 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3404 {
3405 	unsigned int reg_val, i;
3406 
3407 	/* Enable each Rx DMA channel */
3408 	for (i = 0; i < pdata->channel_count; i++) {
3409 		if (!pdata->channel[i]->rx_ring)
3410 			break;
3411 
3412 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3413 	}
3414 
3415 	/* Enable each Rx queue */
3416 	reg_val = 0;
3417 	for (i = 0; i < pdata->rx_q_count; i++)
3418 		reg_val |= (0x02 << (i << 1));
3419 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3420 
3421 	/* Enable MAC Rx */
3422 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3423 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3424 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3425 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3426 }
3427 
3428 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3429 {
3430 	unsigned int i;
3431 
3432 	/* Disable MAC Rx */
3433 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3434 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3435 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3436 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3437 
3438 	/* Prepare for Rx DMA channel stop */
3439 	for (i = 0; i < pdata->rx_q_count; i++)
3440 		xgbe_prepare_rx_stop(pdata, i);
3441 
3442 	/* Disable each Rx queue */
3443 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3444 
3445 	/* Disable each Rx DMA channel */
3446 	for (i = 0; i < pdata->channel_count; i++) {
3447 		if (!pdata->channel[i]->rx_ring)
3448 			break;
3449 
3450 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3451 	}
3452 }
3453 
3454 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3455 {
3456 	unsigned int i;
3457 
3458 	/* Enable each Tx DMA channel */
3459 	for (i = 0; i < pdata->channel_count; i++) {
3460 		if (!pdata->channel[i]->tx_ring)
3461 			break;
3462 
3463 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3464 	}
3465 
3466 	/* Enable MAC Tx */
3467 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3468 }
3469 
3470 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3471 {
3472 	unsigned int i;
3473 
3474 	/* Prepare for Tx DMA channel stop */
3475 	for (i = 0; i < pdata->tx_q_count; i++)
3476 		xgbe_prepare_tx_stop(pdata, i);
3477 
3478 	/* Disable MAC Tx */
3479 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3480 
3481 	/* Disable each Tx DMA channel */
3482 	for (i = 0; i < pdata->channel_count; i++) {
3483 		if (!pdata->channel[i]->tx_ring)
3484 			break;
3485 
3486 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3487 	}
3488 }
3489 
3490 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3491 {
3492 	unsigned int i;
3493 
3494 	/* Enable each Rx DMA channel */
3495 	for (i = 0; i < pdata->channel_count; i++) {
3496 		if (!pdata->channel[i]->rx_ring)
3497 			break;
3498 
3499 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3500 	}
3501 }
3502 
3503 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3504 {
3505 	unsigned int i;
3506 
3507 	/* Disable each Rx DMA channel */
3508 	for (i = 0; i < pdata->channel_count; i++) {
3509 		if (!pdata->channel[i]->rx_ring)
3510 			break;
3511 
3512 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3513 	}
3514 }
3515 
3516 static int xgbe_init(struct xgbe_prv_data *pdata)
3517 {
3518 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
3519 	int ret;
3520 
3521 	DBGPR("-->xgbe_init\n");
3522 
3523 	/* Flush Tx queues */
3524 	ret = xgbe_flush_tx_queues(pdata);
3525 	if (ret) {
3526 		netdev_err(pdata->netdev, "error flushing TX queues\n");
3527 		return ret;
3528 	}
3529 
3530 	/*
3531 	 * Initialize DMA related features
3532 	 */
3533 	xgbe_config_dma_bus(pdata);
3534 	xgbe_config_dma_cache(pdata);
3535 	xgbe_config_osp_mode(pdata);
3536 	xgbe_config_pbl_val(pdata);
3537 	xgbe_config_rx_coalesce(pdata);
3538 	xgbe_config_tx_coalesce(pdata);
3539 	xgbe_config_rx_buffer_size(pdata);
3540 	xgbe_config_tso_mode(pdata);
3541 	xgbe_config_sph_mode(pdata);
3542 	xgbe_config_rss(pdata);
3543 	desc_if->wrapper_tx_desc_init(pdata);
3544 	desc_if->wrapper_rx_desc_init(pdata);
3545 	xgbe_enable_dma_interrupts(pdata);
3546 
3547 	/*
3548 	 * Initialize MTL related features
3549 	 */
3550 	xgbe_config_mtl_mode(pdata);
3551 	xgbe_config_queue_mapping(pdata);
3552 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3553 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3554 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3555 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3556 	xgbe_config_tx_fifo_size(pdata);
3557 	xgbe_config_rx_fifo_size(pdata);
3558 	/*TODO: Error Packet and undersized good Packet forwarding enable
3559 		(FEP and FUP)
3560 	 */
3561 	xgbe_config_dcb_tc(pdata);
3562 	xgbe_enable_mtl_interrupts(pdata);
3563 
3564 	/*
3565 	 * Initialize MAC related features
3566 	 */
3567 	xgbe_config_mac_address(pdata);
3568 	xgbe_config_rx_mode(pdata);
3569 	xgbe_config_jumbo_enable(pdata);
3570 	xgbe_config_flow_control(pdata);
3571 	xgbe_config_mac_speed(pdata);
3572 	xgbe_config_checksum_offload(pdata);
3573 	xgbe_config_vlan_support(pdata);
3574 	xgbe_config_mmc(pdata);
3575 	xgbe_enable_mac_interrupts(pdata);
3576 
3577 	/*
3578 	 * Initialize ECC related features
3579 	 */
3580 	xgbe_enable_ecc_interrupts(pdata);
3581 
3582 	DBGPR("<--xgbe_init\n");
3583 
3584 	return 0;
3585 }
3586 
3587 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3588 {
3589 	DBGPR("-->xgbe_init_function_ptrs\n");
3590 
3591 	hw_if->tx_complete = xgbe_tx_complete;
3592 
3593 	hw_if->set_mac_address = xgbe_set_mac_address;
3594 	hw_if->config_rx_mode = xgbe_config_rx_mode;
3595 
3596 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3597 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3598 
3599 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3600 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3601 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3602 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3603 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3604 
3605 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3606 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3607 
3608 	hw_if->set_speed = xgbe_set_speed;
3609 
3610 	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3611 	hw_if->read_ext_mii_regs_c22 = xgbe_read_ext_mii_regs_c22;
3612 	hw_if->write_ext_mii_regs_c22 = xgbe_write_ext_mii_regs_c22;
3613 	hw_if->read_ext_mii_regs_c45 = xgbe_read_ext_mii_regs_c45;
3614 	hw_if->write_ext_mii_regs_c45 = xgbe_write_ext_mii_regs_c45;
3615 
3616 	hw_if->set_gpio = xgbe_set_gpio;
3617 	hw_if->clr_gpio = xgbe_clr_gpio;
3618 
3619 	hw_if->enable_tx = xgbe_enable_tx;
3620 	hw_if->disable_tx = xgbe_disable_tx;
3621 	hw_if->enable_rx = xgbe_enable_rx;
3622 	hw_if->disable_rx = xgbe_disable_rx;
3623 
3624 	hw_if->powerup_tx = xgbe_powerup_tx;
3625 	hw_if->powerdown_tx = xgbe_powerdown_tx;
3626 	hw_if->powerup_rx = xgbe_powerup_rx;
3627 	hw_if->powerdown_rx = xgbe_powerdown_rx;
3628 
3629 	hw_if->dev_xmit = xgbe_dev_xmit;
3630 	hw_if->dev_read = xgbe_dev_read;
3631 	hw_if->enable_int = xgbe_enable_int;
3632 	hw_if->disable_int = xgbe_disable_int;
3633 	hw_if->init = xgbe_init;
3634 	hw_if->exit = xgbe_exit;
3635 
3636 	/* Descriptor related Sequences have to be initialized here */
3637 	hw_if->tx_desc_init = xgbe_tx_desc_init;
3638 	hw_if->rx_desc_init = xgbe_rx_desc_init;
3639 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3640 	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3641 	hw_if->is_last_desc = xgbe_is_last_desc;
3642 	hw_if->is_context_desc = xgbe_is_context_desc;
3643 	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3644 
3645 	/* For FLOW ctrl */
3646 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3647 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3648 
3649 	/* For RX coalescing */
3650 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3651 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3652 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3653 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3654 
3655 	/* For RX and TX threshold config */
3656 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3657 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3658 
3659 	/* For RX and TX Store and Forward Mode config */
3660 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3661 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3662 
3663 	/* For TX DMA Operating on Second Frame config */
3664 	hw_if->config_osp_mode = xgbe_config_osp_mode;
3665 
3666 	/* For MMC statistics support */
3667 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3668 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3669 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3670 
3671 	/* For PTP config */
3672 	hw_if->config_tstamp = xgbe_config_tstamp;
3673 	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3674 	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3675 	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3676 	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3677 
3678 	/* For Data Center Bridging config */
3679 	hw_if->config_tc = xgbe_config_tc;
3680 	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3681 	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3682 
3683 	/* For Receive Side Scaling */
3684 	hw_if->enable_rss = xgbe_enable_rss;
3685 	hw_if->disable_rss = xgbe_disable_rss;
3686 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3687 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3688 
3689 	/* For ECC */
3690 	hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3691 	hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3692 
3693 	/* For VXLAN */
3694 	hw_if->enable_vxlan = xgbe_enable_vxlan;
3695 	hw_if->disable_vxlan = xgbe_disable_vxlan;
3696 	hw_if->set_vxlan_id = xgbe_set_vxlan_id;
3697 
3698 	DBGPR("<--xgbe_init_function_ptrs\n");
3699 }
3700