1 /* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */ 2 /* 3 Written/copyright 1993-1998 by Donald Becker. 4 5 Copyright 1993 United States Government as represented by the 6 Director, National Security Agency. 7 This software may be used and distributed according to the terms 8 of the GNU General Public License, incorporated herein by reference. 9 10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work 11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards. 12 13 The author may be reached as becker@scyld.com, or C/O 14 Scyld Computing Corporation 15 410 Severn Ave., Suite 210 16 Annapolis MD 21403 17 18 Andrey V. Savochkin: 19 - alignment problem with 1.3.* kernel and some minor changes. 20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de): 21 - added support for Linux/Alpha, but removed most of it, because 22 it worked only for the PCI chip. 23 - added hook for the 32bit lance driver 24 - added PCnetPCI II (79C970A) to chip table 25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au): 26 - hopefully fix above so Linux/Alpha can use ISA cards too. 27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb 28 v1.12 10/27/97 Module support -djb 29 v1.14 2/3/98 Module support modified, made PCI support optional -djb 30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed 31 before unregister_netdev() which caused NULL pointer 32 reference later in the chain (in rtnetlink_fill_ifinfo()) 33 -- Mika Kuoppala <miku@iki.fi> 34 35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from 36 the 2.1 version of the old driver - Alan Cox 37 38 Get rid of check_region, check kmalloc return in lance_probe1 39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001 40 41 Reworked detection, added support for Racal InterLan EtherBlaster cards 42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004 43 */ 44 45 static const char version[] = "lance.c:v1.16 2006/11/09 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n"; 46 47 #include <linux/module.h> 48 #include <linux/kernel.h> 49 #include <linux/string.h> 50 #include <linux/delay.h> 51 #include <linux/errno.h> 52 #include <linux/ioport.h> 53 #include <linux/slab.h> 54 #include <linux/interrupt.h> 55 #include <linux/pci.h> 56 #include <linux/init.h> 57 #include <linux/netdevice.h> 58 #include <linux/etherdevice.h> 59 #include <linux/skbuff.h> 60 #include <linux/mm.h> 61 #include <linux/bitops.h> 62 63 #include <asm/io.h> 64 #include <asm/dma.h> 65 66 static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0}; 67 static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options); 68 static int __init do_lance_probe(struct net_device *dev); 69 70 71 static struct card { 72 char id_offset14; 73 char id_offset15; 74 } cards[] = { 75 { //"normal" 76 .id_offset14 = 0x57, 77 .id_offset15 = 0x57, 78 }, 79 { //NI6510EB 80 .id_offset14 = 0x52, 81 .id_offset15 = 0x44, 82 }, 83 { //Racal InterLan EtherBlaster 84 .id_offset14 = 0x52, 85 .id_offset15 = 0x49, 86 }, 87 }; 88 #define NUM_CARDS 3 89 90 #ifdef LANCE_DEBUG 91 static int lance_debug = LANCE_DEBUG; 92 #else 93 static int lance_debug = 1; 94 #endif 95 96 /* 97 Theory of Operation 98 99 I. Board Compatibility 100 101 This device driver is designed for the AMD 79C960, the "PCnet-ISA 102 single-chip ethernet controller for ISA". This chip is used in a wide 103 variety of boards from vendors such as Allied Telesis, HP, Kingston, 104 and Boca. This driver is also intended to work with older AMD 7990 105 designs, such as the NE1500 and NE2100, and newer 79C961. For convenience, 106 I use the name LANCE to refer to all of the AMD chips, even though it properly 107 refers only to the original 7990. 108 109 II. Board-specific settings 110 111 The driver is designed to work the boards that use the faster 112 bus-master mode, rather than in shared memory mode. (Only older designs 113 have on-board buffer memory needed to support the slower shared memory mode.) 114 115 Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA 116 channel. This driver probes the likely base addresses: 117 {0x300, 0x320, 0x340, 0x360}. 118 After the board is found it generates a DMA-timeout interrupt and uses 119 autoIRQ to find the IRQ line. The DMA channel can be set with the low bits 120 of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is 121 probed for by enabling each free DMA channel in turn and checking if 122 initialization succeeds. 123 124 The HP-J2405A board is an exception: with this board it is easy to read the 125 EEPROM-set values for the base, IRQ, and DMA. (Of course you must already 126 _know_ the base address -- that field is for writing the EEPROM.) 127 128 III. Driver operation 129 130 IIIa. Ring buffers 131 The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes 132 the base and length of the data buffer, along with status bits. The length 133 of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of 134 the buffer length (rather than being directly the buffer length) for 135 implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to 136 ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries 137 needlessly uses extra space and reduces the chance that an upper layer will 138 be able to reorder queued Tx packets based on priority. Decreasing the number 139 of entries makes it more difficult to achieve back-to-back packet transmission 140 and increases the chance that Rx ring will overflow. (Consider the worst case 141 of receiving back-to-back minimum-sized packets.) 142 143 The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver 144 statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to 145 avoid the administrative overhead. For the Rx side this avoids dynamically 146 allocating full-sized buffers "just in case", at the expense of a 147 memory-to-memory data copy for each packet received. For most systems this 148 is a good tradeoff: the Rx buffer will always be in low memory, the copy 149 is inexpensive, and it primes the cache for later packet processing. For Tx 150 the buffers are only used when needed as low-memory bounce buffers. 151 152 IIIB. 16M memory limitations. 153 For the ISA bus master mode all structures used directly by the LANCE, 154 the initialization block, Rx and Tx rings, and data buffers, must be 155 accessible from the ISA bus, i.e. in the lower 16M of real memory. 156 This is a problem for current Linux kernels on >16M machines. The network 157 devices are initialized after memory initialization, and the kernel doles out 158 memory from the top of memory downward. The current solution is to have a 159 special network initialization routine that's called before memory 160 initialization; this will eventually be generalized for all network devices. 161 As mentioned before, low-memory "bounce-buffers" are used when needed. 162 163 IIIC. Synchronization 164 The driver runs as two independent, single-threaded flows of control. One 165 is the send-packet routine, which enforces single-threaded use by the 166 dev->tbusy flag. The other thread is the interrupt handler, which is single 167 threaded by the hardware and other software. 168 169 The send packet thread has partial control over the Tx ring and 'dev->tbusy' 170 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 171 queue slot is empty, it clears the tbusy flag when finished otherwise it sets 172 the 'lp->tx_full' flag. 173 174 The interrupt handler has exclusive control over the Rx ring and records stats 175 from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so 176 we can't avoid the interrupt overhead by having the Tx routine reap the Tx 177 stats.) After reaping the stats, it marks the queue entry as empty by setting 178 the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the 179 tx_full and tbusy flags. 180 181 */ 182 183 /* Set the number of Tx and Rx buffers, using Log_2(# buffers). 184 Reasonable default values are 16 Tx buffers, and 16 Rx buffers. 185 That translates to 4 and 4 (16 == 2^^4). 186 This is a compile-time option for efficiency. 187 */ 188 #ifndef LANCE_LOG_TX_BUFFERS 189 #define LANCE_LOG_TX_BUFFERS 4 190 #define LANCE_LOG_RX_BUFFERS 4 191 #endif 192 193 #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS)) 194 #define TX_RING_MOD_MASK (TX_RING_SIZE - 1) 195 #define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29) 196 197 #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS)) 198 #define RX_RING_MOD_MASK (RX_RING_SIZE - 1) 199 #define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29) 200 201 #define PKT_BUF_SZ 1544 202 203 /* Offsets from base I/O address. */ 204 #define LANCE_DATA 0x10 205 #define LANCE_ADDR 0x12 206 #define LANCE_RESET 0x14 207 #define LANCE_BUS_IF 0x16 208 #define LANCE_TOTAL_SIZE 0x18 209 210 #define TX_TIMEOUT (HZ/5) 211 212 /* The LANCE Rx and Tx ring descriptors. */ 213 struct lance_rx_head { 214 s32 base; 215 s16 buf_length; /* This length is 2s complement (negative)! */ 216 s16 msg_length; /* This length is "normal". */ 217 }; 218 219 struct lance_tx_head { 220 s32 base; 221 s16 length; /* Length is 2s complement (negative)! */ 222 s16 misc; 223 }; 224 225 /* The LANCE initialization block, described in databook. */ 226 struct lance_init_block { 227 u16 mode; /* Pre-set mode (reg. 15) */ 228 u8 phys_addr[6]; /* Physical ethernet address */ 229 u32 filter[2]; /* Multicast filter (unused). */ 230 /* Receive and transmit ring base, along with extra bits. */ 231 u32 rx_ring; /* Tx and Rx ring base pointers */ 232 u32 tx_ring; 233 }; 234 235 struct lance_private { 236 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */ 237 struct lance_rx_head rx_ring[RX_RING_SIZE]; 238 struct lance_tx_head tx_ring[TX_RING_SIZE]; 239 struct lance_init_block init_block; 240 const char *name; 241 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 242 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 243 /* The addresses of receive-in-place skbuffs. */ 244 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 245 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */ 246 /* Tx low-memory "bounce buffer" address. */ 247 char (*tx_bounce_buffs)[PKT_BUF_SZ]; 248 int cur_rx, cur_tx; /* The next free ring entry */ 249 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ 250 int dma; 251 unsigned char chip_version; /* See lance_chip_type. */ 252 spinlock_t devlock; 253 }; 254 255 #define LANCE_MUST_PAD 0x00000001 256 #define LANCE_ENABLE_AUTOSELECT 0x00000002 257 #define LANCE_MUST_REINIT_RING 0x00000004 258 #define LANCE_MUST_UNRESET 0x00000008 259 #define LANCE_HAS_MISSED_FRAME 0x00000010 260 261 /* A mapping from the chip ID number to the part number and features. 262 These are from the datasheets -- in real life the '970 version 263 reportedly has the same ID as the '965. */ 264 static struct lance_chip_type { 265 int id_number; 266 const char *name; 267 int flags; 268 } chip_table[] = { 269 {0x0000, "LANCE 7990", /* Ancient lance chip. */ 270 LANCE_MUST_PAD + LANCE_MUST_UNRESET}, 271 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */ 272 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 273 LANCE_HAS_MISSED_FRAME}, 274 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */ 275 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 276 LANCE_HAS_MISSED_FRAME}, 277 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */ 278 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 279 LANCE_HAS_MISSED_FRAME}, 280 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call 281 it the PCnet32. */ 282 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */ 283 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 284 LANCE_HAS_MISSED_FRAME}, 285 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */ 286 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 287 LANCE_HAS_MISSED_FRAME}, 288 {0x0, "PCnet (unknown)", 289 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 290 LANCE_HAS_MISSED_FRAME}, 291 }; 292 293 enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6}; 294 295 296 /* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers. 297 Assume yes until we know the memory size. */ 298 static unsigned char lance_need_isa_bounce_buffers = 1; 299 300 static int lance_open(struct net_device *dev); 301 static void lance_init_ring(struct net_device *dev, gfp_t mode); 302 static netdev_tx_t lance_start_xmit(struct sk_buff *skb, 303 struct net_device *dev); 304 static int lance_rx(struct net_device *dev); 305 static irqreturn_t lance_interrupt(int irq, void *dev_id); 306 static int lance_close(struct net_device *dev); 307 static struct net_device_stats *lance_get_stats(struct net_device *dev); 308 static void set_multicast_list(struct net_device *dev); 309 static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue); 310 311 312 313 #ifdef MODULE 314 #define MAX_CARDS 8 /* Max number of interfaces (cards) per module */ 315 316 static struct net_device *dev_lance[MAX_CARDS]; 317 static int io[MAX_CARDS]; 318 static int dma[MAX_CARDS]; 319 static int irq[MAX_CARDS]; 320 321 module_param_hw_array(io, int, ioport, NULL, 0); 322 module_param_hw_array(dma, int, dma, NULL, 0); 323 module_param_hw_array(irq, int, irq, NULL, 0); 324 module_param(lance_debug, int, 0); 325 MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required"); 326 MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)"); 327 MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)"); 328 MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)"); 329 330 static int __init lance_init_module(void) 331 { 332 struct net_device *dev; 333 int this_dev, found = 0; 334 335 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) { 336 if (io[this_dev] == 0) { 337 if (this_dev != 0) /* only complain once */ 338 break; 339 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n"); 340 return -EPERM; 341 } 342 dev = alloc_etherdev(0); 343 if (!dev) 344 break; 345 dev->irq = irq[this_dev]; 346 dev->base_addr = io[this_dev]; 347 dev->dma = dma[this_dev]; 348 if (do_lance_probe(dev) == 0) { 349 dev_lance[found++] = dev; 350 continue; 351 } 352 free_netdev(dev); 353 break; 354 } 355 if (found != 0) 356 return 0; 357 return -ENXIO; 358 } 359 module_init(lance_init_module); 360 361 static void cleanup_card(struct net_device *dev) 362 { 363 struct lance_private *lp = dev->ml_priv; 364 if (dev->dma != 4) 365 free_dma(dev->dma); 366 release_region(dev->base_addr, LANCE_TOTAL_SIZE); 367 kfree(lp->tx_bounce_buffs); 368 kfree((void*)lp->rx_buffs); 369 kfree(lp); 370 } 371 372 static void __exit lance_cleanup_module(void) 373 { 374 int this_dev; 375 376 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) { 377 struct net_device *dev = dev_lance[this_dev]; 378 if (dev) { 379 unregister_netdev(dev); 380 cleanup_card(dev); 381 free_netdev(dev); 382 } 383 } 384 } 385 module_exit(lance_cleanup_module); 386 #endif /* MODULE */ 387 MODULE_LICENSE("GPL"); 388 389 390 /* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other 391 board probes now that kmalloc() can allocate ISA DMA-able regions. 392 This also allows the LANCE driver to be used as a module. 393 */ 394 static int __init do_lance_probe(struct net_device *dev) 395 { 396 unsigned int *port; 397 int result; 398 399 if (high_memory <= phys_to_virt(16*1024*1024)) 400 lance_need_isa_bounce_buffers = 0; 401 402 for (port = lance_portlist; *port; port++) { 403 int ioaddr = *port; 404 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE, 405 "lance-probe"); 406 407 if (r) { 408 /* Detect the card with minimal I/O reads */ 409 char offset14 = inb(ioaddr + 14); 410 int card; 411 for (card = 0; card < NUM_CARDS; ++card) 412 if (cards[card].id_offset14 == offset14) 413 break; 414 if (card < NUM_CARDS) {/*yes, the first byte matches*/ 415 char offset15 = inb(ioaddr + 15); 416 for (card = 0; card < NUM_CARDS; ++card) 417 if ((cards[card].id_offset14 == offset14) && 418 (cards[card].id_offset15 == offset15)) 419 break; 420 } 421 if (card < NUM_CARDS) { /*Signature OK*/ 422 result = lance_probe1(dev, ioaddr, 0, 0); 423 if (!result) { 424 struct lance_private *lp = dev->ml_priv; 425 int ver = lp->chip_version; 426 427 r->name = chip_table[ver].name; 428 return 0; 429 } 430 } 431 release_region(ioaddr, LANCE_TOTAL_SIZE); 432 } 433 } 434 return -ENODEV; 435 } 436 437 #ifndef MODULE 438 struct net_device * __init lance_probe(int unit) 439 { 440 struct net_device *dev = alloc_etherdev(0); 441 int err; 442 443 if (!dev) 444 return ERR_PTR(-ENODEV); 445 446 sprintf(dev->name, "eth%d", unit); 447 netdev_boot_setup_check(dev); 448 449 err = do_lance_probe(dev); 450 if (err) 451 goto out; 452 return dev; 453 out: 454 free_netdev(dev); 455 return ERR_PTR(err); 456 } 457 #endif 458 459 static const struct net_device_ops lance_netdev_ops = { 460 .ndo_open = lance_open, 461 .ndo_start_xmit = lance_start_xmit, 462 .ndo_stop = lance_close, 463 .ndo_get_stats = lance_get_stats, 464 .ndo_set_rx_mode = set_multicast_list, 465 .ndo_tx_timeout = lance_tx_timeout, 466 .ndo_set_mac_address = eth_mac_addr, 467 .ndo_validate_addr = eth_validate_addr, 468 }; 469 470 static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options) 471 { 472 struct lance_private *lp; 473 unsigned long dma_channels; /* Mark spuriously-busy DMA channels */ 474 int i, reset_val, lance_version; 475 const char *chipname; 476 /* Flags for specific chips or boards. */ 477 unsigned char hpJ2405A = 0; /* HP ISA adaptor */ 478 int hp_builtin = 0; /* HP on-board ethernet. */ 479 static int did_version; /* Already printed version info. */ 480 unsigned long flags; 481 int err = -ENOMEM; 482 void __iomem *bios; 483 u8 addr[ETH_ALEN]; 484 485 /* First we look for special cases. 486 Check for HP's on-board ethernet by looking for 'HP' in the BIOS. 487 There are two HP versions, check the BIOS for the configuration port. 488 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com. 489 */ 490 bios = ioremap(0xf00f0, 0x14); 491 if (!bios) 492 return -ENOMEM; 493 if (readw(bios + 0x12) == 0x5048) { 494 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360}; 495 int hp_port = (readl(bios + 1) & 1) ? 0x499 : 0x99; 496 /* We can have boards other than the built-in! Verify this is on-board. */ 497 if ((inb(hp_port) & 0xc0) == 0x80 && 498 ioaddr_table[inb(hp_port) & 3] == ioaddr) 499 hp_builtin = hp_port; 500 } 501 iounmap(bios); 502 /* We also recognize the HP Vectra on-board here, but check below. */ 503 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00 && 504 inb(ioaddr+2) == 0x09); 505 506 /* Reset the LANCE. */ 507 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */ 508 509 /* The Un-Reset needed is only needed for the real NE2100, and will 510 confuse the HP board. */ 511 if (!hpJ2405A) 512 outw(reset_val, ioaddr+LANCE_RESET); 513 514 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */ 515 if (inw(ioaddr+LANCE_DATA) != 0x0004) 516 return -ENODEV; 517 518 /* Get the version of the chip. */ 519 outw(88, ioaddr+LANCE_ADDR); 520 if (inw(ioaddr+LANCE_ADDR) != 88) { 521 lance_version = 0; 522 } else { /* Good, it's a newer chip. */ 523 int chip_version = inw(ioaddr+LANCE_DATA); 524 outw(89, ioaddr+LANCE_ADDR); 525 chip_version |= inw(ioaddr+LANCE_DATA) << 16; 526 if (lance_debug > 2) 527 printk(" LANCE chip version is %#x.\n", chip_version); 528 if ((chip_version & 0xfff) != 0x003) 529 return -ENODEV; 530 chip_version = (chip_version >> 12) & 0xffff; 531 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) { 532 if (chip_table[lance_version].id_number == chip_version) 533 break; 534 } 535 } 536 537 /* We can't allocate private data from alloc_etherdev() because it must 538 a ISA DMA-able region. */ 539 chipname = chip_table[lance_version].name; 540 printk("%s: %s at %#3x, ", dev->name, chipname, ioaddr); 541 542 /* There is a 16 byte station address PROM at the base address. 543 The first six bytes are the station address. */ 544 for (i = 0; i < 6; i++) 545 addr[i] = inb(ioaddr + i); 546 eth_hw_addr_set(dev, addr); 547 printk("%pM", dev->dev_addr); 548 549 dev->base_addr = ioaddr; 550 /* Make certain the data structures used by the LANCE are aligned and DMAble. */ 551 552 lp = kzalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL); 553 if (!lp) 554 return -ENOMEM; 555 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp); 556 dev->ml_priv = lp; 557 lp->name = chipname; 558 lp->rx_buffs = (unsigned long)kmalloc_array(RX_RING_SIZE, PKT_BUF_SZ, 559 GFP_DMA | GFP_KERNEL); 560 if (!lp->rx_buffs) 561 goto out_lp; 562 if (lance_need_isa_bounce_buffers) { 563 lp->tx_bounce_buffs = kmalloc_array(TX_RING_SIZE, PKT_BUF_SZ, 564 GFP_DMA | GFP_KERNEL); 565 if (!lp->tx_bounce_buffs) 566 goto out_rx; 567 } else 568 lp->tx_bounce_buffs = NULL; 569 570 lp->chip_version = lance_version; 571 spin_lock_init(&lp->devlock); 572 573 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */ 574 for (i = 0; i < 6; i++) 575 lp->init_block.phys_addr[i] = dev->dev_addr[i]; 576 lp->init_block.filter[0] = 0x00000000; 577 lp->init_block.filter[1] = 0x00000000; 578 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS; 579 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS; 580 581 outw(0x0001, ioaddr+LANCE_ADDR); 582 inw(ioaddr+LANCE_ADDR); 583 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA); 584 outw(0x0002, ioaddr+LANCE_ADDR); 585 inw(ioaddr+LANCE_ADDR); 586 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA); 587 outw(0x0000, ioaddr+LANCE_ADDR); 588 inw(ioaddr+LANCE_ADDR); 589 590 if (irq) { /* Set iff PCI card. */ 591 dev->dma = 4; /* Native bus-master, no DMA channel needed. */ 592 dev->irq = irq; 593 } else if (hp_builtin) { 594 static const char dma_tbl[4] = {3, 5, 6, 0}; 595 static const char irq_tbl[4] = {3, 4, 5, 9}; 596 unsigned char port_val = inb(hp_builtin); 597 dev->dma = dma_tbl[(port_val >> 4) & 3]; 598 dev->irq = irq_tbl[(port_val >> 2) & 3]; 599 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma); 600 } else if (hpJ2405A) { 601 static const char dma_tbl[4] = {3, 5, 6, 7}; 602 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15}; 603 short reset_val = inw(ioaddr+LANCE_RESET); 604 dev->dma = dma_tbl[(reset_val >> 2) & 3]; 605 dev->irq = irq_tbl[(reset_val >> 4) & 7]; 606 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma); 607 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */ 608 short bus_info; 609 outw(8, ioaddr+LANCE_ADDR); 610 bus_info = inw(ioaddr+LANCE_BUS_IF); 611 dev->dma = bus_info & 0x07; 612 dev->irq = (bus_info >> 4) & 0x0F; 613 } else { 614 /* The DMA channel may be passed in PARAM1. */ 615 if (dev->mem_start & 0x07) 616 dev->dma = dev->mem_start & 0x07; 617 } 618 619 if (dev->dma == 0) { 620 /* Read the DMA channel status register, so that we can avoid 621 stuck DMA channels in the DMA detection below. */ 622 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) | 623 (inb(DMA2_STAT_REG) & 0xf0); 624 } 625 err = -ENODEV; 626 if (dev->irq >= 2) 627 printk(" assigned IRQ %d", dev->irq); 628 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */ 629 unsigned long irq_mask; 630 631 /* To auto-IRQ we enable the initialization-done and DMA error 632 interrupts. For ISA boards we get a DMA error, but VLB and PCI 633 boards will work. */ 634 irq_mask = probe_irq_on(); 635 636 /* Trigger an initialization just for the interrupt. */ 637 outw(0x0041, ioaddr+LANCE_DATA); 638 639 mdelay(20); 640 dev->irq = probe_irq_off(irq_mask); 641 if (dev->irq) 642 printk(", probed IRQ %d", dev->irq); 643 else { 644 printk(", failed to detect IRQ line.\n"); 645 goto out_tx; 646 } 647 648 /* Check for the initialization done bit, 0x0100, which means 649 that we don't need a DMA channel. */ 650 if (inw(ioaddr+LANCE_DATA) & 0x0100) 651 dev->dma = 4; 652 } 653 654 if (dev->dma == 4) { 655 printk(", no DMA needed.\n"); 656 } else if (dev->dma) { 657 if (request_dma(dev->dma, chipname)) { 658 printk("DMA %d allocation failed.\n", dev->dma); 659 goto out_tx; 660 } else 661 printk(", assigned DMA %d.\n", dev->dma); 662 } else { /* OK, we have to auto-DMA. */ 663 for (i = 0; i < 4; i++) { 664 static const char dmas[] = { 5, 6, 7, 3 }; 665 int dma = dmas[i]; 666 int boguscnt; 667 668 /* Don't enable a permanently busy DMA channel, or the machine 669 will hang. */ 670 if (test_bit(dma, &dma_channels)) 671 continue; 672 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */ 673 if (request_dma(dma, chipname)) 674 continue; 675 676 flags=claim_dma_lock(); 677 set_dma_mode(dma, DMA_MODE_CASCADE); 678 enable_dma(dma); 679 release_dma_lock(flags); 680 681 /* Trigger an initialization. */ 682 outw(0x0001, ioaddr+LANCE_DATA); 683 for (boguscnt = 100; boguscnt > 0; --boguscnt) 684 if (inw(ioaddr+LANCE_DATA) & 0x0900) 685 break; 686 if (inw(ioaddr+LANCE_DATA) & 0x0100) { 687 dev->dma = dma; 688 printk(", DMA %d.\n", dev->dma); 689 break; 690 } else { 691 flags=claim_dma_lock(); 692 disable_dma(dma); 693 release_dma_lock(flags); 694 free_dma(dma); 695 } 696 } 697 if (i == 4) { /* Failure: bail. */ 698 printk("DMA detection failed.\n"); 699 goto out_tx; 700 } 701 } 702 703 if (lance_version == 0 && dev->irq == 0) { 704 /* We may auto-IRQ now that we have a DMA channel. */ 705 /* Trigger an initialization just for the interrupt. */ 706 unsigned long irq_mask; 707 708 irq_mask = probe_irq_on(); 709 outw(0x0041, ioaddr+LANCE_DATA); 710 711 mdelay(40); 712 dev->irq = probe_irq_off(irq_mask); 713 if (dev->irq == 0) { 714 printk(" Failed to detect the 7990 IRQ line.\n"); 715 goto out_dma; 716 } 717 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq); 718 } 719 720 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) { 721 /* Turn on auto-select of media (10baseT or BNC) so that the user 722 can watch the LEDs even if the board isn't opened. */ 723 outw(0x0002, ioaddr+LANCE_ADDR); 724 /* Don't touch 10base2 power bit. */ 725 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF); 726 } 727 728 if (lance_debug > 0 && did_version++ == 0) 729 printk(version); 730 731 /* The LANCE-specific entries in the device structure. */ 732 dev->netdev_ops = &lance_netdev_ops; 733 dev->watchdog_timeo = TX_TIMEOUT; 734 735 err = register_netdev(dev); 736 if (err) 737 goto out_dma; 738 return 0; 739 out_dma: 740 if (dev->dma != 4) 741 free_dma(dev->dma); 742 out_tx: 743 kfree(lp->tx_bounce_buffs); 744 out_rx: 745 kfree((void*)lp->rx_buffs); 746 out_lp: 747 kfree(lp); 748 return err; 749 } 750 751 752 static int 753 lance_open(struct net_device *dev) 754 { 755 struct lance_private *lp = dev->ml_priv; 756 int ioaddr = dev->base_addr; 757 int i; 758 759 if (dev->irq == 0 || 760 request_irq(dev->irq, lance_interrupt, 0, dev->name, dev)) { 761 return -EAGAIN; 762 } 763 764 /* We used to allocate DMA here, but that was silly. 765 DMA lines can't be shared! We now permanently allocate them. */ 766 767 /* Reset the LANCE */ 768 inw(ioaddr+LANCE_RESET); 769 770 /* The DMA controller is used as a no-operation slave, "cascade mode". */ 771 if (dev->dma != 4) { 772 unsigned long flags=claim_dma_lock(); 773 enable_dma(dev->dma); 774 set_dma_mode(dev->dma, DMA_MODE_CASCADE); 775 release_dma_lock(flags); 776 } 777 778 /* Un-Reset the LANCE, needed only for the NE2100. */ 779 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET) 780 outw(0, ioaddr+LANCE_RESET); 781 782 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) { 783 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */ 784 outw(0x0002, ioaddr+LANCE_ADDR); 785 /* Only touch autoselect bit. */ 786 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF); 787 } 788 789 if (lance_debug > 1) 790 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n", 791 dev->name, dev->irq, dev->dma, 792 (u32) isa_virt_to_bus(lp->tx_ring), 793 (u32) isa_virt_to_bus(lp->rx_ring), 794 (u32) isa_virt_to_bus(&lp->init_block)); 795 796 lance_init_ring(dev, GFP_KERNEL); 797 /* Re-initialize the LANCE, and start it when done. */ 798 outw(0x0001, ioaddr+LANCE_ADDR); 799 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA); 800 outw(0x0002, ioaddr+LANCE_ADDR); 801 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA); 802 803 outw(0x0004, ioaddr+LANCE_ADDR); 804 outw(0x0915, ioaddr+LANCE_DATA); 805 806 outw(0x0000, ioaddr+LANCE_ADDR); 807 outw(0x0001, ioaddr+LANCE_DATA); 808 809 netif_start_queue (dev); 810 811 i = 0; 812 while (i++ < 100) 813 if (inw(ioaddr+LANCE_DATA) & 0x0100) 814 break; 815 /* 816 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton 817 * reports that doing so triggers a bug in the '974. 818 */ 819 outw(0x0042, ioaddr+LANCE_DATA); 820 821 if (lance_debug > 2) 822 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n", 823 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA)); 824 825 return 0; /* Always succeed */ 826 } 827 828 /* The LANCE has been halted for one reason or another (busmaster memory 829 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure, 830 etc.). Modern LANCE variants always reload their ring-buffer 831 configuration when restarted, so we must reinitialize our ring 832 context before restarting. As part of this reinitialization, 833 find all packets still on the Tx ring and pretend that they had been 834 sent (in effect, drop the packets on the floor) - the higher-level 835 protocols will time out and retransmit. It'd be better to shuffle 836 these skbs to a temp list and then actually re-Tx them after 837 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com 838 */ 839 840 static void 841 lance_purge_ring(struct net_device *dev) 842 { 843 struct lance_private *lp = dev->ml_priv; 844 int i; 845 846 /* Free all the skbuffs in the Rx and Tx queues. */ 847 for (i = 0; i < RX_RING_SIZE; i++) { 848 struct sk_buff *skb = lp->rx_skbuff[i]; 849 lp->rx_skbuff[i] = NULL; 850 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */ 851 if (skb) 852 dev_kfree_skb_any(skb); 853 } 854 for (i = 0; i < TX_RING_SIZE; i++) { 855 if (lp->tx_skbuff[i]) { 856 dev_kfree_skb_any(lp->tx_skbuff[i]); 857 lp->tx_skbuff[i] = NULL; 858 } 859 } 860 } 861 862 863 /* Initialize the LANCE Rx and Tx rings. */ 864 static void 865 lance_init_ring(struct net_device *dev, gfp_t gfp) 866 { 867 struct lance_private *lp = dev->ml_priv; 868 int i; 869 870 lp->cur_rx = lp->cur_tx = 0; 871 lp->dirty_rx = lp->dirty_tx = 0; 872 873 for (i = 0; i < RX_RING_SIZE; i++) { 874 struct sk_buff *skb; 875 void *rx_buff; 876 877 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp); 878 lp->rx_skbuff[i] = skb; 879 if (skb) 880 rx_buff = skb->data; 881 else 882 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp); 883 if (!rx_buff) 884 lp->rx_ring[i].base = 0; 885 else 886 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000; 887 lp->rx_ring[i].buf_length = -PKT_BUF_SZ; 888 } 889 /* The Tx buffer address is filled in as needed, but we do need to clear 890 the upper ownership bit. */ 891 for (i = 0; i < TX_RING_SIZE; i++) { 892 lp->tx_skbuff[i] = NULL; 893 lp->tx_ring[i].base = 0; 894 } 895 896 lp->init_block.mode = 0x0000; 897 for (i = 0; i < 6; i++) 898 lp->init_block.phys_addr[i] = dev->dev_addr[i]; 899 lp->init_block.filter[0] = 0x00000000; 900 lp->init_block.filter[1] = 0x00000000; 901 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS; 902 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS; 903 } 904 905 static void 906 lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit) 907 { 908 struct lance_private *lp = dev->ml_priv; 909 910 if (must_reinit || 911 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) { 912 lance_purge_ring(dev); 913 lance_init_ring(dev, GFP_ATOMIC); 914 } 915 outw(0x0000, dev->base_addr + LANCE_ADDR); 916 outw(csr0_bits, dev->base_addr + LANCE_DATA); 917 } 918 919 920 static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue) 921 { 922 struct lance_private *lp = (struct lance_private *) dev->ml_priv; 923 int ioaddr = dev->base_addr; 924 925 outw (0, ioaddr + LANCE_ADDR); 926 printk ("%s: transmit timed out, status %4.4x, resetting.\n", 927 dev->name, inw (ioaddr + LANCE_DATA)); 928 outw (0x0004, ioaddr + LANCE_DATA); 929 dev->stats.tx_errors++; 930 #ifndef final_version 931 if (lance_debug > 3) { 932 int i; 933 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.", 934 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "", 935 lp->cur_rx); 936 for (i = 0; i < RX_RING_SIZE; i++) 937 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ", 938 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length, 939 lp->rx_ring[i].msg_length); 940 for (i = 0; i < TX_RING_SIZE; i++) 941 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ", 942 lp->tx_ring[i].base, -lp->tx_ring[i].length, 943 lp->tx_ring[i].misc); 944 printk ("\n"); 945 } 946 #endif 947 lance_restart (dev, 0x0043, 1); 948 949 netif_trans_update(dev); /* prevent tx timeout */ 950 netif_wake_queue (dev); 951 } 952 953 954 static netdev_tx_t lance_start_xmit(struct sk_buff *skb, 955 struct net_device *dev) 956 { 957 struct lance_private *lp = dev->ml_priv; 958 int ioaddr = dev->base_addr; 959 int entry; 960 unsigned long flags; 961 962 spin_lock_irqsave(&lp->devlock, flags); 963 964 if (lance_debug > 3) { 965 outw(0x0000, ioaddr+LANCE_ADDR); 966 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name, 967 inw(ioaddr+LANCE_DATA)); 968 outw(0x0000, ioaddr+LANCE_DATA); 969 } 970 971 /* Fill in a Tx ring entry */ 972 973 /* Mask to ring buffer boundary. */ 974 entry = lp->cur_tx & TX_RING_MOD_MASK; 975 976 /* Caution: the write order is important here, set the base address 977 with the "ownership" bits last. */ 978 979 /* The old LANCE chips doesn't automatically pad buffers to min. size. */ 980 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) { 981 if (skb->len < ETH_ZLEN) { 982 if (skb_padto(skb, ETH_ZLEN)) 983 goto out; 984 lp->tx_ring[entry].length = -ETH_ZLEN; 985 } 986 else 987 lp->tx_ring[entry].length = -skb->len; 988 } else 989 lp->tx_ring[entry].length = -skb->len; 990 991 lp->tx_ring[entry].misc = 0x0000; 992 993 dev->stats.tx_bytes += skb->len; 994 995 /* If any part of this buffer is >16M we must copy it to a low-memory 996 buffer. */ 997 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) { 998 if (lance_debug > 5) 999 printk("%s: bouncing a high-memory packet (%#x).\n", 1000 dev->name, (u32)isa_virt_to_bus(skb->data)); 1001 skb_copy_from_linear_data(skb, &lp->tx_bounce_buffs[entry], skb->len); 1002 lp->tx_ring[entry].base = 1003 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000; 1004 dev_consume_skb_irq(skb); 1005 } else { 1006 lp->tx_skbuff[entry] = skb; 1007 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000; 1008 } 1009 lp->cur_tx++; 1010 1011 /* Trigger an immediate send poll. */ 1012 outw(0x0000, ioaddr+LANCE_ADDR); 1013 outw(0x0048, ioaddr+LANCE_DATA); 1014 1015 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE) 1016 netif_stop_queue(dev); 1017 1018 out: 1019 spin_unlock_irqrestore(&lp->devlock, flags); 1020 return NETDEV_TX_OK; 1021 } 1022 1023 /* The LANCE interrupt handler. */ 1024 static irqreturn_t lance_interrupt(int irq, void *dev_id) 1025 { 1026 struct net_device *dev = dev_id; 1027 struct lance_private *lp; 1028 int csr0, ioaddr, boguscnt=10; 1029 int must_restart; 1030 1031 ioaddr = dev->base_addr; 1032 lp = dev->ml_priv; 1033 1034 spin_lock (&lp->devlock); 1035 1036 outw(0x00, dev->base_addr + LANCE_ADDR); 1037 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600 && 1038 --boguscnt >= 0) { 1039 /* Acknowledge all of the current interrupt sources ASAP. */ 1040 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA); 1041 1042 must_restart = 0; 1043 1044 if (lance_debug > 5) 1045 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n", 1046 dev->name, csr0, inw(dev->base_addr + LANCE_DATA)); 1047 1048 if (csr0 & 0x0400) /* Rx interrupt */ 1049 lance_rx(dev); 1050 1051 if (csr0 & 0x0200) { /* Tx-done interrupt */ 1052 int dirty_tx = lp->dirty_tx; 1053 1054 while (dirty_tx < lp->cur_tx) { 1055 int entry = dirty_tx & TX_RING_MOD_MASK; 1056 int status = lp->tx_ring[entry].base; 1057 1058 if (status < 0) 1059 break; /* It still hasn't been Txed */ 1060 1061 lp->tx_ring[entry].base = 0; 1062 1063 if (status & 0x40000000) { 1064 /* There was an major error, log it. */ 1065 int err_status = lp->tx_ring[entry].misc; 1066 dev->stats.tx_errors++; 1067 if (err_status & 0x0400) 1068 dev->stats.tx_aborted_errors++; 1069 if (err_status & 0x0800) 1070 dev->stats.tx_carrier_errors++; 1071 if (err_status & 0x1000) 1072 dev->stats.tx_window_errors++; 1073 if (err_status & 0x4000) { 1074 /* Ackk! On FIFO errors the Tx unit is turned off! */ 1075 dev->stats.tx_fifo_errors++; 1076 /* Remove this verbosity later! */ 1077 printk("%s: Tx FIFO error! Status %4.4x.\n", 1078 dev->name, csr0); 1079 /* Restart the chip. */ 1080 must_restart = 1; 1081 } 1082 } else { 1083 if (status & 0x18000000) 1084 dev->stats.collisions++; 1085 dev->stats.tx_packets++; 1086 } 1087 1088 /* We must free the original skb if it's not a data-only copy 1089 in the bounce buffer. */ 1090 if (lp->tx_skbuff[entry]) { 1091 dev_consume_skb_irq(lp->tx_skbuff[entry]); 1092 lp->tx_skbuff[entry] = NULL; 1093 } 1094 dirty_tx++; 1095 } 1096 1097 #ifndef final_version 1098 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) { 1099 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n", 1100 dirty_tx, lp->cur_tx, 1101 netif_queue_stopped(dev) ? "yes" : "no"); 1102 dirty_tx += TX_RING_SIZE; 1103 } 1104 #endif 1105 1106 /* if the ring is no longer full, accept more packets */ 1107 if (netif_queue_stopped(dev) && 1108 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2) 1109 netif_wake_queue (dev); 1110 1111 lp->dirty_tx = dirty_tx; 1112 } 1113 1114 /* Log misc errors. */ 1115 if (csr0 & 0x4000) 1116 dev->stats.tx_errors++; /* Tx babble. */ 1117 if (csr0 & 0x1000) 1118 dev->stats.rx_errors++; /* Missed a Rx frame. */ 1119 if (csr0 & 0x0800) { 1120 printk("%s: Bus master arbitration failure, status %4.4x.\n", 1121 dev->name, csr0); 1122 /* Restart the chip. */ 1123 must_restart = 1; 1124 } 1125 1126 if (must_restart) { 1127 /* stop the chip to clear the error condition, then restart */ 1128 outw(0x0000, dev->base_addr + LANCE_ADDR); 1129 outw(0x0004, dev->base_addr + LANCE_DATA); 1130 lance_restart(dev, 0x0002, 0); 1131 } 1132 } 1133 1134 /* Clear any other interrupt, and set interrupt enable. */ 1135 outw(0x0000, dev->base_addr + LANCE_ADDR); 1136 outw(0x7940, dev->base_addr + LANCE_DATA); 1137 1138 if (lance_debug > 4) 1139 printk("%s: exiting interrupt, csr%d=%#4.4x.\n", 1140 dev->name, inw(ioaddr + LANCE_ADDR), 1141 inw(dev->base_addr + LANCE_DATA)); 1142 1143 spin_unlock (&lp->devlock); 1144 return IRQ_HANDLED; 1145 } 1146 1147 static int 1148 lance_rx(struct net_device *dev) 1149 { 1150 struct lance_private *lp = dev->ml_priv; 1151 int entry = lp->cur_rx & RX_RING_MOD_MASK; 1152 int i; 1153 1154 /* If we own the next entry, it's a new packet. Send it up. */ 1155 while (lp->rx_ring[entry].base >= 0) { 1156 int status = lp->rx_ring[entry].base >> 24; 1157 1158 if (status != 0x03) { /* There was an error. */ 1159 /* There is a tricky error noted by John Murphy, 1160 <murf@perftech.com> to Russ Nelson: Even with full-sized 1161 buffers it's possible for a jabber packet to use two 1162 buffers, with only the last correctly noting the error. */ 1163 if (status & 0x01) /* Only count a general error at the */ 1164 dev->stats.rx_errors++; /* end of a packet.*/ 1165 if (status & 0x20) 1166 dev->stats.rx_frame_errors++; 1167 if (status & 0x10) 1168 dev->stats.rx_over_errors++; 1169 if (status & 0x08) 1170 dev->stats.rx_crc_errors++; 1171 if (status & 0x04) 1172 dev->stats.rx_fifo_errors++; 1173 lp->rx_ring[entry].base &= 0x03ffffff; 1174 } 1175 else 1176 { 1177 /* Malloc up new buffer, compatible with net3. */ 1178 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4; 1179 struct sk_buff *skb; 1180 1181 if(pkt_len<60) 1182 { 1183 printk("%s: Runt packet!\n",dev->name); 1184 dev->stats.rx_errors++; 1185 } 1186 else 1187 { 1188 skb = dev_alloc_skb(pkt_len+2); 1189 if (!skb) 1190 { 1191 printk("%s: Memory squeeze, deferring packet.\n", dev->name); 1192 for (i=0; i < RX_RING_SIZE; i++) 1193 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0) 1194 break; 1195 1196 if (i > RX_RING_SIZE -2) 1197 { 1198 dev->stats.rx_dropped++; 1199 lp->rx_ring[entry].base |= 0x80000000; 1200 lp->cur_rx++; 1201 } 1202 break; 1203 } 1204 skb_reserve(skb,2); /* 16 byte align */ 1205 skb_put(skb,pkt_len); /* Make room */ 1206 skb_copy_to_linear_data(skb, 1207 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)), 1208 pkt_len); 1209 skb->protocol=eth_type_trans(skb,dev); 1210 netif_rx(skb); 1211 dev->stats.rx_packets++; 1212 dev->stats.rx_bytes += pkt_len; 1213 } 1214 } 1215 /* The docs say that the buffer length isn't touched, but Andrew Boyd 1216 of QNX reports that some revs of the 79C965 clear it. */ 1217 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ; 1218 lp->rx_ring[entry].base |= 0x80000000; 1219 entry = (++lp->cur_rx) & RX_RING_MOD_MASK; 1220 } 1221 1222 /* We should check that at least two ring entries are free. If not, 1223 we should free one and mark stats->rx_dropped++. */ 1224 1225 return 0; 1226 } 1227 1228 static int 1229 lance_close(struct net_device *dev) 1230 { 1231 int ioaddr = dev->base_addr; 1232 struct lance_private *lp = dev->ml_priv; 1233 1234 netif_stop_queue (dev); 1235 1236 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) { 1237 outw(112, ioaddr+LANCE_ADDR); 1238 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA); 1239 } 1240 outw(0, ioaddr+LANCE_ADDR); 1241 1242 if (lance_debug > 1) 1243 printk("%s: Shutting down ethercard, status was %2.2x.\n", 1244 dev->name, inw(ioaddr+LANCE_DATA)); 1245 1246 /* We stop the LANCE here -- it occasionally polls 1247 memory if we don't. */ 1248 outw(0x0004, ioaddr+LANCE_DATA); 1249 1250 if (dev->dma != 4) 1251 { 1252 unsigned long flags=claim_dma_lock(); 1253 disable_dma(dev->dma); 1254 release_dma_lock(flags); 1255 } 1256 free_irq(dev->irq, dev); 1257 1258 lance_purge_ring(dev); 1259 1260 return 0; 1261 } 1262 1263 static struct net_device_stats *lance_get_stats(struct net_device *dev) 1264 { 1265 struct lance_private *lp = dev->ml_priv; 1266 1267 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) { 1268 short ioaddr = dev->base_addr; 1269 short saved_addr; 1270 unsigned long flags; 1271 1272 spin_lock_irqsave(&lp->devlock, flags); 1273 saved_addr = inw(ioaddr+LANCE_ADDR); 1274 outw(112, ioaddr+LANCE_ADDR); 1275 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA); 1276 outw(saved_addr, ioaddr+LANCE_ADDR); 1277 spin_unlock_irqrestore(&lp->devlock, flags); 1278 } 1279 1280 return &dev->stats; 1281 } 1282 1283 /* Set or clear the multicast filter for this adaptor. 1284 */ 1285 1286 static void set_multicast_list(struct net_device *dev) 1287 { 1288 short ioaddr = dev->base_addr; 1289 1290 outw(0, ioaddr+LANCE_ADDR); 1291 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */ 1292 1293 if (dev->flags&IFF_PROMISC) { 1294 outw(15, ioaddr+LANCE_ADDR); 1295 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */ 1296 } else { 1297 short multicast_table[4]; 1298 int i; 1299 int num_addrs=netdev_mc_count(dev); 1300 if(dev->flags&IFF_ALLMULTI) 1301 num_addrs=1; 1302 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */ 1303 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table)); 1304 for (i = 0; i < 4; i++) { 1305 outw(8 + i, ioaddr+LANCE_ADDR); 1306 outw(multicast_table[i], ioaddr+LANCE_DATA); 1307 } 1308 outw(15, ioaddr+LANCE_ADDR); 1309 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */ 1310 } 1311 1312 lance_restart(dev, 0x0142, 0); /* Resume normal operation */ 1313 1314 } 1315 1316