1 /*
2  *
3  * Alchemy Au1x00 ethernet driver
4  *
5  * Copyright 2001-2003, 2006 MontaVista Software Inc.
6  * Copyright 2002 TimeSys Corp.
7  * Added ethtool/mii-tool support,
8  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10  * or riemer@riemer-nt.de: fixed the link beat detection with
11  * ioctls (SIOCGMIIPHY)
12  * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13  *  converted to use linux-2.6.x's PHY framework
14  *
15  * Author: MontaVista Software, Inc.
16  *		ppopov@mvista.com or source@mvista.com
17  *
18  * ########################################################################
19  *
20  *  This program is free software; you can distribute it and/or modify it
21  *  under the terms of the GNU General Public License (Version 2) as
22  *  published by the Free Software Foundation.
23  *
24  *  This program is distributed in the hope it will be useful, but WITHOUT
25  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
27  *  for more details.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, see <http://www.gnu.org/licenses/>.
31  *
32  * ########################################################################
33  *
34  *
35  */
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/capability.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/string.h>
43 #include <linux/timer.h>
44 #include <linux/errno.h>
45 #include <linux/in.h>
46 #include <linux/ioport.h>
47 #include <linux/bitops.h>
48 #include <linux/slab.h>
49 #include <linux/interrupt.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/mii.h>
54 #include <linux/skbuff.h>
55 #include <linux/delay.h>
56 #include <linux/crc32.h>
57 #include <linux/phy.h>
58 #include <linux/platform_device.h>
59 #include <linux/cpu.h>
60 #include <linux/io.h>
61 
62 #include <asm/mipsregs.h>
63 #include <asm/irq.h>
64 #include <asm/processor.h>
65 
66 #include <au1000.h>
67 #include <au1xxx_eth.h>
68 #include <prom.h>
69 
70 #include "au1000_eth.h"
71 
72 #ifdef AU1000_ETH_DEBUG
73 static int au1000_debug = 5;
74 #else
75 static int au1000_debug = 3;
76 #endif
77 
78 #define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
79 				NETIF_MSG_PROBE	| \
80 				NETIF_MSG_LINK)
81 
82 #define DRV_NAME	"au1000_eth"
83 #define DRV_VERSION	"1.7"
84 #define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
85 #define DRV_DESC	"Au1xxx on-chip Ethernet driver"
86 
87 MODULE_AUTHOR(DRV_AUTHOR);
88 MODULE_DESCRIPTION(DRV_DESC);
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91 
92 /* AU1000 MAC registers and bits */
93 #define MAC_CONTROL		0x0
94 #  define MAC_RX_ENABLE		(1 << 2)
95 #  define MAC_TX_ENABLE		(1 << 3)
96 #  define MAC_DEF_CHECK		(1 << 5)
97 #  define MAC_SET_BL(X)		(((X) & 0x3) << 6)
98 #  define MAC_AUTO_PAD		(1 << 8)
99 #  define MAC_DISABLE_RETRY	(1 << 10)
100 #  define MAC_DISABLE_BCAST	(1 << 11)
101 #  define MAC_LATE_COL		(1 << 12)
102 #  define MAC_HASH_MODE		(1 << 13)
103 #  define MAC_HASH_ONLY		(1 << 15)
104 #  define MAC_PASS_ALL		(1 << 16)
105 #  define MAC_INVERSE_FILTER	(1 << 17)
106 #  define MAC_PROMISCUOUS	(1 << 18)
107 #  define MAC_PASS_ALL_MULTI	(1 << 19)
108 #  define MAC_FULL_DUPLEX	(1 << 20)
109 #  define MAC_NORMAL_MODE	0
110 #  define MAC_INT_LOOPBACK	(1 << 21)
111 #  define MAC_EXT_LOOPBACK	(1 << 22)
112 #  define MAC_DISABLE_RX_OWN	(1 << 23)
113 #  define MAC_BIG_ENDIAN	(1 << 30)
114 #  define MAC_RX_ALL		(1 << 31)
115 #define MAC_ADDRESS_HIGH	0x4
116 #define MAC_ADDRESS_LOW		0x8
117 #define MAC_MCAST_HIGH		0xC
118 #define MAC_MCAST_LOW		0x10
119 #define MAC_MII_CNTRL		0x14
120 #  define MAC_MII_BUSY		(1 << 0)
121 #  define MAC_MII_READ		0
122 #  define MAC_MII_WRITE		(1 << 1)
123 #  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
124 #  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
125 #define MAC_MII_DATA		0x18
126 #define MAC_FLOW_CNTRL		0x1C
127 #  define MAC_FLOW_CNTRL_BUSY	(1 << 0)
128 #  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
129 #  define MAC_PASS_CONTROL	(1 << 2)
130 #  define MAC_SET_PAUSE(X)	(((X) & 0xffff) << 16)
131 #define MAC_VLAN1_TAG		0x20
132 #define MAC_VLAN2_TAG		0x24
133 
134 /* Ethernet Controller Enable */
135 #  define MAC_EN_CLOCK_ENABLE	(1 << 0)
136 #  define MAC_EN_RESET0		(1 << 1)
137 #  define MAC_EN_TOSS		(0 << 2)
138 #  define MAC_EN_CACHEABLE	(1 << 3)
139 #  define MAC_EN_RESET1		(1 << 4)
140 #  define MAC_EN_RESET2		(1 << 5)
141 #  define MAC_DMA_RESET		(1 << 6)
142 
143 /* Ethernet Controller DMA Channels */
144 /* offsets from MAC_TX_RING_ADDR address */
145 #define MAC_TX_BUFF0_STATUS	0x0
146 #  define TX_FRAME_ABORTED	(1 << 0)
147 #  define TX_JAB_TIMEOUT	(1 << 1)
148 #  define TX_NO_CARRIER		(1 << 2)
149 #  define TX_LOSS_CARRIER	(1 << 3)
150 #  define TX_EXC_DEF		(1 << 4)
151 #  define TX_LATE_COLL_ABORT	(1 << 5)
152 #  define TX_EXC_COLL		(1 << 6)
153 #  define TX_UNDERRUN		(1 << 7)
154 #  define TX_DEFERRED		(1 << 8)
155 #  define TX_LATE_COLL		(1 << 9)
156 #  define TX_COLL_CNT_MASK	(0xF << 10)
157 #  define TX_PKT_RETRY		(1 << 31)
158 #define MAC_TX_BUFF0_ADDR	0x4
159 #  define TX_DMA_ENABLE		(1 << 0)
160 #  define TX_T_DONE		(1 << 1)
161 #  define TX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
162 #define MAC_TX_BUFF0_LEN	0x8
163 #define MAC_TX_BUFF1_STATUS	0x10
164 #define MAC_TX_BUFF1_ADDR	0x14
165 #define MAC_TX_BUFF1_LEN	0x18
166 #define MAC_TX_BUFF2_STATUS	0x20
167 #define MAC_TX_BUFF2_ADDR	0x24
168 #define MAC_TX_BUFF2_LEN	0x28
169 #define MAC_TX_BUFF3_STATUS	0x30
170 #define MAC_TX_BUFF3_ADDR	0x34
171 #define MAC_TX_BUFF3_LEN	0x38
172 
173 /* offsets from MAC_RX_RING_ADDR */
174 #define MAC_RX_BUFF0_STATUS	0x0
175 #  define RX_FRAME_LEN_MASK	0x3fff
176 #  define RX_WDOG_TIMER		(1 << 14)
177 #  define RX_RUNT		(1 << 15)
178 #  define RX_OVERLEN		(1 << 16)
179 #  define RX_COLL		(1 << 17)
180 #  define RX_ETHER		(1 << 18)
181 #  define RX_MII_ERROR		(1 << 19)
182 #  define RX_DRIBBLING		(1 << 20)
183 #  define RX_CRC_ERROR		(1 << 21)
184 #  define RX_VLAN1		(1 << 22)
185 #  define RX_VLAN2		(1 << 23)
186 #  define RX_LEN_ERROR		(1 << 24)
187 #  define RX_CNTRL_FRAME	(1 << 25)
188 #  define RX_U_CNTRL_FRAME	(1 << 26)
189 #  define RX_MCAST_FRAME	(1 << 27)
190 #  define RX_BCAST_FRAME	(1 << 28)
191 #  define RX_FILTER_FAIL	(1 << 29)
192 #  define RX_PACKET_FILTER	(1 << 30)
193 #  define RX_MISSED_FRAME	(1 << 31)
194 
195 #  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
196 		    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
197 		    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
198 #define MAC_RX_BUFF0_ADDR	0x4
199 #  define RX_DMA_ENABLE		(1 << 0)
200 #  define RX_T_DONE		(1 << 1)
201 #  define RX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
202 #  define RX_SET_BUFF_ADDR(X)	((X) & 0xffffffc0)
203 #define MAC_RX_BUFF1_STATUS	0x10
204 #define MAC_RX_BUFF1_ADDR	0x14
205 #define MAC_RX_BUFF2_STATUS	0x20
206 #define MAC_RX_BUFF2_ADDR	0x24
207 #define MAC_RX_BUFF3_STATUS	0x30
208 #define MAC_RX_BUFF3_ADDR	0x34
209 
210 /*
211  * Theory of operation
212  *
213  * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
214  * There are four receive and four transmit descriptors.  These
215  * descriptors are not in memory; rather, they are just a set of
216  * hardware registers.
217  *
218  * Since the Au1000 has a coherent data cache, the receive and
219  * transmit buffers are allocated from the KSEG0 segment. The
220  * hardware registers, however, are still mapped at KSEG1 to
221  * make sure there's no out-of-order writes, and that all writes
222  * complete immediately.
223  */
224 
225 /*
226  * board-specific configurations
227  *
228  * PHY detection algorithm
229  *
230  * If phy_static_config is undefined, the PHY setup is
231  * autodetected:
232  *
233  * mii_probe() first searches the current MAC's MII bus for a PHY,
234  * selecting the first (or last, if phy_search_highest_addr is
235  * defined) PHY address not already claimed by another netdev.
236  *
237  * If nothing was found that way when searching for the 2nd ethernet
238  * controller's PHY and phy1_search_mac0 is defined, then
239  * the first MII bus is searched as well for an unclaimed PHY; this is
240  * needed in case of a dual-PHY accessible only through the MAC0's MII
241  * bus.
242  *
243  * Finally, if no PHY is found, then the corresponding ethernet
244  * controller is not registered to the network subsystem.
245  */
246 
247 /* autodetection defaults: phy1_search_mac0 */
248 
249 /* static PHY setup
250  *
251  * most boards PHY setup should be detectable properly with the
252  * autodetection algorithm in mii_probe(), but in some cases (e.g. if
253  * you have a switch attached, or want to use the PHY's interrupt
254  * notification capabilities) you can provide a static PHY
255  * configuration here
256  *
257  * IRQs may only be set, if a PHY address was configured
258  * If a PHY address is given, also a bus id is required to be set
259  *
260  * ps: make sure the used irqs are configured properly in the board
261  * specific irq-map
262  */
263 
264 static void au1000_enable_mac(struct net_device *dev, int force_reset)
265 {
266 	unsigned long flags;
267 	struct au1000_private *aup = netdev_priv(dev);
268 
269 	spin_lock_irqsave(&aup->lock, flags);
270 
271 	if (force_reset || (!aup->mac_enabled)) {
272 		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
273 		wmb(); /* drain writebuffer */
274 		mdelay(2);
275 		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
276 				| MAC_EN_CLOCK_ENABLE), aup->enable);
277 		wmb(); /* drain writebuffer */
278 		mdelay(2);
279 
280 		aup->mac_enabled = 1;
281 	}
282 
283 	spin_unlock_irqrestore(&aup->lock, flags);
284 }
285 
286 /*
287  * MII operations
288  */
289 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
290 {
291 	struct au1000_private *aup = netdev_priv(dev);
292 	u32 *const mii_control_reg = &aup->mac->mii_control;
293 	u32 *const mii_data_reg = &aup->mac->mii_data;
294 	u32 timedout = 20;
295 	u32 mii_control;
296 
297 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
298 		mdelay(1);
299 		if (--timedout == 0) {
300 			netdev_err(dev, "read_MII busy timeout!!\n");
301 			return -1;
302 		}
303 	}
304 
305 	mii_control = MAC_SET_MII_SELECT_REG(reg) |
306 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
307 
308 	writel(mii_control, mii_control_reg);
309 
310 	timedout = 20;
311 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
312 		mdelay(1);
313 		if (--timedout == 0) {
314 			netdev_err(dev, "mdio_read busy timeout!!\n");
315 			return -1;
316 		}
317 	}
318 	return readl(mii_data_reg);
319 }
320 
321 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
322 			      int reg, u16 value)
323 {
324 	struct au1000_private *aup = netdev_priv(dev);
325 	u32 *const mii_control_reg = &aup->mac->mii_control;
326 	u32 *const mii_data_reg = &aup->mac->mii_data;
327 	u32 timedout = 20;
328 	u32 mii_control;
329 
330 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
331 		mdelay(1);
332 		if (--timedout == 0) {
333 			netdev_err(dev, "mdio_write busy timeout!!\n");
334 			return;
335 		}
336 	}
337 
338 	mii_control = MAC_SET_MII_SELECT_REG(reg) |
339 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
340 
341 	writel(value, mii_data_reg);
342 	writel(mii_control, mii_control_reg);
343 }
344 
345 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
346 {
347 	/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
348 	 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus)
349 	 */
350 	struct net_device *const dev = bus->priv;
351 
352 	/* make sure the MAC associated with this
353 	 * mii_bus is enabled
354 	 */
355 	au1000_enable_mac(dev, 0);
356 
357 	return au1000_mdio_read(dev, phy_addr, regnum);
358 }
359 
360 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
361 				u16 value)
362 {
363 	struct net_device *const dev = bus->priv;
364 
365 	/* make sure the MAC associated with this
366 	 * mii_bus is enabled
367 	 */
368 	au1000_enable_mac(dev, 0);
369 
370 	au1000_mdio_write(dev, phy_addr, regnum, value);
371 	return 0;
372 }
373 
374 static int au1000_mdiobus_reset(struct mii_bus *bus)
375 {
376 	struct net_device *const dev = bus->priv;
377 
378 	/* make sure the MAC associated with this
379 	 * mii_bus is enabled
380 	 */
381 	au1000_enable_mac(dev, 0);
382 
383 	return 0;
384 }
385 
386 static void au1000_hard_stop(struct net_device *dev)
387 {
388 	struct au1000_private *aup = netdev_priv(dev);
389 	u32 reg;
390 
391 	netif_dbg(aup, drv, dev, "hard stop\n");
392 
393 	reg = readl(&aup->mac->control);
394 	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
395 	writel(reg, &aup->mac->control);
396 	wmb(); /* drain writebuffer */
397 	mdelay(10);
398 }
399 
400 static void au1000_enable_rx_tx(struct net_device *dev)
401 {
402 	struct au1000_private *aup = netdev_priv(dev);
403 	u32 reg;
404 
405 	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
406 
407 	reg = readl(&aup->mac->control);
408 	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
409 	writel(reg, &aup->mac->control);
410 	wmb(); /* drain writebuffer */
411 	mdelay(10);
412 }
413 
414 static void
415 au1000_adjust_link(struct net_device *dev)
416 {
417 	struct au1000_private *aup = netdev_priv(dev);
418 	struct phy_device *phydev = aup->phy_dev;
419 	unsigned long flags;
420 	u32 reg;
421 
422 	int status_change = 0;
423 
424 	BUG_ON(!aup->phy_dev);
425 
426 	spin_lock_irqsave(&aup->lock, flags);
427 
428 	if (phydev->link && (aup->old_speed != phydev->speed)) {
429 		/* speed changed */
430 
431 		switch (phydev->speed) {
432 		case SPEED_10:
433 		case SPEED_100:
434 			break;
435 		default:
436 			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
437 							phydev->speed);
438 			break;
439 		}
440 
441 		aup->old_speed = phydev->speed;
442 
443 		status_change = 1;
444 	}
445 
446 	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
447 		/* duplex mode changed */
448 
449 		/* switching duplex mode requires to disable rx and tx! */
450 		au1000_hard_stop(dev);
451 
452 		reg = readl(&aup->mac->control);
453 		if (DUPLEX_FULL == phydev->duplex) {
454 			reg |= MAC_FULL_DUPLEX;
455 			reg &= ~MAC_DISABLE_RX_OWN;
456 		} else {
457 			reg &= ~MAC_FULL_DUPLEX;
458 			reg |= MAC_DISABLE_RX_OWN;
459 		}
460 		writel(reg, &aup->mac->control);
461 		wmb(); /* drain writebuffer */
462 		mdelay(1);
463 
464 		au1000_enable_rx_tx(dev);
465 		aup->old_duplex = phydev->duplex;
466 
467 		status_change = 1;
468 	}
469 
470 	if (phydev->link != aup->old_link) {
471 		/* link state changed */
472 
473 		if (!phydev->link) {
474 			/* link went down */
475 			aup->old_speed = 0;
476 			aup->old_duplex = -1;
477 		}
478 
479 		aup->old_link = phydev->link;
480 		status_change = 1;
481 	}
482 
483 	spin_unlock_irqrestore(&aup->lock, flags);
484 
485 	if (status_change) {
486 		if (phydev->link)
487 			netdev_info(dev, "link up (%d/%s)\n",
488 			       phydev->speed,
489 			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
490 		else
491 			netdev_info(dev, "link down\n");
492 	}
493 }
494 
495 static int au1000_mii_probe(struct net_device *dev)
496 {
497 	struct au1000_private *const aup = netdev_priv(dev);
498 	struct phy_device *phydev = NULL;
499 	int phy_addr;
500 
501 	if (aup->phy_static_config) {
502 		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
503 
504 		if (aup->phy_addr)
505 			phydev = aup->mii_bus->phy_map[aup->phy_addr];
506 		else
507 			netdev_info(dev, "using PHY-less setup\n");
508 		return 0;
509 	}
510 
511 	/* find the first (lowest address) PHY
512 	 * on the current MAC's MII bus
513 	 */
514 	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
515 		if (aup->mii_bus->phy_map[phy_addr]) {
516 			phydev = aup->mii_bus->phy_map[phy_addr];
517 			if (!aup->phy_search_highest_addr)
518 				/* break out with first one found */
519 				break;
520 		}
521 
522 	if (aup->phy1_search_mac0) {
523 		/* try harder to find a PHY */
524 		if (!phydev && (aup->mac_id == 1)) {
525 			/* no PHY found, maybe we have a dual PHY? */
526 			dev_info(&dev->dev, ": no PHY found on MAC1, "
527 				"let's see if it's attached to MAC0...\n");
528 
529 			/* find the first (lowest address) non-attached
530 			 * PHY on the MAC0 MII bus
531 			 */
532 			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
533 				struct phy_device *const tmp_phydev =
534 					aup->mii_bus->phy_map[phy_addr];
535 
536 				if (aup->mac_id == 1)
537 					break;
538 
539 				/* no PHY here... */
540 				if (!tmp_phydev)
541 					continue;
542 
543 				/* already claimed by MAC0 */
544 				if (tmp_phydev->attached_dev)
545 					continue;
546 
547 				phydev = tmp_phydev;
548 				break; /* found it */
549 			}
550 		}
551 	}
552 
553 	if (!phydev) {
554 		netdev_err(dev, "no PHY found\n");
555 		return -1;
556 	}
557 
558 	/* now we are supposed to have a proper phydev, to attach to... */
559 	BUG_ON(phydev->attached_dev);
560 
561 	phydev = phy_connect(dev, dev_name(&phydev->dev),
562 			     &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
563 
564 	if (IS_ERR(phydev)) {
565 		netdev_err(dev, "Could not attach to PHY\n");
566 		return PTR_ERR(phydev);
567 	}
568 
569 	/* mask with MAC supported features */
570 	phydev->supported &= (SUPPORTED_10baseT_Half
571 			      | SUPPORTED_10baseT_Full
572 			      | SUPPORTED_100baseT_Half
573 			      | SUPPORTED_100baseT_Full
574 			      | SUPPORTED_Autoneg
575 			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
576 			      | SUPPORTED_MII
577 			      | SUPPORTED_TP);
578 
579 	phydev->advertising = phydev->supported;
580 
581 	aup->old_link = 0;
582 	aup->old_speed = 0;
583 	aup->old_duplex = -1;
584 	aup->phy_dev = phydev;
585 
586 	netdev_info(dev, "attached PHY driver [%s] "
587 	       "(mii_bus:phy_addr=%s, irq=%d)\n",
588 	       phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
589 
590 	return 0;
591 }
592 
593 
594 /*
595  * Buffer allocation/deallocation routines. The buffer descriptor returned
596  * has the virtual and dma address of a buffer suitable for
597  * both, receive and transmit operations.
598  */
599 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
600 {
601 	struct db_dest *pDB;
602 	pDB = aup->pDBfree;
603 
604 	if (pDB)
605 		aup->pDBfree = pDB->pnext;
606 
607 	return pDB;
608 }
609 
610 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
611 {
612 	struct db_dest *pDBfree = aup->pDBfree;
613 	if (pDBfree)
614 		pDBfree->pnext = pDB;
615 	aup->pDBfree = pDB;
616 }
617 
618 static void au1000_reset_mac_unlocked(struct net_device *dev)
619 {
620 	struct au1000_private *const aup = netdev_priv(dev);
621 	int i;
622 
623 	au1000_hard_stop(dev);
624 
625 	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
626 	wmb(); /* drain writebuffer */
627 	mdelay(2);
628 	writel(0, aup->enable);
629 	wmb(); /* drain writebuffer */
630 	mdelay(2);
631 
632 	aup->tx_full = 0;
633 	for (i = 0; i < NUM_RX_DMA; i++) {
634 		/* reset control bits */
635 		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
636 	}
637 	for (i = 0; i < NUM_TX_DMA; i++) {
638 		/* reset control bits */
639 		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
640 	}
641 
642 	aup->mac_enabled = 0;
643 
644 }
645 
646 static void au1000_reset_mac(struct net_device *dev)
647 {
648 	struct au1000_private *const aup = netdev_priv(dev);
649 	unsigned long flags;
650 
651 	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
652 					(unsigned)aup);
653 
654 	spin_lock_irqsave(&aup->lock, flags);
655 
656 	au1000_reset_mac_unlocked(dev);
657 
658 	spin_unlock_irqrestore(&aup->lock, flags);
659 }
660 
661 /*
662  * Setup the receive and transmit "rings".  These pointers are the addresses
663  * of the rx and tx MAC DMA registers so they are fixed by the hardware --
664  * these are not descriptors sitting in memory.
665  */
666 static void
667 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
668 {
669 	int i;
670 
671 	for (i = 0; i < NUM_RX_DMA; i++) {
672 		aup->rx_dma_ring[i] = (struct rx_dma *)
673 			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
674 	}
675 	for (i = 0; i < NUM_TX_DMA; i++) {
676 		aup->tx_dma_ring[i] = (struct tx_dma *)
677 			(tx_base + sizeof(struct tx_dma) * i);
678 	}
679 }
680 
681 /*
682  * ethtool operations
683  */
684 
685 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
686 {
687 	struct au1000_private *aup = netdev_priv(dev);
688 
689 	if (aup->phy_dev)
690 		return phy_ethtool_gset(aup->phy_dev, cmd);
691 
692 	return -EINVAL;
693 }
694 
695 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
696 {
697 	struct au1000_private *aup = netdev_priv(dev);
698 
699 	if (!capable(CAP_NET_ADMIN))
700 		return -EPERM;
701 
702 	if (aup->phy_dev)
703 		return phy_ethtool_sset(aup->phy_dev, cmd);
704 
705 	return -EINVAL;
706 }
707 
708 static void
709 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
710 {
711 	struct au1000_private *aup = netdev_priv(dev);
712 
713 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
714 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
715 	snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
716 		 aup->mac_id);
717 	info->regdump_len = 0;
718 }
719 
720 static void au1000_set_msglevel(struct net_device *dev, u32 value)
721 {
722 	struct au1000_private *aup = netdev_priv(dev);
723 	aup->msg_enable = value;
724 }
725 
726 static u32 au1000_get_msglevel(struct net_device *dev)
727 {
728 	struct au1000_private *aup = netdev_priv(dev);
729 	return aup->msg_enable;
730 }
731 
732 static const struct ethtool_ops au1000_ethtool_ops = {
733 	.get_settings = au1000_get_settings,
734 	.set_settings = au1000_set_settings,
735 	.get_drvinfo = au1000_get_drvinfo,
736 	.get_link = ethtool_op_get_link,
737 	.get_msglevel = au1000_get_msglevel,
738 	.set_msglevel = au1000_set_msglevel,
739 };
740 
741 
742 /*
743  * Initialize the interface.
744  *
745  * When the device powers up, the clocks are disabled and the
746  * mac is in reset state.  When the interface is closed, we
747  * do the same -- reset the device and disable the clocks to
748  * conserve power. Thus, whenever au1000_init() is called,
749  * the device should already be in reset state.
750  */
751 static int au1000_init(struct net_device *dev)
752 {
753 	struct au1000_private *aup = netdev_priv(dev);
754 	unsigned long flags;
755 	int i;
756 	u32 control;
757 
758 	netif_dbg(aup, hw, dev, "au1000_init\n");
759 
760 	/* bring the device out of reset */
761 	au1000_enable_mac(dev, 1);
762 
763 	spin_lock_irqsave(&aup->lock, flags);
764 
765 	writel(0, &aup->mac->control);
766 	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
767 	aup->tx_tail = aup->tx_head;
768 	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
769 
770 	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
771 					&aup->mac->mac_addr_high);
772 	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
773 		dev->dev_addr[1]<<8 | dev->dev_addr[0],
774 					&aup->mac->mac_addr_low);
775 
776 
777 	for (i = 0; i < NUM_RX_DMA; i++)
778 		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
779 
780 	wmb(); /* drain writebuffer */
781 
782 	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
783 #ifndef CONFIG_CPU_LITTLE_ENDIAN
784 	control |= MAC_BIG_ENDIAN;
785 #endif
786 	if (aup->phy_dev) {
787 		if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
788 			control |= MAC_FULL_DUPLEX;
789 		else
790 			control |= MAC_DISABLE_RX_OWN;
791 	} else { /* PHY-less op, assume full-duplex */
792 		control |= MAC_FULL_DUPLEX;
793 	}
794 
795 	writel(control, &aup->mac->control);
796 	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
797 	wmb(); /* drain writebuffer */
798 
799 	spin_unlock_irqrestore(&aup->lock, flags);
800 	return 0;
801 }
802 
803 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
804 {
805 	struct net_device_stats *ps = &dev->stats;
806 
807 	ps->rx_packets++;
808 	if (status & RX_MCAST_FRAME)
809 		ps->multicast++;
810 
811 	if (status & RX_ERROR) {
812 		ps->rx_errors++;
813 		if (status & RX_MISSED_FRAME)
814 			ps->rx_missed_errors++;
815 		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
816 			ps->rx_length_errors++;
817 		if (status & RX_CRC_ERROR)
818 			ps->rx_crc_errors++;
819 		if (status & RX_COLL)
820 			ps->collisions++;
821 	} else
822 		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
823 
824 }
825 
826 /*
827  * Au1000 receive routine.
828  */
829 static int au1000_rx(struct net_device *dev)
830 {
831 	struct au1000_private *aup = netdev_priv(dev);
832 	struct sk_buff *skb;
833 	struct rx_dma *prxd;
834 	u32 buff_stat, status;
835 	struct db_dest *pDB;
836 	u32	frmlen;
837 
838 	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
839 
840 	prxd = aup->rx_dma_ring[aup->rx_head];
841 	buff_stat = prxd->buff_stat;
842 	while (buff_stat & RX_T_DONE)  {
843 		status = prxd->status;
844 		pDB = aup->rx_db_inuse[aup->rx_head];
845 		au1000_update_rx_stats(dev, status);
846 		if (!(status & RX_ERROR))  {
847 
848 			/* good frame */
849 			frmlen = (status & RX_FRAME_LEN_MASK);
850 			frmlen -= 4; /* Remove FCS */
851 			skb = netdev_alloc_skb(dev, frmlen + 2);
852 			if (skb == NULL) {
853 				dev->stats.rx_dropped++;
854 				continue;
855 			}
856 			skb_reserve(skb, 2);	/* 16 byte IP header align */
857 			skb_copy_to_linear_data(skb,
858 				(unsigned char *)pDB->vaddr, frmlen);
859 			skb_put(skb, frmlen);
860 			skb->protocol = eth_type_trans(skb, dev);
861 			netif_rx(skb);	/* pass the packet to upper layers */
862 		} else {
863 			if (au1000_debug > 4) {
864 				pr_err("rx_error(s):");
865 				if (status & RX_MISSED_FRAME)
866 					pr_cont(" miss");
867 				if (status & RX_WDOG_TIMER)
868 					pr_cont(" wdog");
869 				if (status & RX_RUNT)
870 					pr_cont(" runt");
871 				if (status & RX_OVERLEN)
872 					pr_cont(" overlen");
873 				if (status & RX_COLL)
874 					pr_cont(" coll");
875 				if (status & RX_MII_ERROR)
876 					pr_cont(" mii error");
877 				if (status & RX_CRC_ERROR)
878 					pr_cont(" crc error");
879 				if (status & RX_LEN_ERROR)
880 					pr_cont(" len error");
881 				if (status & RX_U_CNTRL_FRAME)
882 					pr_cont(" u control frame");
883 				pr_cont("\n");
884 			}
885 		}
886 		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
887 		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
888 		wmb(); /* drain writebuffer */
889 
890 		/* next descriptor */
891 		prxd = aup->rx_dma_ring[aup->rx_head];
892 		buff_stat = prxd->buff_stat;
893 	}
894 	return 0;
895 }
896 
897 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
898 {
899 	struct au1000_private *aup = netdev_priv(dev);
900 	struct net_device_stats *ps = &dev->stats;
901 
902 	if (status & TX_FRAME_ABORTED) {
903 		if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
904 			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
905 				/* any other tx errors are only valid
906 				 * in half duplex mode
907 				 */
908 				ps->tx_errors++;
909 				ps->tx_aborted_errors++;
910 			}
911 		} else {
912 			ps->tx_errors++;
913 			ps->tx_aborted_errors++;
914 			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
915 				ps->tx_carrier_errors++;
916 		}
917 	}
918 }
919 
920 /*
921  * Called from the interrupt service routine to acknowledge
922  * the TX DONE bits.  This is a must if the irq is setup as
923  * edge triggered.
924  */
925 static void au1000_tx_ack(struct net_device *dev)
926 {
927 	struct au1000_private *aup = netdev_priv(dev);
928 	struct tx_dma *ptxd;
929 
930 	ptxd = aup->tx_dma_ring[aup->tx_tail];
931 
932 	while (ptxd->buff_stat & TX_T_DONE) {
933 		au1000_update_tx_stats(dev, ptxd->status);
934 		ptxd->buff_stat &= ~TX_T_DONE;
935 		ptxd->len = 0;
936 		wmb(); /* drain writebuffer */
937 
938 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
939 		ptxd = aup->tx_dma_ring[aup->tx_tail];
940 
941 		if (aup->tx_full) {
942 			aup->tx_full = 0;
943 			netif_wake_queue(dev);
944 		}
945 	}
946 }
947 
948 /*
949  * Au1000 interrupt service routine.
950  */
951 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
952 {
953 	struct net_device *dev = dev_id;
954 
955 	/* Handle RX interrupts first to minimize chance of overrun */
956 
957 	au1000_rx(dev);
958 	au1000_tx_ack(dev);
959 	return IRQ_RETVAL(1);
960 }
961 
962 static int au1000_open(struct net_device *dev)
963 {
964 	int retval;
965 	struct au1000_private *aup = netdev_priv(dev);
966 
967 	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
968 
969 	retval = request_irq(dev->irq, au1000_interrupt, 0,
970 					dev->name, dev);
971 	if (retval) {
972 		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
973 		return retval;
974 	}
975 
976 	retval = au1000_init(dev);
977 	if (retval) {
978 		netdev_err(dev, "error in au1000_init\n");
979 		free_irq(dev->irq, dev);
980 		return retval;
981 	}
982 
983 	if (aup->phy_dev) {
984 		/* cause the PHY state machine to schedule a link state check */
985 		aup->phy_dev->state = PHY_CHANGELINK;
986 		phy_start(aup->phy_dev);
987 	}
988 
989 	netif_start_queue(dev);
990 
991 	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
992 
993 	return 0;
994 }
995 
996 static int au1000_close(struct net_device *dev)
997 {
998 	unsigned long flags;
999 	struct au1000_private *const aup = netdev_priv(dev);
1000 
1001 	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
1002 
1003 	if (aup->phy_dev)
1004 		phy_stop(aup->phy_dev);
1005 
1006 	spin_lock_irqsave(&aup->lock, flags);
1007 
1008 	au1000_reset_mac_unlocked(dev);
1009 
1010 	/* stop the device */
1011 	netif_stop_queue(dev);
1012 
1013 	/* disable the interrupt */
1014 	free_irq(dev->irq, dev);
1015 	spin_unlock_irqrestore(&aup->lock, flags);
1016 
1017 	return 0;
1018 }
1019 
1020 /*
1021  * Au1000 transmit routine.
1022  */
1023 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
1024 {
1025 	struct au1000_private *aup = netdev_priv(dev);
1026 	struct net_device_stats *ps = &dev->stats;
1027 	struct tx_dma *ptxd;
1028 	u32 buff_stat;
1029 	struct db_dest *pDB;
1030 	int i;
1031 
1032 	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
1033 				(unsigned)aup, skb->len,
1034 				skb->data, aup->tx_head);
1035 
1036 	ptxd = aup->tx_dma_ring[aup->tx_head];
1037 	buff_stat = ptxd->buff_stat;
1038 	if (buff_stat & TX_DMA_ENABLE) {
1039 		/* We've wrapped around and the transmitter is still busy */
1040 		netif_stop_queue(dev);
1041 		aup->tx_full = 1;
1042 		return NETDEV_TX_BUSY;
1043 	} else if (buff_stat & TX_T_DONE) {
1044 		au1000_update_tx_stats(dev, ptxd->status);
1045 		ptxd->len = 0;
1046 	}
1047 
1048 	if (aup->tx_full) {
1049 		aup->tx_full = 0;
1050 		netif_wake_queue(dev);
1051 	}
1052 
1053 	pDB = aup->tx_db_inuse[aup->tx_head];
1054 	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
1055 	if (skb->len < ETH_ZLEN) {
1056 		for (i = skb->len; i < ETH_ZLEN; i++)
1057 			((char *)pDB->vaddr)[i] = 0;
1058 
1059 		ptxd->len = ETH_ZLEN;
1060 	} else
1061 		ptxd->len = skb->len;
1062 
1063 	ps->tx_packets++;
1064 	ps->tx_bytes += ptxd->len;
1065 
1066 	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1067 	wmb(); /* drain writebuffer */
1068 	dev_kfree_skb(skb);
1069 	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1070 	return NETDEV_TX_OK;
1071 }
1072 
1073 /*
1074  * The Tx ring has been full longer than the watchdog timeout
1075  * value. The transmitter must be hung?
1076  */
1077 static void au1000_tx_timeout(struct net_device *dev)
1078 {
1079 	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1080 	au1000_reset_mac(dev);
1081 	au1000_init(dev);
1082 	dev->trans_start = jiffies; /* prevent tx timeout */
1083 	netif_wake_queue(dev);
1084 }
1085 
1086 static void au1000_multicast_list(struct net_device *dev)
1087 {
1088 	struct au1000_private *aup = netdev_priv(dev);
1089 	u32 reg;
1090 
1091 	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1092 	reg = readl(&aup->mac->control);
1093 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1094 		reg |= MAC_PROMISCUOUS;
1095 	} else if ((dev->flags & IFF_ALLMULTI)  ||
1096 			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1097 		reg |= MAC_PASS_ALL_MULTI;
1098 		reg &= ~MAC_PROMISCUOUS;
1099 		netdev_info(dev, "Pass all multicast\n");
1100 	} else {
1101 		struct netdev_hw_addr *ha;
1102 		u32 mc_filter[2];	/* Multicast hash filter */
1103 
1104 		mc_filter[1] = mc_filter[0] = 0;
1105 		netdev_for_each_mc_addr(ha, dev)
1106 			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1107 					(long *)mc_filter);
1108 		writel(mc_filter[1], &aup->mac->multi_hash_high);
1109 		writel(mc_filter[0], &aup->mac->multi_hash_low);
1110 		reg &= ~MAC_PROMISCUOUS;
1111 		reg |= MAC_HASH_MODE;
1112 	}
1113 	writel(reg, &aup->mac->control);
1114 }
1115 
1116 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1117 {
1118 	struct au1000_private *aup = netdev_priv(dev);
1119 
1120 	if (!netif_running(dev))
1121 		return -EINVAL;
1122 
1123 	if (!aup->phy_dev)
1124 		return -EINVAL; /* PHY not controllable */
1125 
1126 	return phy_mii_ioctl(aup->phy_dev, rq, cmd);
1127 }
1128 
1129 static const struct net_device_ops au1000_netdev_ops = {
1130 	.ndo_open		= au1000_open,
1131 	.ndo_stop		= au1000_close,
1132 	.ndo_start_xmit		= au1000_tx,
1133 	.ndo_set_rx_mode	= au1000_multicast_list,
1134 	.ndo_do_ioctl		= au1000_ioctl,
1135 	.ndo_tx_timeout		= au1000_tx_timeout,
1136 	.ndo_set_mac_address	= eth_mac_addr,
1137 	.ndo_validate_addr	= eth_validate_addr,
1138 	.ndo_change_mtu		= eth_change_mtu,
1139 };
1140 
1141 static int au1000_probe(struct platform_device *pdev)
1142 {
1143 	struct au1000_private *aup = NULL;
1144 	struct au1000_eth_platform_data *pd;
1145 	struct net_device *dev = NULL;
1146 	struct db_dest *pDB, *pDBfree;
1147 	int irq, i, err = 0;
1148 	struct resource *base, *macen, *macdma;
1149 
1150 	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1151 	if (!base) {
1152 		dev_err(&pdev->dev, "failed to retrieve base register\n");
1153 		err = -ENODEV;
1154 		goto out;
1155 	}
1156 
1157 	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1158 	if (!macen) {
1159 		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1160 		err = -ENODEV;
1161 		goto out;
1162 	}
1163 
1164 	irq = platform_get_irq(pdev, 0);
1165 	if (irq < 0) {
1166 		dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1167 		err = -ENODEV;
1168 		goto out;
1169 	}
1170 
1171 	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1172 	if (!macdma) {
1173 		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1174 		err = -ENODEV;
1175 		goto out;
1176 	}
1177 
1178 	if (!request_mem_region(base->start, resource_size(base),
1179 							pdev->name)) {
1180 		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1181 		err = -ENXIO;
1182 		goto out;
1183 	}
1184 
1185 	if (!request_mem_region(macen->start, resource_size(macen),
1186 							pdev->name)) {
1187 		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1188 		err = -ENXIO;
1189 		goto err_request;
1190 	}
1191 
1192 	if (!request_mem_region(macdma->start, resource_size(macdma),
1193 							pdev->name)) {
1194 		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1195 		err = -ENXIO;
1196 		goto err_macdma;
1197 	}
1198 
1199 	dev = alloc_etherdev(sizeof(struct au1000_private));
1200 	if (!dev) {
1201 		err = -ENOMEM;
1202 		goto err_alloc;
1203 	}
1204 
1205 	SET_NETDEV_DEV(dev, &pdev->dev);
1206 	platform_set_drvdata(pdev, dev);
1207 	aup = netdev_priv(dev);
1208 
1209 	spin_lock_init(&aup->lock);
1210 	aup->msg_enable = (au1000_debug < 4 ?
1211 				AU1000_DEF_MSG_ENABLE : au1000_debug);
1212 
1213 	/* Allocate the data buffers
1214 	 * Snooping works fine with eth on all au1xxx
1215 	 */
1216 	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1217 						(NUM_TX_BUFFS + NUM_RX_BUFFS),
1218 						&aup->dma_addr,	0);
1219 	if (!aup->vaddr) {
1220 		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1221 		err = -ENOMEM;
1222 		goto err_vaddr;
1223 	}
1224 
1225 	/* aup->mac is the base address of the MAC's registers */
1226 	aup->mac = (struct mac_reg *)
1227 			ioremap_nocache(base->start, resource_size(base));
1228 	if (!aup->mac) {
1229 		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1230 		err = -ENXIO;
1231 		goto err_remap1;
1232 	}
1233 
1234 	/* Setup some variables for quick register address access */
1235 	aup->enable = (u32 *)ioremap_nocache(macen->start,
1236 						resource_size(macen));
1237 	if (!aup->enable) {
1238 		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1239 		err = -ENXIO;
1240 		goto err_remap2;
1241 	}
1242 	aup->mac_id = pdev->id;
1243 
1244 	aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1245 	if (!aup->macdma) {
1246 		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1247 		err = -ENXIO;
1248 		goto err_remap3;
1249 	}
1250 
1251 	au1000_setup_hw_rings(aup, aup->macdma);
1252 
1253 	writel(0, aup->enable);
1254 	aup->mac_enabled = 0;
1255 
1256 	pd = dev_get_platdata(&pdev->dev);
1257 	if (!pd) {
1258 		dev_info(&pdev->dev, "no platform_data passed,"
1259 					" PHY search on MAC0\n");
1260 		aup->phy1_search_mac0 = 1;
1261 	} else {
1262 		if (is_valid_ether_addr(pd->mac)) {
1263 			memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1264 		} else {
1265 			/* Set a random MAC since no valid provided by platform_data. */
1266 			eth_hw_addr_random(dev);
1267 		}
1268 
1269 		aup->phy_static_config = pd->phy_static_config;
1270 		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1271 		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1272 		aup->phy_addr = pd->phy_addr;
1273 		aup->phy_busid = pd->phy_busid;
1274 		aup->phy_irq = pd->phy_irq;
1275 	}
1276 
1277 	if (aup->phy_busid && aup->phy_busid > 0) {
1278 		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1279 		err = -ENODEV;
1280 		goto err_mdiobus_alloc;
1281 	}
1282 
1283 	aup->mii_bus = mdiobus_alloc();
1284 	if (aup->mii_bus == NULL) {
1285 		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1286 		err = -ENOMEM;
1287 		goto err_mdiobus_alloc;
1288 	}
1289 
1290 	aup->mii_bus->priv = dev;
1291 	aup->mii_bus->read = au1000_mdiobus_read;
1292 	aup->mii_bus->write = au1000_mdiobus_write;
1293 	aup->mii_bus->reset = au1000_mdiobus_reset;
1294 	aup->mii_bus->name = "au1000_eth_mii";
1295 	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1296 		pdev->name, aup->mac_id);
1297 	aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1298 	if (aup->mii_bus->irq == NULL) {
1299 		err = -ENOMEM;
1300 		goto err_out;
1301 	}
1302 
1303 	for (i = 0; i < PHY_MAX_ADDR; ++i)
1304 		aup->mii_bus->irq[i] = PHY_POLL;
1305 	/* if known, set corresponding PHY IRQs */
1306 	if (aup->phy_static_config)
1307 		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1308 			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1309 
1310 	err = mdiobus_register(aup->mii_bus);
1311 	if (err) {
1312 		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1313 		goto err_mdiobus_reg;
1314 	}
1315 
1316 	err = au1000_mii_probe(dev);
1317 	if (err != 0)
1318 		goto err_out;
1319 
1320 	pDBfree = NULL;
1321 	/* setup the data buffer descriptors and attach a buffer to each one */
1322 	pDB = aup->db;
1323 	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1324 		pDB->pnext = pDBfree;
1325 		pDBfree = pDB;
1326 		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1327 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1328 		pDB++;
1329 	}
1330 	aup->pDBfree = pDBfree;
1331 
1332 	err = -ENODEV;
1333 	for (i = 0; i < NUM_RX_DMA; i++) {
1334 		pDB = au1000_GetFreeDB(aup);
1335 		if (!pDB)
1336 			goto err_out;
1337 
1338 		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1339 		aup->rx_db_inuse[i] = pDB;
1340 	}
1341 
1342 	err = -ENODEV;
1343 	for (i = 0; i < NUM_TX_DMA; i++) {
1344 		pDB = au1000_GetFreeDB(aup);
1345 		if (!pDB)
1346 			goto err_out;
1347 
1348 		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1349 		aup->tx_dma_ring[i]->len = 0;
1350 		aup->tx_db_inuse[i] = pDB;
1351 	}
1352 
1353 	dev->base_addr = base->start;
1354 	dev->irq = irq;
1355 	dev->netdev_ops = &au1000_netdev_ops;
1356 	dev->ethtool_ops = &au1000_ethtool_ops;
1357 	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1358 
1359 	/*
1360 	 * The boot code uses the ethernet controller, so reset it to start
1361 	 * fresh.  au1000_init() expects that the device is in reset state.
1362 	 */
1363 	au1000_reset_mac(dev);
1364 
1365 	err = register_netdev(dev);
1366 	if (err) {
1367 		netdev_err(dev, "Cannot register net device, aborting.\n");
1368 		goto err_out;
1369 	}
1370 
1371 	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1372 			(unsigned long)base->start, irq);
1373 
1374 	pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1375 
1376 	return 0;
1377 
1378 err_out:
1379 	if (aup->mii_bus != NULL)
1380 		mdiobus_unregister(aup->mii_bus);
1381 
1382 	/* here we should have a valid dev plus aup-> register addresses
1383 	 * so we can reset the mac properly.
1384 	 */
1385 	au1000_reset_mac(dev);
1386 
1387 	for (i = 0; i < NUM_RX_DMA; i++) {
1388 		if (aup->rx_db_inuse[i])
1389 			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1390 	}
1391 	for (i = 0; i < NUM_TX_DMA; i++) {
1392 		if (aup->tx_db_inuse[i])
1393 			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1394 	}
1395 err_mdiobus_reg:
1396 	mdiobus_free(aup->mii_bus);
1397 err_mdiobus_alloc:
1398 	iounmap(aup->macdma);
1399 err_remap3:
1400 	iounmap(aup->enable);
1401 err_remap2:
1402 	iounmap(aup->mac);
1403 err_remap1:
1404 	dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1405 			     (void *)aup->vaddr, aup->dma_addr);
1406 err_vaddr:
1407 	free_netdev(dev);
1408 err_alloc:
1409 	release_mem_region(macdma->start, resource_size(macdma));
1410 err_macdma:
1411 	release_mem_region(macen->start, resource_size(macen));
1412 err_request:
1413 	release_mem_region(base->start, resource_size(base));
1414 out:
1415 	return err;
1416 }
1417 
1418 static int au1000_remove(struct platform_device *pdev)
1419 {
1420 	struct net_device *dev = platform_get_drvdata(pdev);
1421 	struct au1000_private *aup = netdev_priv(dev);
1422 	int i;
1423 	struct resource *base, *macen;
1424 
1425 	unregister_netdev(dev);
1426 	mdiobus_unregister(aup->mii_bus);
1427 	mdiobus_free(aup->mii_bus);
1428 
1429 	for (i = 0; i < NUM_RX_DMA; i++)
1430 		if (aup->rx_db_inuse[i])
1431 			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1432 
1433 	for (i = 0; i < NUM_TX_DMA; i++)
1434 		if (aup->tx_db_inuse[i])
1435 			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1436 
1437 	dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1438 			(NUM_TX_BUFFS + NUM_RX_BUFFS),
1439 			(void *)aup->vaddr, aup->dma_addr);
1440 
1441 	iounmap(aup->macdma);
1442 	iounmap(aup->mac);
1443 	iounmap(aup->enable);
1444 
1445 	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1446 	release_mem_region(base->start, resource_size(base));
1447 
1448 	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1449 	release_mem_region(base->start, resource_size(base));
1450 
1451 	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1452 	release_mem_region(macen->start, resource_size(macen));
1453 
1454 	free_netdev(dev);
1455 
1456 	return 0;
1457 }
1458 
1459 static struct platform_driver au1000_eth_driver = {
1460 	.probe  = au1000_probe,
1461 	.remove = au1000_remove,
1462 	.driver = {
1463 		.name   = "au1000-eth",
1464 	},
1465 };
1466 
1467 module_platform_driver(au1000_eth_driver);
1468 
1469 MODULE_ALIAS("platform:au1000-eth");
1470