1 /* 2 * 3 * Alchemy Au1x00 ethernet driver 4 * 5 * Copyright 2001-2003, 2006 MontaVista Software Inc. 6 * Copyright 2002 TimeSys Corp. 7 * Added ethtool/mii-tool support, 8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> 9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de 10 * or riemer@riemer-nt.de: fixed the link beat detection with 11 * ioctls (SIOCGMIIPHY) 12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org> 13 * converted to use linux-2.6.x's PHY framework 14 * 15 * Author: MontaVista Software, Inc. 16 * ppopov@mvista.com or source@mvista.com 17 * 18 * ######################################################################## 19 * 20 * This program is free software; you can distribute it and/or modify it 21 * under the terms of the GNU General Public License (Version 2) as 22 * published by the Free Software Foundation. 23 * 24 * This program is distributed in the hope it will be useful, but WITHOUT 25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 27 * for more details. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, see <http://www.gnu.org/licenses/>. 31 * 32 * ######################################################################## 33 * 34 * 35 */ 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/capability.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/string.h> 43 #include <linux/timer.h> 44 #include <linux/errno.h> 45 #include <linux/in.h> 46 #include <linux/ioport.h> 47 #include <linux/bitops.h> 48 #include <linux/slab.h> 49 #include <linux/interrupt.h> 50 #include <linux/netdevice.h> 51 #include <linux/etherdevice.h> 52 #include <linux/ethtool.h> 53 #include <linux/mii.h> 54 #include <linux/skbuff.h> 55 #include <linux/delay.h> 56 #include <linux/crc32.h> 57 #include <linux/phy.h> 58 #include <linux/platform_device.h> 59 #include <linux/cpu.h> 60 #include <linux/io.h> 61 62 #include <asm/mipsregs.h> 63 #include <asm/irq.h> 64 #include <asm/processor.h> 65 66 #include <au1000.h> 67 #include <au1xxx_eth.h> 68 #include <prom.h> 69 70 #include "au1000_eth.h" 71 72 #ifdef AU1000_ETH_DEBUG 73 static int au1000_debug = 5; 74 #else 75 static int au1000_debug = 3; 76 #endif 77 78 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 79 NETIF_MSG_PROBE | \ 80 NETIF_MSG_LINK) 81 82 #define DRV_NAME "au1000_eth" 83 #define DRV_VERSION "1.7" 84 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" 85 #define DRV_DESC "Au1xxx on-chip Ethernet driver" 86 87 MODULE_AUTHOR(DRV_AUTHOR); 88 MODULE_DESCRIPTION(DRV_DESC); 89 MODULE_LICENSE("GPL"); 90 MODULE_VERSION(DRV_VERSION); 91 92 /* AU1000 MAC registers and bits */ 93 #define MAC_CONTROL 0x0 94 # define MAC_RX_ENABLE (1 << 2) 95 # define MAC_TX_ENABLE (1 << 3) 96 # define MAC_DEF_CHECK (1 << 5) 97 # define MAC_SET_BL(X) (((X) & 0x3) << 6) 98 # define MAC_AUTO_PAD (1 << 8) 99 # define MAC_DISABLE_RETRY (1 << 10) 100 # define MAC_DISABLE_BCAST (1 << 11) 101 # define MAC_LATE_COL (1 << 12) 102 # define MAC_HASH_MODE (1 << 13) 103 # define MAC_HASH_ONLY (1 << 15) 104 # define MAC_PASS_ALL (1 << 16) 105 # define MAC_INVERSE_FILTER (1 << 17) 106 # define MAC_PROMISCUOUS (1 << 18) 107 # define MAC_PASS_ALL_MULTI (1 << 19) 108 # define MAC_FULL_DUPLEX (1 << 20) 109 # define MAC_NORMAL_MODE 0 110 # define MAC_INT_LOOPBACK (1 << 21) 111 # define MAC_EXT_LOOPBACK (1 << 22) 112 # define MAC_DISABLE_RX_OWN (1 << 23) 113 # define MAC_BIG_ENDIAN (1 << 30) 114 # define MAC_RX_ALL (1 << 31) 115 #define MAC_ADDRESS_HIGH 0x4 116 #define MAC_ADDRESS_LOW 0x8 117 #define MAC_MCAST_HIGH 0xC 118 #define MAC_MCAST_LOW 0x10 119 #define MAC_MII_CNTRL 0x14 120 # define MAC_MII_BUSY (1 << 0) 121 # define MAC_MII_READ 0 122 # define MAC_MII_WRITE (1 << 1) 123 # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6) 124 # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11) 125 #define MAC_MII_DATA 0x18 126 #define MAC_FLOW_CNTRL 0x1C 127 # define MAC_FLOW_CNTRL_BUSY (1 << 0) 128 # define MAC_FLOW_CNTRL_ENABLE (1 << 1) 129 # define MAC_PASS_CONTROL (1 << 2) 130 # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16) 131 #define MAC_VLAN1_TAG 0x20 132 #define MAC_VLAN2_TAG 0x24 133 134 /* Ethernet Controller Enable */ 135 # define MAC_EN_CLOCK_ENABLE (1 << 0) 136 # define MAC_EN_RESET0 (1 << 1) 137 # define MAC_EN_TOSS (0 << 2) 138 # define MAC_EN_CACHEABLE (1 << 3) 139 # define MAC_EN_RESET1 (1 << 4) 140 # define MAC_EN_RESET2 (1 << 5) 141 # define MAC_DMA_RESET (1 << 6) 142 143 /* Ethernet Controller DMA Channels */ 144 /* offsets from MAC_TX_RING_ADDR address */ 145 #define MAC_TX_BUFF0_STATUS 0x0 146 # define TX_FRAME_ABORTED (1 << 0) 147 # define TX_JAB_TIMEOUT (1 << 1) 148 # define TX_NO_CARRIER (1 << 2) 149 # define TX_LOSS_CARRIER (1 << 3) 150 # define TX_EXC_DEF (1 << 4) 151 # define TX_LATE_COLL_ABORT (1 << 5) 152 # define TX_EXC_COLL (1 << 6) 153 # define TX_UNDERRUN (1 << 7) 154 # define TX_DEFERRED (1 << 8) 155 # define TX_LATE_COLL (1 << 9) 156 # define TX_COLL_CNT_MASK (0xF << 10) 157 # define TX_PKT_RETRY (1 << 31) 158 #define MAC_TX_BUFF0_ADDR 0x4 159 # define TX_DMA_ENABLE (1 << 0) 160 # define TX_T_DONE (1 << 1) 161 # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) 162 #define MAC_TX_BUFF0_LEN 0x8 163 #define MAC_TX_BUFF1_STATUS 0x10 164 #define MAC_TX_BUFF1_ADDR 0x14 165 #define MAC_TX_BUFF1_LEN 0x18 166 #define MAC_TX_BUFF2_STATUS 0x20 167 #define MAC_TX_BUFF2_ADDR 0x24 168 #define MAC_TX_BUFF2_LEN 0x28 169 #define MAC_TX_BUFF3_STATUS 0x30 170 #define MAC_TX_BUFF3_ADDR 0x34 171 #define MAC_TX_BUFF3_LEN 0x38 172 173 /* offsets from MAC_RX_RING_ADDR */ 174 #define MAC_RX_BUFF0_STATUS 0x0 175 # define RX_FRAME_LEN_MASK 0x3fff 176 # define RX_WDOG_TIMER (1 << 14) 177 # define RX_RUNT (1 << 15) 178 # define RX_OVERLEN (1 << 16) 179 # define RX_COLL (1 << 17) 180 # define RX_ETHER (1 << 18) 181 # define RX_MII_ERROR (1 << 19) 182 # define RX_DRIBBLING (1 << 20) 183 # define RX_CRC_ERROR (1 << 21) 184 # define RX_VLAN1 (1 << 22) 185 # define RX_VLAN2 (1 << 23) 186 # define RX_LEN_ERROR (1 << 24) 187 # define RX_CNTRL_FRAME (1 << 25) 188 # define RX_U_CNTRL_FRAME (1 << 26) 189 # define RX_MCAST_FRAME (1 << 27) 190 # define RX_BCAST_FRAME (1 << 28) 191 # define RX_FILTER_FAIL (1 << 29) 192 # define RX_PACKET_FILTER (1 << 30) 193 # define RX_MISSED_FRAME (1 << 31) 194 195 # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \ 196 RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \ 197 RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME) 198 #define MAC_RX_BUFF0_ADDR 0x4 199 # define RX_DMA_ENABLE (1 << 0) 200 # define RX_T_DONE (1 << 1) 201 # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) 202 # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0) 203 #define MAC_RX_BUFF1_STATUS 0x10 204 #define MAC_RX_BUFF1_ADDR 0x14 205 #define MAC_RX_BUFF2_STATUS 0x20 206 #define MAC_RX_BUFF2_ADDR 0x24 207 #define MAC_RX_BUFF3_STATUS 0x30 208 #define MAC_RX_BUFF3_ADDR 0x34 209 210 /* 211 * Theory of operation 212 * 213 * The Au1000 MACs use a simple rx and tx descriptor ring scheme. 214 * There are four receive and four transmit descriptors. These 215 * descriptors are not in memory; rather, they are just a set of 216 * hardware registers. 217 * 218 * Since the Au1000 has a coherent data cache, the receive and 219 * transmit buffers are allocated from the KSEG0 segment. The 220 * hardware registers, however, are still mapped at KSEG1 to 221 * make sure there's no out-of-order writes, and that all writes 222 * complete immediately. 223 */ 224 225 /* 226 * board-specific configurations 227 * 228 * PHY detection algorithm 229 * 230 * If phy_static_config is undefined, the PHY setup is 231 * autodetected: 232 * 233 * mii_probe() first searches the current MAC's MII bus for a PHY, 234 * selecting the first (or last, if phy_search_highest_addr is 235 * defined) PHY address not already claimed by another netdev. 236 * 237 * If nothing was found that way when searching for the 2nd ethernet 238 * controller's PHY and phy1_search_mac0 is defined, then 239 * the first MII bus is searched as well for an unclaimed PHY; this is 240 * needed in case of a dual-PHY accessible only through the MAC0's MII 241 * bus. 242 * 243 * Finally, if no PHY is found, then the corresponding ethernet 244 * controller is not registered to the network subsystem. 245 */ 246 247 /* autodetection defaults: phy1_search_mac0 */ 248 249 /* static PHY setup 250 * 251 * most boards PHY setup should be detectable properly with the 252 * autodetection algorithm in mii_probe(), but in some cases (e.g. if 253 * you have a switch attached, or want to use the PHY's interrupt 254 * notification capabilities) you can provide a static PHY 255 * configuration here 256 * 257 * IRQs may only be set, if a PHY address was configured 258 * If a PHY address is given, also a bus id is required to be set 259 * 260 * ps: make sure the used irqs are configured properly in the board 261 * specific irq-map 262 */ 263 264 static void au1000_enable_mac(struct net_device *dev, int force_reset) 265 { 266 unsigned long flags; 267 struct au1000_private *aup = netdev_priv(dev); 268 269 spin_lock_irqsave(&aup->lock, flags); 270 271 if (force_reset || (!aup->mac_enabled)) { 272 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 273 wmb(); /* drain writebuffer */ 274 mdelay(2); 275 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 276 | MAC_EN_CLOCK_ENABLE), aup->enable); 277 wmb(); /* drain writebuffer */ 278 mdelay(2); 279 280 aup->mac_enabled = 1; 281 } 282 283 spin_unlock_irqrestore(&aup->lock, flags); 284 } 285 286 /* 287 * MII operations 288 */ 289 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg) 290 { 291 struct au1000_private *aup = netdev_priv(dev); 292 u32 *const mii_control_reg = &aup->mac->mii_control; 293 u32 *const mii_data_reg = &aup->mac->mii_data; 294 u32 timedout = 20; 295 u32 mii_control; 296 297 while (readl(mii_control_reg) & MAC_MII_BUSY) { 298 mdelay(1); 299 if (--timedout == 0) { 300 netdev_err(dev, "read_MII busy timeout!!\n"); 301 return -1; 302 } 303 } 304 305 mii_control = MAC_SET_MII_SELECT_REG(reg) | 306 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; 307 308 writel(mii_control, mii_control_reg); 309 310 timedout = 20; 311 while (readl(mii_control_reg) & MAC_MII_BUSY) { 312 mdelay(1); 313 if (--timedout == 0) { 314 netdev_err(dev, "mdio_read busy timeout!!\n"); 315 return -1; 316 } 317 } 318 return readl(mii_data_reg); 319 } 320 321 static void au1000_mdio_write(struct net_device *dev, int phy_addr, 322 int reg, u16 value) 323 { 324 struct au1000_private *aup = netdev_priv(dev); 325 u32 *const mii_control_reg = &aup->mac->mii_control; 326 u32 *const mii_data_reg = &aup->mac->mii_data; 327 u32 timedout = 20; 328 u32 mii_control; 329 330 while (readl(mii_control_reg) & MAC_MII_BUSY) { 331 mdelay(1); 332 if (--timedout == 0) { 333 netdev_err(dev, "mdio_write busy timeout!!\n"); 334 return; 335 } 336 } 337 338 mii_control = MAC_SET_MII_SELECT_REG(reg) | 339 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; 340 341 writel(value, mii_data_reg); 342 writel(mii_control, mii_control_reg); 343 } 344 345 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) 346 { 347 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does 348 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) 349 */ 350 struct net_device *const dev = bus->priv; 351 352 /* make sure the MAC associated with this 353 * mii_bus is enabled 354 */ 355 au1000_enable_mac(dev, 0); 356 357 return au1000_mdio_read(dev, phy_addr, regnum); 358 } 359 360 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, 361 u16 value) 362 { 363 struct net_device *const dev = bus->priv; 364 365 /* make sure the MAC associated with this 366 * mii_bus is enabled 367 */ 368 au1000_enable_mac(dev, 0); 369 370 au1000_mdio_write(dev, phy_addr, regnum, value); 371 return 0; 372 } 373 374 static int au1000_mdiobus_reset(struct mii_bus *bus) 375 { 376 struct net_device *const dev = bus->priv; 377 378 /* make sure the MAC associated with this 379 * mii_bus is enabled 380 */ 381 au1000_enable_mac(dev, 0); 382 383 return 0; 384 } 385 386 static void au1000_hard_stop(struct net_device *dev) 387 { 388 struct au1000_private *aup = netdev_priv(dev); 389 u32 reg; 390 391 netif_dbg(aup, drv, dev, "hard stop\n"); 392 393 reg = readl(&aup->mac->control); 394 reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); 395 writel(reg, &aup->mac->control); 396 wmb(); /* drain writebuffer */ 397 mdelay(10); 398 } 399 400 static void au1000_enable_rx_tx(struct net_device *dev) 401 { 402 struct au1000_private *aup = netdev_priv(dev); 403 u32 reg; 404 405 netif_dbg(aup, hw, dev, "enable_rx_tx\n"); 406 407 reg = readl(&aup->mac->control); 408 reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE); 409 writel(reg, &aup->mac->control); 410 wmb(); /* drain writebuffer */ 411 mdelay(10); 412 } 413 414 static void 415 au1000_adjust_link(struct net_device *dev) 416 { 417 struct au1000_private *aup = netdev_priv(dev); 418 struct phy_device *phydev = aup->phy_dev; 419 unsigned long flags; 420 u32 reg; 421 422 int status_change = 0; 423 424 BUG_ON(!aup->phy_dev); 425 426 spin_lock_irqsave(&aup->lock, flags); 427 428 if (phydev->link && (aup->old_speed != phydev->speed)) { 429 /* speed changed */ 430 431 switch (phydev->speed) { 432 case SPEED_10: 433 case SPEED_100: 434 break; 435 default: 436 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n", 437 phydev->speed); 438 break; 439 } 440 441 aup->old_speed = phydev->speed; 442 443 status_change = 1; 444 } 445 446 if (phydev->link && (aup->old_duplex != phydev->duplex)) { 447 /* duplex mode changed */ 448 449 /* switching duplex mode requires to disable rx and tx! */ 450 au1000_hard_stop(dev); 451 452 reg = readl(&aup->mac->control); 453 if (DUPLEX_FULL == phydev->duplex) { 454 reg |= MAC_FULL_DUPLEX; 455 reg &= ~MAC_DISABLE_RX_OWN; 456 } else { 457 reg &= ~MAC_FULL_DUPLEX; 458 reg |= MAC_DISABLE_RX_OWN; 459 } 460 writel(reg, &aup->mac->control); 461 wmb(); /* drain writebuffer */ 462 mdelay(1); 463 464 au1000_enable_rx_tx(dev); 465 aup->old_duplex = phydev->duplex; 466 467 status_change = 1; 468 } 469 470 if (phydev->link != aup->old_link) { 471 /* link state changed */ 472 473 if (!phydev->link) { 474 /* link went down */ 475 aup->old_speed = 0; 476 aup->old_duplex = -1; 477 } 478 479 aup->old_link = phydev->link; 480 status_change = 1; 481 } 482 483 spin_unlock_irqrestore(&aup->lock, flags); 484 485 if (status_change) { 486 if (phydev->link) 487 netdev_info(dev, "link up (%d/%s)\n", 488 phydev->speed, 489 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 490 else 491 netdev_info(dev, "link down\n"); 492 } 493 } 494 495 static int au1000_mii_probe(struct net_device *dev) 496 { 497 struct au1000_private *const aup = netdev_priv(dev); 498 struct phy_device *phydev = NULL; 499 int phy_addr; 500 501 if (aup->phy_static_config) { 502 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); 503 504 if (aup->phy_addr) 505 phydev = aup->mii_bus->phy_map[aup->phy_addr]; 506 else 507 netdev_info(dev, "using PHY-less setup\n"); 508 return 0; 509 } 510 511 /* find the first (lowest address) PHY 512 * on the current MAC's MII bus 513 */ 514 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) 515 if (aup->mii_bus->phy_map[phy_addr]) { 516 phydev = aup->mii_bus->phy_map[phy_addr]; 517 if (!aup->phy_search_highest_addr) 518 /* break out with first one found */ 519 break; 520 } 521 522 if (aup->phy1_search_mac0) { 523 /* try harder to find a PHY */ 524 if (!phydev && (aup->mac_id == 1)) { 525 /* no PHY found, maybe we have a dual PHY? */ 526 dev_info(&dev->dev, ": no PHY found on MAC1, " 527 "let's see if it's attached to MAC0...\n"); 528 529 /* find the first (lowest address) non-attached 530 * PHY on the MAC0 MII bus 531 */ 532 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { 533 struct phy_device *const tmp_phydev = 534 aup->mii_bus->phy_map[phy_addr]; 535 536 if (aup->mac_id == 1) 537 break; 538 539 /* no PHY here... */ 540 if (!tmp_phydev) 541 continue; 542 543 /* already claimed by MAC0 */ 544 if (tmp_phydev->attached_dev) 545 continue; 546 547 phydev = tmp_phydev; 548 break; /* found it */ 549 } 550 } 551 } 552 553 if (!phydev) { 554 netdev_err(dev, "no PHY found\n"); 555 return -1; 556 } 557 558 /* now we are supposed to have a proper phydev, to attach to... */ 559 BUG_ON(phydev->attached_dev); 560 561 phydev = phy_connect(dev, dev_name(&phydev->dev), 562 &au1000_adjust_link, PHY_INTERFACE_MODE_MII); 563 564 if (IS_ERR(phydev)) { 565 netdev_err(dev, "Could not attach to PHY\n"); 566 return PTR_ERR(phydev); 567 } 568 569 /* mask with MAC supported features */ 570 phydev->supported &= (SUPPORTED_10baseT_Half 571 | SUPPORTED_10baseT_Full 572 | SUPPORTED_100baseT_Half 573 | SUPPORTED_100baseT_Full 574 | SUPPORTED_Autoneg 575 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */ 576 | SUPPORTED_MII 577 | SUPPORTED_TP); 578 579 phydev->advertising = phydev->supported; 580 581 aup->old_link = 0; 582 aup->old_speed = 0; 583 aup->old_duplex = -1; 584 aup->phy_dev = phydev; 585 586 netdev_info(dev, "attached PHY driver [%s] " 587 "(mii_bus:phy_addr=%s, irq=%d)\n", 588 phydev->drv->name, dev_name(&phydev->dev), phydev->irq); 589 590 return 0; 591 } 592 593 594 /* 595 * Buffer allocation/deallocation routines. The buffer descriptor returned 596 * has the virtual and dma address of a buffer suitable for 597 * both, receive and transmit operations. 598 */ 599 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup) 600 { 601 struct db_dest *pDB; 602 pDB = aup->pDBfree; 603 604 if (pDB) 605 aup->pDBfree = pDB->pnext; 606 607 return pDB; 608 } 609 610 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB) 611 { 612 struct db_dest *pDBfree = aup->pDBfree; 613 if (pDBfree) 614 pDBfree->pnext = pDB; 615 aup->pDBfree = pDB; 616 } 617 618 static void au1000_reset_mac_unlocked(struct net_device *dev) 619 { 620 struct au1000_private *const aup = netdev_priv(dev); 621 int i; 622 623 au1000_hard_stop(dev); 624 625 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 626 wmb(); /* drain writebuffer */ 627 mdelay(2); 628 writel(0, aup->enable); 629 wmb(); /* drain writebuffer */ 630 mdelay(2); 631 632 aup->tx_full = 0; 633 for (i = 0; i < NUM_RX_DMA; i++) { 634 /* reset control bits */ 635 aup->rx_dma_ring[i]->buff_stat &= ~0xf; 636 } 637 for (i = 0; i < NUM_TX_DMA; i++) { 638 /* reset control bits */ 639 aup->tx_dma_ring[i]->buff_stat &= ~0xf; 640 } 641 642 aup->mac_enabled = 0; 643 644 } 645 646 static void au1000_reset_mac(struct net_device *dev) 647 { 648 struct au1000_private *const aup = netdev_priv(dev); 649 unsigned long flags; 650 651 netif_dbg(aup, hw, dev, "reset mac, aup %x\n", 652 (unsigned)aup); 653 654 spin_lock_irqsave(&aup->lock, flags); 655 656 au1000_reset_mac_unlocked(dev); 657 658 spin_unlock_irqrestore(&aup->lock, flags); 659 } 660 661 /* 662 * Setup the receive and transmit "rings". These pointers are the addresses 663 * of the rx and tx MAC DMA registers so they are fixed by the hardware -- 664 * these are not descriptors sitting in memory. 665 */ 666 static void 667 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base) 668 { 669 int i; 670 671 for (i = 0; i < NUM_RX_DMA; i++) { 672 aup->rx_dma_ring[i] = (struct rx_dma *) 673 (tx_base + 0x100 + sizeof(struct rx_dma) * i); 674 } 675 for (i = 0; i < NUM_TX_DMA; i++) { 676 aup->tx_dma_ring[i] = (struct tx_dma *) 677 (tx_base + sizeof(struct tx_dma) * i); 678 } 679 } 680 681 /* 682 * ethtool operations 683 */ 684 685 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 686 { 687 struct au1000_private *aup = netdev_priv(dev); 688 689 if (aup->phy_dev) 690 return phy_ethtool_gset(aup->phy_dev, cmd); 691 692 return -EINVAL; 693 } 694 695 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 696 { 697 struct au1000_private *aup = netdev_priv(dev); 698 699 if (!capable(CAP_NET_ADMIN)) 700 return -EPERM; 701 702 if (aup->phy_dev) 703 return phy_ethtool_sset(aup->phy_dev, cmd); 704 705 return -EINVAL; 706 } 707 708 static void 709 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 710 { 711 struct au1000_private *aup = netdev_priv(dev); 712 713 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 714 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 715 snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME, 716 aup->mac_id); 717 info->regdump_len = 0; 718 } 719 720 static void au1000_set_msglevel(struct net_device *dev, u32 value) 721 { 722 struct au1000_private *aup = netdev_priv(dev); 723 aup->msg_enable = value; 724 } 725 726 static u32 au1000_get_msglevel(struct net_device *dev) 727 { 728 struct au1000_private *aup = netdev_priv(dev); 729 return aup->msg_enable; 730 } 731 732 static const struct ethtool_ops au1000_ethtool_ops = { 733 .get_settings = au1000_get_settings, 734 .set_settings = au1000_set_settings, 735 .get_drvinfo = au1000_get_drvinfo, 736 .get_link = ethtool_op_get_link, 737 .get_msglevel = au1000_get_msglevel, 738 .set_msglevel = au1000_set_msglevel, 739 }; 740 741 742 /* 743 * Initialize the interface. 744 * 745 * When the device powers up, the clocks are disabled and the 746 * mac is in reset state. When the interface is closed, we 747 * do the same -- reset the device and disable the clocks to 748 * conserve power. Thus, whenever au1000_init() is called, 749 * the device should already be in reset state. 750 */ 751 static int au1000_init(struct net_device *dev) 752 { 753 struct au1000_private *aup = netdev_priv(dev); 754 unsigned long flags; 755 int i; 756 u32 control; 757 758 netif_dbg(aup, hw, dev, "au1000_init\n"); 759 760 /* bring the device out of reset */ 761 au1000_enable_mac(dev, 1); 762 763 spin_lock_irqsave(&aup->lock, flags); 764 765 writel(0, &aup->mac->control); 766 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; 767 aup->tx_tail = aup->tx_head; 768 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; 769 770 writel(dev->dev_addr[5]<<8 | dev->dev_addr[4], 771 &aup->mac->mac_addr_high); 772 writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | 773 dev->dev_addr[1]<<8 | dev->dev_addr[0], 774 &aup->mac->mac_addr_low); 775 776 777 for (i = 0; i < NUM_RX_DMA; i++) 778 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; 779 780 wmb(); /* drain writebuffer */ 781 782 control = MAC_RX_ENABLE | MAC_TX_ENABLE; 783 #ifndef CONFIG_CPU_LITTLE_ENDIAN 784 control |= MAC_BIG_ENDIAN; 785 #endif 786 if (aup->phy_dev) { 787 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex)) 788 control |= MAC_FULL_DUPLEX; 789 else 790 control |= MAC_DISABLE_RX_OWN; 791 } else { /* PHY-less op, assume full-duplex */ 792 control |= MAC_FULL_DUPLEX; 793 } 794 795 writel(control, &aup->mac->control); 796 writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */ 797 wmb(); /* drain writebuffer */ 798 799 spin_unlock_irqrestore(&aup->lock, flags); 800 return 0; 801 } 802 803 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status) 804 { 805 struct net_device_stats *ps = &dev->stats; 806 807 ps->rx_packets++; 808 if (status & RX_MCAST_FRAME) 809 ps->multicast++; 810 811 if (status & RX_ERROR) { 812 ps->rx_errors++; 813 if (status & RX_MISSED_FRAME) 814 ps->rx_missed_errors++; 815 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR)) 816 ps->rx_length_errors++; 817 if (status & RX_CRC_ERROR) 818 ps->rx_crc_errors++; 819 if (status & RX_COLL) 820 ps->collisions++; 821 } else 822 ps->rx_bytes += status & RX_FRAME_LEN_MASK; 823 824 } 825 826 /* 827 * Au1000 receive routine. 828 */ 829 static int au1000_rx(struct net_device *dev) 830 { 831 struct au1000_private *aup = netdev_priv(dev); 832 struct sk_buff *skb; 833 struct rx_dma *prxd; 834 u32 buff_stat, status; 835 struct db_dest *pDB; 836 u32 frmlen; 837 838 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head); 839 840 prxd = aup->rx_dma_ring[aup->rx_head]; 841 buff_stat = prxd->buff_stat; 842 while (buff_stat & RX_T_DONE) { 843 status = prxd->status; 844 pDB = aup->rx_db_inuse[aup->rx_head]; 845 au1000_update_rx_stats(dev, status); 846 if (!(status & RX_ERROR)) { 847 848 /* good frame */ 849 frmlen = (status & RX_FRAME_LEN_MASK); 850 frmlen -= 4; /* Remove FCS */ 851 skb = netdev_alloc_skb(dev, frmlen + 2); 852 if (skb == NULL) { 853 dev->stats.rx_dropped++; 854 continue; 855 } 856 skb_reserve(skb, 2); /* 16 byte IP header align */ 857 skb_copy_to_linear_data(skb, 858 (unsigned char *)pDB->vaddr, frmlen); 859 skb_put(skb, frmlen); 860 skb->protocol = eth_type_trans(skb, dev); 861 netif_rx(skb); /* pass the packet to upper layers */ 862 } else { 863 if (au1000_debug > 4) { 864 pr_err("rx_error(s):"); 865 if (status & RX_MISSED_FRAME) 866 pr_cont(" miss"); 867 if (status & RX_WDOG_TIMER) 868 pr_cont(" wdog"); 869 if (status & RX_RUNT) 870 pr_cont(" runt"); 871 if (status & RX_OVERLEN) 872 pr_cont(" overlen"); 873 if (status & RX_COLL) 874 pr_cont(" coll"); 875 if (status & RX_MII_ERROR) 876 pr_cont(" mii error"); 877 if (status & RX_CRC_ERROR) 878 pr_cont(" crc error"); 879 if (status & RX_LEN_ERROR) 880 pr_cont(" len error"); 881 if (status & RX_U_CNTRL_FRAME) 882 pr_cont(" u control frame"); 883 pr_cont("\n"); 884 } 885 } 886 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); 887 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); 888 wmb(); /* drain writebuffer */ 889 890 /* next descriptor */ 891 prxd = aup->rx_dma_ring[aup->rx_head]; 892 buff_stat = prxd->buff_stat; 893 } 894 return 0; 895 } 896 897 static void au1000_update_tx_stats(struct net_device *dev, u32 status) 898 { 899 struct au1000_private *aup = netdev_priv(dev); 900 struct net_device_stats *ps = &dev->stats; 901 902 if (status & TX_FRAME_ABORTED) { 903 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) { 904 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { 905 /* any other tx errors are only valid 906 * in half duplex mode 907 */ 908 ps->tx_errors++; 909 ps->tx_aborted_errors++; 910 } 911 } else { 912 ps->tx_errors++; 913 ps->tx_aborted_errors++; 914 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) 915 ps->tx_carrier_errors++; 916 } 917 } 918 } 919 920 /* 921 * Called from the interrupt service routine to acknowledge 922 * the TX DONE bits. This is a must if the irq is setup as 923 * edge triggered. 924 */ 925 static void au1000_tx_ack(struct net_device *dev) 926 { 927 struct au1000_private *aup = netdev_priv(dev); 928 struct tx_dma *ptxd; 929 930 ptxd = aup->tx_dma_ring[aup->tx_tail]; 931 932 while (ptxd->buff_stat & TX_T_DONE) { 933 au1000_update_tx_stats(dev, ptxd->status); 934 ptxd->buff_stat &= ~TX_T_DONE; 935 ptxd->len = 0; 936 wmb(); /* drain writebuffer */ 937 938 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); 939 ptxd = aup->tx_dma_ring[aup->tx_tail]; 940 941 if (aup->tx_full) { 942 aup->tx_full = 0; 943 netif_wake_queue(dev); 944 } 945 } 946 } 947 948 /* 949 * Au1000 interrupt service routine. 950 */ 951 static irqreturn_t au1000_interrupt(int irq, void *dev_id) 952 { 953 struct net_device *dev = dev_id; 954 955 /* Handle RX interrupts first to minimize chance of overrun */ 956 957 au1000_rx(dev); 958 au1000_tx_ack(dev); 959 return IRQ_RETVAL(1); 960 } 961 962 static int au1000_open(struct net_device *dev) 963 { 964 int retval; 965 struct au1000_private *aup = netdev_priv(dev); 966 967 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev); 968 969 retval = request_irq(dev->irq, au1000_interrupt, 0, 970 dev->name, dev); 971 if (retval) { 972 netdev_err(dev, "unable to get IRQ %d\n", dev->irq); 973 return retval; 974 } 975 976 retval = au1000_init(dev); 977 if (retval) { 978 netdev_err(dev, "error in au1000_init\n"); 979 free_irq(dev->irq, dev); 980 return retval; 981 } 982 983 if (aup->phy_dev) { 984 /* cause the PHY state machine to schedule a link state check */ 985 aup->phy_dev->state = PHY_CHANGELINK; 986 phy_start(aup->phy_dev); 987 } 988 989 netif_start_queue(dev); 990 991 netif_dbg(aup, drv, dev, "open: Initialization done.\n"); 992 993 return 0; 994 } 995 996 static int au1000_close(struct net_device *dev) 997 { 998 unsigned long flags; 999 struct au1000_private *const aup = netdev_priv(dev); 1000 1001 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev); 1002 1003 if (aup->phy_dev) 1004 phy_stop(aup->phy_dev); 1005 1006 spin_lock_irqsave(&aup->lock, flags); 1007 1008 au1000_reset_mac_unlocked(dev); 1009 1010 /* stop the device */ 1011 netif_stop_queue(dev); 1012 1013 /* disable the interrupt */ 1014 free_irq(dev->irq, dev); 1015 spin_unlock_irqrestore(&aup->lock, flags); 1016 1017 return 0; 1018 } 1019 1020 /* 1021 * Au1000 transmit routine. 1022 */ 1023 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev) 1024 { 1025 struct au1000_private *aup = netdev_priv(dev); 1026 struct net_device_stats *ps = &dev->stats; 1027 struct tx_dma *ptxd; 1028 u32 buff_stat; 1029 struct db_dest *pDB; 1030 int i; 1031 1032 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n", 1033 (unsigned)aup, skb->len, 1034 skb->data, aup->tx_head); 1035 1036 ptxd = aup->tx_dma_ring[aup->tx_head]; 1037 buff_stat = ptxd->buff_stat; 1038 if (buff_stat & TX_DMA_ENABLE) { 1039 /* We've wrapped around and the transmitter is still busy */ 1040 netif_stop_queue(dev); 1041 aup->tx_full = 1; 1042 return NETDEV_TX_BUSY; 1043 } else if (buff_stat & TX_T_DONE) { 1044 au1000_update_tx_stats(dev, ptxd->status); 1045 ptxd->len = 0; 1046 } 1047 1048 if (aup->tx_full) { 1049 aup->tx_full = 0; 1050 netif_wake_queue(dev); 1051 } 1052 1053 pDB = aup->tx_db_inuse[aup->tx_head]; 1054 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len); 1055 if (skb->len < ETH_ZLEN) { 1056 for (i = skb->len; i < ETH_ZLEN; i++) 1057 ((char *)pDB->vaddr)[i] = 0; 1058 1059 ptxd->len = ETH_ZLEN; 1060 } else 1061 ptxd->len = skb->len; 1062 1063 ps->tx_packets++; 1064 ps->tx_bytes += ptxd->len; 1065 1066 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; 1067 wmb(); /* drain writebuffer */ 1068 dev_kfree_skb(skb); 1069 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); 1070 return NETDEV_TX_OK; 1071 } 1072 1073 /* 1074 * The Tx ring has been full longer than the watchdog timeout 1075 * value. The transmitter must be hung? 1076 */ 1077 static void au1000_tx_timeout(struct net_device *dev) 1078 { 1079 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev); 1080 au1000_reset_mac(dev); 1081 au1000_init(dev); 1082 dev->trans_start = jiffies; /* prevent tx timeout */ 1083 netif_wake_queue(dev); 1084 } 1085 1086 static void au1000_multicast_list(struct net_device *dev) 1087 { 1088 struct au1000_private *aup = netdev_priv(dev); 1089 u32 reg; 1090 1091 netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags); 1092 reg = readl(&aup->mac->control); 1093 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1094 reg |= MAC_PROMISCUOUS; 1095 } else if ((dev->flags & IFF_ALLMULTI) || 1096 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) { 1097 reg |= MAC_PASS_ALL_MULTI; 1098 reg &= ~MAC_PROMISCUOUS; 1099 netdev_info(dev, "Pass all multicast\n"); 1100 } else { 1101 struct netdev_hw_addr *ha; 1102 u32 mc_filter[2]; /* Multicast hash filter */ 1103 1104 mc_filter[1] = mc_filter[0] = 0; 1105 netdev_for_each_mc_addr(ha, dev) 1106 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26, 1107 (long *)mc_filter); 1108 writel(mc_filter[1], &aup->mac->multi_hash_high); 1109 writel(mc_filter[0], &aup->mac->multi_hash_low); 1110 reg &= ~MAC_PROMISCUOUS; 1111 reg |= MAC_HASH_MODE; 1112 } 1113 writel(reg, &aup->mac->control); 1114 } 1115 1116 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1117 { 1118 struct au1000_private *aup = netdev_priv(dev); 1119 1120 if (!netif_running(dev)) 1121 return -EINVAL; 1122 1123 if (!aup->phy_dev) 1124 return -EINVAL; /* PHY not controllable */ 1125 1126 return phy_mii_ioctl(aup->phy_dev, rq, cmd); 1127 } 1128 1129 static const struct net_device_ops au1000_netdev_ops = { 1130 .ndo_open = au1000_open, 1131 .ndo_stop = au1000_close, 1132 .ndo_start_xmit = au1000_tx, 1133 .ndo_set_rx_mode = au1000_multicast_list, 1134 .ndo_do_ioctl = au1000_ioctl, 1135 .ndo_tx_timeout = au1000_tx_timeout, 1136 .ndo_set_mac_address = eth_mac_addr, 1137 .ndo_validate_addr = eth_validate_addr, 1138 .ndo_change_mtu = eth_change_mtu, 1139 }; 1140 1141 static int au1000_probe(struct platform_device *pdev) 1142 { 1143 struct au1000_private *aup = NULL; 1144 struct au1000_eth_platform_data *pd; 1145 struct net_device *dev = NULL; 1146 struct db_dest *pDB, *pDBfree; 1147 int irq, i, err = 0; 1148 struct resource *base, *macen, *macdma; 1149 1150 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1151 if (!base) { 1152 dev_err(&pdev->dev, "failed to retrieve base register\n"); 1153 err = -ENODEV; 1154 goto out; 1155 } 1156 1157 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1158 if (!macen) { 1159 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n"); 1160 err = -ENODEV; 1161 goto out; 1162 } 1163 1164 irq = platform_get_irq(pdev, 0); 1165 if (irq < 0) { 1166 dev_err(&pdev->dev, "failed to retrieve IRQ\n"); 1167 err = -ENODEV; 1168 goto out; 1169 } 1170 1171 macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1172 if (!macdma) { 1173 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n"); 1174 err = -ENODEV; 1175 goto out; 1176 } 1177 1178 if (!request_mem_region(base->start, resource_size(base), 1179 pdev->name)) { 1180 dev_err(&pdev->dev, "failed to request memory region for base registers\n"); 1181 err = -ENXIO; 1182 goto out; 1183 } 1184 1185 if (!request_mem_region(macen->start, resource_size(macen), 1186 pdev->name)) { 1187 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n"); 1188 err = -ENXIO; 1189 goto err_request; 1190 } 1191 1192 if (!request_mem_region(macdma->start, resource_size(macdma), 1193 pdev->name)) { 1194 dev_err(&pdev->dev, "failed to request MACDMA memory region\n"); 1195 err = -ENXIO; 1196 goto err_macdma; 1197 } 1198 1199 dev = alloc_etherdev(sizeof(struct au1000_private)); 1200 if (!dev) { 1201 err = -ENOMEM; 1202 goto err_alloc; 1203 } 1204 1205 SET_NETDEV_DEV(dev, &pdev->dev); 1206 platform_set_drvdata(pdev, dev); 1207 aup = netdev_priv(dev); 1208 1209 spin_lock_init(&aup->lock); 1210 aup->msg_enable = (au1000_debug < 4 ? 1211 AU1000_DEF_MSG_ENABLE : au1000_debug); 1212 1213 /* Allocate the data buffers 1214 * Snooping works fine with eth on all au1xxx 1215 */ 1216 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE * 1217 (NUM_TX_BUFFS + NUM_RX_BUFFS), 1218 &aup->dma_addr, 0); 1219 if (!aup->vaddr) { 1220 dev_err(&pdev->dev, "failed to allocate data buffers\n"); 1221 err = -ENOMEM; 1222 goto err_vaddr; 1223 } 1224 1225 /* aup->mac is the base address of the MAC's registers */ 1226 aup->mac = (struct mac_reg *) 1227 ioremap_nocache(base->start, resource_size(base)); 1228 if (!aup->mac) { 1229 dev_err(&pdev->dev, "failed to ioremap MAC registers\n"); 1230 err = -ENXIO; 1231 goto err_remap1; 1232 } 1233 1234 /* Setup some variables for quick register address access */ 1235 aup->enable = (u32 *)ioremap_nocache(macen->start, 1236 resource_size(macen)); 1237 if (!aup->enable) { 1238 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n"); 1239 err = -ENXIO; 1240 goto err_remap2; 1241 } 1242 aup->mac_id = pdev->id; 1243 1244 aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma)); 1245 if (!aup->macdma) { 1246 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n"); 1247 err = -ENXIO; 1248 goto err_remap3; 1249 } 1250 1251 au1000_setup_hw_rings(aup, aup->macdma); 1252 1253 writel(0, aup->enable); 1254 aup->mac_enabled = 0; 1255 1256 pd = dev_get_platdata(&pdev->dev); 1257 if (!pd) { 1258 dev_info(&pdev->dev, "no platform_data passed," 1259 " PHY search on MAC0\n"); 1260 aup->phy1_search_mac0 = 1; 1261 } else { 1262 if (is_valid_ether_addr(pd->mac)) { 1263 memcpy(dev->dev_addr, pd->mac, ETH_ALEN); 1264 } else { 1265 /* Set a random MAC since no valid provided by platform_data. */ 1266 eth_hw_addr_random(dev); 1267 } 1268 1269 aup->phy_static_config = pd->phy_static_config; 1270 aup->phy_search_highest_addr = pd->phy_search_highest_addr; 1271 aup->phy1_search_mac0 = pd->phy1_search_mac0; 1272 aup->phy_addr = pd->phy_addr; 1273 aup->phy_busid = pd->phy_busid; 1274 aup->phy_irq = pd->phy_irq; 1275 } 1276 1277 if (aup->phy_busid && aup->phy_busid > 0) { 1278 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n"); 1279 err = -ENODEV; 1280 goto err_mdiobus_alloc; 1281 } 1282 1283 aup->mii_bus = mdiobus_alloc(); 1284 if (aup->mii_bus == NULL) { 1285 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n"); 1286 err = -ENOMEM; 1287 goto err_mdiobus_alloc; 1288 } 1289 1290 aup->mii_bus->priv = dev; 1291 aup->mii_bus->read = au1000_mdiobus_read; 1292 aup->mii_bus->write = au1000_mdiobus_write; 1293 aup->mii_bus->reset = au1000_mdiobus_reset; 1294 aup->mii_bus->name = "au1000_eth_mii"; 1295 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 1296 pdev->name, aup->mac_id); 1297 aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL); 1298 if (aup->mii_bus->irq == NULL) { 1299 err = -ENOMEM; 1300 goto err_out; 1301 } 1302 1303 for (i = 0; i < PHY_MAX_ADDR; ++i) 1304 aup->mii_bus->irq[i] = PHY_POLL; 1305 /* if known, set corresponding PHY IRQs */ 1306 if (aup->phy_static_config) 1307 if (aup->phy_irq && aup->phy_busid == aup->mac_id) 1308 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq; 1309 1310 err = mdiobus_register(aup->mii_bus); 1311 if (err) { 1312 dev_err(&pdev->dev, "failed to register MDIO bus\n"); 1313 goto err_mdiobus_reg; 1314 } 1315 1316 err = au1000_mii_probe(dev); 1317 if (err != 0) 1318 goto err_out; 1319 1320 pDBfree = NULL; 1321 /* setup the data buffer descriptors and attach a buffer to each one */ 1322 pDB = aup->db; 1323 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { 1324 pDB->pnext = pDBfree; 1325 pDBfree = pDB; 1326 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); 1327 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); 1328 pDB++; 1329 } 1330 aup->pDBfree = pDBfree; 1331 1332 err = -ENODEV; 1333 for (i = 0; i < NUM_RX_DMA; i++) { 1334 pDB = au1000_GetFreeDB(aup); 1335 if (!pDB) 1336 goto err_out; 1337 1338 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; 1339 aup->rx_db_inuse[i] = pDB; 1340 } 1341 1342 err = -ENODEV; 1343 for (i = 0; i < NUM_TX_DMA; i++) { 1344 pDB = au1000_GetFreeDB(aup); 1345 if (!pDB) 1346 goto err_out; 1347 1348 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; 1349 aup->tx_dma_ring[i]->len = 0; 1350 aup->tx_db_inuse[i] = pDB; 1351 } 1352 1353 dev->base_addr = base->start; 1354 dev->irq = irq; 1355 dev->netdev_ops = &au1000_netdev_ops; 1356 dev->ethtool_ops = &au1000_ethtool_ops; 1357 dev->watchdog_timeo = ETH_TX_TIMEOUT; 1358 1359 /* 1360 * The boot code uses the ethernet controller, so reset it to start 1361 * fresh. au1000_init() expects that the device is in reset state. 1362 */ 1363 au1000_reset_mac(dev); 1364 1365 err = register_netdev(dev); 1366 if (err) { 1367 netdev_err(dev, "Cannot register net device, aborting.\n"); 1368 goto err_out; 1369 } 1370 1371 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n", 1372 (unsigned long)base->start, irq); 1373 1374 pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); 1375 1376 return 0; 1377 1378 err_out: 1379 if (aup->mii_bus != NULL) 1380 mdiobus_unregister(aup->mii_bus); 1381 1382 /* here we should have a valid dev plus aup-> register addresses 1383 * so we can reset the mac properly. 1384 */ 1385 au1000_reset_mac(dev); 1386 1387 for (i = 0; i < NUM_RX_DMA; i++) { 1388 if (aup->rx_db_inuse[i]) 1389 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1390 } 1391 for (i = 0; i < NUM_TX_DMA; i++) { 1392 if (aup->tx_db_inuse[i]) 1393 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1394 } 1395 err_mdiobus_reg: 1396 mdiobus_free(aup->mii_bus); 1397 err_mdiobus_alloc: 1398 iounmap(aup->macdma); 1399 err_remap3: 1400 iounmap(aup->enable); 1401 err_remap2: 1402 iounmap(aup->mac); 1403 err_remap1: 1404 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), 1405 (void *)aup->vaddr, aup->dma_addr); 1406 err_vaddr: 1407 free_netdev(dev); 1408 err_alloc: 1409 release_mem_region(macdma->start, resource_size(macdma)); 1410 err_macdma: 1411 release_mem_region(macen->start, resource_size(macen)); 1412 err_request: 1413 release_mem_region(base->start, resource_size(base)); 1414 out: 1415 return err; 1416 } 1417 1418 static int au1000_remove(struct platform_device *pdev) 1419 { 1420 struct net_device *dev = platform_get_drvdata(pdev); 1421 struct au1000_private *aup = netdev_priv(dev); 1422 int i; 1423 struct resource *base, *macen; 1424 1425 unregister_netdev(dev); 1426 mdiobus_unregister(aup->mii_bus); 1427 mdiobus_free(aup->mii_bus); 1428 1429 for (i = 0; i < NUM_RX_DMA; i++) 1430 if (aup->rx_db_inuse[i]) 1431 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1432 1433 for (i = 0; i < NUM_TX_DMA; i++) 1434 if (aup->tx_db_inuse[i]) 1435 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1436 1437 dma_free_noncoherent(NULL, MAX_BUF_SIZE * 1438 (NUM_TX_BUFFS + NUM_RX_BUFFS), 1439 (void *)aup->vaddr, aup->dma_addr); 1440 1441 iounmap(aup->macdma); 1442 iounmap(aup->mac); 1443 iounmap(aup->enable); 1444 1445 base = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1446 release_mem_region(base->start, resource_size(base)); 1447 1448 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1449 release_mem_region(base->start, resource_size(base)); 1450 1451 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1452 release_mem_region(macen->start, resource_size(macen)); 1453 1454 free_netdev(dev); 1455 1456 return 0; 1457 } 1458 1459 static struct platform_driver au1000_eth_driver = { 1460 .probe = au1000_probe, 1461 .remove = au1000_remove, 1462 .driver = { 1463 .name = "au1000-eth", 1464 }, 1465 }; 1466 1467 module_platform_driver(au1000_eth_driver); 1468 1469 MODULE_ALIAS("platform:au1000-eth"); 1470