1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Alchemy Au1x00 ethernet driver 5 * 6 * Copyright 2001-2003, 2006 MontaVista Software Inc. 7 * Copyright 2002 TimeSys Corp. 8 * Added ethtool/mii-tool support, 9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> 10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de 11 * or riemer@riemer-nt.de: fixed the link beat detection with 12 * ioctls (SIOCGMIIPHY) 13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org> 14 * converted to use linux-2.6.x's PHY framework 15 * 16 * Author: MontaVista Software, Inc. 17 * ppopov@mvista.com or source@mvista.com 18 */ 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/capability.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/module.h> 24 #include <linux/kernel.h> 25 #include <linux/string.h> 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/in.h> 29 #include <linux/ioport.h> 30 #include <linux/bitops.h> 31 #include <linux/slab.h> 32 #include <linux/interrupt.h> 33 #include <linux/netdevice.h> 34 #include <linux/etherdevice.h> 35 #include <linux/ethtool.h> 36 #include <linux/mii.h> 37 #include <linux/skbuff.h> 38 #include <linux/delay.h> 39 #include <linux/crc32.h> 40 #include <linux/phy.h> 41 #include <linux/platform_device.h> 42 #include <linux/cpu.h> 43 #include <linux/io.h> 44 45 #include <asm/mipsregs.h> 46 #include <asm/irq.h> 47 #include <asm/processor.h> 48 49 #include <au1000.h> 50 #include <au1xxx_eth.h> 51 #include <prom.h> 52 53 #include "au1000_eth.h" 54 55 #ifdef AU1000_ETH_DEBUG 56 static int au1000_debug = 5; 57 #else 58 static int au1000_debug = 3; 59 #endif 60 61 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 62 NETIF_MSG_PROBE | \ 63 NETIF_MSG_LINK) 64 65 #define DRV_NAME "au1000_eth" 66 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" 67 #define DRV_DESC "Au1xxx on-chip Ethernet driver" 68 69 MODULE_AUTHOR(DRV_AUTHOR); 70 MODULE_DESCRIPTION(DRV_DESC); 71 MODULE_LICENSE("GPL"); 72 73 /* AU1000 MAC registers and bits */ 74 #define MAC_CONTROL 0x0 75 # define MAC_RX_ENABLE (1 << 2) 76 # define MAC_TX_ENABLE (1 << 3) 77 # define MAC_DEF_CHECK (1 << 5) 78 # define MAC_SET_BL(X) (((X) & 0x3) << 6) 79 # define MAC_AUTO_PAD (1 << 8) 80 # define MAC_DISABLE_RETRY (1 << 10) 81 # define MAC_DISABLE_BCAST (1 << 11) 82 # define MAC_LATE_COL (1 << 12) 83 # define MAC_HASH_MODE (1 << 13) 84 # define MAC_HASH_ONLY (1 << 15) 85 # define MAC_PASS_ALL (1 << 16) 86 # define MAC_INVERSE_FILTER (1 << 17) 87 # define MAC_PROMISCUOUS (1 << 18) 88 # define MAC_PASS_ALL_MULTI (1 << 19) 89 # define MAC_FULL_DUPLEX (1 << 20) 90 # define MAC_NORMAL_MODE 0 91 # define MAC_INT_LOOPBACK (1 << 21) 92 # define MAC_EXT_LOOPBACK (1 << 22) 93 # define MAC_DISABLE_RX_OWN (1 << 23) 94 # define MAC_BIG_ENDIAN (1 << 30) 95 # define MAC_RX_ALL (1 << 31) 96 #define MAC_ADDRESS_HIGH 0x4 97 #define MAC_ADDRESS_LOW 0x8 98 #define MAC_MCAST_HIGH 0xC 99 #define MAC_MCAST_LOW 0x10 100 #define MAC_MII_CNTRL 0x14 101 # define MAC_MII_BUSY (1 << 0) 102 # define MAC_MII_READ 0 103 # define MAC_MII_WRITE (1 << 1) 104 # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6) 105 # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11) 106 #define MAC_MII_DATA 0x18 107 #define MAC_FLOW_CNTRL 0x1C 108 # define MAC_FLOW_CNTRL_BUSY (1 << 0) 109 # define MAC_FLOW_CNTRL_ENABLE (1 << 1) 110 # define MAC_PASS_CONTROL (1 << 2) 111 # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16) 112 #define MAC_VLAN1_TAG 0x20 113 #define MAC_VLAN2_TAG 0x24 114 115 /* Ethernet Controller Enable */ 116 # define MAC_EN_CLOCK_ENABLE (1 << 0) 117 # define MAC_EN_RESET0 (1 << 1) 118 # define MAC_EN_TOSS (0 << 2) 119 # define MAC_EN_CACHEABLE (1 << 3) 120 # define MAC_EN_RESET1 (1 << 4) 121 # define MAC_EN_RESET2 (1 << 5) 122 # define MAC_DMA_RESET (1 << 6) 123 124 /* Ethernet Controller DMA Channels */ 125 /* offsets from MAC_TX_RING_ADDR address */ 126 #define MAC_TX_BUFF0_STATUS 0x0 127 # define TX_FRAME_ABORTED (1 << 0) 128 # define TX_JAB_TIMEOUT (1 << 1) 129 # define TX_NO_CARRIER (1 << 2) 130 # define TX_LOSS_CARRIER (1 << 3) 131 # define TX_EXC_DEF (1 << 4) 132 # define TX_LATE_COLL_ABORT (1 << 5) 133 # define TX_EXC_COLL (1 << 6) 134 # define TX_UNDERRUN (1 << 7) 135 # define TX_DEFERRED (1 << 8) 136 # define TX_LATE_COLL (1 << 9) 137 # define TX_COLL_CNT_MASK (0xF << 10) 138 # define TX_PKT_RETRY (1 << 31) 139 #define MAC_TX_BUFF0_ADDR 0x4 140 # define TX_DMA_ENABLE (1 << 0) 141 # define TX_T_DONE (1 << 1) 142 # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) 143 #define MAC_TX_BUFF0_LEN 0x8 144 #define MAC_TX_BUFF1_STATUS 0x10 145 #define MAC_TX_BUFF1_ADDR 0x14 146 #define MAC_TX_BUFF1_LEN 0x18 147 #define MAC_TX_BUFF2_STATUS 0x20 148 #define MAC_TX_BUFF2_ADDR 0x24 149 #define MAC_TX_BUFF2_LEN 0x28 150 #define MAC_TX_BUFF3_STATUS 0x30 151 #define MAC_TX_BUFF3_ADDR 0x34 152 #define MAC_TX_BUFF3_LEN 0x38 153 154 /* offsets from MAC_RX_RING_ADDR */ 155 #define MAC_RX_BUFF0_STATUS 0x0 156 # define RX_FRAME_LEN_MASK 0x3fff 157 # define RX_WDOG_TIMER (1 << 14) 158 # define RX_RUNT (1 << 15) 159 # define RX_OVERLEN (1 << 16) 160 # define RX_COLL (1 << 17) 161 # define RX_ETHER (1 << 18) 162 # define RX_MII_ERROR (1 << 19) 163 # define RX_DRIBBLING (1 << 20) 164 # define RX_CRC_ERROR (1 << 21) 165 # define RX_VLAN1 (1 << 22) 166 # define RX_VLAN2 (1 << 23) 167 # define RX_LEN_ERROR (1 << 24) 168 # define RX_CNTRL_FRAME (1 << 25) 169 # define RX_U_CNTRL_FRAME (1 << 26) 170 # define RX_MCAST_FRAME (1 << 27) 171 # define RX_BCAST_FRAME (1 << 28) 172 # define RX_FILTER_FAIL (1 << 29) 173 # define RX_PACKET_FILTER (1 << 30) 174 # define RX_MISSED_FRAME (1 << 31) 175 176 # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \ 177 RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \ 178 RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME) 179 #define MAC_RX_BUFF0_ADDR 0x4 180 # define RX_DMA_ENABLE (1 << 0) 181 # define RX_T_DONE (1 << 1) 182 # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) 183 # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0) 184 #define MAC_RX_BUFF1_STATUS 0x10 185 #define MAC_RX_BUFF1_ADDR 0x14 186 #define MAC_RX_BUFF2_STATUS 0x20 187 #define MAC_RX_BUFF2_ADDR 0x24 188 #define MAC_RX_BUFF3_STATUS 0x30 189 #define MAC_RX_BUFF3_ADDR 0x34 190 191 /* 192 * Theory of operation 193 * 194 * The Au1000 MACs use a simple rx and tx descriptor ring scheme. 195 * There are four receive and four transmit descriptors. These 196 * descriptors are not in memory; rather, they are just a set of 197 * hardware registers. 198 * 199 * Since the Au1000 has a coherent data cache, the receive and 200 * transmit buffers are allocated from the KSEG0 segment. The 201 * hardware registers, however, are still mapped at KSEG1 to 202 * make sure there's no out-of-order writes, and that all writes 203 * complete immediately. 204 */ 205 206 /* 207 * board-specific configurations 208 * 209 * PHY detection algorithm 210 * 211 * If phy_static_config is undefined, the PHY setup is 212 * autodetected: 213 * 214 * mii_probe() first searches the current MAC's MII bus for a PHY, 215 * selecting the first (or last, if phy_search_highest_addr is 216 * defined) PHY address not already claimed by another netdev. 217 * 218 * If nothing was found that way when searching for the 2nd ethernet 219 * controller's PHY and phy1_search_mac0 is defined, then 220 * the first MII bus is searched as well for an unclaimed PHY; this is 221 * needed in case of a dual-PHY accessible only through the MAC0's MII 222 * bus. 223 * 224 * Finally, if no PHY is found, then the corresponding ethernet 225 * controller is not registered to the network subsystem. 226 */ 227 228 /* autodetection defaults: phy1_search_mac0 */ 229 230 /* static PHY setup 231 * 232 * most boards PHY setup should be detectable properly with the 233 * autodetection algorithm in mii_probe(), but in some cases (e.g. if 234 * you have a switch attached, or want to use the PHY's interrupt 235 * notification capabilities) you can provide a static PHY 236 * configuration here 237 * 238 * IRQs may only be set, if a PHY address was configured 239 * If a PHY address is given, also a bus id is required to be set 240 * 241 * ps: make sure the used irqs are configured properly in the board 242 * specific irq-map 243 */ 244 static void au1000_enable_mac(struct net_device *dev, int force_reset) 245 { 246 unsigned long flags; 247 struct au1000_private *aup = netdev_priv(dev); 248 249 spin_lock_irqsave(&aup->lock, flags); 250 251 if (force_reset || (!aup->mac_enabled)) { 252 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 253 wmb(); /* drain writebuffer */ 254 mdelay(2); 255 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 256 | MAC_EN_CLOCK_ENABLE), aup->enable); 257 wmb(); /* drain writebuffer */ 258 mdelay(2); 259 260 aup->mac_enabled = 1; 261 } 262 263 spin_unlock_irqrestore(&aup->lock, flags); 264 } 265 266 /* 267 * MII operations 268 */ 269 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg) 270 { 271 struct au1000_private *aup = netdev_priv(dev); 272 u32 *const mii_control_reg = &aup->mac->mii_control; 273 u32 *const mii_data_reg = &aup->mac->mii_data; 274 u32 timedout = 20; 275 u32 mii_control; 276 277 while (readl(mii_control_reg) & MAC_MII_BUSY) { 278 mdelay(1); 279 if (--timedout == 0) { 280 netdev_err(dev, "read_MII busy timeout!!\n"); 281 return -1; 282 } 283 } 284 285 mii_control = MAC_SET_MII_SELECT_REG(reg) | 286 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; 287 288 writel(mii_control, mii_control_reg); 289 290 timedout = 20; 291 while (readl(mii_control_reg) & MAC_MII_BUSY) { 292 mdelay(1); 293 if (--timedout == 0) { 294 netdev_err(dev, "mdio_read busy timeout!!\n"); 295 return -1; 296 } 297 } 298 return readl(mii_data_reg); 299 } 300 301 static void au1000_mdio_write(struct net_device *dev, int phy_addr, 302 int reg, u16 value) 303 { 304 struct au1000_private *aup = netdev_priv(dev); 305 u32 *const mii_control_reg = &aup->mac->mii_control; 306 u32 *const mii_data_reg = &aup->mac->mii_data; 307 u32 timedout = 20; 308 u32 mii_control; 309 310 while (readl(mii_control_reg) & MAC_MII_BUSY) { 311 mdelay(1); 312 if (--timedout == 0) { 313 netdev_err(dev, "mdio_write busy timeout!!\n"); 314 return; 315 } 316 } 317 318 mii_control = MAC_SET_MII_SELECT_REG(reg) | 319 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; 320 321 writel(value, mii_data_reg); 322 writel(mii_control, mii_control_reg); 323 } 324 325 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) 326 { 327 struct net_device *const dev = bus->priv; 328 329 /* make sure the MAC associated with this 330 * mii_bus is enabled 331 */ 332 au1000_enable_mac(dev, 0); 333 334 return au1000_mdio_read(dev, phy_addr, regnum); 335 } 336 337 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, 338 u16 value) 339 { 340 struct net_device *const dev = bus->priv; 341 342 /* make sure the MAC associated with this 343 * mii_bus is enabled 344 */ 345 au1000_enable_mac(dev, 0); 346 347 au1000_mdio_write(dev, phy_addr, regnum, value); 348 return 0; 349 } 350 351 static int au1000_mdiobus_reset(struct mii_bus *bus) 352 { 353 struct net_device *const dev = bus->priv; 354 355 /* make sure the MAC associated with this 356 * mii_bus is enabled 357 */ 358 au1000_enable_mac(dev, 0); 359 360 return 0; 361 } 362 363 static void au1000_hard_stop(struct net_device *dev) 364 { 365 struct au1000_private *aup = netdev_priv(dev); 366 u32 reg; 367 368 netif_dbg(aup, drv, dev, "hard stop\n"); 369 370 reg = readl(&aup->mac->control); 371 reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); 372 writel(reg, &aup->mac->control); 373 wmb(); /* drain writebuffer */ 374 mdelay(10); 375 } 376 377 static void au1000_enable_rx_tx(struct net_device *dev) 378 { 379 struct au1000_private *aup = netdev_priv(dev); 380 u32 reg; 381 382 netif_dbg(aup, hw, dev, "enable_rx_tx\n"); 383 384 reg = readl(&aup->mac->control); 385 reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE); 386 writel(reg, &aup->mac->control); 387 wmb(); /* drain writebuffer */ 388 mdelay(10); 389 } 390 391 static void 392 au1000_adjust_link(struct net_device *dev) 393 { 394 struct au1000_private *aup = netdev_priv(dev); 395 struct phy_device *phydev = dev->phydev; 396 unsigned long flags; 397 u32 reg; 398 399 int status_change = 0; 400 401 BUG_ON(!phydev); 402 403 spin_lock_irqsave(&aup->lock, flags); 404 405 if (phydev->link && (aup->old_speed != phydev->speed)) { 406 /* speed changed */ 407 408 switch (phydev->speed) { 409 case SPEED_10: 410 case SPEED_100: 411 break; 412 default: 413 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n", 414 phydev->speed); 415 break; 416 } 417 418 aup->old_speed = phydev->speed; 419 420 status_change = 1; 421 } 422 423 if (phydev->link && (aup->old_duplex != phydev->duplex)) { 424 /* duplex mode changed */ 425 426 /* switching duplex mode requires to disable rx and tx! */ 427 au1000_hard_stop(dev); 428 429 reg = readl(&aup->mac->control); 430 if (DUPLEX_FULL == phydev->duplex) { 431 reg |= MAC_FULL_DUPLEX; 432 reg &= ~MAC_DISABLE_RX_OWN; 433 } else { 434 reg &= ~MAC_FULL_DUPLEX; 435 reg |= MAC_DISABLE_RX_OWN; 436 } 437 writel(reg, &aup->mac->control); 438 wmb(); /* drain writebuffer */ 439 mdelay(1); 440 441 au1000_enable_rx_tx(dev); 442 aup->old_duplex = phydev->duplex; 443 444 status_change = 1; 445 } 446 447 if (phydev->link != aup->old_link) { 448 /* link state changed */ 449 450 if (!phydev->link) { 451 /* link went down */ 452 aup->old_speed = 0; 453 aup->old_duplex = -1; 454 } 455 456 aup->old_link = phydev->link; 457 status_change = 1; 458 } 459 460 spin_unlock_irqrestore(&aup->lock, flags); 461 462 if (status_change) { 463 if (phydev->link) 464 netdev_info(dev, "link up (%d/%s)\n", 465 phydev->speed, 466 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 467 else 468 netdev_info(dev, "link down\n"); 469 } 470 } 471 472 static int au1000_mii_probe(struct net_device *dev) 473 { 474 struct au1000_private *const aup = netdev_priv(dev); 475 struct phy_device *phydev = NULL; 476 int phy_addr; 477 478 if (aup->phy_static_config) { 479 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); 480 481 if (aup->phy_addr) 482 phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr); 483 else 484 netdev_info(dev, "using PHY-less setup\n"); 485 return 0; 486 } 487 488 /* find the first (lowest address) PHY 489 * on the current MAC's MII bus 490 */ 491 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) 492 if (mdiobus_get_phy(aup->mii_bus, phy_addr)) { 493 phydev = mdiobus_get_phy(aup->mii_bus, phy_addr); 494 if (!aup->phy_search_highest_addr) 495 /* break out with first one found */ 496 break; 497 } 498 499 if (aup->phy1_search_mac0) { 500 /* try harder to find a PHY */ 501 if (!phydev && (aup->mac_id == 1)) { 502 /* no PHY found, maybe we have a dual PHY? */ 503 dev_info(&dev->dev, ": no PHY found on MAC1, " 504 "let's see if it's attached to MAC0...\n"); 505 506 /* find the first (lowest address) non-attached 507 * PHY on the MAC0 MII bus 508 */ 509 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { 510 struct phy_device *const tmp_phydev = 511 mdiobus_get_phy(aup->mii_bus, 512 phy_addr); 513 514 if (aup->mac_id == 1) 515 break; 516 517 /* no PHY here... */ 518 if (!tmp_phydev) 519 continue; 520 521 /* already claimed by MAC0 */ 522 if (tmp_phydev->attached_dev) 523 continue; 524 525 phydev = tmp_phydev; 526 break; /* found it */ 527 } 528 } 529 } 530 531 if (!phydev) { 532 netdev_err(dev, "no PHY found\n"); 533 return -1; 534 } 535 536 /* now we are supposed to have a proper phydev, to attach to... */ 537 BUG_ON(phydev->attached_dev); 538 539 phydev = phy_connect(dev, phydev_name(phydev), 540 &au1000_adjust_link, PHY_INTERFACE_MODE_MII); 541 542 if (IS_ERR(phydev)) { 543 netdev_err(dev, "Could not attach to PHY\n"); 544 return PTR_ERR(phydev); 545 } 546 547 phy_set_max_speed(phydev, SPEED_100); 548 549 aup->old_link = 0; 550 aup->old_speed = 0; 551 aup->old_duplex = -1; 552 553 phy_attached_info(phydev); 554 555 return 0; 556 } 557 558 /* 559 * Buffer allocation/deallocation routines. The buffer descriptor returned 560 * has the virtual and dma address of a buffer suitable for 561 * both, receive and transmit operations. 562 */ 563 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup) 564 { 565 struct db_dest *pDB; 566 pDB = aup->pDBfree; 567 568 if (pDB) 569 aup->pDBfree = pDB->pnext; 570 571 return pDB; 572 } 573 574 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB) 575 { 576 struct db_dest *pDBfree = aup->pDBfree; 577 if (pDBfree) 578 pDBfree->pnext = pDB; 579 aup->pDBfree = pDB; 580 } 581 582 static void au1000_reset_mac_unlocked(struct net_device *dev) 583 { 584 struct au1000_private *const aup = netdev_priv(dev); 585 int i; 586 587 au1000_hard_stop(dev); 588 589 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 590 wmb(); /* drain writebuffer */ 591 mdelay(2); 592 writel(0, aup->enable); 593 wmb(); /* drain writebuffer */ 594 mdelay(2); 595 596 aup->tx_full = 0; 597 for (i = 0; i < NUM_RX_DMA; i++) { 598 /* reset control bits */ 599 aup->rx_dma_ring[i]->buff_stat &= ~0xf; 600 } 601 for (i = 0; i < NUM_TX_DMA; i++) { 602 /* reset control bits */ 603 aup->tx_dma_ring[i]->buff_stat &= ~0xf; 604 } 605 606 aup->mac_enabled = 0; 607 608 } 609 610 static void au1000_reset_mac(struct net_device *dev) 611 { 612 struct au1000_private *const aup = netdev_priv(dev); 613 unsigned long flags; 614 615 netif_dbg(aup, hw, dev, "reset mac, aup %x\n", 616 (unsigned)aup); 617 618 spin_lock_irqsave(&aup->lock, flags); 619 620 au1000_reset_mac_unlocked(dev); 621 622 spin_unlock_irqrestore(&aup->lock, flags); 623 } 624 625 /* 626 * Setup the receive and transmit "rings". These pointers are the addresses 627 * of the rx and tx MAC DMA registers so they are fixed by the hardware -- 628 * these are not descriptors sitting in memory. 629 */ 630 static void 631 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base) 632 { 633 int i; 634 635 for (i = 0; i < NUM_RX_DMA; i++) { 636 aup->rx_dma_ring[i] = (struct rx_dma *) 637 (tx_base + 0x100 + sizeof(struct rx_dma) * i); 638 } 639 for (i = 0; i < NUM_TX_DMA; i++) { 640 aup->tx_dma_ring[i] = (struct tx_dma *) 641 (tx_base + sizeof(struct tx_dma) * i); 642 } 643 } 644 645 /* 646 * ethtool operations 647 */ 648 static void 649 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 650 { 651 struct au1000_private *aup = netdev_priv(dev); 652 653 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 654 snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME, 655 aup->mac_id); 656 } 657 658 static void au1000_set_msglevel(struct net_device *dev, u32 value) 659 { 660 struct au1000_private *aup = netdev_priv(dev); 661 aup->msg_enable = value; 662 } 663 664 static u32 au1000_get_msglevel(struct net_device *dev) 665 { 666 struct au1000_private *aup = netdev_priv(dev); 667 return aup->msg_enable; 668 } 669 670 static const struct ethtool_ops au1000_ethtool_ops = { 671 .get_drvinfo = au1000_get_drvinfo, 672 .get_link = ethtool_op_get_link, 673 .get_msglevel = au1000_get_msglevel, 674 .set_msglevel = au1000_set_msglevel, 675 .get_link_ksettings = phy_ethtool_get_link_ksettings, 676 .set_link_ksettings = phy_ethtool_set_link_ksettings, 677 }; 678 679 /* 680 * Initialize the interface. 681 * 682 * When the device powers up, the clocks are disabled and the 683 * mac is in reset state. When the interface is closed, we 684 * do the same -- reset the device and disable the clocks to 685 * conserve power. Thus, whenever au1000_init() is called, 686 * the device should already be in reset state. 687 */ 688 static int au1000_init(struct net_device *dev) 689 { 690 struct au1000_private *aup = netdev_priv(dev); 691 unsigned long flags; 692 int i; 693 u32 control; 694 695 netif_dbg(aup, hw, dev, "au1000_init\n"); 696 697 /* bring the device out of reset */ 698 au1000_enable_mac(dev, 1); 699 700 spin_lock_irqsave(&aup->lock, flags); 701 702 writel(0, &aup->mac->control); 703 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; 704 aup->tx_tail = aup->tx_head; 705 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; 706 707 writel(dev->dev_addr[5]<<8 | dev->dev_addr[4], 708 &aup->mac->mac_addr_high); 709 writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | 710 dev->dev_addr[1]<<8 | dev->dev_addr[0], 711 &aup->mac->mac_addr_low); 712 713 714 for (i = 0; i < NUM_RX_DMA; i++) 715 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; 716 717 wmb(); /* drain writebuffer */ 718 719 control = MAC_RX_ENABLE | MAC_TX_ENABLE; 720 #ifndef CONFIG_CPU_LITTLE_ENDIAN 721 control |= MAC_BIG_ENDIAN; 722 #endif 723 if (dev->phydev) { 724 if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex)) 725 control |= MAC_FULL_DUPLEX; 726 else 727 control |= MAC_DISABLE_RX_OWN; 728 } else { /* PHY-less op, assume full-duplex */ 729 control |= MAC_FULL_DUPLEX; 730 } 731 732 writel(control, &aup->mac->control); 733 writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */ 734 wmb(); /* drain writebuffer */ 735 736 spin_unlock_irqrestore(&aup->lock, flags); 737 return 0; 738 } 739 740 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status) 741 { 742 struct net_device_stats *ps = &dev->stats; 743 744 ps->rx_packets++; 745 if (status & RX_MCAST_FRAME) 746 ps->multicast++; 747 748 if (status & RX_ERROR) { 749 ps->rx_errors++; 750 if (status & RX_MISSED_FRAME) 751 ps->rx_missed_errors++; 752 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR)) 753 ps->rx_length_errors++; 754 if (status & RX_CRC_ERROR) 755 ps->rx_crc_errors++; 756 if (status & RX_COLL) 757 ps->collisions++; 758 } else 759 ps->rx_bytes += status & RX_FRAME_LEN_MASK; 760 761 } 762 763 /* 764 * Au1000 receive routine. 765 */ 766 static int au1000_rx(struct net_device *dev) 767 { 768 struct au1000_private *aup = netdev_priv(dev); 769 struct sk_buff *skb; 770 struct rx_dma *prxd; 771 u32 buff_stat, status; 772 struct db_dest *pDB; 773 u32 frmlen; 774 775 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head); 776 777 prxd = aup->rx_dma_ring[aup->rx_head]; 778 buff_stat = prxd->buff_stat; 779 while (buff_stat & RX_T_DONE) { 780 status = prxd->status; 781 pDB = aup->rx_db_inuse[aup->rx_head]; 782 au1000_update_rx_stats(dev, status); 783 if (!(status & RX_ERROR)) { 784 785 /* good frame */ 786 frmlen = (status & RX_FRAME_LEN_MASK); 787 frmlen -= 4; /* Remove FCS */ 788 skb = netdev_alloc_skb(dev, frmlen + 2); 789 if (skb == NULL) { 790 dev->stats.rx_dropped++; 791 continue; 792 } 793 skb_reserve(skb, 2); /* 16 byte IP header align */ 794 skb_copy_to_linear_data(skb, 795 (unsigned char *)pDB->vaddr, frmlen); 796 skb_put(skb, frmlen); 797 skb->protocol = eth_type_trans(skb, dev); 798 netif_rx(skb); /* pass the packet to upper layers */ 799 } else { 800 if (au1000_debug > 4) { 801 pr_err("rx_error(s):"); 802 if (status & RX_MISSED_FRAME) 803 pr_cont(" miss"); 804 if (status & RX_WDOG_TIMER) 805 pr_cont(" wdog"); 806 if (status & RX_RUNT) 807 pr_cont(" runt"); 808 if (status & RX_OVERLEN) 809 pr_cont(" overlen"); 810 if (status & RX_COLL) 811 pr_cont(" coll"); 812 if (status & RX_MII_ERROR) 813 pr_cont(" mii error"); 814 if (status & RX_CRC_ERROR) 815 pr_cont(" crc error"); 816 if (status & RX_LEN_ERROR) 817 pr_cont(" len error"); 818 if (status & RX_U_CNTRL_FRAME) 819 pr_cont(" u control frame"); 820 pr_cont("\n"); 821 } 822 } 823 prxd->buff_stat = lower_32_bits(pDB->dma_addr) | RX_DMA_ENABLE; 824 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); 825 wmb(); /* drain writebuffer */ 826 827 /* next descriptor */ 828 prxd = aup->rx_dma_ring[aup->rx_head]; 829 buff_stat = prxd->buff_stat; 830 } 831 return 0; 832 } 833 834 static void au1000_update_tx_stats(struct net_device *dev, u32 status) 835 { 836 struct net_device_stats *ps = &dev->stats; 837 838 if (status & TX_FRAME_ABORTED) { 839 if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) { 840 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { 841 /* any other tx errors are only valid 842 * in half duplex mode 843 */ 844 ps->tx_errors++; 845 ps->tx_aborted_errors++; 846 } 847 } else { 848 ps->tx_errors++; 849 ps->tx_aborted_errors++; 850 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) 851 ps->tx_carrier_errors++; 852 } 853 } 854 } 855 856 /* 857 * Called from the interrupt service routine to acknowledge 858 * the TX DONE bits. This is a must if the irq is setup as 859 * edge triggered. 860 */ 861 static void au1000_tx_ack(struct net_device *dev) 862 { 863 struct au1000_private *aup = netdev_priv(dev); 864 struct tx_dma *ptxd; 865 866 ptxd = aup->tx_dma_ring[aup->tx_tail]; 867 868 while (ptxd->buff_stat & TX_T_DONE) { 869 au1000_update_tx_stats(dev, ptxd->status); 870 ptxd->buff_stat &= ~TX_T_DONE; 871 ptxd->len = 0; 872 wmb(); /* drain writebuffer */ 873 874 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); 875 ptxd = aup->tx_dma_ring[aup->tx_tail]; 876 877 if (aup->tx_full) { 878 aup->tx_full = 0; 879 netif_wake_queue(dev); 880 } 881 } 882 } 883 884 /* 885 * Au1000 interrupt service routine. 886 */ 887 static irqreturn_t au1000_interrupt(int irq, void *dev_id) 888 { 889 struct net_device *dev = dev_id; 890 891 /* Handle RX interrupts first to minimize chance of overrun */ 892 893 au1000_rx(dev); 894 au1000_tx_ack(dev); 895 return IRQ_RETVAL(1); 896 } 897 898 static int au1000_open(struct net_device *dev) 899 { 900 int retval; 901 struct au1000_private *aup = netdev_priv(dev); 902 903 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev); 904 905 retval = request_irq(dev->irq, au1000_interrupt, 0, 906 dev->name, dev); 907 if (retval) { 908 netdev_err(dev, "unable to get IRQ %d\n", dev->irq); 909 return retval; 910 } 911 912 retval = au1000_init(dev); 913 if (retval) { 914 netdev_err(dev, "error in au1000_init\n"); 915 free_irq(dev->irq, dev); 916 return retval; 917 } 918 919 if (dev->phydev) 920 phy_start(dev->phydev); 921 922 netif_start_queue(dev); 923 924 netif_dbg(aup, drv, dev, "open: Initialization done.\n"); 925 926 return 0; 927 } 928 929 static int au1000_close(struct net_device *dev) 930 { 931 unsigned long flags; 932 struct au1000_private *const aup = netdev_priv(dev); 933 934 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev); 935 936 if (dev->phydev) 937 phy_stop(dev->phydev); 938 939 spin_lock_irqsave(&aup->lock, flags); 940 941 au1000_reset_mac_unlocked(dev); 942 943 /* stop the device */ 944 netif_stop_queue(dev); 945 946 /* disable the interrupt */ 947 free_irq(dev->irq, dev); 948 spin_unlock_irqrestore(&aup->lock, flags); 949 950 return 0; 951 } 952 953 /* 954 * Au1000 transmit routine. 955 */ 956 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev) 957 { 958 struct au1000_private *aup = netdev_priv(dev); 959 struct net_device_stats *ps = &dev->stats; 960 struct tx_dma *ptxd; 961 u32 buff_stat; 962 struct db_dest *pDB; 963 int i; 964 965 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n", 966 (unsigned)aup, skb->len, 967 skb->data, aup->tx_head); 968 969 ptxd = aup->tx_dma_ring[aup->tx_head]; 970 buff_stat = ptxd->buff_stat; 971 if (buff_stat & TX_DMA_ENABLE) { 972 /* We've wrapped around and the transmitter is still busy */ 973 netif_stop_queue(dev); 974 aup->tx_full = 1; 975 return NETDEV_TX_BUSY; 976 } else if (buff_stat & TX_T_DONE) { 977 au1000_update_tx_stats(dev, ptxd->status); 978 ptxd->len = 0; 979 } 980 981 if (aup->tx_full) { 982 aup->tx_full = 0; 983 netif_wake_queue(dev); 984 } 985 986 pDB = aup->tx_db_inuse[aup->tx_head]; 987 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len); 988 if (skb->len < ETH_ZLEN) { 989 for (i = skb->len; i < ETH_ZLEN; i++) 990 ((char *)pDB->vaddr)[i] = 0; 991 992 ptxd->len = ETH_ZLEN; 993 } else 994 ptxd->len = skb->len; 995 996 ps->tx_packets++; 997 ps->tx_bytes += ptxd->len; 998 999 ptxd->buff_stat = lower_32_bits(pDB->dma_addr) | TX_DMA_ENABLE; 1000 wmb(); /* drain writebuffer */ 1001 dev_kfree_skb(skb); 1002 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); 1003 return NETDEV_TX_OK; 1004 } 1005 1006 /* 1007 * The Tx ring has been full longer than the watchdog timeout 1008 * value. The transmitter must be hung? 1009 */ 1010 static void au1000_tx_timeout(struct net_device *dev, unsigned int txqueue) 1011 { 1012 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev); 1013 au1000_reset_mac(dev); 1014 au1000_init(dev); 1015 netif_trans_update(dev); /* prevent tx timeout */ 1016 netif_wake_queue(dev); 1017 } 1018 1019 static void au1000_multicast_list(struct net_device *dev) 1020 { 1021 struct au1000_private *aup = netdev_priv(dev); 1022 u32 reg; 1023 1024 netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags); 1025 reg = readl(&aup->mac->control); 1026 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1027 reg |= MAC_PROMISCUOUS; 1028 } else if ((dev->flags & IFF_ALLMULTI) || 1029 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) { 1030 reg |= MAC_PASS_ALL_MULTI; 1031 reg &= ~MAC_PROMISCUOUS; 1032 netdev_info(dev, "Pass all multicast\n"); 1033 } else { 1034 struct netdev_hw_addr *ha; 1035 u32 mc_filter[2]; /* Multicast hash filter */ 1036 1037 mc_filter[1] = mc_filter[0] = 0; 1038 netdev_for_each_mc_addr(ha, dev) 1039 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26, 1040 (long *)mc_filter); 1041 writel(mc_filter[1], &aup->mac->multi_hash_high); 1042 writel(mc_filter[0], &aup->mac->multi_hash_low); 1043 reg &= ~MAC_PROMISCUOUS; 1044 reg |= MAC_HASH_MODE; 1045 } 1046 writel(reg, &aup->mac->control); 1047 } 1048 1049 static const struct net_device_ops au1000_netdev_ops = { 1050 .ndo_open = au1000_open, 1051 .ndo_stop = au1000_close, 1052 .ndo_start_xmit = au1000_tx, 1053 .ndo_set_rx_mode = au1000_multicast_list, 1054 .ndo_eth_ioctl = phy_do_ioctl_running, 1055 .ndo_tx_timeout = au1000_tx_timeout, 1056 .ndo_set_mac_address = eth_mac_addr, 1057 .ndo_validate_addr = eth_validate_addr, 1058 }; 1059 1060 static int au1000_probe(struct platform_device *pdev) 1061 { 1062 struct au1000_private *aup = NULL; 1063 struct au1000_eth_platform_data *pd; 1064 struct net_device *dev = NULL; 1065 struct db_dest *pDB, *pDBfree; 1066 int irq, i, err = 0; 1067 struct resource *base, *macen, *macdma; 1068 1069 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1070 if (!base) { 1071 dev_err(&pdev->dev, "failed to retrieve base register\n"); 1072 err = -ENODEV; 1073 goto out; 1074 } 1075 1076 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1077 if (!macen) { 1078 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n"); 1079 err = -ENODEV; 1080 goto out; 1081 } 1082 1083 irq = platform_get_irq(pdev, 0); 1084 if (irq < 0) { 1085 err = -ENODEV; 1086 goto out; 1087 } 1088 1089 macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1090 if (!macdma) { 1091 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n"); 1092 err = -ENODEV; 1093 goto out; 1094 } 1095 1096 if (!request_mem_region(base->start, resource_size(base), 1097 pdev->name)) { 1098 dev_err(&pdev->dev, "failed to request memory region for base registers\n"); 1099 err = -ENXIO; 1100 goto out; 1101 } 1102 1103 if (!request_mem_region(macen->start, resource_size(macen), 1104 pdev->name)) { 1105 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n"); 1106 err = -ENXIO; 1107 goto err_request; 1108 } 1109 1110 if (!request_mem_region(macdma->start, resource_size(macdma), 1111 pdev->name)) { 1112 dev_err(&pdev->dev, "failed to request MACDMA memory region\n"); 1113 err = -ENXIO; 1114 goto err_macdma; 1115 } 1116 1117 dev = alloc_etherdev(sizeof(struct au1000_private)); 1118 if (!dev) { 1119 err = -ENOMEM; 1120 goto err_alloc; 1121 } 1122 1123 SET_NETDEV_DEV(dev, &pdev->dev); 1124 platform_set_drvdata(pdev, dev); 1125 aup = netdev_priv(dev); 1126 1127 spin_lock_init(&aup->lock); 1128 aup->msg_enable = (au1000_debug < 4 ? 1129 AU1000_DEF_MSG_ENABLE : au1000_debug); 1130 1131 /* Allocate the data buffers 1132 * Snooping works fine with eth on all au1xxx 1133 */ 1134 aup->vaddr = dma_alloc_coherent(&pdev->dev, MAX_BUF_SIZE * 1135 (NUM_TX_BUFFS + NUM_RX_BUFFS), 1136 &aup->dma_addr, 0); 1137 if (!aup->vaddr) { 1138 dev_err(&pdev->dev, "failed to allocate data buffers\n"); 1139 err = -ENOMEM; 1140 goto err_vaddr; 1141 } 1142 1143 /* aup->mac is the base address of the MAC's registers */ 1144 aup->mac = (struct mac_reg *) 1145 ioremap(base->start, resource_size(base)); 1146 if (!aup->mac) { 1147 dev_err(&pdev->dev, "failed to ioremap MAC registers\n"); 1148 err = -ENXIO; 1149 goto err_remap1; 1150 } 1151 1152 /* Setup some variables for quick register address access */ 1153 aup->enable = (u32 *)ioremap(macen->start, 1154 resource_size(macen)); 1155 if (!aup->enable) { 1156 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n"); 1157 err = -ENXIO; 1158 goto err_remap2; 1159 } 1160 aup->mac_id = pdev->id; 1161 1162 aup->macdma = ioremap(macdma->start, resource_size(macdma)); 1163 if (!aup->macdma) { 1164 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n"); 1165 err = -ENXIO; 1166 goto err_remap3; 1167 } 1168 1169 au1000_setup_hw_rings(aup, aup->macdma); 1170 1171 writel(0, aup->enable); 1172 aup->mac_enabled = 0; 1173 1174 pd = dev_get_platdata(&pdev->dev); 1175 if (!pd) { 1176 dev_info(&pdev->dev, "no platform_data passed," 1177 " PHY search on MAC0\n"); 1178 aup->phy1_search_mac0 = 1; 1179 } else { 1180 if (is_valid_ether_addr(pd->mac)) { 1181 eth_hw_addr_set(dev, pd->mac); 1182 } else { 1183 /* Set a random MAC since no valid provided by platform_data. */ 1184 eth_hw_addr_random(dev); 1185 } 1186 1187 aup->phy_static_config = pd->phy_static_config; 1188 aup->phy_search_highest_addr = pd->phy_search_highest_addr; 1189 aup->phy1_search_mac0 = pd->phy1_search_mac0; 1190 aup->phy_addr = pd->phy_addr; 1191 aup->phy_busid = pd->phy_busid; 1192 aup->phy_irq = pd->phy_irq; 1193 } 1194 1195 if (aup->phy_busid > 0) { 1196 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n"); 1197 err = -ENODEV; 1198 goto err_mdiobus_alloc; 1199 } 1200 1201 aup->mii_bus = mdiobus_alloc(); 1202 if (aup->mii_bus == NULL) { 1203 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n"); 1204 err = -ENOMEM; 1205 goto err_mdiobus_alloc; 1206 } 1207 1208 aup->mii_bus->priv = dev; 1209 aup->mii_bus->read = au1000_mdiobus_read; 1210 aup->mii_bus->write = au1000_mdiobus_write; 1211 aup->mii_bus->reset = au1000_mdiobus_reset; 1212 aup->mii_bus->name = "au1000_eth_mii"; 1213 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 1214 pdev->name, aup->mac_id); 1215 1216 /* if known, set corresponding PHY IRQs */ 1217 if (aup->phy_static_config) 1218 if (aup->phy_irq && aup->phy_busid == aup->mac_id) 1219 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq; 1220 1221 err = mdiobus_register(aup->mii_bus); 1222 if (err) { 1223 dev_err(&pdev->dev, "failed to register MDIO bus\n"); 1224 goto err_mdiobus_reg; 1225 } 1226 1227 err = au1000_mii_probe(dev); 1228 if (err != 0) 1229 goto err_out; 1230 1231 pDBfree = NULL; 1232 /* setup the data buffer descriptors and attach a buffer to each one */ 1233 pDB = aup->db; 1234 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { 1235 pDB->pnext = pDBfree; 1236 pDBfree = pDB; 1237 pDB->vaddr = aup->vaddr + MAX_BUF_SIZE * i; 1238 pDB->dma_addr = aup->dma_addr + MAX_BUF_SIZE * i; 1239 pDB++; 1240 } 1241 aup->pDBfree = pDBfree; 1242 1243 err = -ENODEV; 1244 for (i = 0; i < NUM_RX_DMA; i++) { 1245 pDB = au1000_GetFreeDB(aup); 1246 if (!pDB) 1247 goto err_out; 1248 1249 aup->rx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr); 1250 aup->rx_db_inuse[i] = pDB; 1251 } 1252 1253 for (i = 0; i < NUM_TX_DMA; i++) { 1254 pDB = au1000_GetFreeDB(aup); 1255 if (!pDB) 1256 goto err_out; 1257 1258 aup->tx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr); 1259 aup->tx_dma_ring[i]->len = 0; 1260 aup->tx_db_inuse[i] = pDB; 1261 } 1262 1263 dev->base_addr = base->start; 1264 dev->irq = irq; 1265 dev->netdev_ops = &au1000_netdev_ops; 1266 dev->ethtool_ops = &au1000_ethtool_ops; 1267 dev->watchdog_timeo = ETH_TX_TIMEOUT; 1268 1269 /* 1270 * The boot code uses the ethernet controller, so reset it to start 1271 * fresh. au1000_init() expects that the device is in reset state. 1272 */ 1273 au1000_reset_mac(dev); 1274 1275 err = register_netdev(dev); 1276 if (err) { 1277 netdev_err(dev, "Cannot register net device, aborting.\n"); 1278 goto err_out; 1279 } 1280 1281 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n", 1282 (unsigned long)base->start, irq); 1283 1284 return 0; 1285 1286 err_out: 1287 if (aup->mii_bus != NULL) 1288 mdiobus_unregister(aup->mii_bus); 1289 1290 /* here we should have a valid dev plus aup-> register addresses 1291 * so we can reset the mac properly. 1292 */ 1293 au1000_reset_mac(dev); 1294 1295 for (i = 0; i < NUM_RX_DMA; i++) { 1296 if (aup->rx_db_inuse[i]) 1297 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1298 } 1299 for (i = 0; i < NUM_TX_DMA; i++) { 1300 if (aup->tx_db_inuse[i]) 1301 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1302 } 1303 err_mdiobus_reg: 1304 mdiobus_free(aup->mii_bus); 1305 err_mdiobus_alloc: 1306 iounmap(aup->macdma); 1307 err_remap3: 1308 iounmap(aup->enable); 1309 err_remap2: 1310 iounmap(aup->mac); 1311 err_remap1: 1312 dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), 1313 aup->vaddr, aup->dma_addr); 1314 err_vaddr: 1315 free_netdev(dev); 1316 err_alloc: 1317 release_mem_region(macdma->start, resource_size(macdma)); 1318 err_macdma: 1319 release_mem_region(macen->start, resource_size(macen)); 1320 err_request: 1321 release_mem_region(base->start, resource_size(base)); 1322 out: 1323 return err; 1324 } 1325 1326 static int au1000_remove(struct platform_device *pdev) 1327 { 1328 struct net_device *dev = platform_get_drvdata(pdev); 1329 struct au1000_private *aup = netdev_priv(dev); 1330 int i; 1331 struct resource *base, *macen; 1332 1333 unregister_netdev(dev); 1334 mdiobus_unregister(aup->mii_bus); 1335 mdiobus_free(aup->mii_bus); 1336 1337 for (i = 0; i < NUM_RX_DMA; i++) 1338 if (aup->rx_db_inuse[i]) 1339 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1340 1341 for (i = 0; i < NUM_TX_DMA; i++) 1342 if (aup->tx_db_inuse[i]) 1343 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1344 1345 dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), 1346 aup->vaddr, aup->dma_addr); 1347 1348 iounmap(aup->macdma); 1349 iounmap(aup->mac); 1350 iounmap(aup->enable); 1351 1352 base = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1353 release_mem_region(base->start, resource_size(base)); 1354 1355 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1356 release_mem_region(base->start, resource_size(base)); 1357 1358 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1359 release_mem_region(macen->start, resource_size(macen)); 1360 1361 free_netdev(dev); 1362 1363 return 0; 1364 } 1365 1366 static struct platform_driver au1000_eth_driver = { 1367 .probe = au1000_probe, 1368 .remove = au1000_remove, 1369 .driver = { 1370 .name = "au1000-eth", 1371 }, 1372 }; 1373 1374 module_platform_driver(au1000_eth_driver); 1375 1376 MODULE_ALIAS("platform:au1000-eth"); 1377