1 /* 2 * 3 * Alchemy Au1x00 ethernet driver 4 * 5 * Copyright 2001-2003, 2006 MontaVista Software Inc. 6 * Copyright 2002 TimeSys Corp. 7 * Added ethtool/mii-tool support, 8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> 9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de 10 * or riemer@riemer-nt.de: fixed the link beat detection with 11 * ioctls (SIOCGMIIPHY) 12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org> 13 * converted to use linux-2.6.x's PHY framework 14 * 15 * Author: MontaVista Software, Inc. 16 * ppopov@mvista.com or source@mvista.com 17 * 18 * ######################################################################## 19 * 20 * This program is free software; you can distribute it and/or modify it 21 * under the terms of the GNU General Public License (Version 2) as 22 * published by the Free Software Foundation. 23 * 24 * This program is distributed in the hope it will be useful, but WITHOUT 25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 27 * for more details. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, see <http://www.gnu.org/licenses/>. 31 * 32 * ######################################################################## 33 * 34 * 35 */ 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/capability.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/string.h> 43 #include <linux/timer.h> 44 #include <linux/errno.h> 45 #include <linux/in.h> 46 #include <linux/ioport.h> 47 #include <linux/bitops.h> 48 #include <linux/slab.h> 49 #include <linux/interrupt.h> 50 #include <linux/netdevice.h> 51 #include <linux/etherdevice.h> 52 #include <linux/ethtool.h> 53 #include <linux/mii.h> 54 #include <linux/skbuff.h> 55 #include <linux/delay.h> 56 #include <linux/crc32.h> 57 #include <linux/phy.h> 58 #include <linux/platform_device.h> 59 #include <linux/cpu.h> 60 #include <linux/io.h> 61 62 #include <asm/mipsregs.h> 63 #include <asm/irq.h> 64 #include <asm/processor.h> 65 66 #include <au1000.h> 67 #include <au1xxx_eth.h> 68 #include <prom.h> 69 70 #include "au1000_eth.h" 71 72 #ifdef AU1000_ETH_DEBUG 73 static int au1000_debug = 5; 74 #else 75 static int au1000_debug = 3; 76 #endif 77 78 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 79 NETIF_MSG_PROBE | \ 80 NETIF_MSG_LINK) 81 82 #define DRV_NAME "au1000_eth" 83 #define DRV_VERSION "1.7" 84 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" 85 #define DRV_DESC "Au1xxx on-chip Ethernet driver" 86 87 MODULE_AUTHOR(DRV_AUTHOR); 88 MODULE_DESCRIPTION(DRV_DESC); 89 MODULE_LICENSE("GPL"); 90 MODULE_VERSION(DRV_VERSION); 91 92 /* AU1000 MAC registers and bits */ 93 #define MAC_CONTROL 0x0 94 # define MAC_RX_ENABLE (1 << 2) 95 # define MAC_TX_ENABLE (1 << 3) 96 # define MAC_DEF_CHECK (1 << 5) 97 # define MAC_SET_BL(X) (((X) & 0x3) << 6) 98 # define MAC_AUTO_PAD (1 << 8) 99 # define MAC_DISABLE_RETRY (1 << 10) 100 # define MAC_DISABLE_BCAST (1 << 11) 101 # define MAC_LATE_COL (1 << 12) 102 # define MAC_HASH_MODE (1 << 13) 103 # define MAC_HASH_ONLY (1 << 15) 104 # define MAC_PASS_ALL (1 << 16) 105 # define MAC_INVERSE_FILTER (1 << 17) 106 # define MAC_PROMISCUOUS (1 << 18) 107 # define MAC_PASS_ALL_MULTI (1 << 19) 108 # define MAC_FULL_DUPLEX (1 << 20) 109 # define MAC_NORMAL_MODE 0 110 # define MAC_INT_LOOPBACK (1 << 21) 111 # define MAC_EXT_LOOPBACK (1 << 22) 112 # define MAC_DISABLE_RX_OWN (1 << 23) 113 # define MAC_BIG_ENDIAN (1 << 30) 114 # define MAC_RX_ALL (1 << 31) 115 #define MAC_ADDRESS_HIGH 0x4 116 #define MAC_ADDRESS_LOW 0x8 117 #define MAC_MCAST_HIGH 0xC 118 #define MAC_MCAST_LOW 0x10 119 #define MAC_MII_CNTRL 0x14 120 # define MAC_MII_BUSY (1 << 0) 121 # define MAC_MII_READ 0 122 # define MAC_MII_WRITE (1 << 1) 123 # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6) 124 # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11) 125 #define MAC_MII_DATA 0x18 126 #define MAC_FLOW_CNTRL 0x1C 127 # define MAC_FLOW_CNTRL_BUSY (1 << 0) 128 # define MAC_FLOW_CNTRL_ENABLE (1 << 1) 129 # define MAC_PASS_CONTROL (1 << 2) 130 # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16) 131 #define MAC_VLAN1_TAG 0x20 132 #define MAC_VLAN2_TAG 0x24 133 134 /* Ethernet Controller Enable */ 135 # define MAC_EN_CLOCK_ENABLE (1 << 0) 136 # define MAC_EN_RESET0 (1 << 1) 137 # define MAC_EN_TOSS (0 << 2) 138 # define MAC_EN_CACHEABLE (1 << 3) 139 # define MAC_EN_RESET1 (1 << 4) 140 # define MAC_EN_RESET2 (1 << 5) 141 # define MAC_DMA_RESET (1 << 6) 142 143 /* Ethernet Controller DMA Channels */ 144 /* offsets from MAC_TX_RING_ADDR address */ 145 #define MAC_TX_BUFF0_STATUS 0x0 146 # define TX_FRAME_ABORTED (1 << 0) 147 # define TX_JAB_TIMEOUT (1 << 1) 148 # define TX_NO_CARRIER (1 << 2) 149 # define TX_LOSS_CARRIER (1 << 3) 150 # define TX_EXC_DEF (1 << 4) 151 # define TX_LATE_COLL_ABORT (1 << 5) 152 # define TX_EXC_COLL (1 << 6) 153 # define TX_UNDERRUN (1 << 7) 154 # define TX_DEFERRED (1 << 8) 155 # define TX_LATE_COLL (1 << 9) 156 # define TX_COLL_CNT_MASK (0xF << 10) 157 # define TX_PKT_RETRY (1 << 31) 158 #define MAC_TX_BUFF0_ADDR 0x4 159 # define TX_DMA_ENABLE (1 << 0) 160 # define TX_T_DONE (1 << 1) 161 # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) 162 #define MAC_TX_BUFF0_LEN 0x8 163 #define MAC_TX_BUFF1_STATUS 0x10 164 #define MAC_TX_BUFF1_ADDR 0x14 165 #define MAC_TX_BUFF1_LEN 0x18 166 #define MAC_TX_BUFF2_STATUS 0x20 167 #define MAC_TX_BUFF2_ADDR 0x24 168 #define MAC_TX_BUFF2_LEN 0x28 169 #define MAC_TX_BUFF3_STATUS 0x30 170 #define MAC_TX_BUFF3_ADDR 0x34 171 #define MAC_TX_BUFF3_LEN 0x38 172 173 /* offsets from MAC_RX_RING_ADDR */ 174 #define MAC_RX_BUFF0_STATUS 0x0 175 # define RX_FRAME_LEN_MASK 0x3fff 176 # define RX_WDOG_TIMER (1 << 14) 177 # define RX_RUNT (1 << 15) 178 # define RX_OVERLEN (1 << 16) 179 # define RX_COLL (1 << 17) 180 # define RX_ETHER (1 << 18) 181 # define RX_MII_ERROR (1 << 19) 182 # define RX_DRIBBLING (1 << 20) 183 # define RX_CRC_ERROR (1 << 21) 184 # define RX_VLAN1 (1 << 22) 185 # define RX_VLAN2 (1 << 23) 186 # define RX_LEN_ERROR (1 << 24) 187 # define RX_CNTRL_FRAME (1 << 25) 188 # define RX_U_CNTRL_FRAME (1 << 26) 189 # define RX_MCAST_FRAME (1 << 27) 190 # define RX_BCAST_FRAME (1 << 28) 191 # define RX_FILTER_FAIL (1 << 29) 192 # define RX_PACKET_FILTER (1 << 30) 193 # define RX_MISSED_FRAME (1 << 31) 194 195 # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \ 196 RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \ 197 RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME) 198 #define MAC_RX_BUFF0_ADDR 0x4 199 # define RX_DMA_ENABLE (1 << 0) 200 # define RX_T_DONE (1 << 1) 201 # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) 202 # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0) 203 #define MAC_RX_BUFF1_STATUS 0x10 204 #define MAC_RX_BUFF1_ADDR 0x14 205 #define MAC_RX_BUFF2_STATUS 0x20 206 #define MAC_RX_BUFF2_ADDR 0x24 207 #define MAC_RX_BUFF3_STATUS 0x30 208 #define MAC_RX_BUFF3_ADDR 0x34 209 210 /* 211 * Theory of operation 212 * 213 * The Au1000 MACs use a simple rx and tx descriptor ring scheme. 214 * There are four receive and four transmit descriptors. These 215 * descriptors are not in memory; rather, they are just a set of 216 * hardware registers. 217 * 218 * Since the Au1000 has a coherent data cache, the receive and 219 * transmit buffers are allocated from the KSEG0 segment. The 220 * hardware registers, however, are still mapped at KSEG1 to 221 * make sure there's no out-of-order writes, and that all writes 222 * complete immediately. 223 */ 224 225 /* 226 * board-specific configurations 227 * 228 * PHY detection algorithm 229 * 230 * If phy_static_config is undefined, the PHY setup is 231 * autodetected: 232 * 233 * mii_probe() first searches the current MAC's MII bus for a PHY, 234 * selecting the first (or last, if phy_search_highest_addr is 235 * defined) PHY address not already claimed by another netdev. 236 * 237 * If nothing was found that way when searching for the 2nd ethernet 238 * controller's PHY and phy1_search_mac0 is defined, then 239 * the first MII bus is searched as well for an unclaimed PHY; this is 240 * needed in case of a dual-PHY accessible only through the MAC0's MII 241 * bus. 242 * 243 * Finally, if no PHY is found, then the corresponding ethernet 244 * controller is not registered to the network subsystem. 245 */ 246 247 /* autodetection defaults: phy1_search_mac0 */ 248 249 /* static PHY setup 250 * 251 * most boards PHY setup should be detectable properly with the 252 * autodetection algorithm in mii_probe(), but in some cases (e.g. if 253 * you have a switch attached, or want to use the PHY's interrupt 254 * notification capabilities) you can provide a static PHY 255 * configuration here 256 * 257 * IRQs may only be set, if a PHY address was configured 258 * If a PHY address is given, also a bus id is required to be set 259 * 260 * ps: make sure the used irqs are configured properly in the board 261 * specific irq-map 262 */ 263 264 static void au1000_enable_mac(struct net_device *dev, int force_reset) 265 { 266 unsigned long flags; 267 struct au1000_private *aup = netdev_priv(dev); 268 269 spin_lock_irqsave(&aup->lock, flags); 270 271 if (force_reset || (!aup->mac_enabled)) { 272 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 273 wmb(); /* drain writebuffer */ 274 mdelay(2); 275 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 276 | MAC_EN_CLOCK_ENABLE), aup->enable); 277 wmb(); /* drain writebuffer */ 278 mdelay(2); 279 280 aup->mac_enabled = 1; 281 } 282 283 spin_unlock_irqrestore(&aup->lock, flags); 284 } 285 286 /* 287 * MII operations 288 */ 289 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg) 290 { 291 struct au1000_private *aup = netdev_priv(dev); 292 u32 *const mii_control_reg = &aup->mac->mii_control; 293 u32 *const mii_data_reg = &aup->mac->mii_data; 294 u32 timedout = 20; 295 u32 mii_control; 296 297 while (readl(mii_control_reg) & MAC_MII_BUSY) { 298 mdelay(1); 299 if (--timedout == 0) { 300 netdev_err(dev, "read_MII busy timeout!!\n"); 301 return -1; 302 } 303 } 304 305 mii_control = MAC_SET_MII_SELECT_REG(reg) | 306 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; 307 308 writel(mii_control, mii_control_reg); 309 310 timedout = 20; 311 while (readl(mii_control_reg) & MAC_MII_BUSY) { 312 mdelay(1); 313 if (--timedout == 0) { 314 netdev_err(dev, "mdio_read busy timeout!!\n"); 315 return -1; 316 } 317 } 318 return readl(mii_data_reg); 319 } 320 321 static void au1000_mdio_write(struct net_device *dev, int phy_addr, 322 int reg, u16 value) 323 { 324 struct au1000_private *aup = netdev_priv(dev); 325 u32 *const mii_control_reg = &aup->mac->mii_control; 326 u32 *const mii_data_reg = &aup->mac->mii_data; 327 u32 timedout = 20; 328 u32 mii_control; 329 330 while (readl(mii_control_reg) & MAC_MII_BUSY) { 331 mdelay(1); 332 if (--timedout == 0) { 333 netdev_err(dev, "mdio_write busy timeout!!\n"); 334 return; 335 } 336 } 337 338 mii_control = MAC_SET_MII_SELECT_REG(reg) | 339 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; 340 341 writel(value, mii_data_reg); 342 writel(mii_control, mii_control_reg); 343 } 344 345 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) 346 { 347 struct net_device *const dev = bus->priv; 348 349 /* make sure the MAC associated with this 350 * mii_bus is enabled 351 */ 352 au1000_enable_mac(dev, 0); 353 354 return au1000_mdio_read(dev, phy_addr, regnum); 355 } 356 357 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, 358 u16 value) 359 { 360 struct net_device *const dev = bus->priv; 361 362 /* make sure the MAC associated with this 363 * mii_bus is enabled 364 */ 365 au1000_enable_mac(dev, 0); 366 367 au1000_mdio_write(dev, phy_addr, regnum, value); 368 return 0; 369 } 370 371 static int au1000_mdiobus_reset(struct mii_bus *bus) 372 { 373 struct net_device *const dev = bus->priv; 374 375 /* make sure the MAC associated with this 376 * mii_bus is enabled 377 */ 378 au1000_enable_mac(dev, 0); 379 380 return 0; 381 } 382 383 static void au1000_hard_stop(struct net_device *dev) 384 { 385 struct au1000_private *aup = netdev_priv(dev); 386 u32 reg; 387 388 netif_dbg(aup, drv, dev, "hard stop\n"); 389 390 reg = readl(&aup->mac->control); 391 reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); 392 writel(reg, &aup->mac->control); 393 wmb(); /* drain writebuffer */ 394 mdelay(10); 395 } 396 397 static void au1000_enable_rx_tx(struct net_device *dev) 398 { 399 struct au1000_private *aup = netdev_priv(dev); 400 u32 reg; 401 402 netif_dbg(aup, hw, dev, "enable_rx_tx\n"); 403 404 reg = readl(&aup->mac->control); 405 reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE); 406 writel(reg, &aup->mac->control); 407 wmb(); /* drain writebuffer */ 408 mdelay(10); 409 } 410 411 static void 412 au1000_adjust_link(struct net_device *dev) 413 { 414 struct au1000_private *aup = netdev_priv(dev); 415 struct phy_device *phydev = aup->phy_dev; 416 unsigned long flags; 417 u32 reg; 418 419 int status_change = 0; 420 421 BUG_ON(!aup->phy_dev); 422 423 spin_lock_irqsave(&aup->lock, flags); 424 425 if (phydev->link && (aup->old_speed != phydev->speed)) { 426 /* speed changed */ 427 428 switch (phydev->speed) { 429 case SPEED_10: 430 case SPEED_100: 431 break; 432 default: 433 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n", 434 phydev->speed); 435 break; 436 } 437 438 aup->old_speed = phydev->speed; 439 440 status_change = 1; 441 } 442 443 if (phydev->link && (aup->old_duplex != phydev->duplex)) { 444 /* duplex mode changed */ 445 446 /* switching duplex mode requires to disable rx and tx! */ 447 au1000_hard_stop(dev); 448 449 reg = readl(&aup->mac->control); 450 if (DUPLEX_FULL == phydev->duplex) { 451 reg |= MAC_FULL_DUPLEX; 452 reg &= ~MAC_DISABLE_RX_OWN; 453 } else { 454 reg &= ~MAC_FULL_DUPLEX; 455 reg |= MAC_DISABLE_RX_OWN; 456 } 457 writel(reg, &aup->mac->control); 458 wmb(); /* drain writebuffer */ 459 mdelay(1); 460 461 au1000_enable_rx_tx(dev); 462 aup->old_duplex = phydev->duplex; 463 464 status_change = 1; 465 } 466 467 if (phydev->link != aup->old_link) { 468 /* link state changed */ 469 470 if (!phydev->link) { 471 /* link went down */ 472 aup->old_speed = 0; 473 aup->old_duplex = -1; 474 } 475 476 aup->old_link = phydev->link; 477 status_change = 1; 478 } 479 480 spin_unlock_irqrestore(&aup->lock, flags); 481 482 if (status_change) { 483 if (phydev->link) 484 netdev_info(dev, "link up (%d/%s)\n", 485 phydev->speed, 486 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 487 else 488 netdev_info(dev, "link down\n"); 489 } 490 } 491 492 static int au1000_mii_probe(struct net_device *dev) 493 { 494 struct au1000_private *const aup = netdev_priv(dev); 495 struct phy_device *phydev = NULL; 496 int phy_addr; 497 498 if (aup->phy_static_config) { 499 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); 500 501 if (aup->phy_addr) 502 phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr); 503 else 504 netdev_info(dev, "using PHY-less setup\n"); 505 return 0; 506 } 507 508 /* find the first (lowest address) PHY 509 * on the current MAC's MII bus 510 */ 511 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) 512 if (mdiobus_get_phy(aup->mii_bus, aup->phy_addr)) { 513 phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr); 514 if (!aup->phy_search_highest_addr) 515 /* break out with first one found */ 516 break; 517 } 518 519 if (aup->phy1_search_mac0) { 520 /* try harder to find a PHY */ 521 if (!phydev && (aup->mac_id == 1)) { 522 /* no PHY found, maybe we have a dual PHY? */ 523 dev_info(&dev->dev, ": no PHY found on MAC1, " 524 "let's see if it's attached to MAC0...\n"); 525 526 /* find the first (lowest address) non-attached 527 * PHY on the MAC0 MII bus 528 */ 529 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { 530 struct phy_device *const tmp_phydev = 531 mdiobus_get_phy(aup->mii_bus, 532 phy_addr); 533 534 if (aup->mac_id == 1) 535 break; 536 537 /* no PHY here... */ 538 if (!tmp_phydev) 539 continue; 540 541 /* already claimed by MAC0 */ 542 if (tmp_phydev->attached_dev) 543 continue; 544 545 phydev = tmp_phydev; 546 break; /* found it */ 547 } 548 } 549 } 550 551 if (!phydev) { 552 netdev_err(dev, "no PHY found\n"); 553 return -1; 554 } 555 556 /* now we are supposed to have a proper phydev, to attach to... */ 557 BUG_ON(phydev->attached_dev); 558 559 phydev = phy_connect(dev, phydev_name(phydev), 560 &au1000_adjust_link, PHY_INTERFACE_MODE_MII); 561 562 if (IS_ERR(phydev)) { 563 netdev_err(dev, "Could not attach to PHY\n"); 564 return PTR_ERR(phydev); 565 } 566 567 /* mask with MAC supported features */ 568 phydev->supported &= (SUPPORTED_10baseT_Half 569 | SUPPORTED_10baseT_Full 570 | SUPPORTED_100baseT_Half 571 | SUPPORTED_100baseT_Full 572 | SUPPORTED_Autoneg 573 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */ 574 | SUPPORTED_MII 575 | SUPPORTED_TP); 576 577 phydev->advertising = phydev->supported; 578 579 aup->old_link = 0; 580 aup->old_speed = 0; 581 aup->old_duplex = -1; 582 aup->phy_dev = phydev; 583 584 phy_attached_info(phydev); 585 586 return 0; 587 } 588 589 590 /* 591 * Buffer allocation/deallocation routines. The buffer descriptor returned 592 * has the virtual and dma address of a buffer suitable for 593 * both, receive and transmit operations. 594 */ 595 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup) 596 { 597 struct db_dest *pDB; 598 pDB = aup->pDBfree; 599 600 if (pDB) 601 aup->pDBfree = pDB->pnext; 602 603 return pDB; 604 } 605 606 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB) 607 { 608 struct db_dest *pDBfree = aup->pDBfree; 609 if (pDBfree) 610 pDBfree->pnext = pDB; 611 aup->pDBfree = pDB; 612 } 613 614 static void au1000_reset_mac_unlocked(struct net_device *dev) 615 { 616 struct au1000_private *const aup = netdev_priv(dev); 617 int i; 618 619 au1000_hard_stop(dev); 620 621 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 622 wmb(); /* drain writebuffer */ 623 mdelay(2); 624 writel(0, aup->enable); 625 wmb(); /* drain writebuffer */ 626 mdelay(2); 627 628 aup->tx_full = 0; 629 for (i = 0; i < NUM_RX_DMA; i++) { 630 /* reset control bits */ 631 aup->rx_dma_ring[i]->buff_stat &= ~0xf; 632 } 633 for (i = 0; i < NUM_TX_DMA; i++) { 634 /* reset control bits */ 635 aup->tx_dma_ring[i]->buff_stat &= ~0xf; 636 } 637 638 aup->mac_enabled = 0; 639 640 } 641 642 static void au1000_reset_mac(struct net_device *dev) 643 { 644 struct au1000_private *const aup = netdev_priv(dev); 645 unsigned long flags; 646 647 netif_dbg(aup, hw, dev, "reset mac, aup %x\n", 648 (unsigned)aup); 649 650 spin_lock_irqsave(&aup->lock, flags); 651 652 au1000_reset_mac_unlocked(dev); 653 654 spin_unlock_irqrestore(&aup->lock, flags); 655 } 656 657 /* 658 * Setup the receive and transmit "rings". These pointers are the addresses 659 * of the rx and tx MAC DMA registers so they are fixed by the hardware -- 660 * these are not descriptors sitting in memory. 661 */ 662 static void 663 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base) 664 { 665 int i; 666 667 for (i = 0; i < NUM_RX_DMA; i++) { 668 aup->rx_dma_ring[i] = (struct rx_dma *) 669 (tx_base + 0x100 + sizeof(struct rx_dma) * i); 670 } 671 for (i = 0; i < NUM_TX_DMA; i++) { 672 aup->tx_dma_ring[i] = (struct tx_dma *) 673 (tx_base + sizeof(struct tx_dma) * i); 674 } 675 } 676 677 /* 678 * ethtool operations 679 */ 680 681 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 682 { 683 struct au1000_private *aup = netdev_priv(dev); 684 685 if (aup->phy_dev) 686 return phy_ethtool_gset(aup->phy_dev, cmd); 687 688 return -EINVAL; 689 } 690 691 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 692 { 693 struct au1000_private *aup = netdev_priv(dev); 694 695 if (!capable(CAP_NET_ADMIN)) 696 return -EPERM; 697 698 if (aup->phy_dev) 699 return phy_ethtool_sset(aup->phy_dev, cmd); 700 701 return -EINVAL; 702 } 703 704 static void 705 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 706 { 707 struct au1000_private *aup = netdev_priv(dev); 708 709 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 710 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 711 snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME, 712 aup->mac_id); 713 } 714 715 static void au1000_set_msglevel(struct net_device *dev, u32 value) 716 { 717 struct au1000_private *aup = netdev_priv(dev); 718 aup->msg_enable = value; 719 } 720 721 static u32 au1000_get_msglevel(struct net_device *dev) 722 { 723 struct au1000_private *aup = netdev_priv(dev); 724 return aup->msg_enable; 725 } 726 727 static const struct ethtool_ops au1000_ethtool_ops = { 728 .get_settings = au1000_get_settings, 729 .set_settings = au1000_set_settings, 730 .get_drvinfo = au1000_get_drvinfo, 731 .get_link = ethtool_op_get_link, 732 .get_msglevel = au1000_get_msglevel, 733 .set_msglevel = au1000_set_msglevel, 734 }; 735 736 737 /* 738 * Initialize the interface. 739 * 740 * When the device powers up, the clocks are disabled and the 741 * mac is in reset state. When the interface is closed, we 742 * do the same -- reset the device and disable the clocks to 743 * conserve power. Thus, whenever au1000_init() is called, 744 * the device should already be in reset state. 745 */ 746 static int au1000_init(struct net_device *dev) 747 { 748 struct au1000_private *aup = netdev_priv(dev); 749 unsigned long flags; 750 int i; 751 u32 control; 752 753 netif_dbg(aup, hw, dev, "au1000_init\n"); 754 755 /* bring the device out of reset */ 756 au1000_enable_mac(dev, 1); 757 758 spin_lock_irqsave(&aup->lock, flags); 759 760 writel(0, &aup->mac->control); 761 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; 762 aup->tx_tail = aup->tx_head; 763 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; 764 765 writel(dev->dev_addr[5]<<8 | dev->dev_addr[4], 766 &aup->mac->mac_addr_high); 767 writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | 768 dev->dev_addr[1]<<8 | dev->dev_addr[0], 769 &aup->mac->mac_addr_low); 770 771 772 for (i = 0; i < NUM_RX_DMA; i++) 773 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; 774 775 wmb(); /* drain writebuffer */ 776 777 control = MAC_RX_ENABLE | MAC_TX_ENABLE; 778 #ifndef CONFIG_CPU_LITTLE_ENDIAN 779 control |= MAC_BIG_ENDIAN; 780 #endif 781 if (aup->phy_dev) { 782 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex)) 783 control |= MAC_FULL_DUPLEX; 784 else 785 control |= MAC_DISABLE_RX_OWN; 786 } else { /* PHY-less op, assume full-duplex */ 787 control |= MAC_FULL_DUPLEX; 788 } 789 790 writel(control, &aup->mac->control); 791 writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */ 792 wmb(); /* drain writebuffer */ 793 794 spin_unlock_irqrestore(&aup->lock, flags); 795 return 0; 796 } 797 798 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status) 799 { 800 struct net_device_stats *ps = &dev->stats; 801 802 ps->rx_packets++; 803 if (status & RX_MCAST_FRAME) 804 ps->multicast++; 805 806 if (status & RX_ERROR) { 807 ps->rx_errors++; 808 if (status & RX_MISSED_FRAME) 809 ps->rx_missed_errors++; 810 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR)) 811 ps->rx_length_errors++; 812 if (status & RX_CRC_ERROR) 813 ps->rx_crc_errors++; 814 if (status & RX_COLL) 815 ps->collisions++; 816 } else 817 ps->rx_bytes += status & RX_FRAME_LEN_MASK; 818 819 } 820 821 /* 822 * Au1000 receive routine. 823 */ 824 static int au1000_rx(struct net_device *dev) 825 { 826 struct au1000_private *aup = netdev_priv(dev); 827 struct sk_buff *skb; 828 struct rx_dma *prxd; 829 u32 buff_stat, status; 830 struct db_dest *pDB; 831 u32 frmlen; 832 833 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head); 834 835 prxd = aup->rx_dma_ring[aup->rx_head]; 836 buff_stat = prxd->buff_stat; 837 while (buff_stat & RX_T_DONE) { 838 status = prxd->status; 839 pDB = aup->rx_db_inuse[aup->rx_head]; 840 au1000_update_rx_stats(dev, status); 841 if (!(status & RX_ERROR)) { 842 843 /* good frame */ 844 frmlen = (status & RX_FRAME_LEN_MASK); 845 frmlen -= 4; /* Remove FCS */ 846 skb = netdev_alloc_skb(dev, frmlen + 2); 847 if (skb == NULL) { 848 dev->stats.rx_dropped++; 849 continue; 850 } 851 skb_reserve(skb, 2); /* 16 byte IP header align */ 852 skb_copy_to_linear_data(skb, 853 (unsigned char *)pDB->vaddr, frmlen); 854 skb_put(skb, frmlen); 855 skb->protocol = eth_type_trans(skb, dev); 856 netif_rx(skb); /* pass the packet to upper layers */ 857 } else { 858 if (au1000_debug > 4) { 859 pr_err("rx_error(s):"); 860 if (status & RX_MISSED_FRAME) 861 pr_cont(" miss"); 862 if (status & RX_WDOG_TIMER) 863 pr_cont(" wdog"); 864 if (status & RX_RUNT) 865 pr_cont(" runt"); 866 if (status & RX_OVERLEN) 867 pr_cont(" overlen"); 868 if (status & RX_COLL) 869 pr_cont(" coll"); 870 if (status & RX_MII_ERROR) 871 pr_cont(" mii error"); 872 if (status & RX_CRC_ERROR) 873 pr_cont(" crc error"); 874 if (status & RX_LEN_ERROR) 875 pr_cont(" len error"); 876 if (status & RX_U_CNTRL_FRAME) 877 pr_cont(" u control frame"); 878 pr_cont("\n"); 879 } 880 } 881 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); 882 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); 883 wmb(); /* drain writebuffer */ 884 885 /* next descriptor */ 886 prxd = aup->rx_dma_ring[aup->rx_head]; 887 buff_stat = prxd->buff_stat; 888 } 889 return 0; 890 } 891 892 static void au1000_update_tx_stats(struct net_device *dev, u32 status) 893 { 894 struct au1000_private *aup = netdev_priv(dev); 895 struct net_device_stats *ps = &dev->stats; 896 897 if (status & TX_FRAME_ABORTED) { 898 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) { 899 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { 900 /* any other tx errors are only valid 901 * in half duplex mode 902 */ 903 ps->tx_errors++; 904 ps->tx_aborted_errors++; 905 } 906 } else { 907 ps->tx_errors++; 908 ps->tx_aborted_errors++; 909 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) 910 ps->tx_carrier_errors++; 911 } 912 } 913 } 914 915 /* 916 * Called from the interrupt service routine to acknowledge 917 * the TX DONE bits. This is a must if the irq is setup as 918 * edge triggered. 919 */ 920 static void au1000_tx_ack(struct net_device *dev) 921 { 922 struct au1000_private *aup = netdev_priv(dev); 923 struct tx_dma *ptxd; 924 925 ptxd = aup->tx_dma_ring[aup->tx_tail]; 926 927 while (ptxd->buff_stat & TX_T_DONE) { 928 au1000_update_tx_stats(dev, ptxd->status); 929 ptxd->buff_stat &= ~TX_T_DONE; 930 ptxd->len = 0; 931 wmb(); /* drain writebuffer */ 932 933 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); 934 ptxd = aup->tx_dma_ring[aup->tx_tail]; 935 936 if (aup->tx_full) { 937 aup->tx_full = 0; 938 netif_wake_queue(dev); 939 } 940 } 941 } 942 943 /* 944 * Au1000 interrupt service routine. 945 */ 946 static irqreturn_t au1000_interrupt(int irq, void *dev_id) 947 { 948 struct net_device *dev = dev_id; 949 950 /* Handle RX interrupts first to minimize chance of overrun */ 951 952 au1000_rx(dev); 953 au1000_tx_ack(dev); 954 return IRQ_RETVAL(1); 955 } 956 957 static int au1000_open(struct net_device *dev) 958 { 959 int retval; 960 struct au1000_private *aup = netdev_priv(dev); 961 962 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev); 963 964 retval = request_irq(dev->irq, au1000_interrupt, 0, 965 dev->name, dev); 966 if (retval) { 967 netdev_err(dev, "unable to get IRQ %d\n", dev->irq); 968 return retval; 969 } 970 971 retval = au1000_init(dev); 972 if (retval) { 973 netdev_err(dev, "error in au1000_init\n"); 974 free_irq(dev->irq, dev); 975 return retval; 976 } 977 978 if (aup->phy_dev) { 979 /* cause the PHY state machine to schedule a link state check */ 980 aup->phy_dev->state = PHY_CHANGELINK; 981 phy_start(aup->phy_dev); 982 } 983 984 netif_start_queue(dev); 985 986 netif_dbg(aup, drv, dev, "open: Initialization done.\n"); 987 988 return 0; 989 } 990 991 static int au1000_close(struct net_device *dev) 992 { 993 unsigned long flags; 994 struct au1000_private *const aup = netdev_priv(dev); 995 996 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev); 997 998 if (aup->phy_dev) 999 phy_stop(aup->phy_dev); 1000 1001 spin_lock_irqsave(&aup->lock, flags); 1002 1003 au1000_reset_mac_unlocked(dev); 1004 1005 /* stop the device */ 1006 netif_stop_queue(dev); 1007 1008 /* disable the interrupt */ 1009 free_irq(dev->irq, dev); 1010 spin_unlock_irqrestore(&aup->lock, flags); 1011 1012 return 0; 1013 } 1014 1015 /* 1016 * Au1000 transmit routine. 1017 */ 1018 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev) 1019 { 1020 struct au1000_private *aup = netdev_priv(dev); 1021 struct net_device_stats *ps = &dev->stats; 1022 struct tx_dma *ptxd; 1023 u32 buff_stat; 1024 struct db_dest *pDB; 1025 int i; 1026 1027 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n", 1028 (unsigned)aup, skb->len, 1029 skb->data, aup->tx_head); 1030 1031 ptxd = aup->tx_dma_ring[aup->tx_head]; 1032 buff_stat = ptxd->buff_stat; 1033 if (buff_stat & TX_DMA_ENABLE) { 1034 /* We've wrapped around and the transmitter is still busy */ 1035 netif_stop_queue(dev); 1036 aup->tx_full = 1; 1037 return NETDEV_TX_BUSY; 1038 } else if (buff_stat & TX_T_DONE) { 1039 au1000_update_tx_stats(dev, ptxd->status); 1040 ptxd->len = 0; 1041 } 1042 1043 if (aup->tx_full) { 1044 aup->tx_full = 0; 1045 netif_wake_queue(dev); 1046 } 1047 1048 pDB = aup->tx_db_inuse[aup->tx_head]; 1049 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len); 1050 if (skb->len < ETH_ZLEN) { 1051 for (i = skb->len; i < ETH_ZLEN; i++) 1052 ((char *)pDB->vaddr)[i] = 0; 1053 1054 ptxd->len = ETH_ZLEN; 1055 } else 1056 ptxd->len = skb->len; 1057 1058 ps->tx_packets++; 1059 ps->tx_bytes += ptxd->len; 1060 1061 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; 1062 wmb(); /* drain writebuffer */ 1063 dev_kfree_skb(skb); 1064 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); 1065 return NETDEV_TX_OK; 1066 } 1067 1068 /* 1069 * The Tx ring has been full longer than the watchdog timeout 1070 * value. The transmitter must be hung? 1071 */ 1072 static void au1000_tx_timeout(struct net_device *dev) 1073 { 1074 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev); 1075 au1000_reset_mac(dev); 1076 au1000_init(dev); 1077 dev->trans_start = jiffies; /* prevent tx timeout */ 1078 netif_wake_queue(dev); 1079 } 1080 1081 static void au1000_multicast_list(struct net_device *dev) 1082 { 1083 struct au1000_private *aup = netdev_priv(dev); 1084 u32 reg; 1085 1086 netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags); 1087 reg = readl(&aup->mac->control); 1088 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1089 reg |= MAC_PROMISCUOUS; 1090 } else if ((dev->flags & IFF_ALLMULTI) || 1091 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) { 1092 reg |= MAC_PASS_ALL_MULTI; 1093 reg &= ~MAC_PROMISCUOUS; 1094 netdev_info(dev, "Pass all multicast\n"); 1095 } else { 1096 struct netdev_hw_addr *ha; 1097 u32 mc_filter[2]; /* Multicast hash filter */ 1098 1099 mc_filter[1] = mc_filter[0] = 0; 1100 netdev_for_each_mc_addr(ha, dev) 1101 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26, 1102 (long *)mc_filter); 1103 writel(mc_filter[1], &aup->mac->multi_hash_high); 1104 writel(mc_filter[0], &aup->mac->multi_hash_low); 1105 reg &= ~MAC_PROMISCUOUS; 1106 reg |= MAC_HASH_MODE; 1107 } 1108 writel(reg, &aup->mac->control); 1109 } 1110 1111 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1112 { 1113 struct au1000_private *aup = netdev_priv(dev); 1114 1115 if (!netif_running(dev)) 1116 return -EINVAL; 1117 1118 if (!aup->phy_dev) 1119 return -EINVAL; /* PHY not controllable */ 1120 1121 return phy_mii_ioctl(aup->phy_dev, rq, cmd); 1122 } 1123 1124 static const struct net_device_ops au1000_netdev_ops = { 1125 .ndo_open = au1000_open, 1126 .ndo_stop = au1000_close, 1127 .ndo_start_xmit = au1000_tx, 1128 .ndo_set_rx_mode = au1000_multicast_list, 1129 .ndo_do_ioctl = au1000_ioctl, 1130 .ndo_tx_timeout = au1000_tx_timeout, 1131 .ndo_set_mac_address = eth_mac_addr, 1132 .ndo_validate_addr = eth_validate_addr, 1133 .ndo_change_mtu = eth_change_mtu, 1134 }; 1135 1136 static int au1000_probe(struct platform_device *pdev) 1137 { 1138 struct au1000_private *aup = NULL; 1139 struct au1000_eth_platform_data *pd; 1140 struct net_device *dev = NULL; 1141 struct db_dest *pDB, *pDBfree; 1142 int irq, i, err = 0; 1143 struct resource *base, *macen, *macdma; 1144 1145 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1146 if (!base) { 1147 dev_err(&pdev->dev, "failed to retrieve base register\n"); 1148 err = -ENODEV; 1149 goto out; 1150 } 1151 1152 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1153 if (!macen) { 1154 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n"); 1155 err = -ENODEV; 1156 goto out; 1157 } 1158 1159 irq = platform_get_irq(pdev, 0); 1160 if (irq < 0) { 1161 dev_err(&pdev->dev, "failed to retrieve IRQ\n"); 1162 err = -ENODEV; 1163 goto out; 1164 } 1165 1166 macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1167 if (!macdma) { 1168 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n"); 1169 err = -ENODEV; 1170 goto out; 1171 } 1172 1173 if (!request_mem_region(base->start, resource_size(base), 1174 pdev->name)) { 1175 dev_err(&pdev->dev, "failed to request memory region for base registers\n"); 1176 err = -ENXIO; 1177 goto out; 1178 } 1179 1180 if (!request_mem_region(macen->start, resource_size(macen), 1181 pdev->name)) { 1182 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n"); 1183 err = -ENXIO; 1184 goto err_request; 1185 } 1186 1187 if (!request_mem_region(macdma->start, resource_size(macdma), 1188 pdev->name)) { 1189 dev_err(&pdev->dev, "failed to request MACDMA memory region\n"); 1190 err = -ENXIO; 1191 goto err_macdma; 1192 } 1193 1194 dev = alloc_etherdev(sizeof(struct au1000_private)); 1195 if (!dev) { 1196 err = -ENOMEM; 1197 goto err_alloc; 1198 } 1199 1200 SET_NETDEV_DEV(dev, &pdev->dev); 1201 platform_set_drvdata(pdev, dev); 1202 aup = netdev_priv(dev); 1203 1204 spin_lock_init(&aup->lock); 1205 aup->msg_enable = (au1000_debug < 4 ? 1206 AU1000_DEF_MSG_ENABLE : au1000_debug); 1207 1208 /* Allocate the data buffers 1209 * Snooping works fine with eth on all au1xxx 1210 */ 1211 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE * 1212 (NUM_TX_BUFFS + NUM_RX_BUFFS), 1213 &aup->dma_addr, 0); 1214 if (!aup->vaddr) { 1215 dev_err(&pdev->dev, "failed to allocate data buffers\n"); 1216 err = -ENOMEM; 1217 goto err_vaddr; 1218 } 1219 1220 /* aup->mac is the base address of the MAC's registers */ 1221 aup->mac = (struct mac_reg *) 1222 ioremap_nocache(base->start, resource_size(base)); 1223 if (!aup->mac) { 1224 dev_err(&pdev->dev, "failed to ioremap MAC registers\n"); 1225 err = -ENXIO; 1226 goto err_remap1; 1227 } 1228 1229 /* Setup some variables for quick register address access */ 1230 aup->enable = (u32 *)ioremap_nocache(macen->start, 1231 resource_size(macen)); 1232 if (!aup->enable) { 1233 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n"); 1234 err = -ENXIO; 1235 goto err_remap2; 1236 } 1237 aup->mac_id = pdev->id; 1238 1239 aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma)); 1240 if (!aup->macdma) { 1241 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n"); 1242 err = -ENXIO; 1243 goto err_remap3; 1244 } 1245 1246 au1000_setup_hw_rings(aup, aup->macdma); 1247 1248 writel(0, aup->enable); 1249 aup->mac_enabled = 0; 1250 1251 pd = dev_get_platdata(&pdev->dev); 1252 if (!pd) { 1253 dev_info(&pdev->dev, "no platform_data passed," 1254 " PHY search on MAC0\n"); 1255 aup->phy1_search_mac0 = 1; 1256 } else { 1257 if (is_valid_ether_addr(pd->mac)) { 1258 memcpy(dev->dev_addr, pd->mac, ETH_ALEN); 1259 } else { 1260 /* Set a random MAC since no valid provided by platform_data. */ 1261 eth_hw_addr_random(dev); 1262 } 1263 1264 aup->phy_static_config = pd->phy_static_config; 1265 aup->phy_search_highest_addr = pd->phy_search_highest_addr; 1266 aup->phy1_search_mac0 = pd->phy1_search_mac0; 1267 aup->phy_addr = pd->phy_addr; 1268 aup->phy_busid = pd->phy_busid; 1269 aup->phy_irq = pd->phy_irq; 1270 } 1271 1272 if (aup->phy_busid && aup->phy_busid > 0) { 1273 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n"); 1274 err = -ENODEV; 1275 goto err_mdiobus_alloc; 1276 } 1277 1278 aup->mii_bus = mdiobus_alloc(); 1279 if (aup->mii_bus == NULL) { 1280 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n"); 1281 err = -ENOMEM; 1282 goto err_mdiobus_alloc; 1283 } 1284 1285 aup->mii_bus->priv = dev; 1286 aup->mii_bus->read = au1000_mdiobus_read; 1287 aup->mii_bus->write = au1000_mdiobus_write; 1288 aup->mii_bus->reset = au1000_mdiobus_reset; 1289 aup->mii_bus->name = "au1000_eth_mii"; 1290 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 1291 pdev->name, aup->mac_id); 1292 1293 /* if known, set corresponding PHY IRQs */ 1294 if (aup->phy_static_config) 1295 if (aup->phy_irq && aup->phy_busid == aup->mac_id) 1296 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq; 1297 1298 err = mdiobus_register(aup->mii_bus); 1299 if (err) { 1300 dev_err(&pdev->dev, "failed to register MDIO bus\n"); 1301 goto err_mdiobus_reg; 1302 } 1303 1304 err = au1000_mii_probe(dev); 1305 if (err != 0) 1306 goto err_out; 1307 1308 pDBfree = NULL; 1309 /* setup the data buffer descriptors and attach a buffer to each one */ 1310 pDB = aup->db; 1311 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { 1312 pDB->pnext = pDBfree; 1313 pDBfree = pDB; 1314 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); 1315 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); 1316 pDB++; 1317 } 1318 aup->pDBfree = pDBfree; 1319 1320 err = -ENODEV; 1321 for (i = 0; i < NUM_RX_DMA; i++) { 1322 pDB = au1000_GetFreeDB(aup); 1323 if (!pDB) 1324 goto err_out; 1325 1326 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; 1327 aup->rx_db_inuse[i] = pDB; 1328 } 1329 1330 err = -ENODEV; 1331 for (i = 0; i < NUM_TX_DMA; i++) { 1332 pDB = au1000_GetFreeDB(aup); 1333 if (!pDB) 1334 goto err_out; 1335 1336 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; 1337 aup->tx_dma_ring[i]->len = 0; 1338 aup->tx_db_inuse[i] = pDB; 1339 } 1340 1341 dev->base_addr = base->start; 1342 dev->irq = irq; 1343 dev->netdev_ops = &au1000_netdev_ops; 1344 dev->ethtool_ops = &au1000_ethtool_ops; 1345 dev->watchdog_timeo = ETH_TX_TIMEOUT; 1346 1347 /* 1348 * The boot code uses the ethernet controller, so reset it to start 1349 * fresh. au1000_init() expects that the device is in reset state. 1350 */ 1351 au1000_reset_mac(dev); 1352 1353 err = register_netdev(dev); 1354 if (err) { 1355 netdev_err(dev, "Cannot register net device, aborting.\n"); 1356 goto err_out; 1357 } 1358 1359 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n", 1360 (unsigned long)base->start, irq); 1361 1362 pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); 1363 1364 return 0; 1365 1366 err_out: 1367 if (aup->mii_bus != NULL) 1368 mdiobus_unregister(aup->mii_bus); 1369 1370 /* here we should have a valid dev plus aup-> register addresses 1371 * so we can reset the mac properly. 1372 */ 1373 au1000_reset_mac(dev); 1374 1375 for (i = 0; i < NUM_RX_DMA; i++) { 1376 if (aup->rx_db_inuse[i]) 1377 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1378 } 1379 for (i = 0; i < NUM_TX_DMA; i++) { 1380 if (aup->tx_db_inuse[i]) 1381 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1382 } 1383 err_mdiobus_reg: 1384 mdiobus_free(aup->mii_bus); 1385 err_mdiobus_alloc: 1386 iounmap(aup->macdma); 1387 err_remap3: 1388 iounmap(aup->enable); 1389 err_remap2: 1390 iounmap(aup->mac); 1391 err_remap1: 1392 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), 1393 (void *)aup->vaddr, aup->dma_addr); 1394 err_vaddr: 1395 free_netdev(dev); 1396 err_alloc: 1397 release_mem_region(macdma->start, resource_size(macdma)); 1398 err_macdma: 1399 release_mem_region(macen->start, resource_size(macen)); 1400 err_request: 1401 release_mem_region(base->start, resource_size(base)); 1402 out: 1403 return err; 1404 } 1405 1406 static int au1000_remove(struct platform_device *pdev) 1407 { 1408 struct net_device *dev = platform_get_drvdata(pdev); 1409 struct au1000_private *aup = netdev_priv(dev); 1410 int i; 1411 struct resource *base, *macen; 1412 1413 unregister_netdev(dev); 1414 mdiobus_unregister(aup->mii_bus); 1415 mdiobus_free(aup->mii_bus); 1416 1417 for (i = 0; i < NUM_RX_DMA; i++) 1418 if (aup->rx_db_inuse[i]) 1419 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1420 1421 for (i = 0; i < NUM_TX_DMA; i++) 1422 if (aup->tx_db_inuse[i]) 1423 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1424 1425 dma_free_noncoherent(NULL, MAX_BUF_SIZE * 1426 (NUM_TX_BUFFS + NUM_RX_BUFFS), 1427 (void *)aup->vaddr, aup->dma_addr); 1428 1429 iounmap(aup->macdma); 1430 iounmap(aup->mac); 1431 iounmap(aup->enable); 1432 1433 base = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1434 release_mem_region(base->start, resource_size(base)); 1435 1436 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1437 release_mem_region(base->start, resource_size(base)); 1438 1439 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1440 release_mem_region(macen->start, resource_size(macen)); 1441 1442 free_netdev(dev); 1443 1444 return 0; 1445 } 1446 1447 static struct platform_driver au1000_eth_driver = { 1448 .probe = au1000_probe, 1449 .remove = au1000_remove, 1450 .driver = { 1451 .name = "au1000-eth", 1452 }, 1453 }; 1454 1455 module_platform_driver(au1000_eth_driver); 1456 1457 MODULE_ALIAS("platform:au1000-eth"); 1458