1 /* 2 * 3 * Alchemy Au1x00 ethernet driver 4 * 5 * Copyright 2001-2003, 2006 MontaVista Software Inc. 6 * Copyright 2002 TimeSys Corp. 7 * Added ethtool/mii-tool support, 8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> 9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de 10 * or riemer@riemer-nt.de: fixed the link beat detection with 11 * ioctls (SIOCGMIIPHY) 12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org> 13 * converted to use linux-2.6.x's PHY framework 14 * 15 * Author: MontaVista Software, Inc. 16 * ppopov@mvista.com or source@mvista.com 17 * 18 * ######################################################################## 19 * 20 * This program is free software; you can distribute it and/or modify it 21 * under the terms of the GNU General Public License (Version 2) as 22 * published by the Free Software Foundation. 23 * 24 * This program is distributed in the hope it will be useful, but WITHOUT 25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 27 * for more details. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. 32 * 33 * ######################################################################## 34 * 35 * 36 */ 37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 38 39 #include <linux/capability.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/module.h> 42 #include <linux/kernel.h> 43 #include <linux/string.h> 44 #include <linux/timer.h> 45 #include <linux/errno.h> 46 #include <linux/in.h> 47 #include <linux/ioport.h> 48 #include <linux/bitops.h> 49 #include <linux/slab.h> 50 #include <linux/interrupt.h> 51 #include <linux/init.h> 52 #include <linux/netdevice.h> 53 #include <linux/etherdevice.h> 54 #include <linux/ethtool.h> 55 #include <linux/mii.h> 56 #include <linux/skbuff.h> 57 #include <linux/delay.h> 58 #include <linux/crc32.h> 59 #include <linux/phy.h> 60 #include <linux/platform_device.h> 61 #include <linux/cpu.h> 62 #include <linux/io.h> 63 64 #include <asm/mipsregs.h> 65 #include <asm/irq.h> 66 #include <asm/processor.h> 67 68 #include <au1000.h> 69 #include <au1xxx_eth.h> 70 #include <prom.h> 71 72 #include "au1000_eth.h" 73 74 #ifdef AU1000_ETH_DEBUG 75 static int au1000_debug = 5; 76 #else 77 static int au1000_debug = 3; 78 #endif 79 80 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 81 NETIF_MSG_PROBE | \ 82 NETIF_MSG_LINK) 83 84 #define DRV_NAME "au1000_eth" 85 #define DRV_VERSION "1.7" 86 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" 87 #define DRV_DESC "Au1xxx on-chip Ethernet driver" 88 89 MODULE_AUTHOR(DRV_AUTHOR); 90 MODULE_DESCRIPTION(DRV_DESC); 91 MODULE_LICENSE("GPL"); 92 MODULE_VERSION(DRV_VERSION); 93 94 /* 95 * Theory of operation 96 * 97 * The Au1000 MACs use a simple rx and tx descriptor ring scheme. 98 * There are four receive and four transmit descriptors. These 99 * descriptors are not in memory; rather, they are just a set of 100 * hardware registers. 101 * 102 * Since the Au1000 has a coherent data cache, the receive and 103 * transmit buffers are allocated from the KSEG0 segment. The 104 * hardware registers, however, are still mapped at KSEG1 to 105 * make sure there's no out-of-order writes, and that all writes 106 * complete immediately. 107 */ 108 109 /* 110 * board-specific configurations 111 * 112 * PHY detection algorithm 113 * 114 * If phy_static_config is undefined, the PHY setup is 115 * autodetected: 116 * 117 * mii_probe() first searches the current MAC's MII bus for a PHY, 118 * selecting the first (or last, if phy_search_highest_addr is 119 * defined) PHY address not already claimed by another netdev. 120 * 121 * If nothing was found that way when searching for the 2nd ethernet 122 * controller's PHY and phy1_search_mac0 is defined, then 123 * the first MII bus is searched as well for an unclaimed PHY; this is 124 * needed in case of a dual-PHY accessible only through the MAC0's MII 125 * bus. 126 * 127 * Finally, if no PHY is found, then the corresponding ethernet 128 * controller is not registered to the network subsystem. 129 */ 130 131 /* autodetection defaults: phy1_search_mac0 */ 132 133 /* static PHY setup 134 * 135 * most boards PHY setup should be detectable properly with the 136 * autodetection algorithm in mii_probe(), but in some cases (e.g. if 137 * you have a switch attached, or want to use the PHY's interrupt 138 * notification capabilities) you can provide a static PHY 139 * configuration here 140 * 141 * IRQs may only be set, if a PHY address was configured 142 * If a PHY address is given, also a bus id is required to be set 143 * 144 * ps: make sure the used irqs are configured properly in the board 145 * specific irq-map 146 */ 147 148 static void au1000_enable_mac(struct net_device *dev, int force_reset) 149 { 150 unsigned long flags; 151 struct au1000_private *aup = netdev_priv(dev); 152 153 spin_lock_irqsave(&aup->lock, flags); 154 155 if (force_reset || (!aup->mac_enabled)) { 156 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 157 au_sync_delay(2); 158 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 159 | MAC_EN_CLOCK_ENABLE), aup->enable); 160 au_sync_delay(2); 161 162 aup->mac_enabled = 1; 163 } 164 165 spin_unlock_irqrestore(&aup->lock, flags); 166 } 167 168 /* 169 * MII operations 170 */ 171 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg) 172 { 173 struct au1000_private *aup = netdev_priv(dev); 174 u32 *const mii_control_reg = &aup->mac->mii_control; 175 u32 *const mii_data_reg = &aup->mac->mii_data; 176 u32 timedout = 20; 177 u32 mii_control; 178 179 while (readl(mii_control_reg) & MAC_MII_BUSY) { 180 mdelay(1); 181 if (--timedout == 0) { 182 netdev_err(dev, "read_MII busy timeout!!\n"); 183 return -1; 184 } 185 } 186 187 mii_control = MAC_SET_MII_SELECT_REG(reg) | 188 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; 189 190 writel(mii_control, mii_control_reg); 191 192 timedout = 20; 193 while (readl(mii_control_reg) & MAC_MII_BUSY) { 194 mdelay(1); 195 if (--timedout == 0) { 196 netdev_err(dev, "mdio_read busy timeout!!\n"); 197 return -1; 198 } 199 } 200 return readl(mii_data_reg); 201 } 202 203 static void au1000_mdio_write(struct net_device *dev, int phy_addr, 204 int reg, u16 value) 205 { 206 struct au1000_private *aup = netdev_priv(dev); 207 u32 *const mii_control_reg = &aup->mac->mii_control; 208 u32 *const mii_data_reg = &aup->mac->mii_data; 209 u32 timedout = 20; 210 u32 mii_control; 211 212 while (readl(mii_control_reg) & MAC_MII_BUSY) { 213 mdelay(1); 214 if (--timedout == 0) { 215 netdev_err(dev, "mdio_write busy timeout!!\n"); 216 return; 217 } 218 } 219 220 mii_control = MAC_SET_MII_SELECT_REG(reg) | 221 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; 222 223 writel(value, mii_data_reg); 224 writel(mii_control, mii_control_reg); 225 } 226 227 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) 228 { 229 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does 230 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) 231 */ 232 struct net_device *const dev = bus->priv; 233 234 /* make sure the MAC associated with this 235 * mii_bus is enabled 236 */ 237 au1000_enable_mac(dev, 0); 238 239 return au1000_mdio_read(dev, phy_addr, regnum); 240 } 241 242 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, 243 u16 value) 244 { 245 struct net_device *const dev = bus->priv; 246 247 /* make sure the MAC associated with this 248 * mii_bus is enabled 249 */ 250 au1000_enable_mac(dev, 0); 251 252 au1000_mdio_write(dev, phy_addr, regnum, value); 253 return 0; 254 } 255 256 static int au1000_mdiobus_reset(struct mii_bus *bus) 257 { 258 struct net_device *const dev = bus->priv; 259 260 /* make sure the MAC associated with this 261 * mii_bus is enabled 262 */ 263 au1000_enable_mac(dev, 0); 264 265 return 0; 266 } 267 268 static void au1000_hard_stop(struct net_device *dev) 269 { 270 struct au1000_private *aup = netdev_priv(dev); 271 u32 reg; 272 273 netif_dbg(aup, drv, dev, "hard stop\n"); 274 275 reg = readl(&aup->mac->control); 276 reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); 277 writel(reg, &aup->mac->control); 278 au_sync_delay(10); 279 } 280 281 static void au1000_enable_rx_tx(struct net_device *dev) 282 { 283 struct au1000_private *aup = netdev_priv(dev); 284 u32 reg; 285 286 netif_dbg(aup, hw, dev, "enable_rx_tx\n"); 287 288 reg = readl(&aup->mac->control); 289 reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE); 290 writel(reg, &aup->mac->control); 291 au_sync_delay(10); 292 } 293 294 static void 295 au1000_adjust_link(struct net_device *dev) 296 { 297 struct au1000_private *aup = netdev_priv(dev); 298 struct phy_device *phydev = aup->phy_dev; 299 unsigned long flags; 300 u32 reg; 301 302 int status_change = 0; 303 304 BUG_ON(!aup->phy_dev); 305 306 spin_lock_irqsave(&aup->lock, flags); 307 308 if (phydev->link && (aup->old_speed != phydev->speed)) { 309 /* speed changed */ 310 311 switch (phydev->speed) { 312 case SPEED_10: 313 case SPEED_100: 314 break; 315 default: 316 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n", 317 phydev->speed); 318 break; 319 } 320 321 aup->old_speed = phydev->speed; 322 323 status_change = 1; 324 } 325 326 if (phydev->link && (aup->old_duplex != phydev->duplex)) { 327 /* duplex mode changed */ 328 329 /* switching duplex mode requires to disable rx and tx! */ 330 au1000_hard_stop(dev); 331 332 reg = readl(&aup->mac->control); 333 if (DUPLEX_FULL == phydev->duplex) { 334 reg |= MAC_FULL_DUPLEX; 335 reg &= ~MAC_DISABLE_RX_OWN; 336 } else { 337 reg &= ~MAC_FULL_DUPLEX; 338 reg |= MAC_DISABLE_RX_OWN; 339 } 340 writel(reg, &aup->mac->control); 341 au_sync_delay(1); 342 343 au1000_enable_rx_tx(dev); 344 aup->old_duplex = phydev->duplex; 345 346 status_change = 1; 347 } 348 349 if (phydev->link != aup->old_link) { 350 /* link state changed */ 351 352 if (!phydev->link) { 353 /* link went down */ 354 aup->old_speed = 0; 355 aup->old_duplex = -1; 356 } 357 358 aup->old_link = phydev->link; 359 status_change = 1; 360 } 361 362 spin_unlock_irqrestore(&aup->lock, flags); 363 364 if (status_change) { 365 if (phydev->link) 366 netdev_info(dev, "link up (%d/%s)\n", 367 phydev->speed, 368 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 369 else 370 netdev_info(dev, "link down\n"); 371 } 372 } 373 374 static int au1000_mii_probe(struct net_device *dev) 375 { 376 struct au1000_private *const aup = netdev_priv(dev); 377 struct phy_device *phydev = NULL; 378 int phy_addr; 379 380 if (aup->phy_static_config) { 381 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); 382 383 if (aup->phy_addr) 384 phydev = aup->mii_bus->phy_map[aup->phy_addr]; 385 else 386 netdev_info(dev, "using PHY-less setup\n"); 387 return 0; 388 } 389 390 /* find the first (lowest address) PHY 391 * on the current MAC's MII bus 392 */ 393 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) 394 if (aup->mii_bus->phy_map[phy_addr]) { 395 phydev = aup->mii_bus->phy_map[phy_addr]; 396 if (!aup->phy_search_highest_addr) 397 /* break out with first one found */ 398 break; 399 } 400 401 if (aup->phy1_search_mac0) { 402 /* try harder to find a PHY */ 403 if (!phydev && (aup->mac_id == 1)) { 404 /* no PHY found, maybe we have a dual PHY? */ 405 dev_info(&dev->dev, ": no PHY found on MAC1, " 406 "let's see if it's attached to MAC0...\n"); 407 408 /* find the first (lowest address) non-attached 409 * PHY on the MAC0 MII bus 410 */ 411 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { 412 struct phy_device *const tmp_phydev = 413 aup->mii_bus->phy_map[phy_addr]; 414 415 if (aup->mac_id == 1) 416 break; 417 418 /* no PHY here... */ 419 if (!tmp_phydev) 420 continue; 421 422 /* already claimed by MAC0 */ 423 if (tmp_phydev->attached_dev) 424 continue; 425 426 phydev = tmp_phydev; 427 break; /* found it */ 428 } 429 } 430 } 431 432 if (!phydev) { 433 netdev_err(dev, "no PHY found\n"); 434 return -1; 435 } 436 437 /* now we are supposed to have a proper phydev, to attach to... */ 438 BUG_ON(phydev->attached_dev); 439 440 phydev = phy_connect(dev, dev_name(&phydev->dev), &au1000_adjust_link, 441 0, PHY_INTERFACE_MODE_MII); 442 443 if (IS_ERR(phydev)) { 444 netdev_err(dev, "Could not attach to PHY\n"); 445 return PTR_ERR(phydev); 446 } 447 448 /* mask with MAC supported features */ 449 phydev->supported &= (SUPPORTED_10baseT_Half 450 | SUPPORTED_10baseT_Full 451 | SUPPORTED_100baseT_Half 452 | SUPPORTED_100baseT_Full 453 | SUPPORTED_Autoneg 454 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */ 455 | SUPPORTED_MII 456 | SUPPORTED_TP); 457 458 phydev->advertising = phydev->supported; 459 460 aup->old_link = 0; 461 aup->old_speed = 0; 462 aup->old_duplex = -1; 463 aup->phy_dev = phydev; 464 465 netdev_info(dev, "attached PHY driver [%s] " 466 "(mii_bus:phy_addr=%s, irq=%d)\n", 467 phydev->drv->name, dev_name(&phydev->dev), phydev->irq); 468 469 return 0; 470 } 471 472 473 /* 474 * Buffer allocation/deallocation routines. The buffer descriptor returned 475 * has the virtual and dma address of a buffer suitable for 476 * both, receive and transmit operations. 477 */ 478 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup) 479 { 480 struct db_dest *pDB; 481 pDB = aup->pDBfree; 482 483 if (pDB) 484 aup->pDBfree = pDB->pnext; 485 486 return pDB; 487 } 488 489 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB) 490 { 491 struct db_dest *pDBfree = aup->pDBfree; 492 if (pDBfree) 493 pDBfree->pnext = pDB; 494 aup->pDBfree = pDB; 495 } 496 497 static void au1000_reset_mac_unlocked(struct net_device *dev) 498 { 499 struct au1000_private *const aup = netdev_priv(dev); 500 int i; 501 502 au1000_hard_stop(dev); 503 504 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 505 au_sync_delay(2); 506 writel(0, aup->enable); 507 au_sync_delay(2); 508 509 aup->tx_full = 0; 510 for (i = 0; i < NUM_RX_DMA; i++) { 511 /* reset control bits */ 512 aup->rx_dma_ring[i]->buff_stat &= ~0xf; 513 } 514 for (i = 0; i < NUM_TX_DMA; i++) { 515 /* reset control bits */ 516 aup->tx_dma_ring[i]->buff_stat &= ~0xf; 517 } 518 519 aup->mac_enabled = 0; 520 521 } 522 523 static void au1000_reset_mac(struct net_device *dev) 524 { 525 struct au1000_private *const aup = netdev_priv(dev); 526 unsigned long flags; 527 528 netif_dbg(aup, hw, dev, "reset mac, aup %x\n", 529 (unsigned)aup); 530 531 spin_lock_irqsave(&aup->lock, flags); 532 533 au1000_reset_mac_unlocked(dev); 534 535 spin_unlock_irqrestore(&aup->lock, flags); 536 } 537 538 /* 539 * Setup the receive and transmit "rings". These pointers are the addresses 540 * of the rx and tx MAC DMA registers so they are fixed by the hardware -- 541 * these are not descriptors sitting in memory. 542 */ 543 static void 544 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base) 545 { 546 int i; 547 548 for (i = 0; i < NUM_RX_DMA; i++) { 549 aup->rx_dma_ring[i] = (struct rx_dma *) 550 (tx_base + 0x100 + sizeof(struct rx_dma) * i); 551 } 552 for (i = 0; i < NUM_TX_DMA; i++) { 553 aup->tx_dma_ring[i] = (struct tx_dma *) 554 (tx_base + sizeof(struct tx_dma) * i); 555 } 556 } 557 558 /* 559 * ethtool operations 560 */ 561 562 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 563 { 564 struct au1000_private *aup = netdev_priv(dev); 565 566 if (aup->phy_dev) 567 return phy_ethtool_gset(aup->phy_dev, cmd); 568 569 return -EINVAL; 570 } 571 572 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 573 { 574 struct au1000_private *aup = netdev_priv(dev); 575 576 if (!capable(CAP_NET_ADMIN)) 577 return -EPERM; 578 579 if (aup->phy_dev) 580 return phy_ethtool_sset(aup->phy_dev, cmd); 581 582 return -EINVAL; 583 } 584 585 static void 586 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 587 { 588 struct au1000_private *aup = netdev_priv(dev); 589 590 strcpy(info->driver, DRV_NAME); 591 strcpy(info->version, DRV_VERSION); 592 info->fw_version[0] = '\0'; 593 sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id); 594 info->regdump_len = 0; 595 } 596 597 static void au1000_set_msglevel(struct net_device *dev, u32 value) 598 { 599 struct au1000_private *aup = netdev_priv(dev); 600 aup->msg_enable = value; 601 } 602 603 static u32 au1000_get_msglevel(struct net_device *dev) 604 { 605 struct au1000_private *aup = netdev_priv(dev); 606 return aup->msg_enable; 607 } 608 609 static const struct ethtool_ops au1000_ethtool_ops = { 610 .get_settings = au1000_get_settings, 611 .set_settings = au1000_set_settings, 612 .get_drvinfo = au1000_get_drvinfo, 613 .get_link = ethtool_op_get_link, 614 .get_msglevel = au1000_get_msglevel, 615 .set_msglevel = au1000_set_msglevel, 616 }; 617 618 619 /* 620 * Initialize the interface. 621 * 622 * When the device powers up, the clocks are disabled and the 623 * mac is in reset state. When the interface is closed, we 624 * do the same -- reset the device and disable the clocks to 625 * conserve power. Thus, whenever au1000_init() is called, 626 * the device should already be in reset state. 627 */ 628 static int au1000_init(struct net_device *dev) 629 { 630 struct au1000_private *aup = netdev_priv(dev); 631 unsigned long flags; 632 int i; 633 u32 control; 634 635 netif_dbg(aup, hw, dev, "au1000_init\n"); 636 637 /* bring the device out of reset */ 638 au1000_enable_mac(dev, 1); 639 640 spin_lock_irqsave(&aup->lock, flags); 641 642 writel(0, &aup->mac->control); 643 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; 644 aup->tx_tail = aup->tx_head; 645 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; 646 647 writel(dev->dev_addr[5]<<8 | dev->dev_addr[4], 648 &aup->mac->mac_addr_high); 649 writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | 650 dev->dev_addr[1]<<8 | dev->dev_addr[0], 651 &aup->mac->mac_addr_low); 652 653 654 for (i = 0; i < NUM_RX_DMA; i++) 655 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; 656 657 au_sync(); 658 659 control = MAC_RX_ENABLE | MAC_TX_ENABLE; 660 #ifndef CONFIG_CPU_LITTLE_ENDIAN 661 control |= MAC_BIG_ENDIAN; 662 #endif 663 if (aup->phy_dev) { 664 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex)) 665 control |= MAC_FULL_DUPLEX; 666 else 667 control |= MAC_DISABLE_RX_OWN; 668 } else { /* PHY-less op, assume full-duplex */ 669 control |= MAC_FULL_DUPLEX; 670 } 671 672 writel(control, &aup->mac->control); 673 writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */ 674 au_sync(); 675 676 spin_unlock_irqrestore(&aup->lock, flags); 677 return 0; 678 } 679 680 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status) 681 { 682 struct net_device_stats *ps = &dev->stats; 683 684 ps->rx_packets++; 685 if (status & RX_MCAST_FRAME) 686 ps->multicast++; 687 688 if (status & RX_ERROR) { 689 ps->rx_errors++; 690 if (status & RX_MISSED_FRAME) 691 ps->rx_missed_errors++; 692 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR)) 693 ps->rx_length_errors++; 694 if (status & RX_CRC_ERROR) 695 ps->rx_crc_errors++; 696 if (status & RX_COLL) 697 ps->collisions++; 698 } else 699 ps->rx_bytes += status & RX_FRAME_LEN_MASK; 700 701 } 702 703 /* 704 * Au1000 receive routine. 705 */ 706 static int au1000_rx(struct net_device *dev) 707 { 708 struct au1000_private *aup = netdev_priv(dev); 709 struct sk_buff *skb; 710 struct rx_dma *prxd; 711 u32 buff_stat, status; 712 struct db_dest *pDB; 713 u32 frmlen; 714 715 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head); 716 717 prxd = aup->rx_dma_ring[aup->rx_head]; 718 buff_stat = prxd->buff_stat; 719 while (buff_stat & RX_T_DONE) { 720 status = prxd->status; 721 pDB = aup->rx_db_inuse[aup->rx_head]; 722 au1000_update_rx_stats(dev, status); 723 if (!(status & RX_ERROR)) { 724 725 /* good frame */ 726 frmlen = (status & RX_FRAME_LEN_MASK); 727 frmlen -= 4; /* Remove FCS */ 728 skb = netdev_alloc_skb(dev, frmlen + 2); 729 if (skb == NULL) { 730 netdev_err(dev, "Memory squeeze, dropping packet.\n"); 731 dev->stats.rx_dropped++; 732 continue; 733 } 734 skb_reserve(skb, 2); /* 16 byte IP header align */ 735 skb_copy_to_linear_data(skb, 736 (unsigned char *)pDB->vaddr, frmlen); 737 skb_put(skb, frmlen); 738 skb->protocol = eth_type_trans(skb, dev); 739 netif_rx(skb); /* pass the packet to upper layers */ 740 } else { 741 if (au1000_debug > 4) { 742 pr_err("rx_error(s):"); 743 if (status & RX_MISSED_FRAME) 744 pr_cont(" miss"); 745 if (status & RX_WDOG_TIMER) 746 pr_cont(" wdog"); 747 if (status & RX_RUNT) 748 pr_cont(" runt"); 749 if (status & RX_OVERLEN) 750 pr_cont(" overlen"); 751 if (status & RX_COLL) 752 pr_cont(" coll"); 753 if (status & RX_MII_ERROR) 754 pr_cont(" mii error"); 755 if (status & RX_CRC_ERROR) 756 pr_cont(" crc error"); 757 if (status & RX_LEN_ERROR) 758 pr_cont(" len error"); 759 if (status & RX_U_CNTRL_FRAME) 760 pr_cont(" u control frame"); 761 pr_cont("\n"); 762 } 763 } 764 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); 765 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); 766 au_sync(); 767 768 /* next descriptor */ 769 prxd = aup->rx_dma_ring[aup->rx_head]; 770 buff_stat = prxd->buff_stat; 771 } 772 return 0; 773 } 774 775 static void au1000_update_tx_stats(struct net_device *dev, u32 status) 776 { 777 struct au1000_private *aup = netdev_priv(dev); 778 struct net_device_stats *ps = &dev->stats; 779 780 if (status & TX_FRAME_ABORTED) { 781 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) { 782 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { 783 /* any other tx errors are only valid 784 * in half duplex mode 785 */ 786 ps->tx_errors++; 787 ps->tx_aborted_errors++; 788 } 789 } else { 790 ps->tx_errors++; 791 ps->tx_aborted_errors++; 792 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) 793 ps->tx_carrier_errors++; 794 } 795 } 796 } 797 798 /* 799 * Called from the interrupt service routine to acknowledge 800 * the TX DONE bits. This is a must if the irq is setup as 801 * edge triggered. 802 */ 803 static void au1000_tx_ack(struct net_device *dev) 804 { 805 struct au1000_private *aup = netdev_priv(dev); 806 struct tx_dma *ptxd; 807 808 ptxd = aup->tx_dma_ring[aup->tx_tail]; 809 810 while (ptxd->buff_stat & TX_T_DONE) { 811 au1000_update_tx_stats(dev, ptxd->status); 812 ptxd->buff_stat &= ~TX_T_DONE; 813 ptxd->len = 0; 814 au_sync(); 815 816 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); 817 ptxd = aup->tx_dma_ring[aup->tx_tail]; 818 819 if (aup->tx_full) { 820 aup->tx_full = 0; 821 netif_wake_queue(dev); 822 } 823 } 824 } 825 826 /* 827 * Au1000 interrupt service routine. 828 */ 829 static irqreturn_t au1000_interrupt(int irq, void *dev_id) 830 { 831 struct net_device *dev = dev_id; 832 833 /* Handle RX interrupts first to minimize chance of overrun */ 834 835 au1000_rx(dev); 836 au1000_tx_ack(dev); 837 return IRQ_RETVAL(1); 838 } 839 840 static int au1000_open(struct net_device *dev) 841 { 842 int retval; 843 struct au1000_private *aup = netdev_priv(dev); 844 845 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev); 846 847 retval = request_irq(dev->irq, au1000_interrupt, 0, 848 dev->name, dev); 849 if (retval) { 850 netdev_err(dev, "unable to get IRQ %d\n", dev->irq); 851 return retval; 852 } 853 854 retval = au1000_init(dev); 855 if (retval) { 856 netdev_err(dev, "error in au1000_init\n"); 857 free_irq(dev->irq, dev); 858 return retval; 859 } 860 861 if (aup->phy_dev) { 862 /* cause the PHY state machine to schedule a link state check */ 863 aup->phy_dev->state = PHY_CHANGELINK; 864 phy_start(aup->phy_dev); 865 } 866 867 netif_start_queue(dev); 868 869 netif_dbg(aup, drv, dev, "open: Initialization done.\n"); 870 871 return 0; 872 } 873 874 static int au1000_close(struct net_device *dev) 875 { 876 unsigned long flags; 877 struct au1000_private *const aup = netdev_priv(dev); 878 879 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev); 880 881 if (aup->phy_dev) 882 phy_stop(aup->phy_dev); 883 884 spin_lock_irqsave(&aup->lock, flags); 885 886 au1000_reset_mac_unlocked(dev); 887 888 /* stop the device */ 889 netif_stop_queue(dev); 890 891 /* disable the interrupt */ 892 free_irq(dev->irq, dev); 893 spin_unlock_irqrestore(&aup->lock, flags); 894 895 return 0; 896 } 897 898 /* 899 * Au1000 transmit routine. 900 */ 901 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev) 902 { 903 struct au1000_private *aup = netdev_priv(dev); 904 struct net_device_stats *ps = &dev->stats; 905 struct tx_dma *ptxd; 906 u32 buff_stat; 907 struct db_dest *pDB; 908 int i; 909 910 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n", 911 (unsigned)aup, skb->len, 912 skb->data, aup->tx_head); 913 914 ptxd = aup->tx_dma_ring[aup->tx_head]; 915 buff_stat = ptxd->buff_stat; 916 if (buff_stat & TX_DMA_ENABLE) { 917 /* We've wrapped around and the transmitter is still busy */ 918 netif_stop_queue(dev); 919 aup->tx_full = 1; 920 return NETDEV_TX_BUSY; 921 } else if (buff_stat & TX_T_DONE) { 922 au1000_update_tx_stats(dev, ptxd->status); 923 ptxd->len = 0; 924 } 925 926 if (aup->tx_full) { 927 aup->tx_full = 0; 928 netif_wake_queue(dev); 929 } 930 931 pDB = aup->tx_db_inuse[aup->tx_head]; 932 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len); 933 if (skb->len < ETH_ZLEN) { 934 for (i = skb->len; i < ETH_ZLEN; i++) 935 ((char *)pDB->vaddr)[i] = 0; 936 937 ptxd->len = ETH_ZLEN; 938 } else 939 ptxd->len = skb->len; 940 941 ps->tx_packets++; 942 ps->tx_bytes += ptxd->len; 943 944 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; 945 au_sync(); 946 dev_kfree_skb(skb); 947 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); 948 return NETDEV_TX_OK; 949 } 950 951 /* 952 * The Tx ring has been full longer than the watchdog timeout 953 * value. The transmitter must be hung? 954 */ 955 static void au1000_tx_timeout(struct net_device *dev) 956 { 957 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev); 958 au1000_reset_mac(dev); 959 au1000_init(dev); 960 dev->trans_start = jiffies; /* prevent tx timeout */ 961 netif_wake_queue(dev); 962 } 963 964 static void au1000_multicast_list(struct net_device *dev) 965 { 966 struct au1000_private *aup = netdev_priv(dev); 967 u32 reg; 968 969 netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags); 970 reg = readl(&aup->mac->control); 971 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 972 reg |= MAC_PROMISCUOUS; 973 } else if ((dev->flags & IFF_ALLMULTI) || 974 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) { 975 reg |= MAC_PASS_ALL_MULTI; 976 reg &= ~MAC_PROMISCUOUS; 977 netdev_info(dev, "Pass all multicast\n"); 978 } else { 979 struct netdev_hw_addr *ha; 980 u32 mc_filter[2]; /* Multicast hash filter */ 981 982 mc_filter[1] = mc_filter[0] = 0; 983 netdev_for_each_mc_addr(ha, dev) 984 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26, 985 (long *)mc_filter); 986 writel(mc_filter[1], &aup->mac->multi_hash_high); 987 writel(mc_filter[0], &aup->mac->multi_hash_low); 988 reg &= ~MAC_PROMISCUOUS; 989 reg |= MAC_HASH_MODE; 990 } 991 writel(reg, &aup->mac->control); 992 } 993 994 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 995 { 996 struct au1000_private *aup = netdev_priv(dev); 997 998 if (!netif_running(dev)) 999 return -EINVAL; 1000 1001 if (!aup->phy_dev) 1002 return -EINVAL; /* PHY not controllable */ 1003 1004 return phy_mii_ioctl(aup->phy_dev, rq, cmd); 1005 } 1006 1007 static const struct net_device_ops au1000_netdev_ops = { 1008 .ndo_open = au1000_open, 1009 .ndo_stop = au1000_close, 1010 .ndo_start_xmit = au1000_tx, 1011 .ndo_set_rx_mode = au1000_multicast_list, 1012 .ndo_do_ioctl = au1000_ioctl, 1013 .ndo_tx_timeout = au1000_tx_timeout, 1014 .ndo_set_mac_address = eth_mac_addr, 1015 .ndo_validate_addr = eth_validate_addr, 1016 .ndo_change_mtu = eth_change_mtu, 1017 }; 1018 1019 static int __devinit au1000_probe(struct platform_device *pdev) 1020 { 1021 static unsigned version_printed; 1022 struct au1000_private *aup = NULL; 1023 struct au1000_eth_platform_data *pd; 1024 struct net_device *dev = NULL; 1025 struct db_dest *pDB, *pDBfree; 1026 int irq, i, err = 0; 1027 struct resource *base, *macen, *macdma; 1028 1029 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1030 if (!base) { 1031 dev_err(&pdev->dev, "failed to retrieve base register\n"); 1032 err = -ENODEV; 1033 goto out; 1034 } 1035 1036 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1037 if (!macen) { 1038 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n"); 1039 err = -ENODEV; 1040 goto out; 1041 } 1042 1043 irq = platform_get_irq(pdev, 0); 1044 if (irq < 0) { 1045 dev_err(&pdev->dev, "failed to retrieve IRQ\n"); 1046 err = -ENODEV; 1047 goto out; 1048 } 1049 1050 macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1051 if (!macdma) { 1052 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n"); 1053 err = -ENODEV; 1054 goto out; 1055 } 1056 1057 if (!request_mem_region(base->start, resource_size(base), 1058 pdev->name)) { 1059 dev_err(&pdev->dev, "failed to request memory region for base registers\n"); 1060 err = -ENXIO; 1061 goto out; 1062 } 1063 1064 if (!request_mem_region(macen->start, resource_size(macen), 1065 pdev->name)) { 1066 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n"); 1067 err = -ENXIO; 1068 goto err_request; 1069 } 1070 1071 if (!request_mem_region(macdma->start, resource_size(macdma), 1072 pdev->name)) { 1073 dev_err(&pdev->dev, "failed to request MACDMA memory region\n"); 1074 err = -ENXIO; 1075 goto err_macdma; 1076 } 1077 1078 dev = alloc_etherdev(sizeof(struct au1000_private)); 1079 if (!dev) { 1080 err = -ENOMEM; 1081 goto err_alloc; 1082 } 1083 1084 SET_NETDEV_DEV(dev, &pdev->dev); 1085 platform_set_drvdata(pdev, dev); 1086 aup = netdev_priv(dev); 1087 1088 spin_lock_init(&aup->lock); 1089 aup->msg_enable = (au1000_debug < 4 ? 1090 AU1000_DEF_MSG_ENABLE : au1000_debug); 1091 1092 /* Allocate the data buffers 1093 * Snooping works fine with eth on all au1xxx 1094 */ 1095 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE * 1096 (NUM_TX_BUFFS + NUM_RX_BUFFS), 1097 &aup->dma_addr, 0); 1098 if (!aup->vaddr) { 1099 dev_err(&pdev->dev, "failed to allocate data buffers\n"); 1100 err = -ENOMEM; 1101 goto err_vaddr; 1102 } 1103 1104 /* aup->mac is the base address of the MAC's registers */ 1105 aup->mac = (struct mac_reg *) 1106 ioremap_nocache(base->start, resource_size(base)); 1107 if (!aup->mac) { 1108 dev_err(&pdev->dev, "failed to ioremap MAC registers\n"); 1109 err = -ENXIO; 1110 goto err_remap1; 1111 } 1112 1113 /* Setup some variables for quick register address access */ 1114 aup->enable = (u32 *)ioremap_nocache(macen->start, 1115 resource_size(macen)); 1116 if (!aup->enable) { 1117 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n"); 1118 err = -ENXIO; 1119 goto err_remap2; 1120 } 1121 aup->mac_id = pdev->id; 1122 1123 aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma)); 1124 if (!aup->macdma) { 1125 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n"); 1126 err = -ENXIO; 1127 goto err_remap3; 1128 } 1129 1130 au1000_setup_hw_rings(aup, aup->macdma); 1131 1132 writel(0, aup->enable); 1133 aup->mac_enabled = 0; 1134 1135 pd = pdev->dev.platform_data; 1136 if (!pd) { 1137 dev_info(&pdev->dev, "no platform_data passed," 1138 " PHY search on MAC0\n"); 1139 aup->phy1_search_mac0 = 1; 1140 } else { 1141 if (is_valid_ether_addr(pd->mac)) { 1142 memcpy(dev->dev_addr, pd->mac, 6); 1143 } else { 1144 /* Set a random MAC since no valid provided by platform_data. */ 1145 eth_hw_addr_random(dev); 1146 } 1147 1148 aup->phy_static_config = pd->phy_static_config; 1149 aup->phy_search_highest_addr = pd->phy_search_highest_addr; 1150 aup->phy1_search_mac0 = pd->phy1_search_mac0; 1151 aup->phy_addr = pd->phy_addr; 1152 aup->phy_busid = pd->phy_busid; 1153 aup->phy_irq = pd->phy_irq; 1154 } 1155 1156 if (aup->phy_busid && aup->phy_busid > 0) { 1157 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n"); 1158 err = -ENODEV; 1159 goto err_mdiobus_alloc; 1160 } 1161 1162 aup->mii_bus = mdiobus_alloc(); 1163 if (aup->mii_bus == NULL) { 1164 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n"); 1165 err = -ENOMEM; 1166 goto err_mdiobus_alloc; 1167 } 1168 1169 aup->mii_bus->priv = dev; 1170 aup->mii_bus->read = au1000_mdiobus_read; 1171 aup->mii_bus->write = au1000_mdiobus_write; 1172 aup->mii_bus->reset = au1000_mdiobus_reset; 1173 aup->mii_bus->name = "au1000_eth_mii"; 1174 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 1175 pdev->name, aup->mac_id); 1176 aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL); 1177 if (aup->mii_bus->irq == NULL) 1178 goto err_out; 1179 1180 for (i = 0; i < PHY_MAX_ADDR; ++i) 1181 aup->mii_bus->irq[i] = PHY_POLL; 1182 /* if known, set corresponding PHY IRQs */ 1183 if (aup->phy_static_config) 1184 if (aup->phy_irq && aup->phy_busid == aup->mac_id) 1185 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq; 1186 1187 err = mdiobus_register(aup->mii_bus); 1188 if (err) { 1189 dev_err(&pdev->dev, "failed to register MDIO bus\n"); 1190 goto err_mdiobus_reg; 1191 } 1192 1193 if (au1000_mii_probe(dev) != 0) 1194 goto err_out; 1195 1196 pDBfree = NULL; 1197 /* setup the data buffer descriptors and attach a buffer to each one */ 1198 pDB = aup->db; 1199 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { 1200 pDB->pnext = pDBfree; 1201 pDBfree = pDB; 1202 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); 1203 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); 1204 pDB++; 1205 } 1206 aup->pDBfree = pDBfree; 1207 1208 for (i = 0; i < NUM_RX_DMA; i++) { 1209 pDB = au1000_GetFreeDB(aup); 1210 if (!pDB) 1211 goto err_out; 1212 1213 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; 1214 aup->rx_db_inuse[i] = pDB; 1215 } 1216 for (i = 0; i < NUM_TX_DMA; i++) { 1217 pDB = au1000_GetFreeDB(aup); 1218 if (!pDB) 1219 goto err_out; 1220 1221 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; 1222 aup->tx_dma_ring[i]->len = 0; 1223 aup->tx_db_inuse[i] = pDB; 1224 } 1225 1226 dev->base_addr = base->start; 1227 dev->irq = irq; 1228 dev->netdev_ops = &au1000_netdev_ops; 1229 SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops); 1230 dev->watchdog_timeo = ETH_TX_TIMEOUT; 1231 1232 /* 1233 * The boot code uses the ethernet controller, so reset it to start 1234 * fresh. au1000_init() expects that the device is in reset state. 1235 */ 1236 au1000_reset_mac(dev); 1237 1238 err = register_netdev(dev); 1239 if (err) { 1240 netdev_err(dev, "Cannot register net device, aborting.\n"); 1241 goto err_out; 1242 } 1243 1244 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n", 1245 (unsigned long)base->start, irq); 1246 if (version_printed++ == 0) 1247 pr_info("%s version %s %s\n", 1248 DRV_NAME, DRV_VERSION, DRV_AUTHOR); 1249 1250 return 0; 1251 1252 err_out: 1253 if (aup->mii_bus != NULL) 1254 mdiobus_unregister(aup->mii_bus); 1255 1256 /* here we should have a valid dev plus aup-> register addresses 1257 * so we can reset the mac properly. 1258 */ 1259 au1000_reset_mac(dev); 1260 1261 for (i = 0; i < NUM_RX_DMA; i++) { 1262 if (aup->rx_db_inuse[i]) 1263 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1264 } 1265 for (i = 0; i < NUM_TX_DMA; i++) { 1266 if (aup->tx_db_inuse[i]) 1267 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1268 } 1269 err_mdiobus_reg: 1270 mdiobus_free(aup->mii_bus); 1271 err_mdiobus_alloc: 1272 iounmap(aup->macdma); 1273 err_remap3: 1274 iounmap(aup->enable); 1275 err_remap2: 1276 iounmap(aup->mac); 1277 err_remap1: 1278 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), 1279 (void *)aup->vaddr, aup->dma_addr); 1280 err_vaddr: 1281 free_netdev(dev); 1282 err_alloc: 1283 release_mem_region(macdma->start, resource_size(macdma)); 1284 err_macdma: 1285 release_mem_region(macen->start, resource_size(macen)); 1286 err_request: 1287 release_mem_region(base->start, resource_size(base)); 1288 out: 1289 return err; 1290 } 1291 1292 static int __devexit au1000_remove(struct platform_device *pdev) 1293 { 1294 struct net_device *dev = platform_get_drvdata(pdev); 1295 struct au1000_private *aup = netdev_priv(dev); 1296 int i; 1297 struct resource *base, *macen; 1298 1299 platform_set_drvdata(pdev, NULL); 1300 1301 unregister_netdev(dev); 1302 mdiobus_unregister(aup->mii_bus); 1303 mdiobus_free(aup->mii_bus); 1304 1305 for (i = 0; i < NUM_RX_DMA; i++) 1306 if (aup->rx_db_inuse[i]) 1307 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1308 1309 for (i = 0; i < NUM_TX_DMA; i++) 1310 if (aup->tx_db_inuse[i]) 1311 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1312 1313 dma_free_noncoherent(NULL, MAX_BUF_SIZE * 1314 (NUM_TX_BUFFS + NUM_RX_BUFFS), 1315 (void *)aup->vaddr, aup->dma_addr); 1316 1317 iounmap(aup->macdma); 1318 iounmap(aup->mac); 1319 iounmap(aup->enable); 1320 1321 base = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1322 release_mem_region(base->start, resource_size(base)); 1323 1324 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1325 release_mem_region(base->start, resource_size(base)); 1326 1327 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1328 release_mem_region(macen->start, resource_size(macen)); 1329 1330 free_netdev(dev); 1331 1332 return 0; 1333 } 1334 1335 static struct platform_driver au1000_eth_driver = { 1336 .probe = au1000_probe, 1337 .remove = __devexit_p(au1000_remove), 1338 .driver = { 1339 .name = "au1000-eth", 1340 .owner = THIS_MODULE, 1341 }, 1342 }; 1343 1344 module_platform_driver(au1000_eth_driver); 1345 1346 MODULE_ALIAS("platform:au1000-eth"); 1347