1 /* 2 * 3 * Alchemy Au1x00 ethernet driver 4 * 5 * Copyright 2001-2003, 2006 MontaVista Software Inc. 6 * Copyright 2002 TimeSys Corp. 7 * Added ethtool/mii-tool support, 8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> 9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de 10 * or riemer@riemer-nt.de: fixed the link beat detection with 11 * ioctls (SIOCGMIIPHY) 12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org> 13 * converted to use linux-2.6.x's PHY framework 14 * 15 * Author: MontaVista Software, Inc. 16 * ppopov@mvista.com or source@mvista.com 17 * 18 * ######################################################################## 19 * 20 * This program is free software; you can distribute it and/or modify it 21 * under the terms of the GNU General Public License (Version 2) as 22 * published by the Free Software Foundation. 23 * 24 * This program is distributed in the hope it will be useful, but WITHOUT 25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 27 * for more details. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, see <http://www.gnu.org/licenses/>. 31 * 32 * ######################################################################## 33 * 34 * 35 */ 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/capability.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/string.h> 43 #include <linux/timer.h> 44 #include <linux/errno.h> 45 #include <linux/in.h> 46 #include <linux/ioport.h> 47 #include <linux/bitops.h> 48 #include <linux/slab.h> 49 #include <linux/interrupt.h> 50 #include <linux/netdevice.h> 51 #include <linux/etherdevice.h> 52 #include <linux/ethtool.h> 53 #include <linux/mii.h> 54 #include <linux/skbuff.h> 55 #include <linux/delay.h> 56 #include <linux/crc32.h> 57 #include <linux/phy.h> 58 #include <linux/platform_device.h> 59 #include <linux/cpu.h> 60 #include <linux/io.h> 61 62 #include <asm/mipsregs.h> 63 #include <asm/irq.h> 64 #include <asm/processor.h> 65 66 #include <au1000.h> 67 #include <au1xxx_eth.h> 68 #include <prom.h> 69 70 #include "au1000_eth.h" 71 72 #ifdef AU1000_ETH_DEBUG 73 static int au1000_debug = 5; 74 #else 75 static int au1000_debug = 3; 76 #endif 77 78 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 79 NETIF_MSG_PROBE | \ 80 NETIF_MSG_LINK) 81 82 #define DRV_NAME "au1000_eth" 83 #define DRV_VERSION "1.7" 84 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" 85 #define DRV_DESC "Au1xxx on-chip Ethernet driver" 86 87 MODULE_AUTHOR(DRV_AUTHOR); 88 MODULE_DESCRIPTION(DRV_DESC); 89 MODULE_LICENSE("GPL"); 90 MODULE_VERSION(DRV_VERSION); 91 92 /* AU1000 MAC registers and bits */ 93 #define MAC_CONTROL 0x0 94 # define MAC_RX_ENABLE (1 << 2) 95 # define MAC_TX_ENABLE (1 << 3) 96 # define MAC_DEF_CHECK (1 << 5) 97 # define MAC_SET_BL(X) (((X) & 0x3) << 6) 98 # define MAC_AUTO_PAD (1 << 8) 99 # define MAC_DISABLE_RETRY (1 << 10) 100 # define MAC_DISABLE_BCAST (1 << 11) 101 # define MAC_LATE_COL (1 << 12) 102 # define MAC_HASH_MODE (1 << 13) 103 # define MAC_HASH_ONLY (1 << 15) 104 # define MAC_PASS_ALL (1 << 16) 105 # define MAC_INVERSE_FILTER (1 << 17) 106 # define MAC_PROMISCUOUS (1 << 18) 107 # define MAC_PASS_ALL_MULTI (1 << 19) 108 # define MAC_FULL_DUPLEX (1 << 20) 109 # define MAC_NORMAL_MODE 0 110 # define MAC_INT_LOOPBACK (1 << 21) 111 # define MAC_EXT_LOOPBACK (1 << 22) 112 # define MAC_DISABLE_RX_OWN (1 << 23) 113 # define MAC_BIG_ENDIAN (1 << 30) 114 # define MAC_RX_ALL (1 << 31) 115 #define MAC_ADDRESS_HIGH 0x4 116 #define MAC_ADDRESS_LOW 0x8 117 #define MAC_MCAST_HIGH 0xC 118 #define MAC_MCAST_LOW 0x10 119 #define MAC_MII_CNTRL 0x14 120 # define MAC_MII_BUSY (1 << 0) 121 # define MAC_MII_READ 0 122 # define MAC_MII_WRITE (1 << 1) 123 # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6) 124 # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11) 125 #define MAC_MII_DATA 0x18 126 #define MAC_FLOW_CNTRL 0x1C 127 # define MAC_FLOW_CNTRL_BUSY (1 << 0) 128 # define MAC_FLOW_CNTRL_ENABLE (1 << 1) 129 # define MAC_PASS_CONTROL (1 << 2) 130 # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16) 131 #define MAC_VLAN1_TAG 0x20 132 #define MAC_VLAN2_TAG 0x24 133 134 /* Ethernet Controller Enable */ 135 # define MAC_EN_CLOCK_ENABLE (1 << 0) 136 # define MAC_EN_RESET0 (1 << 1) 137 # define MAC_EN_TOSS (0 << 2) 138 # define MAC_EN_CACHEABLE (1 << 3) 139 # define MAC_EN_RESET1 (1 << 4) 140 # define MAC_EN_RESET2 (1 << 5) 141 # define MAC_DMA_RESET (1 << 6) 142 143 /* Ethernet Controller DMA Channels */ 144 /* offsets from MAC_TX_RING_ADDR address */ 145 #define MAC_TX_BUFF0_STATUS 0x0 146 # define TX_FRAME_ABORTED (1 << 0) 147 # define TX_JAB_TIMEOUT (1 << 1) 148 # define TX_NO_CARRIER (1 << 2) 149 # define TX_LOSS_CARRIER (1 << 3) 150 # define TX_EXC_DEF (1 << 4) 151 # define TX_LATE_COLL_ABORT (1 << 5) 152 # define TX_EXC_COLL (1 << 6) 153 # define TX_UNDERRUN (1 << 7) 154 # define TX_DEFERRED (1 << 8) 155 # define TX_LATE_COLL (1 << 9) 156 # define TX_COLL_CNT_MASK (0xF << 10) 157 # define TX_PKT_RETRY (1 << 31) 158 #define MAC_TX_BUFF0_ADDR 0x4 159 # define TX_DMA_ENABLE (1 << 0) 160 # define TX_T_DONE (1 << 1) 161 # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) 162 #define MAC_TX_BUFF0_LEN 0x8 163 #define MAC_TX_BUFF1_STATUS 0x10 164 #define MAC_TX_BUFF1_ADDR 0x14 165 #define MAC_TX_BUFF1_LEN 0x18 166 #define MAC_TX_BUFF2_STATUS 0x20 167 #define MAC_TX_BUFF2_ADDR 0x24 168 #define MAC_TX_BUFF2_LEN 0x28 169 #define MAC_TX_BUFF3_STATUS 0x30 170 #define MAC_TX_BUFF3_ADDR 0x34 171 #define MAC_TX_BUFF3_LEN 0x38 172 173 /* offsets from MAC_RX_RING_ADDR */ 174 #define MAC_RX_BUFF0_STATUS 0x0 175 # define RX_FRAME_LEN_MASK 0x3fff 176 # define RX_WDOG_TIMER (1 << 14) 177 # define RX_RUNT (1 << 15) 178 # define RX_OVERLEN (1 << 16) 179 # define RX_COLL (1 << 17) 180 # define RX_ETHER (1 << 18) 181 # define RX_MII_ERROR (1 << 19) 182 # define RX_DRIBBLING (1 << 20) 183 # define RX_CRC_ERROR (1 << 21) 184 # define RX_VLAN1 (1 << 22) 185 # define RX_VLAN2 (1 << 23) 186 # define RX_LEN_ERROR (1 << 24) 187 # define RX_CNTRL_FRAME (1 << 25) 188 # define RX_U_CNTRL_FRAME (1 << 26) 189 # define RX_MCAST_FRAME (1 << 27) 190 # define RX_BCAST_FRAME (1 << 28) 191 # define RX_FILTER_FAIL (1 << 29) 192 # define RX_PACKET_FILTER (1 << 30) 193 # define RX_MISSED_FRAME (1 << 31) 194 195 # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \ 196 RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \ 197 RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME) 198 #define MAC_RX_BUFF0_ADDR 0x4 199 # define RX_DMA_ENABLE (1 << 0) 200 # define RX_T_DONE (1 << 1) 201 # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) 202 # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0) 203 #define MAC_RX_BUFF1_STATUS 0x10 204 #define MAC_RX_BUFF1_ADDR 0x14 205 #define MAC_RX_BUFF2_STATUS 0x20 206 #define MAC_RX_BUFF2_ADDR 0x24 207 #define MAC_RX_BUFF3_STATUS 0x30 208 #define MAC_RX_BUFF3_ADDR 0x34 209 210 /* 211 * Theory of operation 212 * 213 * The Au1000 MACs use a simple rx and tx descriptor ring scheme. 214 * There are four receive and four transmit descriptors. These 215 * descriptors are not in memory; rather, they are just a set of 216 * hardware registers. 217 * 218 * Since the Au1000 has a coherent data cache, the receive and 219 * transmit buffers are allocated from the KSEG0 segment. The 220 * hardware registers, however, are still mapped at KSEG1 to 221 * make sure there's no out-of-order writes, and that all writes 222 * complete immediately. 223 */ 224 225 /* 226 * board-specific configurations 227 * 228 * PHY detection algorithm 229 * 230 * If phy_static_config is undefined, the PHY setup is 231 * autodetected: 232 * 233 * mii_probe() first searches the current MAC's MII bus for a PHY, 234 * selecting the first (or last, if phy_search_highest_addr is 235 * defined) PHY address not already claimed by another netdev. 236 * 237 * If nothing was found that way when searching for the 2nd ethernet 238 * controller's PHY and phy1_search_mac0 is defined, then 239 * the first MII bus is searched as well for an unclaimed PHY; this is 240 * needed in case of a dual-PHY accessible only through the MAC0's MII 241 * bus. 242 * 243 * Finally, if no PHY is found, then the corresponding ethernet 244 * controller is not registered to the network subsystem. 245 */ 246 247 /* autodetection defaults: phy1_search_mac0 */ 248 249 /* static PHY setup 250 * 251 * most boards PHY setup should be detectable properly with the 252 * autodetection algorithm in mii_probe(), but in some cases (e.g. if 253 * you have a switch attached, or want to use the PHY's interrupt 254 * notification capabilities) you can provide a static PHY 255 * configuration here 256 * 257 * IRQs may only be set, if a PHY address was configured 258 * If a PHY address is given, also a bus id is required to be set 259 * 260 * ps: make sure the used irqs are configured properly in the board 261 * specific irq-map 262 */ 263 264 static void au1000_enable_mac(struct net_device *dev, int force_reset) 265 { 266 unsigned long flags; 267 struct au1000_private *aup = netdev_priv(dev); 268 269 spin_lock_irqsave(&aup->lock, flags); 270 271 if (force_reset || (!aup->mac_enabled)) { 272 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 273 wmb(); /* drain writebuffer */ 274 mdelay(2); 275 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 276 | MAC_EN_CLOCK_ENABLE), aup->enable); 277 wmb(); /* drain writebuffer */ 278 mdelay(2); 279 280 aup->mac_enabled = 1; 281 } 282 283 spin_unlock_irqrestore(&aup->lock, flags); 284 } 285 286 /* 287 * MII operations 288 */ 289 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg) 290 { 291 struct au1000_private *aup = netdev_priv(dev); 292 u32 *const mii_control_reg = &aup->mac->mii_control; 293 u32 *const mii_data_reg = &aup->mac->mii_data; 294 u32 timedout = 20; 295 u32 mii_control; 296 297 while (readl(mii_control_reg) & MAC_MII_BUSY) { 298 mdelay(1); 299 if (--timedout == 0) { 300 netdev_err(dev, "read_MII busy timeout!!\n"); 301 return -1; 302 } 303 } 304 305 mii_control = MAC_SET_MII_SELECT_REG(reg) | 306 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; 307 308 writel(mii_control, mii_control_reg); 309 310 timedout = 20; 311 while (readl(mii_control_reg) & MAC_MII_BUSY) { 312 mdelay(1); 313 if (--timedout == 0) { 314 netdev_err(dev, "mdio_read busy timeout!!\n"); 315 return -1; 316 } 317 } 318 return readl(mii_data_reg); 319 } 320 321 static void au1000_mdio_write(struct net_device *dev, int phy_addr, 322 int reg, u16 value) 323 { 324 struct au1000_private *aup = netdev_priv(dev); 325 u32 *const mii_control_reg = &aup->mac->mii_control; 326 u32 *const mii_data_reg = &aup->mac->mii_data; 327 u32 timedout = 20; 328 u32 mii_control; 329 330 while (readl(mii_control_reg) & MAC_MII_BUSY) { 331 mdelay(1); 332 if (--timedout == 0) { 333 netdev_err(dev, "mdio_write busy timeout!!\n"); 334 return; 335 } 336 } 337 338 mii_control = MAC_SET_MII_SELECT_REG(reg) | 339 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; 340 341 writel(value, mii_data_reg); 342 writel(mii_control, mii_control_reg); 343 } 344 345 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) 346 { 347 struct net_device *const dev = bus->priv; 348 349 /* make sure the MAC associated with this 350 * mii_bus is enabled 351 */ 352 au1000_enable_mac(dev, 0); 353 354 return au1000_mdio_read(dev, phy_addr, regnum); 355 } 356 357 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, 358 u16 value) 359 { 360 struct net_device *const dev = bus->priv; 361 362 /* make sure the MAC associated with this 363 * mii_bus is enabled 364 */ 365 au1000_enable_mac(dev, 0); 366 367 au1000_mdio_write(dev, phy_addr, regnum, value); 368 return 0; 369 } 370 371 static int au1000_mdiobus_reset(struct mii_bus *bus) 372 { 373 struct net_device *const dev = bus->priv; 374 375 /* make sure the MAC associated with this 376 * mii_bus is enabled 377 */ 378 au1000_enable_mac(dev, 0); 379 380 return 0; 381 } 382 383 static void au1000_hard_stop(struct net_device *dev) 384 { 385 struct au1000_private *aup = netdev_priv(dev); 386 u32 reg; 387 388 netif_dbg(aup, drv, dev, "hard stop\n"); 389 390 reg = readl(&aup->mac->control); 391 reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); 392 writel(reg, &aup->mac->control); 393 wmb(); /* drain writebuffer */ 394 mdelay(10); 395 } 396 397 static void au1000_enable_rx_tx(struct net_device *dev) 398 { 399 struct au1000_private *aup = netdev_priv(dev); 400 u32 reg; 401 402 netif_dbg(aup, hw, dev, "enable_rx_tx\n"); 403 404 reg = readl(&aup->mac->control); 405 reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE); 406 writel(reg, &aup->mac->control); 407 wmb(); /* drain writebuffer */ 408 mdelay(10); 409 } 410 411 static void 412 au1000_adjust_link(struct net_device *dev) 413 { 414 struct au1000_private *aup = netdev_priv(dev); 415 struct phy_device *phydev = dev->phydev; 416 unsigned long flags; 417 u32 reg; 418 419 int status_change = 0; 420 421 BUG_ON(!phydev); 422 423 spin_lock_irqsave(&aup->lock, flags); 424 425 if (phydev->link && (aup->old_speed != phydev->speed)) { 426 /* speed changed */ 427 428 switch (phydev->speed) { 429 case SPEED_10: 430 case SPEED_100: 431 break; 432 default: 433 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n", 434 phydev->speed); 435 break; 436 } 437 438 aup->old_speed = phydev->speed; 439 440 status_change = 1; 441 } 442 443 if (phydev->link && (aup->old_duplex != phydev->duplex)) { 444 /* duplex mode changed */ 445 446 /* switching duplex mode requires to disable rx and tx! */ 447 au1000_hard_stop(dev); 448 449 reg = readl(&aup->mac->control); 450 if (DUPLEX_FULL == phydev->duplex) { 451 reg |= MAC_FULL_DUPLEX; 452 reg &= ~MAC_DISABLE_RX_OWN; 453 } else { 454 reg &= ~MAC_FULL_DUPLEX; 455 reg |= MAC_DISABLE_RX_OWN; 456 } 457 writel(reg, &aup->mac->control); 458 wmb(); /* drain writebuffer */ 459 mdelay(1); 460 461 au1000_enable_rx_tx(dev); 462 aup->old_duplex = phydev->duplex; 463 464 status_change = 1; 465 } 466 467 if (phydev->link != aup->old_link) { 468 /* link state changed */ 469 470 if (!phydev->link) { 471 /* link went down */ 472 aup->old_speed = 0; 473 aup->old_duplex = -1; 474 } 475 476 aup->old_link = phydev->link; 477 status_change = 1; 478 } 479 480 spin_unlock_irqrestore(&aup->lock, flags); 481 482 if (status_change) { 483 if (phydev->link) 484 netdev_info(dev, "link up (%d/%s)\n", 485 phydev->speed, 486 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 487 else 488 netdev_info(dev, "link down\n"); 489 } 490 } 491 492 static int au1000_mii_probe(struct net_device *dev) 493 { 494 struct au1000_private *const aup = netdev_priv(dev); 495 struct phy_device *phydev = NULL; 496 int phy_addr; 497 498 if (aup->phy_static_config) { 499 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); 500 501 if (aup->phy_addr) 502 phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr); 503 else 504 netdev_info(dev, "using PHY-less setup\n"); 505 return 0; 506 } 507 508 /* find the first (lowest address) PHY 509 * on the current MAC's MII bus 510 */ 511 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) 512 if (mdiobus_get_phy(aup->mii_bus, phy_addr)) { 513 phydev = mdiobus_get_phy(aup->mii_bus, phy_addr); 514 if (!aup->phy_search_highest_addr) 515 /* break out with first one found */ 516 break; 517 } 518 519 if (aup->phy1_search_mac0) { 520 /* try harder to find a PHY */ 521 if (!phydev && (aup->mac_id == 1)) { 522 /* no PHY found, maybe we have a dual PHY? */ 523 dev_info(&dev->dev, ": no PHY found on MAC1, " 524 "let's see if it's attached to MAC0...\n"); 525 526 /* find the first (lowest address) non-attached 527 * PHY on the MAC0 MII bus 528 */ 529 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { 530 struct phy_device *const tmp_phydev = 531 mdiobus_get_phy(aup->mii_bus, 532 phy_addr); 533 534 if (aup->mac_id == 1) 535 break; 536 537 /* no PHY here... */ 538 if (!tmp_phydev) 539 continue; 540 541 /* already claimed by MAC0 */ 542 if (tmp_phydev->attached_dev) 543 continue; 544 545 phydev = tmp_phydev; 546 break; /* found it */ 547 } 548 } 549 } 550 551 if (!phydev) { 552 netdev_err(dev, "no PHY found\n"); 553 return -1; 554 } 555 556 /* now we are supposed to have a proper phydev, to attach to... */ 557 BUG_ON(phydev->attached_dev); 558 559 phydev = phy_connect(dev, phydev_name(phydev), 560 &au1000_adjust_link, PHY_INTERFACE_MODE_MII); 561 562 if (IS_ERR(phydev)) { 563 netdev_err(dev, "Could not attach to PHY\n"); 564 return PTR_ERR(phydev); 565 } 566 567 /* mask with MAC supported features */ 568 phydev->supported &= (SUPPORTED_10baseT_Half 569 | SUPPORTED_10baseT_Full 570 | SUPPORTED_100baseT_Half 571 | SUPPORTED_100baseT_Full 572 | SUPPORTED_Autoneg 573 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */ 574 | SUPPORTED_MII 575 | SUPPORTED_TP); 576 577 phydev->advertising = phydev->supported; 578 579 aup->old_link = 0; 580 aup->old_speed = 0; 581 aup->old_duplex = -1; 582 583 phy_attached_info(phydev); 584 585 return 0; 586 } 587 588 589 /* 590 * Buffer allocation/deallocation routines. The buffer descriptor returned 591 * has the virtual and dma address of a buffer suitable for 592 * both, receive and transmit operations. 593 */ 594 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup) 595 { 596 struct db_dest *pDB; 597 pDB = aup->pDBfree; 598 599 if (pDB) 600 aup->pDBfree = pDB->pnext; 601 602 return pDB; 603 } 604 605 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB) 606 { 607 struct db_dest *pDBfree = aup->pDBfree; 608 if (pDBfree) 609 pDBfree->pnext = pDB; 610 aup->pDBfree = pDB; 611 } 612 613 static void au1000_reset_mac_unlocked(struct net_device *dev) 614 { 615 struct au1000_private *const aup = netdev_priv(dev); 616 int i; 617 618 au1000_hard_stop(dev); 619 620 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 621 wmb(); /* drain writebuffer */ 622 mdelay(2); 623 writel(0, aup->enable); 624 wmb(); /* drain writebuffer */ 625 mdelay(2); 626 627 aup->tx_full = 0; 628 for (i = 0; i < NUM_RX_DMA; i++) { 629 /* reset control bits */ 630 aup->rx_dma_ring[i]->buff_stat &= ~0xf; 631 } 632 for (i = 0; i < NUM_TX_DMA; i++) { 633 /* reset control bits */ 634 aup->tx_dma_ring[i]->buff_stat &= ~0xf; 635 } 636 637 aup->mac_enabled = 0; 638 639 } 640 641 static void au1000_reset_mac(struct net_device *dev) 642 { 643 struct au1000_private *const aup = netdev_priv(dev); 644 unsigned long flags; 645 646 netif_dbg(aup, hw, dev, "reset mac, aup %x\n", 647 (unsigned)aup); 648 649 spin_lock_irqsave(&aup->lock, flags); 650 651 au1000_reset_mac_unlocked(dev); 652 653 spin_unlock_irqrestore(&aup->lock, flags); 654 } 655 656 /* 657 * Setup the receive and transmit "rings". These pointers are the addresses 658 * of the rx and tx MAC DMA registers so they are fixed by the hardware -- 659 * these are not descriptors sitting in memory. 660 */ 661 static void 662 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base) 663 { 664 int i; 665 666 for (i = 0; i < NUM_RX_DMA; i++) { 667 aup->rx_dma_ring[i] = (struct rx_dma *) 668 (tx_base + 0x100 + sizeof(struct rx_dma) * i); 669 } 670 for (i = 0; i < NUM_TX_DMA; i++) { 671 aup->tx_dma_ring[i] = (struct tx_dma *) 672 (tx_base + sizeof(struct tx_dma) * i); 673 } 674 } 675 676 /* 677 * ethtool operations 678 */ 679 680 static void 681 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 682 { 683 struct au1000_private *aup = netdev_priv(dev); 684 685 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 686 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 687 snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME, 688 aup->mac_id); 689 } 690 691 static void au1000_set_msglevel(struct net_device *dev, u32 value) 692 { 693 struct au1000_private *aup = netdev_priv(dev); 694 aup->msg_enable = value; 695 } 696 697 static u32 au1000_get_msglevel(struct net_device *dev) 698 { 699 struct au1000_private *aup = netdev_priv(dev); 700 return aup->msg_enable; 701 } 702 703 static const struct ethtool_ops au1000_ethtool_ops = { 704 .get_drvinfo = au1000_get_drvinfo, 705 .get_link = ethtool_op_get_link, 706 .get_msglevel = au1000_get_msglevel, 707 .set_msglevel = au1000_set_msglevel, 708 .get_link_ksettings = phy_ethtool_get_link_ksettings, 709 .set_link_ksettings = phy_ethtool_set_link_ksettings, 710 }; 711 712 713 /* 714 * Initialize the interface. 715 * 716 * When the device powers up, the clocks are disabled and the 717 * mac is in reset state. When the interface is closed, we 718 * do the same -- reset the device and disable the clocks to 719 * conserve power. Thus, whenever au1000_init() is called, 720 * the device should already be in reset state. 721 */ 722 static int au1000_init(struct net_device *dev) 723 { 724 struct au1000_private *aup = netdev_priv(dev); 725 unsigned long flags; 726 int i; 727 u32 control; 728 729 netif_dbg(aup, hw, dev, "au1000_init\n"); 730 731 /* bring the device out of reset */ 732 au1000_enable_mac(dev, 1); 733 734 spin_lock_irqsave(&aup->lock, flags); 735 736 writel(0, &aup->mac->control); 737 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; 738 aup->tx_tail = aup->tx_head; 739 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; 740 741 writel(dev->dev_addr[5]<<8 | dev->dev_addr[4], 742 &aup->mac->mac_addr_high); 743 writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | 744 dev->dev_addr[1]<<8 | dev->dev_addr[0], 745 &aup->mac->mac_addr_low); 746 747 748 for (i = 0; i < NUM_RX_DMA; i++) 749 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; 750 751 wmb(); /* drain writebuffer */ 752 753 control = MAC_RX_ENABLE | MAC_TX_ENABLE; 754 #ifndef CONFIG_CPU_LITTLE_ENDIAN 755 control |= MAC_BIG_ENDIAN; 756 #endif 757 if (dev->phydev) { 758 if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex)) 759 control |= MAC_FULL_DUPLEX; 760 else 761 control |= MAC_DISABLE_RX_OWN; 762 } else { /* PHY-less op, assume full-duplex */ 763 control |= MAC_FULL_DUPLEX; 764 } 765 766 writel(control, &aup->mac->control); 767 writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */ 768 wmb(); /* drain writebuffer */ 769 770 spin_unlock_irqrestore(&aup->lock, flags); 771 return 0; 772 } 773 774 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status) 775 { 776 struct net_device_stats *ps = &dev->stats; 777 778 ps->rx_packets++; 779 if (status & RX_MCAST_FRAME) 780 ps->multicast++; 781 782 if (status & RX_ERROR) { 783 ps->rx_errors++; 784 if (status & RX_MISSED_FRAME) 785 ps->rx_missed_errors++; 786 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR)) 787 ps->rx_length_errors++; 788 if (status & RX_CRC_ERROR) 789 ps->rx_crc_errors++; 790 if (status & RX_COLL) 791 ps->collisions++; 792 } else 793 ps->rx_bytes += status & RX_FRAME_LEN_MASK; 794 795 } 796 797 /* 798 * Au1000 receive routine. 799 */ 800 static int au1000_rx(struct net_device *dev) 801 { 802 struct au1000_private *aup = netdev_priv(dev); 803 struct sk_buff *skb; 804 struct rx_dma *prxd; 805 u32 buff_stat, status; 806 struct db_dest *pDB; 807 u32 frmlen; 808 809 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head); 810 811 prxd = aup->rx_dma_ring[aup->rx_head]; 812 buff_stat = prxd->buff_stat; 813 while (buff_stat & RX_T_DONE) { 814 status = prxd->status; 815 pDB = aup->rx_db_inuse[aup->rx_head]; 816 au1000_update_rx_stats(dev, status); 817 if (!(status & RX_ERROR)) { 818 819 /* good frame */ 820 frmlen = (status & RX_FRAME_LEN_MASK); 821 frmlen -= 4; /* Remove FCS */ 822 skb = netdev_alloc_skb(dev, frmlen + 2); 823 if (skb == NULL) { 824 dev->stats.rx_dropped++; 825 continue; 826 } 827 skb_reserve(skb, 2); /* 16 byte IP header align */ 828 skb_copy_to_linear_data(skb, 829 (unsigned char *)pDB->vaddr, frmlen); 830 skb_put(skb, frmlen); 831 skb->protocol = eth_type_trans(skb, dev); 832 netif_rx(skb); /* pass the packet to upper layers */ 833 } else { 834 if (au1000_debug > 4) { 835 pr_err("rx_error(s):"); 836 if (status & RX_MISSED_FRAME) 837 pr_cont(" miss"); 838 if (status & RX_WDOG_TIMER) 839 pr_cont(" wdog"); 840 if (status & RX_RUNT) 841 pr_cont(" runt"); 842 if (status & RX_OVERLEN) 843 pr_cont(" overlen"); 844 if (status & RX_COLL) 845 pr_cont(" coll"); 846 if (status & RX_MII_ERROR) 847 pr_cont(" mii error"); 848 if (status & RX_CRC_ERROR) 849 pr_cont(" crc error"); 850 if (status & RX_LEN_ERROR) 851 pr_cont(" len error"); 852 if (status & RX_U_CNTRL_FRAME) 853 pr_cont(" u control frame"); 854 pr_cont("\n"); 855 } 856 } 857 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); 858 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); 859 wmb(); /* drain writebuffer */ 860 861 /* next descriptor */ 862 prxd = aup->rx_dma_ring[aup->rx_head]; 863 buff_stat = prxd->buff_stat; 864 } 865 return 0; 866 } 867 868 static void au1000_update_tx_stats(struct net_device *dev, u32 status) 869 { 870 struct net_device_stats *ps = &dev->stats; 871 872 if (status & TX_FRAME_ABORTED) { 873 if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) { 874 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { 875 /* any other tx errors are only valid 876 * in half duplex mode 877 */ 878 ps->tx_errors++; 879 ps->tx_aborted_errors++; 880 } 881 } else { 882 ps->tx_errors++; 883 ps->tx_aborted_errors++; 884 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) 885 ps->tx_carrier_errors++; 886 } 887 } 888 } 889 890 /* 891 * Called from the interrupt service routine to acknowledge 892 * the TX DONE bits. This is a must if the irq is setup as 893 * edge triggered. 894 */ 895 static void au1000_tx_ack(struct net_device *dev) 896 { 897 struct au1000_private *aup = netdev_priv(dev); 898 struct tx_dma *ptxd; 899 900 ptxd = aup->tx_dma_ring[aup->tx_tail]; 901 902 while (ptxd->buff_stat & TX_T_DONE) { 903 au1000_update_tx_stats(dev, ptxd->status); 904 ptxd->buff_stat &= ~TX_T_DONE; 905 ptxd->len = 0; 906 wmb(); /* drain writebuffer */ 907 908 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); 909 ptxd = aup->tx_dma_ring[aup->tx_tail]; 910 911 if (aup->tx_full) { 912 aup->tx_full = 0; 913 netif_wake_queue(dev); 914 } 915 } 916 } 917 918 /* 919 * Au1000 interrupt service routine. 920 */ 921 static irqreturn_t au1000_interrupt(int irq, void *dev_id) 922 { 923 struct net_device *dev = dev_id; 924 925 /* Handle RX interrupts first to minimize chance of overrun */ 926 927 au1000_rx(dev); 928 au1000_tx_ack(dev); 929 return IRQ_RETVAL(1); 930 } 931 932 static int au1000_open(struct net_device *dev) 933 { 934 int retval; 935 struct au1000_private *aup = netdev_priv(dev); 936 937 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev); 938 939 retval = request_irq(dev->irq, au1000_interrupt, 0, 940 dev->name, dev); 941 if (retval) { 942 netdev_err(dev, "unable to get IRQ %d\n", dev->irq); 943 return retval; 944 } 945 946 retval = au1000_init(dev); 947 if (retval) { 948 netdev_err(dev, "error in au1000_init\n"); 949 free_irq(dev->irq, dev); 950 return retval; 951 } 952 953 if (dev->phydev) { 954 /* cause the PHY state machine to schedule a link state check */ 955 dev->phydev->state = PHY_CHANGELINK; 956 phy_start(dev->phydev); 957 } 958 959 netif_start_queue(dev); 960 961 netif_dbg(aup, drv, dev, "open: Initialization done.\n"); 962 963 return 0; 964 } 965 966 static int au1000_close(struct net_device *dev) 967 { 968 unsigned long flags; 969 struct au1000_private *const aup = netdev_priv(dev); 970 971 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev); 972 973 if (dev->phydev) 974 phy_stop(dev->phydev); 975 976 spin_lock_irqsave(&aup->lock, flags); 977 978 au1000_reset_mac_unlocked(dev); 979 980 /* stop the device */ 981 netif_stop_queue(dev); 982 983 /* disable the interrupt */ 984 free_irq(dev->irq, dev); 985 spin_unlock_irqrestore(&aup->lock, flags); 986 987 return 0; 988 } 989 990 /* 991 * Au1000 transmit routine. 992 */ 993 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev) 994 { 995 struct au1000_private *aup = netdev_priv(dev); 996 struct net_device_stats *ps = &dev->stats; 997 struct tx_dma *ptxd; 998 u32 buff_stat; 999 struct db_dest *pDB; 1000 int i; 1001 1002 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n", 1003 (unsigned)aup, skb->len, 1004 skb->data, aup->tx_head); 1005 1006 ptxd = aup->tx_dma_ring[aup->tx_head]; 1007 buff_stat = ptxd->buff_stat; 1008 if (buff_stat & TX_DMA_ENABLE) { 1009 /* We've wrapped around and the transmitter is still busy */ 1010 netif_stop_queue(dev); 1011 aup->tx_full = 1; 1012 return NETDEV_TX_BUSY; 1013 } else if (buff_stat & TX_T_DONE) { 1014 au1000_update_tx_stats(dev, ptxd->status); 1015 ptxd->len = 0; 1016 } 1017 1018 if (aup->tx_full) { 1019 aup->tx_full = 0; 1020 netif_wake_queue(dev); 1021 } 1022 1023 pDB = aup->tx_db_inuse[aup->tx_head]; 1024 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len); 1025 if (skb->len < ETH_ZLEN) { 1026 for (i = skb->len; i < ETH_ZLEN; i++) 1027 ((char *)pDB->vaddr)[i] = 0; 1028 1029 ptxd->len = ETH_ZLEN; 1030 } else 1031 ptxd->len = skb->len; 1032 1033 ps->tx_packets++; 1034 ps->tx_bytes += ptxd->len; 1035 1036 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; 1037 wmb(); /* drain writebuffer */ 1038 dev_kfree_skb(skb); 1039 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); 1040 return NETDEV_TX_OK; 1041 } 1042 1043 /* 1044 * The Tx ring has been full longer than the watchdog timeout 1045 * value. The transmitter must be hung? 1046 */ 1047 static void au1000_tx_timeout(struct net_device *dev) 1048 { 1049 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev); 1050 au1000_reset_mac(dev); 1051 au1000_init(dev); 1052 netif_trans_update(dev); /* prevent tx timeout */ 1053 netif_wake_queue(dev); 1054 } 1055 1056 static void au1000_multicast_list(struct net_device *dev) 1057 { 1058 struct au1000_private *aup = netdev_priv(dev); 1059 u32 reg; 1060 1061 netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags); 1062 reg = readl(&aup->mac->control); 1063 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1064 reg |= MAC_PROMISCUOUS; 1065 } else if ((dev->flags & IFF_ALLMULTI) || 1066 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) { 1067 reg |= MAC_PASS_ALL_MULTI; 1068 reg &= ~MAC_PROMISCUOUS; 1069 netdev_info(dev, "Pass all multicast\n"); 1070 } else { 1071 struct netdev_hw_addr *ha; 1072 u32 mc_filter[2]; /* Multicast hash filter */ 1073 1074 mc_filter[1] = mc_filter[0] = 0; 1075 netdev_for_each_mc_addr(ha, dev) 1076 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26, 1077 (long *)mc_filter); 1078 writel(mc_filter[1], &aup->mac->multi_hash_high); 1079 writel(mc_filter[0], &aup->mac->multi_hash_low); 1080 reg &= ~MAC_PROMISCUOUS; 1081 reg |= MAC_HASH_MODE; 1082 } 1083 writel(reg, &aup->mac->control); 1084 } 1085 1086 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1087 { 1088 if (!netif_running(dev)) 1089 return -EINVAL; 1090 1091 if (!dev->phydev) 1092 return -EINVAL; /* PHY not controllable */ 1093 1094 return phy_mii_ioctl(dev->phydev, rq, cmd); 1095 } 1096 1097 static const struct net_device_ops au1000_netdev_ops = { 1098 .ndo_open = au1000_open, 1099 .ndo_stop = au1000_close, 1100 .ndo_start_xmit = au1000_tx, 1101 .ndo_set_rx_mode = au1000_multicast_list, 1102 .ndo_do_ioctl = au1000_ioctl, 1103 .ndo_tx_timeout = au1000_tx_timeout, 1104 .ndo_set_mac_address = eth_mac_addr, 1105 .ndo_validate_addr = eth_validate_addr, 1106 }; 1107 1108 static int au1000_probe(struct platform_device *pdev) 1109 { 1110 struct au1000_private *aup = NULL; 1111 struct au1000_eth_platform_data *pd; 1112 struct net_device *dev = NULL; 1113 struct db_dest *pDB, *pDBfree; 1114 int irq, i, err = 0; 1115 struct resource *base, *macen, *macdma; 1116 1117 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1118 if (!base) { 1119 dev_err(&pdev->dev, "failed to retrieve base register\n"); 1120 err = -ENODEV; 1121 goto out; 1122 } 1123 1124 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1125 if (!macen) { 1126 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n"); 1127 err = -ENODEV; 1128 goto out; 1129 } 1130 1131 irq = platform_get_irq(pdev, 0); 1132 if (irq < 0) { 1133 dev_err(&pdev->dev, "failed to retrieve IRQ\n"); 1134 err = -ENODEV; 1135 goto out; 1136 } 1137 1138 macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1139 if (!macdma) { 1140 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n"); 1141 err = -ENODEV; 1142 goto out; 1143 } 1144 1145 if (!request_mem_region(base->start, resource_size(base), 1146 pdev->name)) { 1147 dev_err(&pdev->dev, "failed to request memory region for base registers\n"); 1148 err = -ENXIO; 1149 goto out; 1150 } 1151 1152 if (!request_mem_region(macen->start, resource_size(macen), 1153 pdev->name)) { 1154 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n"); 1155 err = -ENXIO; 1156 goto err_request; 1157 } 1158 1159 if (!request_mem_region(macdma->start, resource_size(macdma), 1160 pdev->name)) { 1161 dev_err(&pdev->dev, "failed to request MACDMA memory region\n"); 1162 err = -ENXIO; 1163 goto err_macdma; 1164 } 1165 1166 dev = alloc_etherdev(sizeof(struct au1000_private)); 1167 if (!dev) { 1168 err = -ENOMEM; 1169 goto err_alloc; 1170 } 1171 1172 SET_NETDEV_DEV(dev, &pdev->dev); 1173 platform_set_drvdata(pdev, dev); 1174 aup = netdev_priv(dev); 1175 1176 spin_lock_init(&aup->lock); 1177 aup->msg_enable = (au1000_debug < 4 ? 1178 AU1000_DEF_MSG_ENABLE : au1000_debug); 1179 1180 /* Allocate the data buffers 1181 * Snooping works fine with eth on all au1xxx 1182 */ 1183 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE * 1184 (NUM_TX_BUFFS + NUM_RX_BUFFS), 1185 &aup->dma_addr, 0); 1186 if (!aup->vaddr) { 1187 dev_err(&pdev->dev, "failed to allocate data buffers\n"); 1188 err = -ENOMEM; 1189 goto err_vaddr; 1190 } 1191 1192 /* aup->mac is the base address of the MAC's registers */ 1193 aup->mac = (struct mac_reg *) 1194 ioremap_nocache(base->start, resource_size(base)); 1195 if (!aup->mac) { 1196 dev_err(&pdev->dev, "failed to ioremap MAC registers\n"); 1197 err = -ENXIO; 1198 goto err_remap1; 1199 } 1200 1201 /* Setup some variables for quick register address access */ 1202 aup->enable = (u32 *)ioremap_nocache(macen->start, 1203 resource_size(macen)); 1204 if (!aup->enable) { 1205 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n"); 1206 err = -ENXIO; 1207 goto err_remap2; 1208 } 1209 aup->mac_id = pdev->id; 1210 1211 aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma)); 1212 if (!aup->macdma) { 1213 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n"); 1214 err = -ENXIO; 1215 goto err_remap3; 1216 } 1217 1218 au1000_setup_hw_rings(aup, aup->macdma); 1219 1220 writel(0, aup->enable); 1221 aup->mac_enabled = 0; 1222 1223 pd = dev_get_platdata(&pdev->dev); 1224 if (!pd) { 1225 dev_info(&pdev->dev, "no platform_data passed," 1226 " PHY search on MAC0\n"); 1227 aup->phy1_search_mac0 = 1; 1228 } else { 1229 if (is_valid_ether_addr(pd->mac)) { 1230 memcpy(dev->dev_addr, pd->mac, ETH_ALEN); 1231 } else { 1232 /* Set a random MAC since no valid provided by platform_data. */ 1233 eth_hw_addr_random(dev); 1234 } 1235 1236 aup->phy_static_config = pd->phy_static_config; 1237 aup->phy_search_highest_addr = pd->phy_search_highest_addr; 1238 aup->phy1_search_mac0 = pd->phy1_search_mac0; 1239 aup->phy_addr = pd->phy_addr; 1240 aup->phy_busid = pd->phy_busid; 1241 aup->phy_irq = pd->phy_irq; 1242 } 1243 1244 if (aup->phy_busid > 0) { 1245 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n"); 1246 err = -ENODEV; 1247 goto err_mdiobus_alloc; 1248 } 1249 1250 aup->mii_bus = mdiobus_alloc(); 1251 if (aup->mii_bus == NULL) { 1252 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n"); 1253 err = -ENOMEM; 1254 goto err_mdiobus_alloc; 1255 } 1256 1257 aup->mii_bus->priv = dev; 1258 aup->mii_bus->read = au1000_mdiobus_read; 1259 aup->mii_bus->write = au1000_mdiobus_write; 1260 aup->mii_bus->reset = au1000_mdiobus_reset; 1261 aup->mii_bus->name = "au1000_eth_mii"; 1262 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 1263 pdev->name, aup->mac_id); 1264 1265 /* if known, set corresponding PHY IRQs */ 1266 if (aup->phy_static_config) 1267 if (aup->phy_irq && aup->phy_busid == aup->mac_id) 1268 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq; 1269 1270 err = mdiobus_register(aup->mii_bus); 1271 if (err) { 1272 dev_err(&pdev->dev, "failed to register MDIO bus\n"); 1273 goto err_mdiobus_reg; 1274 } 1275 1276 err = au1000_mii_probe(dev); 1277 if (err != 0) 1278 goto err_out; 1279 1280 pDBfree = NULL; 1281 /* setup the data buffer descriptors and attach a buffer to each one */ 1282 pDB = aup->db; 1283 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { 1284 pDB->pnext = pDBfree; 1285 pDBfree = pDB; 1286 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); 1287 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); 1288 pDB++; 1289 } 1290 aup->pDBfree = pDBfree; 1291 1292 err = -ENODEV; 1293 for (i = 0; i < NUM_RX_DMA; i++) { 1294 pDB = au1000_GetFreeDB(aup); 1295 if (!pDB) 1296 goto err_out; 1297 1298 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; 1299 aup->rx_db_inuse[i] = pDB; 1300 } 1301 1302 err = -ENODEV; 1303 for (i = 0; i < NUM_TX_DMA; i++) { 1304 pDB = au1000_GetFreeDB(aup); 1305 if (!pDB) 1306 goto err_out; 1307 1308 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; 1309 aup->tx_dma_ring[i]->len = 0; 1310 aup->tx_db_inuse[i] = pDB; 1311 } 1312 1313 dev->base_addr = base->start; 1314 dev->irq = irq; 1315 dev->netdev_ops = &au1000_netdev_ops; 1316 dev->ethtool_ops = &au1000_ethtool_ops; 1317 dev->watchdog_timeo = ETH_TX_TIMEOUT; 1318 1319 /* 1320 * The boot code uses the ethernet controller, so reset it to start 1321 * fresh. au1000_init() expects that the device is in reset state. 1322 */ 1323 au1000_reset_mac(dev); 1324 1325 err = register_netdev(dev); 1326 if (err) { 1327 netdev_err(dev, "Cannot register net device, aborting.\n"); 1328 goto err_out; 1329 } 1330 1331 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n", 1332 (unsigned long)base->start, irq); 1333 1334 pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); 1335 1336 return 0; 1337 1338 err_out: 1339 if (aup->mii_bus != NULL) 1340 mdiobus_unregister(aup->mii_bus); 1341 1342 /* here we should have a valid dev plus aup-> register addresses 1343 * so we can reset the mac properly. 1344 */ 1345 au1000_reset_mac(dev); 1346 1347 for (i = 0; i < NUM_RX_DMA; i++) { 1348 if (aup->rx_db_inuse[i]) 1349 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1350 } 1351 for (i = 0; i < NUM_TX_DMA; i++) { 1352 if (aup->tx_db_inuse[i]) 1353 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1354 } 1355 err_mdiobus_reg: 1356 mdiobus_free(aup->mii_bus); 1357 err_mdiobus_alloc: 1358 iounmap(aup->macdma); 1359 err_remap3: 1360 iounmap(aup->enable); 1361 err_remap2: 1362 iounmap(aup->mac); 1363 err_remap1: 1364 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), 1365 (void *)aup->vaddr, aup->dma_addr); 1366 err_vaddr: 1367 free_netdev(dev); 1368 err_alloc: 1369 release_mem_region(macdma->start, resource_size(macdma)); 1370 err_macdma: 1371 release_mem_region(macen->start, resource_size(macen)); 1372 err_request: 1373 release_mem_region(base->start, resource_size(base)); 1374 out: 1375 return err; 1376 } 1377 1378 static int au1000_remove(struct platform_device *pdev) 1379 { 1380 struct net_device *dev = platform_get_drvdata(pdev); 1381 struct au1000_private *aup = netdev_priv(dev); 1382 int i; 1383 struct resource *base, *macen; 1384 1385 unregister_netdev(dev); 1386 mdiobus_unregister(aup->mii_bus); 1387 mdiobus_free(aup->mii_bus); 1388 1389 for (i = 0; i < NUM_RX_DMA; i++) 1390 if (aup->rx_db_inuse[i]) 1391 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1392 1393 for (i = 0; i < NUM_TX_DMA; i++) 1394 if (aup->tx_db_inuse[i]) 1395 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1396 1397 dma_free_noncoherent(NULL, MAX_BUF_SIZE * 1398 (NUM_TX_BUFFS + NUM_RX_BUFFS), 1399 (void *)aup->vaddr, aup->dma_addr); 1400 1401 iounmap(aup->macdma); 1402 iounmap(aup->mac); 1403 iounmap(aup->enable); 1404 1405 base = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1406 release_mem_region(base->start, resource_size(base)); 1407 1408 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1409 release_mem_region(base->start, resource_size(base)); 1410 1411 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1412 release_mem_region(macen->start, resource_size(macen)); 1413 1414 free_netdev(dev); 1415 1416 return 0; 1417 } 1418 1419 static struct platform_driver au1000_eth_driver = { 1420 .probe = au1000_probe, 1421 .remove = au1000_remove, 1422 .driver = { 1423 .name = "au1000-eth", 1424 }, 1425 }; 1426 1427 module_platform_driver(au1000_eth_driver); 1428 1429 MODULE_ALIAS("platform:au1000-eth"); 1430