1 /*
2  *
3  * Alchemy Au1x00 ethernet driver
4  *
5  * Copyright 2001-2003, 2006 MontaVista Software Inc.
6  * Copyright 2002 TimeSys Corp.
7  * Added ethtool/mii-tool support,
8  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10  * or riemer@riemer-nt.de: fixed the link beat detection with
11  * ioctls (SIOCGMIIPHY)
12  * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13  *  converted to use linux-2.6.x's PHY framework
14  *
15  * Author: MontaVista Software, Inc.
16  *		ppopov@mvista.com or source@mvista.com
17  *
18  * ########################################################################
19  *
20  *  This program is free software; you can distribute it and/or modify it
21  *  under the terms of the GNU General Public License (Version 2) as
22  *  published by the Free Software Foundation.
23  *
24  *  This program is distributed in the hope it will be useful, but WITHOUT
25  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
27  *  for more details.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, see <http://www.gnu.org/licenses/>.
31  *
32  * ########################################################################
33  *
34  *
35  */
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/capability.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/string.h>
43 #include <linux/timer.h>
44 #include <linux/errno.h>
45 #include <linux/in.h>
46 #include <linux/ioport.h>
47 #include <linux/bitops.h>
48 #include <linux/slab.h>
49 #include <linux/interrupt.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/mii.h>
54 #include <linux/skbuff.h>
55 #include <linux/delay.h>
56 #include <linux/crc32.h>
57 #include <linux/phy.h>
58 #include <linux/platform_device.h>
59 #include <linux/cpu.h>
60 #include <linux/io.h>
61 
62 #include <asm/mipsregs.h>
63 #include <asm/irq.h>
64 #include <asm/processor.h>
65 
66 #include <au1000.h>
67 #include <au1xxx_eth.h>
68 #include <prom.h>
69 
70 #include "au1000_eth.h"
71 
72 #ifdef AU1000_ETH_DEBUG
73 static int au1000_debug = 5;
74 #else
75 static int au1000_debug = 3;
76 #endif
77 
78 #define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
79 				NETIF_MSG_PROBE	| \
80 				NETIF_MSG_LINK)
81 
82 #define DRV_NAME	"au1000_eth"
83 #define DRV_VERSION	"1.7"
84 #define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
85 #define DRV_DESC	"Au1xxx on-chip Ethernet driver"
86 
87 MODULE_AUTHOR(DRV_AUTHOR);
88 MODULE_DESCRIPTION(DRV_DESC);
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91 
92 /* AU1000 MAC registers and bits */
93 #define MAC_CONTROL		0x0
94 #  define MAC_RX_ENABLE		(1 << 2)
95 #  define MAC_TX_ENABLE		(1 << 3)
96 #  define MAC_DEF_CHECK		(1 << 5)
97 #  define MAC_SET_BL(X)		(((X) & 0x3) << 6)
98 #  define MAC_AUTO_PAD		(1 << 8)
99 #  define MAC_DISABLE_RETRY	(1 << 10)
100 #  define MAC_DISABLE_BCAST	(1 << 11)
101 #  define MAC_LATE_COL		(1 << 12)
102 #  define MAC_HASH_MODE		(1 << 13)
103 #  define MAC_HASH_ONLY		(1 << 15)
104 #  define MAC_PASS_ALL		(1 << 16)
105 #  define MAC_INVERSE_FILTER	(1 << 17)
106 #  define MAC_PROMISCUOUS	(1 << 18)
107 #  define MAC_PASS_ALL_MULTI	(1 << 19)
108 #  define MAC_FULL_DUPLEX	(1 << 20)
109 #  define MAC_NORMAL_MODE	0
110 #  define MAC_INT_LOOPBACK	(1 << 21)
111 #  define MAC_EXT_LOOPBACK	(1 << 22)
112 #  define MAC_DISABLE_RX_OWN	(1 << 23)
113 #  define MAC_BIG_ENDIAN	(1 << 30)
114 #  define MAC_RX_ALL		(1 << 31)
115 #define MAC_ADDRESS_HIGH	0x4
116 #define MAC_ADDRESS_LOW		0x8
117 #define MAC_MCAST_HIGH		0xC
118 #define MAC_MCAST_LOW		0x10
119 #define MAC_MII_CNTRL		0x14
120 #  define MAC_MII_BUSY		(1 << 0)
121 #  define MAC_MII_READ		0
122 #  define MAC_MII_WRITE		(1 << 1)
123 #  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
124 #  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
125 #define MAC_MII_DATA		0x18
126 #define MAC_FLOW_CNTRL		0x1C
127 #  define MAC_FLOW_CNTRL_BUSY	(1 << 0)
128 #  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
129 #  define MAC_PASS_CONTROL	(1 << 2)
130 #  define MAC_SET_PAUSE(X)	(((X) & 0xffff) << 16)
131 #define MAC_VLAN1_TAG		0x20
132 #define MAC_VLAN2_TAG		0x24
133 
134 /* Ethernet Controller Enable */
135 #  define MAC_EN_CLOCK_ENABLE	(1 << 0)
136 #  define MAC_EN_RESET0		(1 << 1)
137 #  define MAC_EN_TOSS		(0 << 2)
138 #  define MAC_EN_CACHEABLE	(1 << 3)
139 #  define MAC_EN_RESET1		(1 << 4)
140 #  define MAC_EN_RESET2		(1 << 5)
141 #  define MAC_DMA_RESET		(1 << 6)
142 
143 /* Ethernet Controller DMA Channels */
144 /* offsets from MAC_TX_RING_ADDR address */
145 #define MAC_TX_BUFF0_STATUS	0x0
146 #  define TX_FRAME_ABORTED	(1 << 0)
147 #  define TX_JAB_TIMEOUT	(1 << 1)
148 #  define TX_NO_CARRIER		(1 << 2)
149 #  define TX_LOSS_CARRIER	(1 << 3)
150 #  define TX_EXC_DEF		(1 << 4)
151 #  define TX_LATE_COLL_ABORT	(1 << 5)
152 #  define TX_EXC_COLL		(1 << 6)
153 #  define TX_UNDERRUN		(1 << 7)
154 #  define TX_DEFERRED		(1 << 8)
155 #  define TX_LATE_COLL		(1 << 9)
156 #  define TX_COLL_CNT_MASK	(0xF << 10)
157 #  define TX_PKT_RETRY		(1 << 31)
158 #define MAC_TX_BUFF0_ADDR	0x4
159 #  define TX_DMA_ENABLE		(1 << 0)
160 #  define TX_T_DONE		(1 << 1)
161 #  define TX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
162 #define MAC_TX_BUFF0_LEN	0x8
163 #define MAC_TX_BUFF1_STATUS	0x10
164 #define MAC_TX_BUFF1_ADDR	0x14
165 #define MAC_TX_BUFF1_LEN	0x18
166 #define MAC_TX_BUFF2_STATUS	0x20
167 #define MAC_TX_BUFF2_ADDR	0x24
168 #define MAC_TX_BUFF2_LEN	0x28
169 #define MAC_TX_BUFF3_STATUS	0x30
170 #define MAC_TX_BUFF3_ADDR	0x34
171 #define MAC_TX_BUFF3_LEN	0x38
172 
173 /* offsets from MAC_RX_RING_ADDR */
174 #define MAC_RX_BUFF0_STATUS	0x0
175 #  define RX_FRAME_LEN_MASK	0x3fff
176 #  define RX_WDOG_TIMER		(1 << 14)
177 #  define RX_RUNT		(1 << 15)
178 #  define RX_OVERLEN		(1 << 16)
179 #  define RX_COLL		(1 << 17)
180 #  define RX_ETHER		(1 << 18)
181 #  define RX_MII_ERROR		(1 << 19)
182 #  define RX_DRIBBLING		(1 << 20)
183 #  define RX_CRC_ERROR		(1 << 21)
184 #  define RX_VLAN1		(1 << 22)
185 #  define RX_VLAN2		(1 << 23)
186 #  define RX_LEN_ERROR		(1 << 24)
187 #  define RX_CNTRL_FRAME	(1 << 25)
188 #  define RX_U_CNTRL_FRAME	(1 << 26)
189 #  define RX_MCAST_FRAME	(1 << 27)
190 #  define RX_BCAST_FRAME	(1 << 28)
191 #  define RX_FILTER_FAIL	(1 << 29)
192 #  define RX_PACKET_FILTER	(1 << 30)
193 #  define RX_MISSED_FRAME	(1 << 31)
194 
195 #  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
196 		    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
197 		    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
198 #define MAC_RX_BUFF0_ADDR	0x4
199 #  define RX_DMA_ENABLE		(1 << 0)
200 #  define RX_T_DONE		(1 << 1)
201 #  define RX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
202 #  define RX_SET_BUFF_ADDR(X)	((X) & 0xffffffc0)
203 #define MAC_RX_BUFF1_STATUS	0x10
204 #define MAC_RX_BUFF1_ADDR	0x14
205 #define MAC_RX_BUFF2_STATUS	0x20
206 #define MAC_RX_BUFF2_ADDR	0x24
207 #define MAC_RX_BUFF3_STATUS	0x30
208 #define MAC_RX_BUFF3_ADDR	0x34
209 
210 /*
211  * Theory of operation
212  *
213  * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
214  * There are four receive and four transmit descriptors.  These
215  * descriptors are not in memory; rather, they are just a set of
216  * hardware registers.
217  *
218  * Since the Au1000 has a coherent data cache, the receive and
219  * transmit buffers are allocated from the KSEG0 segment. The
220  * hardware registers, however, are still mapped at KSEG1 to
221  * make sure there's no out-of-order writes, and that all writes
222  * complete immediately.
223  */
224 
225 /*
226  * board-specific configurations
227  *
228  * PHY detection algorithm
229  *
230  * If phy_static_config is undefined, the PHY setup is
231  * autodetected:
232  *
233  * mii_probe() first searches the current MAC's MII bus for a PHY,
234  * selecting the first (or last, if phy_search_highest_addr is
235  * defined) PHY address not already claimed by another netdev.
236  *
237  * If nothing was found that way when searching for the 2nd ethernet
238  * controller's PHY and phy1_search_mac0 is defined, then
239  * the first MII bus is searched as well for an unclaimed PHY; this is
240  * needed in case of a dual-PHY accessible only through the MAC0's MII
241  * bus.
242  *
243  * Finally, if no PHY is found, then the corresponding ethernet
244  * controller is not registered to the network subsystem.
245  */
246 
247 /* autodetection defaults: phy1_search_mac0 */
248 
249 /* static PHY setup
250  *
251  * most boards PHY setup should be detectable properly with the
252  * autodetection algorithm in mii_probe(), but in some cases (e.g. if
253  * you have a switch attached, or want to use the PHY's interrupt
254  * notification capabilities) you can provide a static PHY
255  * configuration here
256  *
257  * IRQs may only be set, if a PHY address was configured
258  * If a PHY address is given, also a bus id is required to be set
259  *
260  * ps: make sure the used irqs are configured properly in the board
261  * specific irq-map
262  */
263 
264 static void au1000_enable_mac(struct net_device *dev, int force_reset)
265 {
266 	unsigned long flags;
267 	struct au1000_private *aup = netdev_priv(dev);
268 
269 	spin_lock_irqsave(&aup->lock, flags);
270 
271 	if (force_reset || (!aup->mac_enabled)) {
272 		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
273 		wmb(); /* drain writebuffer */
274 		mdelay(2);
275 		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
276 				| MAC_EN_CLOCK_ENABLE), aup->enable);
277 		wmb(); /* drain writebuffer */
278 		mdelay(2);
279 
280 		aup->mac_enabled = 1;
281 	}
282 
283 	spin_unlock_irqrestore(&aup->lock, flags);
284 }
285 
286 /*
287  * MII operations
288  */
289 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
290 {
291 	struct au1000_private *aup = netdev_priv(dev);
292 	u32 *const mii_control_reg = &aup->mac->mii_control;
293 	u32 *const mii_data_reg = &aup->mac->mii_data;
294 	u32 timedout = 20;
295 	u32 mii_control;
296 
297 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
298 		mdelay(1);
299 		if (--timedout == 0) {
300 			netdev_err(dev, "read_MII busy timeout!!\n");
301 			return -1;
302 		}
303 	}
304 
305 	mii_control = MAC_SET_MII_SELECT_REG(reg) |
306 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
307 
308 	writel(mii_control, mii_control_reg);
309 
310 	timedout = 20;
311 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
312 		mdelay(1);
313 		if (--timedout == 0) {
314 			netdev_err(dev, "mdio_read busy timeout!!\n");
315 			return -1;
316 		}
317 	}
318 	return readl(mii_data_reg);
319 }
320 
321 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
322 			      int reg, u16 value)
323 {
324 	struct au1000_private *aup = netdev_priv(dev);
325 	u32 *const mii_control_reg = &aup->mac->mii_control;
326 	u32 *const mii_data_reg = &aup->mac->mii_data;
327 	u32 timedout = 20;
328 	u32 mii_control;
329 
330 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
331 		mdelay(1);
332 		if (--timedout == 0) {
333 			netdev_err(dev, "mdio_write busy timeout!!\n");
334 			return;
335 		}
336 	}
337 
338 	mii_control = MAC_SET_MII_SELECT_REG(reg) |
339 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
340 
341 	writel(value, mii_data_reg);
342 	writel(mii_control, mii_control_reg);
343 }
344 
345 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
346 {
347 	struct net_device *const dev = bus->priv;
348 
349 	/* make sure the MAC associated with this
350 	 * mii_bus is enabled
351 	 */
352 	au1000_enable_mac(dev, 0);
353 
354 	return au1000_mdio_read(dev, phy_addr, regnum);
355 }
356 
357 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
358 				u16 value)
359 {
360 	struct net_device *const dev = bus->priv;
361 
362 	/* make sure the MAC associated with this
363 	 * mii_bus is enabled
364 	 */
365 	au1000_enable_mac(dev, 0);
366 
367 	au1000_mdio_write(dev, phy_addr, regnum, value);
368 	return 0;
369 }
370 
371 static int au1000_mdiobus_reset(struct mii_bus *bus)
372 {
373 	struct net_device *const dev = bus->priv;
374 
375 	/* make sure the MAC associated with this
376 	 * mii_bus is enabled
377 	 */
378 	au1000_enable_mac(dev, 0);
379 
380 	return 0;
381 }
382 
383 static void au1000_hard_stop(struct net_device *dev)
384 {
385 	struct au1000_private *aup = netdev_priv(dev);
386 	u32 reg;
387 
388 	netif_dbg(aup, drv, dev, "hard stop\n");
389 
390 	reg = readl(&aup->mac->control);
391 	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
392 	writel(reg, &aup->mac->control);
393 	wmb(); /* drain writebuffer */
394 	mdelay(10);
395 }
396 
397 static void au1000_enable_rx_tx(struct net_device *dev)
398 {
399 	struct au1000_private *aup = netdev_priv(dev);
400 	u32 reg;
401 
402 	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
403 
404 	reg = readl(&aup->mac->control);
405 	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
406 	writel(reg, &aup->mac->control);
407 	wmb(); /* drain writebuffer */
408 	mdelay(10);
409 }
410 
411 static void
412 au1000_adjust_link(struct net_device *dev)
413 {
414 	struct au1000_private *aup = netdev_priv(dev);
415 	struct phy_device *phydev = dev->phydev;
416 	unsigned long flags;
417 	u32 reg;
418 
419 	int status_change = 0;
420 
421 	BUG_ON(!phydev);
422 
423 	spin_lock_irqsave(&aup->lock, flags);
424 
425 	if (phydev->link && (aup->old_speed != phydev->speed)) {
426 		/* speed changed */
427 
428 		switch (phydev->speed) {
429 		case SPEED_10:
430 		case SPEED_100:
431 			break;
432 		default:
433 			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
434 							phydev->speed);
435 			break;
436 		}
437 
438 		aup->old_speed = phydev->speed;
439 
440 		status_change = 1;
441 	}
442 
443 	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
444 		/* duplex mode changed */
445 
446 		/* switching duplex mode requires to disable rx and tx! */
447 		au1000_hard_stop(dev);
448 
449 		reg = readl(&aup->mac->control);
450 		if (DUPLEX_FULL == phydev->duplex) {
451 			reg |= MAC_FULL_DUPLEX;
452 			reg &= ~MAC_DISABLE_RX_OWN;
453 		} else {
454 			reg &= ~MAC_FULL_DUPLEX;
455 			reg |= MAC_DISABLE_RX_OWN;
456 		}
457 		writel(reg, &aup->mac->control);
458 		wmb(); /* drain writebuffer */
459 		mdelay(1);
460 
461 		au1000_enable_rx_tx(dev);
462 		aup->old_duplex = phydev->duplex;
463 
464 		status_change = 1;
465 	}
466 
467 	if (phydev->link != aup->old_link) {
468 		/* link state changed */
469 
470 		if (!phydev->link) {
471 			/* link went down */
472 			aup->old_speed = 0;
473 			aup->old_duplex = -1;
474 		}
475 
476 		aup->old_link = phydev->link;
477 		status_change = 1;
478 	}
479 
480 	spin_unlock_irqrestore(&aup->lock, flags);
481 
482 	if (status_change) {
483 		if (phydev->link)
484 			netdev_info(dev, "link up (%d/%s)\n",
485 			       phydev->speed,
486 			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
487 		else
488 			netdev_info(dev, "link down\n");
489 	}
490 }
491 
492 static int au1000_mii_probe(struct net_device *dev)
493 {
494 	struct au1000_private *const aup = netdev_priv(dev);
495 	struct phy_device *phydev = NULL;
496 	int phy_addr;
497 
498 	if (aup->phy_static_config) {
499 		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
500 
501 		if (aup->phy_addr)
502 			phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
503 		else
504 			netdev_info(dev, "using PHY-less setup\n");
505 		return 0;
506 	}
507 
508 	/* find the first (lowest address) PHY
509 	 * on the current MAC's MII bus
510 	 */
511 	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
512 		if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
513 			phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
514 			if (!aup->phy_search_highest_addr)
515 				/* break out with first one found */
516 				break;
517 		}
518 
519 	if (aup->phy1_search_mac0) {
520 		/* try harder to find a PHY */
521 		if (!phydev && (aup->mac_id == 1)) {
522 			/* no PHY found, maybe we have a dual PHY? */
523 			dev_info(&dev->dev, ": no PHY found on MAC1, "
524 				"let's see if it's attached to MAC0...\n");
525 
526 			/* find the first (lowest address) non-attached
527 			 * PHY on the MAC0 MII bus
528 			 */
529 			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
530 				struct phy_device *const tmp_phydev =
531 					mdiobus_get_phy(aup->mii_bus,
532 							phy_addr);
533 
534 				if (aup->mac_id == 1)
535 					break;
536 
537 				/* no PHY here... */
538 				if (!tmp_phydev)
539 					continue;
540 
541 				/* already claimed by MAC0 */
542 				if (tmp_phydev->attached_dev)
543 					continue;
544 
545 				phydev = tmp_phydev;
546 				break; /* found it */
547 			}
548 		}
549 	}
550 
551 	if (!phydev) {
552 		netdev_err(dev, "no PHY found\n");
553 		return -1;
554 	}
555 
556 	/* now we are supposed to have a proper phydev, to attach to... */
557 	BUG_ON(phydev->attached_dev);
558 
559 	phydev = phy_connect(dev, phydev_name(phydev),
560 			     &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
561 
562 	if (IS_ERR(phydev)) {
563 		netdev_err(dev, "Could not attach to PHY\n");
564 		return PTR_ERR(phydev);
565 	}
566 
567 	phy_set_max_speed(phydev, SPEED_100);
568 
569 	aup->old_link = 0;
570 	aup->old_speed = 0;
571 	aup->old_duplex = -1;
572 
573 	phy_attached_info(phydev);
574 
575 	return 0;
576 }
577 
578 
579 /*
580  * Buffer allocation/deallocation routines. The buffer descriptor returned
581  * has the virtual and dma address of a buffer suitable for
582  * both, receive and transmit operations.
583  */
584 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
585 {
586 	struct db_dest *pDB;
587 	pDB = aup->pDBfree;
588 
589 	if (pDB)
590 		aup->pDBfree = pDB->pnext;
591 
592 	return pDB;
593 }
594 
595 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
596 {
597 	struct db_dest *pDBfree = aup->pDBfree;
598 	if (pDBfree)
599 		pDBfree->pnext = pDB;
600 	aup->pDBfree = pDB;
601 }
602 
603 static void au1000_reset_mac_unlocked(struct net_device *dev)
604 {
605 	struct au1000_private *const aup = netdev_priv(dev);
606 	int i;
607 
608 	au1000_hard_stop(dev);
609 
610 	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
611 	wmb(); /* drain writebuffer */
612 	mdelay(2);
613 	writel(0, aup->enable);
614 	wmb(); /* drain writebuffer */
615 	mdelay(2);
616 
617 	aup->tx_full = 0;
618 	for (i = 0; i < NUM_RX_DMA; i++) {
619 		/* reset control bits */
620 		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
621 	}
622 	for (i = 0; i < NUM_TX_DMA; i++) {
623 		/* reset control bits */
624 		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
625 	}
626 
627 	aup->mac_enabled = 0;
628 
629 }
630 
631 static void au1000_reset_mac(struct net_device *dev)
632 {
633 	struct au1000_private *const aup = netdev_priv(dev);
634 	unsigned long flags;
635 
636 	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
637 					(unsigned)aup);
638 
639 	spin_lock_irqsave(&aup->lock, flags);
640 
641 	au1000_reset_mac_unlocked(dev);
642 
643 	spin_unlock_irqrestore(&aup->lock, flags);
644 }
645 
646 /*
647  * Setup the receive and transmit "rings".  These pointers are the addresses
648  * of the rx and tx MAC DMA registers so they are fixed by the hardware --
649  * these are not descriptors sitting in memory.
650  */
651 static void
652 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
653 {
654 	int i;
655 
656 	for (i = 0; i < NUM_RX_DMA; i++) {
657 		aup->rx_dma_ring[i] = (struct rx_dma *)
658 			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
659 	}
660 	for (i = 0; i < NUM_TX_DMA; i++) {
661 		aup->tx_dma_ring[i] = (struct tx_dma *)
662 			(tx_base + sizeof(struct tx_dma) * i);
663 	}
664 }
665 
666 /*
667  * ethtool operations
668  */
669 
670 static void
671 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
672 {
673 	struct au1000_private *aup = netdev_priv(dev);
674 
675 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
676 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
677 	snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
678 		 aup->mac_id);
679 }
680 
681 static void au1000_set_msglevel(struct net_device *dev, u32 value)
682 {
683 	struct au1000_private *aup = netdev_priv(dev);
684 	aup->msg_enable = value;
685 }
686 
687 static u32 au1000_get_msglevel(struct net_device *dev)
688 {
689 	struct au1000_private *aup = netdev_priv(dev);
690 	return aup->msg_enable;
691 }
692 
693 static const struct ethtool_ops au1000_ethtool_ops = {
694 	.get_drvinfo = au1000_get_drvinfo,
695 	.get_link = ethtool_op_get_link,
696 	.get_msglevel = au1000_get_msglevel,
697 	.set_msglevel = au1000_set_msglevel,
698 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
699 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
700 };
701 
702 
703 /*
704  * Initialize the interface.
705  *
706  * When the device powers up, the clocks are disabled and the
707  * mac is in reset state.  When the interface is closed, we
708  * do the same -- reset the device and disable the clocks to
709  * conserve power. Thus, whenever au1000_init() is called,
710  * the device should already be in reset state.
711  */
712 static int au1000_init(struct net_device *dev)
713 {
714 	struct au1000_private *aup = netdev_priv(dev);
715 	unsigned long flags;
716 	int i;
717 	u32 control;
718 
719 	netif_dbg(aup, hw, dev, "au1000_init\n");
720 
721 	/* bring the device out of reset */
722 	au1000_enable_mac(dev, 1);
723 
724 	spin_lock_irqsave(&aup->lock, flags);
725 
726 	writel(0, &aup->mac->control);
727 	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
728 	aup->tx_tail = aup->tx_head;
729 	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
730 
731 	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
732 					&aup->mac->mac_addr_high);
733 	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
734 		dev->dev_addr[1]<<8 | dev->dev_addr[0],
735 					&aup->mac->mac_addr_low);
736 
737 
738 	for (i = 0; i < NUM_RX_DMA; i++)
739 		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
740 
741 	wmb(); /* drain writebuffer */
742 
743 	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
744 #ifndef CONFIG_CPU_LITTLE_ENDIAN
745 	control |= MAC_BIG_ENDIAN;
746 #endif
747 	if (dev->phydev) {
748 		if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
749 			control |= MAC_FULL_DUPLEX;
750 		else
751 			control |= MAC_DISABLE_RX_OWN;
752 	} else { /* PHY-less op, assume full-duplex */
753 		control |= MAC_FULL_DUPLEX;
754 	}
755 
756 	writel(control, &aup->mac->control);
757 	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
758 	wmb(); /* drain writebuffer */
759 
760 	spin_unlock_irqrestore(&aup->lock, flags);
761 	return 0;
762 }
763 
764 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
765 {
766 	struct net_device_stats *ps = &dev->stats;
767 
768 	ps->rx_packets++;
769 	if (status & RX_MCAST_FRAME)
770 		ps->multicast++;
771 
772 	if (status & RX_ERROR) {
773 		ps->rx_errors++;
774 		if (status & RX_MISSED_FRAME)
775 			ps->rx_missed_errors++;
776 		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
777 			ps->rx_length_errors++;
778 		if (status & RX_CRC_ERROR)
779 			ps->rx_crc_errors++;
780 		if (status & RX_COLL)
781 			ps->collisions++;
782 	} else
783 		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
784 
785 }
786 
787 /*
788  * Au1000 receive routine.
789  */
790 static int au1000_rx(struct net_device *dev)
791 {
792 	struct au1000_private *aup = netdev_priv(dev);
793 	struct sk_buff *skb;
794 	struct rx_dma *prxd;
795 	u32 buff_stat, status;
796 	struct db_dest *pDB;
797 	u32	frmlen;
798 
799 	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
800 
801 	prxd = aup->rx_dma_ring[aup->rx_head];
802 	buff_stat = prxd->buff_stat;
803 	while (buff_stat & RX_T_DONE)  {
804 		status = prxd->status;
805 		pDB = aup->rx_db_inuse[aup->rx_head];
806 		au1000_update_rx_stats(dev, status);
807 		if (!(status & RX_ERROR))  {
808 
809 			/* good frame */
810 			frmlen = (status & RX_FRAME_LEN_MASK);
811 			frmlen -= 4; /* Remove FCS */
812 			skb = netdev_alloc_skb(dev, frmlen + 2);
813 			if (skb == NULL) {
814 				dev->stats.rx_dropped++;
815 				continue;
816 			}
817 			skb_reserve(skb, 2);	/* 16 byte IP header align */
818 			skb_copy_to_linear_data(skb,
819 				(unsigned char *)pDB->vaddr, frmlen);
820 			skb_put(skb, frmlen);
821 			skb->protocol = eth_type_trans(skb, dev);
822 			netif_rx(skb);	/* pass the packet to upper layers */
823 		} else {
824 			if (au1000_debug > 4) {
825 				pr_err("rx_error(s):");
826 				if (status & RX_MISSED_FRAME)
827 					pr_cont(" miss");
828 				if (status & RX_WDOG_TIMER)
829 					pr_cont(" wdog");
830 				if (status & RX_RUNT)
831 					pr_cont(" runt");
832 				if (status & RX_OVERLEN)
833 					pr_cont(" overlen");
834 				if (status & RX_COLL)
835 					pr_cont(" coll");
836 				if (status & RX_MII_ERROR)
837 					pr_cont(" mii error");
838 				if (status & RX_CRC_ERROR)
839 					pr_cont(" crc error");
840 				if (status & RX_LEN_ERROR)
841 					pr_cont(" len error");
842 				if (status & RX_U_CNTRL_FRAME)
843 					pr_cont(" u control frame");
844 				pr_cont("\n");
845 			}
846 		}
847 		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
848 		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
849 		wmb(); /* drain writebuffer */
850 
851 		/* next descriptor */
852 		prxd = aup->rx_dma_ring[aup->rx_head];
853 		buff_stat = prxd->buff_stat;
854 	}
855 	return 0;
856 }
857 
858 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
859 {
860 	struct net_device_stats *ps = &dev->stats;
861 
862 	if (status & TX_FRAME_ABORTED) {
863 		if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
864 			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
865 				/* any other tx errors are only valid
866 				 * in half duplex mode
867 				 */
868 				ps->tx_errors++;
869 				ps->tx_aborted_errors++;
870 			}
871 		} else {
872 			ps->tx_errors++;
873 			ps->tx_aborted_errors++;
874 			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
875 				ps->tx_carrier_errors++;
876 		}
877 	}
878 }
879 
880 /*
881  * Called from the interrupt service routine to acknowledge
882  * the TX DONE bits.  This is a must if the irq is setup as
883  * edge triggered.
884  */
885 static void au1000_tx_ack(struct net_device *dev)
886 {
887 	struct au1000_private *aup = netdev_priv(dev);
888 	struct tx_dma *ptxd;
889 
890 	ptxd = aup->tx_dma_ring[aup->tx_tail];
891 
892 	while (ptxd->buff_stat & TX_T_DONE) {
893 		au1000_update_tx_stats(dev, ptxd->status);
894 		ptxd->buff_stat &= ~TX_T_DONE;
895 		ptxd->len = 0;
896 		wmb(); /* drain writebuffer */
897 
898 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
899 		ptxd = aup->tx_dma_ring[aup->tx_tail];
900 
901 		if (aup->tx_full) {
902 			aup->tx_full = 0;
903 			netif_wake_queue(dev);
904 		}
905 	}
906 }
907 
908 /*
909  * Au1000 interrupt service routine.
910  */
911 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
912 {
913 	struct net_device *dev = dev_id;
914 
915 	/* Handle RX interrupts first to minimize chance of overrun */
916 
917 	au1000_rx(dev);
918 	au1000_tx_ack(dev);
919 	return IRQ_RETVAL(1);
920 }
921 
922 static int au1000_open(struct net_device *dev)
923 {
924 	int retval;
925 	struct au1000_private *aup = netdev_priv(dev);
926 
927 	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
928 
929 	retval = request_irq(dev->irq, au1000_interrupt, 0,
930 					dev->name, dev);
931 	if (retval) {
932 		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
933 		return retval;
934 	}
935 
936 	retval = au1000_init(dev);
937 	if (retval) {
938 		netdev_err(dev, "error in au1000_init\n");
939 		free_irq(dev->irq, dev);
940 		return retval;
941 	}
942 
943 	if (dev->phydev)
944 		phy_start(dev->phydev);
945 
946 	netif_start_queue(dev);
947 
948 	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
949 
950 	return 0;
951 }
952 
953 static int au1000_close(struct net_device *dev)
954 {
955 	unsigned long flags;
956 	struct au1000_private *const aup = netdev_priv(dev);
957 
958 	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
959 
960 	if (dev->phydev)
961 		phy_stop(dev->phydev);
962 
963 	spin_lock_irqsave(&aup->lock, flags);
964 
965 	au1000_reset_mac_unlocked(dev);
966 
967 	/* stop the device */
968 	netif_stop_queue(dev);
969 
970 	/* disable the interrupt */
971 	free_irq(dev->irq, dev);
972 	spin_unlock_irqrestore(&aup->lock, flags);
973 
974 	return 0;
975 }
976 
977 /*
978  * Au1000 transmit routine.
979  */
980 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
981 {
982 	struct au1000_private *aup = netdev_priv(dev);
983 	struct net_device_stats *ps = &dev->stats;
984 	struct tx_dma *ptxd;
985 	u32 buff_stat;
986 	struct db_dest *pDB;
987 	int i;
988 
989 	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
990 				(unsigned)aup, skb->len,
991 				skb->data, aup->tx_head);
992 
993 	ptxd = aup->tx_dma_ring[aup->tx_head];
994 	buff_stat = ptxd->buff_stat;
995 	if (buff_stat & TX_DMA_ENABLE) {
996 		/* We've wrapped around and the transmitter is still busy */
997 		netif_stop_queue(dev);
998 		aup->tx_full = 1;
999 		return NETDEV_TX_BUSY;
1000 	} else if (buff_stat & TX_T_DONE) {
1001 		au1000_update_tx_stats(dev, ptxd->status);
1002 		ptxd->len = 0;
1003 	}
1004 
1005 	if (aup->tx_full) {
1006 		aup->tx_full = 0;
1007 		netif_wake_queue(dev);
1008 	}
1009 
1010 	pDB = aup->tx_db_inuse[aup->tx_head];
1011 	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
1012 	if (skb->len < ETH_ZLEN) {
1013 		for (i = skb->len; i < ETH_ZLEN; i++)
1014 			((char *)pDB->vaddr)[i] = 0;
1015 
1016 		ptxd->len = ETH_ZLEN;
1017 	} else
1018 		ptxd->len = skb->len;
1019 
1020 	ps->tx_packets++;
1021 	ps->tx_bytes += ptxd->len;
1022 
1023 	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1024 	wmb(); /* drain writebuffer */
1025 	dev_kfree_skb(skb);
1026 	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1027 	return NETDEV_TX_OK;
1028 }
1029 
1030 /*
1031  * The Tx ring has been full longer than the watchdog timeout
1032  * value. The transmitter must be hung?
1033  */
1034 static void au1000_tx_timeout(struct net_device *dev)
1035 {
1036 	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1037 	au1000_reset_mac(dev);
1038 	au1000_init(dev);
1039 	netif_trans_update(dev); /* prevent tx timeout */
1040 	netif_wake_queue(dev);
1041 }
1042 
1043 static void au1000_multicast_list(struct net_device *dev)
1044 {
1045 	struct au1000_private *aup = netdev_priv(dev);
1046 	u32 reg;
1047 
1048 	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1049 	reg = readl(&aup->mac->control);
1050 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1051 		reg |= MAC_PROMISCUOUS;
1052 	} else if ((dev->flags & IFF_ALLMULTI)  ||
1053 			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1054 		reg |= MAC_PASS_ALL_MULTI;
1055 		reg &= ~MAC_PROMISCUOUS;
1056 		netdev_info(dev, "Pass all multicast\n");
1057 	} else {
1058 		struct netdev_hw_addr *ha;
1059 		u32 mc_filter[2];	/* Multicast hash filter */
1060 
1061 		mc_filter[1] = mc_filter[0] = 0;
1062 		netdev_for_each_mc_addr(ha, dev)
1063 			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1064 					(long *)mc_filter);
1065 		writel(mc_filter[1], &aup->mac->multi_hash_high);
1066 		writel(mc_filter[0], &aup->mac->multi_hash_low);
1067 		reg &= ~MAC_PROMISCUOUS;
1068 		reg |= MAC_HASH_MODE;
1069 	}
1070 	writel(reg, &aup->mac->control);
1071 }
1072 
1073 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1074 {
1075 	if (!netif_running(dev))
1076 		return -EINVAL;
1077 
1078 	if (!dev->phydev)
1079 		return -EINVAL; /* PHY not controllable */
1080 
1081 	return phy_mii_ioctl(dev->phydev, rq, cmd);
1082 }
1083 
1084 static const struct net_device_ops au1000_netdev_ops = {
1085 	.ndo_open		= au1000_open,
1086 	.ndo_stop		= au1000_close,
1087 	.ndo_start_xmit		= au1000_tx,
1088 	.ndo_set_rx_mode	= au1000_multicast_list,
1089 	.ndo_do_ioctl		= au1000_ioctl,
1090 	.ndo_tx_timeout		= au1000_tx_timeout,
1091 	.ndo_set_mac_address	= eth_mac_addr,
1092 	.ndo_validate_addr	= eth_validate_addr,
1093 };
1094 
1095 static int au1000_probe(struct platform_device *pdev)
1096 {
1097 	struct au1000_private *aup = NULL;
1098 	struct au1000_eth_platform_data *pd;
1099 	struct net_device *dev = NULL;
1100 	struct db_dest *pDB, *pDBfree;
1101 	int irq, i, err = 0;
1102 	struct resource *base, *macen, *macdma;
1103 
1104 	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1105 	if (!base) {
1106 		dev_err(&pdev->dev, "failed to retrieve base register\n");
1107 		err = -ENODEV;
1108 		goto out;
1109 	}
1110 
1111 	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1112 	if (!macen) {
1113 		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1114 		err = -ENODEV;
1115 		goto out;
1116 	}
1117 
1118 	irq = platform_get_irq(pdev, 0);
1119 	if (irq < 0) {
1120 		dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1121 		err = -ENODEV;
1122 		goto out;
1123 	}
1124 
1125 	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1126 	if (!macdma) {
1127 		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1128 		err = -ENODEV;
1129 		goto out;
1130 	}
1131 
1132 	if (!request_mem_region(base->start, resource_size(base),
1133 							pdev->name)) {
1134 		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1135 		err = -ENXIO;
1136 		goto out;
1137 	}
1138 
1139 	if (!request_mem_region(macen->start, resource_size(macen),
1140 							pdev->name)) {
1141 		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1142 		err = -ENXIO;
1143 		goto err_request;
1144 	}
1145 
1146 	if (!request_mem_region(macdma->start, resource_size(macdma),
1147 							pdev->name)) {
1148 		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1149 		err = -ENXIO;
1150 		goto err_macdma;
1151 	}
1152 
1153 	dev = alloc_etherdev(sizeof(struct au1000_private));
1154 	if (!dev) {
1155 		err = -ENOMEM;
1156 		goto err_alloc;
1157 	}
1158 
1159 	SET_NETDEV_DEV(dev, &pdev->dev);
1160 	platform_set_drvdata(pdev, dev);
1161 	aup = netdev_priv(dev);
1162 
1163 	spin_lock_init(&aup->lock);
1164 	aup->msg_enable = (au1000_debug < 4 ?
1165 				AU1000_DEF_MSG_ENABLE : au1000_debug);
1166 
1167 	/* Allocate the data buffers
1168 	 * Snooping works fine with eth on all au1xxx
1169 	 */
1170 	aup->vaddr = (u32)dma_alloc_attrs(&pdev->dev, MAX_BUF_SIZE *
1171 					  (NUM_TX_BUFFS + NUM_RX_BUFFS),
1172 					  &aup->dma_addr, 0,
1173 					  DMA_ATTR_NON_CONSISTENT);
1174 	if (!aup->vaddr) {
1175 		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1176 		err = -ENOMEM;
1177 		goto err_vaddr;
1178 	}
1179 
1180 	/* aup->mac is the base address of the MAC's registers */
1181 	aup->mac = (struct mac_reg *)
1182 			ioremap_nocache(base->start, resource_size(base));
1183 	if (!aup->mac) {
1184 		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1185 		err = -ENXIO;
1186 		goto err_remap1;
1187 	}
1188 
1189 	/* Setup some variables for quick register address access */
1190 	aup->enable = (u32 *)ioremap_nocache(macen->start,
1191 						resource_size(macen));
1192 	if (!aup->enable) {
1193 		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1194 		err = -ENXIO;
1195 		goto err_remap2;
1196 	}
1197 	aup->mac_id = pdev->id;
1198 
1199 	aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1200 	if (!aup->macdma) {
1201 		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1202 		err = -ENXIO;
1203 		goto err_remap3;
1204 	}
1205 
1206 	au1000_setup_hw_rings(aup, aup->macdma);
1207 
1208 	writel(0, aup->enable);
1209 	aup->mac_enabled = 0;
1210 
1211 	pd = dev_get_platdata(&pdev->dev);
1212 	if (!pd) {
1213 		dev_info(&pdev->dev, "no platform_data passed,"
1214 					" PHY search on MAC0\n");
1215 		aup->phy1_search_mac0 = 1;
1216 	} else {
1217 		if (is_valid_ether_addr(pd->mac)) {
1218 			memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1219 		} else {
1220 			/* Set a random MAC since no valid provided by platform_data. */
1221 			eth_hw_addr_random(dev);
1222 		}
1223 
1224 		aup->phy_static_config = pd->phy_static_config;
1225 		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1226 		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1227 		aup->phy_addr = pd->phy_addr;
1228 		aup->phy_busid = pd->phy_busid;
1229 		aup->phy_irq = pd->phy_irq;
1230 	}
1231 
1232 	if (aup->phy_busid > 0) {
1233 		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1234 		err = -ENODEV;
1235 		goto err_mdiobus_alloc;
1236 	}
1237 
1238 	aup->mii_bus = mdiobus_alloc();
1239 	if (aup->mii_bus == NULL) {
1240 		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1241 		err = -ENOMEM;
1242 		goto err_mdiobus_alloc;
1243 	}
1244 
1245 	aup->mii_bus->priv = dev;
1246 	aup->mii_bus->read = au1000_mdiobus_read;
1247 	aup->mii_bus->write = au1000_mdiobus_write;
1248 	aup->mii_bus->reset = au1000_mdiobus_reset;
1249 	aup->mii_bus->name = "au1000_eth_mii";
1250 	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1251 		pdev->name, aup->mac_id);
1252 
1253 	/* if known, set corresponding PHY IRQs */
1254 	if (aup->phy_static_config)
1255 		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1256 			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1257 
1258 	err = mdiobus_register(aup->mii_bus);
1259 	if (err) {
1260 		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1261 		goto err_mdiobus_reg;
1262 	}
1263 
1264 	err = au1000_mii_probe(dev);
1265 	if (err != 0)
1266 		goto err_out;
1267 
1268 	pDBfree = NULL;
1269 	/* setup the data buffer descriptors and attach a buffer to each one */
1270 	pDB = aup->db;
1271 	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1272 		pDB->pnext = pDBfree;
1273 		pDBfree = pDB;
1274 		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1275 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1276 		pDB++;
1277 	}
1278 	aup->pDBfree = pDBfree;
1279 
1280 	err = -ENODEV;
1281 	for (i = 0; i < NUM_RX_DMA; i++) {
1282 		pDB = au1000_GetFreeDB(aup);
1283 		if (!pDB)
1284 			goto err_out;
1285 
1286 		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1287 		aup->rx_db_inuse[i] = pDB;
1288 	}
1289 
1290 	err = -ENODEV;
1291 	for (i = 0; i < NUM_TX_DMA; i++) {
1292 		pDB = au1000_GetFreeDB(aup);
1293 		if (!pDB)
1294 			goto err_out;
1295 
1296 		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1297 		aup->tx_dma_ring[i]->len = 0;
1298 		aup->tx_db_inuse[i] = pDB;
1299 	}
1300 
1301 	dev->base_addr = base->start;
1302 	dev->irq = irq;
1303 	dev->netdev_ops = &au1000_netdev_ops;
1304 	dev->ethtool_ops = &au1000_ethtool_ops;
1305 	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1306 
1307 	/*
1308 	 * The boot code uses the ethernet controller, so reset it to start
1309 	 * fresh.  au1000_init() expects that the device is in reset state.
1310 	 */
1311 	au1000_reset_mac(dev);
1312 
1313 	err = register_netdev(dev);
1314 	if (err) {
1315 		netdev_err(dev, "Cannot register net device, aborting.\n");
1316 		goto err_out;
1317 	}
1318 
1319 	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1320 			(unsigned long)base->start, irq);
1321 
1322 	pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1323 
1324 	return 0;
1325 
1326 err_out:
1327 	if (aup->mii_bus != NULL)
1328 		mdiobus_unregister(aup->mii_bus);
1329 
1330 	/* here we should have a valid dev plus aup-> register addresses
1331 	 * so we can reset the mac properly.
1332 	 */
1333 	au1000_reset_mac(dev);
1334 
1335 	for (i = 0; i < NUM_RX_DMA; i++) {
1336 		if (aup->rx_db_inuse[i])
1337 			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1338 	}
1339 	for (i = 0; i < NUM_TX_DMA; i++) {
1340 		if (aup->tx_db_inuse[i])
1341 			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1342 	}
1343 err_mdiobus_reg:
1344 	mdiobus_free(aup->mii_bus);
1345 err_mdiobus_alloc:
1346 	iounmap(aup->macdma);
1347 err_remap3:
1348 	iounmap(aup->enable);
1349 err_remap2:
1350 	iounmap(aup->mac);
1351 err_remap1:
1352 	dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1353 			(void *)aup->vaddr, aup->dma_addr,
1354 			DMA_ATTR_NON_CONSISTENT);
1355 err_vaddr:
1356 	free_netdev(dev);
1357 err_alloc:
1358 	release_mem_region(macdma->start, resource_size(macdma));
1359 err_macdma:
1360 	release_mem_region(macen->start, resource_size(macen));
1361 err_request:
1362 	release_mem_region(base->start, resource_size(base));
1363 out:
1364 	return err;
1365 }
1366 
1367 static int au1000_remove(struct platform_device *pdev)
1368 {
1369 	struct net_device *dev = platform_get_drvdata(pdev);
1370 	struct au1000_private *aup = netdev_priv(dev);
1371 	int i;
1372 	struct resource *base, *macen;
1373 
1374 	unregister_netdev(dev);
1375 	mdiobus_unregister(aup->mii_bus);
1376 	mdiobus_free(aup->mii_bus);
1377 
1378 	for (i = 0; i < NUM_RX_DMA; i++)
1379 		if (aup->rx_db_inuse[i])
1380 			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1381 
1382 	for (i = 0; i < NUM_TX_DMA; i++)
1383 		if (aup->tx_db_inuse[i])
1384 			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1385 
1386 	dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1387 			(void *)aup->vaddr, aup->dma_addr,
1388 			DMA_ATTR_NON_CONSISTENT);
1389 
1390 	iounmap(aup->macdma);
1391 	iounmap(aup->mac);
1392 	iounmap(aup->enable);
1393 
1394 	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1395 	release_mem_region(base->start, resource_size(base));
1396 
1397 	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1398 	release_mem_region(base->start, resource_size(base));
1399 
1400 	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1401 	release_mem_region(macen->start, resource_size(macen));
1402 
1403 	free_netdev(dev);
1404 
1405 	return 0;
1406 }
1407 
1408 static struct platform_driver au1000_eth_driver = {
1409 	.probe  = au1000_probe,
1410 	.remove = au1000_remove,
1411 	.driver = {
1412 		.name   = "au1000-eth",
1413 	},
1414 };
1415 
1416 module_platform_driver(au1000_eth_driver);
1417 
1418 MODULE_ALIAS("platform:au1000-eth");
1419