1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Alchemy Au1x00 ethernet driver
5  *
6  * Copyright 2001-2003, 2006 MontaVista Software Inc.
7  * Copyright 2002 TimeSys Corp.
8  * Added ethtool/mii-tool support,
9  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
10  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
11  * or riemer@riemer-nt.de: fixed the link beat detection with
12  * ioctls (SIOCGMIIPHY)
13  * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
14  *  converted to use linux-2.6.x's PHY framework
15  *
16  * Author: MontaVista Software, Inc.
17  *		ppopov@mvista.com or source@mvista.com
18  */
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/capability.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/string.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/in.h>
29 #include <linux/ioport.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/mii.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/phy.h>
41 #include <linux/platform_device.h>
42 #include <linux/cpu.h>
43 #include <linux/io.h>
44 
45 #include <asm/mipsregs.h>
46 #include <asm/irq.h>
47 #include <asm/processor.h>
48 
49 #include <au1000.h>
50 #include <au1xxx_eth.h>
51 #include <prom.h>
52 
53 #include "au1000_eth.h"
54 
55 #ifdef AU1000_ETH_DEBUG
56 static int au1000_debug = 5;
57 #else
58 static int au1000_debug = 3;
59 #endif
60 
61 #define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
62 				NETIF_MSG_PROBE	| \
63 				NETIF_MSG_LINK)
64 
65 #define DRV_NAME	"au1000_eth"
66 #define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
67 #define DRV_DESC	"Au1xxx on-chip Ethernet driver"
68 
69 MODULE_AUTHOR(DRV_AUTHOR);
70 MODULE_DESCRIPTION(DRV_DESC);
71 MODULE_LICENSE("GPL");
72 
73 /* AU1000 MAC registers and bits */
74 #define MAC_CONTROL		0x0
75 #  define MAC_RX_ENABLE		(1 << 2)
76 #  define MAC_TX_ENABLE		(1 << 3)
77 #  define MAC_DEF_CHECK		(1 << 5)
78 #  define MAC_SET_BL(X)		(((X) & 0x3) << 6)
79 #  define MAC_AUTO_PAD		(1 << 8)
80 #  define MAC_DISABLE_RETRY	(1 << 10)
81 #  define MAC_DISABLE_BCAST	(1 << 11)
82 #  define MAC_LATE_COL		(1 << 12)
83 #  define MAC_HASH_MODE		(1 << 13)
84 #  define MAC_HASH_ONLY		(1 << 15)
85 #  define MAC_PASS_ALL		(1 << 16)
86 #  define MAC_INVERSE_FILTER	(1 << 17)
87 #  define MAC_PROMISCUOUS	(1 << 18)
88 #  define MAC_PASS_ALL_MULTI	(1 << 19)
89 #  define MAC_FULL_DUPLEX	(1 << 20)
90 #  define MAC_NORMAL_MODE	0
91 #  define MAC_INT_LOOPBACK	(1 << 21)
92 #  define MAC_EXT_LOOPBACK	(1 << 22)
93 #  define MAC_DISABLE_RX_OWN	(1 << 23)
94 #  define MAC_BIG_ENDIAN	(1 << 30)
95 #  define MAC_RX_ALL		(1 << 31)
96 #define MAC_ADDRESS_HIGH	0x4
97 #define MAC_ADDRESS_LOW		0x8
98 #define MAC_MCAST_HIGH		0xC
99 #define MAC_MCAST_LOW		0x10
100 #define MAC_MII_CNTRL		0x14
101 #  define MAC_MII_BUSY		(1 << 0)
102 #  define MAC_MII_READ		0
103 #  define MAC_MII_WRITE		(1 << 1)
104 #  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
105 #  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
106 #define MAC_MII_DATA		0x18
107 #define MAC_FLOW_CNTRL		0x1C
108 #  define MAC_FLOW_CNTRL_BUSY	(1 << 0)
109 #  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
110 #  define MAC_PASS_CONTROL	(1 << 2)
111 #  define MAC_SET_PAUSE(X)	(((X) & 0xffff) << 16)
112 #define MAC_VLAN1_TAG		0x20
113 #define MAC_VLAN2_TAG		0x24
114 
115 /* Ethernet Controller Enable */
116 #  define MAC_EN_CLOCK_ENABLE	(1 << 0)
117 #  define MAC_EN_RESET0		(1 << 1)
118 #  define MAC_EN_TOSS		(0 << 2)
119 #  define MAC_EN_CACHEABLE	(1 << 3)
120 #  define MAC_EN_RESET1		(1 << 4)
121 #  define MAC_EN_RESET2		(1 << 5)
122 #  define MAC_DMA_RESET		(1 << 6)
123 
124 /* Ethernet Controller DMA Channels */
125 /* offsets from MAC_TX_RING_ADDR address */
126 #define MAC_TX_BUFF0_STATUS	0x0
127 #  define TX_FRAME_ABORTED	(1 << 0)
128 #  define TX_JAB_TIMEOUT	(1 << 1)
129 #  define TX_NO_CARRIER		(1 << 2)
130 #  define TX_LOSS_CARRIER	(1 << 3)
131 #  define TX_EXC_DEF		(1 << 4)
132 #  define TX_LATE_COLL_ABORT	(1 << 5)
133 #  define TX_EXC_COLL		(1 << 6)
134 #  define TX_UNDERRUN		(1 << 7)
135 #  define TX_DEFERRED		(1 << 8)
136 #  define TX_LATE_COLL		(1 << 9)
137 #  define TX_COLL_CNT_MASK	(0xF << 10)
138 #  define TX_PKT_RETRY		(1 << 31)
139 #define MAC_TX_BUFF0_ADDR	0x4
140 #  define TX_DMA_ENABLE		(1 << 0)
141 #  define TX_T_DONE		(1 << 1)
142 #  define TX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
143 #define MAC_TX_BUFF0_LEN	0x8
144 #define MAC_TX_BUFF1_STATUS	0x10
145 #define MAC_TX_BUFF1_ADDR	0x14
146 #define MAC_TX_BUFF1_LEN	0x18
147 #define MAC_TX_BUFF2_STATUS	0x20
148 #define MAC_TX_BUFF2_ADDR	0x24
149 #define MAC_TX_BUFF2_LEN	0x28
150 #define MAC_TX_BUFF3_STATUS	0x30
151 #define MAC_TX_BUFF3_ADDR	0x34
152 #define MAC_TX_BUFF3_LEN	0x38
153 
154 /* offsets from MAC_RX_RING_ADDR */
155 #define MAC_RX_BUFF0_STATUS	0x0
156 #  define RX_FRAME_LEN_MASK	0x3fff
157 #  define RX_WDOG_TIMER		(1 << 14)
158 #  define RX_RUNT		(1 << 15)
159 #  define RX_OVERLEN		(1 << 16)
160 #  define RX_COLL		(1 << 17)
161 #  define RX_ETHER		(1 << 18)
162 #  define RX_MII_ERROR		(1 << 19)
163 #  define RX_DRIBBLING		(1 << 20)
164 #  define RX_CRC_ERROR		(1 << 21)
165 #  define RX_VLAN1		(1 << 22)
166 #  define RX_VLAN2		(1 << 23)
167 #  define RX_LEN_ERROR		(1 << 24)
168 #  define RX_CNTRL_FRAME	(1 << 25)
169 #  define RX_U_CNTRL_FRAME	(1 << 26)
170 #  define RX_MCAST_FRAME	(1 << 27)
171 #  define RX_BCAST_FRAME	(1 << 28)
172 #  define RX_FILTER_FAIL	(1 << 29)
173 #  define RX_PACKET_FILTER	(1 << 30)
174 #  define RX_MISSED_FRAME	(1 << 31)
175 
176 #  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
177 		    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
178 		    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
179 #define MAC_RX_BUFF0_ADDR	0x4
180 #  define RX_DMA_ENABLE		(1 << 0)
181 #  define RX_T_DONE		(1 << 1)
182 #  define RX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
183 #  define RX_SET_BUFF_ADDR(X)	((X) & 0xffffffc0)
184 #define MAC_RX_BUFF1_STATUS	0x10
185 #define MAC_RX_BUFF1_ADDR	0x14
186 #define MAC_RX_BUFF2_STATUS	0x20
187 #define MAC_RX_BUFF2_ADDR	0x24
188 #define MAC_RX_BUFF3_STATUS	0x30
189 #define MAC_RX_BUFF3_ADDR	0x34
190 
191 /*
192  * Theory of operation
193  *
194  * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
195  * There are four receive and four transmit descriptors.  These
196  * descriptors are not in memory; rather, they are just a set of
197  * hardware registers.
198  *
199  * Since the Au1000 has a coherent data cache, the receive and
200  * transmit buffers are allocated from the KSEG0 segment. The
201  * hardware registers, however, are still mapped at KSEG1 to
202  * make sure there's no out-of-order writes, and that all writes
203  * complete immediately.
204  */
205 
206 /*
207  * board-specific configurations
208  *
209  * PHY detection algorithm
210  *
211  * If phy_static_config is undefined, the PHY setup is
212  * autodetected:
213  *
214  * mii_probe() first searches the current MAC's MII bus for a PHY,
215  * selecting the first (or last, if phy_search_highest_addr is
216  * defined) PHY address not already claimed by another netdev.
217  *
218  * If nothing was found that way when searching for the 2nd ethernet
219  * controller's PHY and phy1_search_mac0 is defined, then
220  * the first MII bus is searched as well for an unclaimed PHY; this is
221  * needed in case of a dual-PHY accessible only through the MAC0's MII
222  * bus.
223  *
224  * Finally, if no PHY is found, then the corresponding ethernet
225  * controller is not registered to the network subsystem.
226  */
227 
228 /* autodetection defaults: phy1_search_mac0 */
229 
230 /* static PHY setup
231  *
232  * most boards PHY setup should be detectable properly with the
233  * autodetection algorithm in mii_probe(), but in some cases (e.g. if
234  * you have a switch attached, or want to use the PHY's interrupt
235  * notification capabilities) you can provide a static PHY
236  * configuration here
237  *
238  * IRQs may only be set, if a PHY address was configured
239  * If a PHY address is given, also a bus id is required to be set
240  *
241  * ps: make sure the used irqs are configured properly in the board
242  * specific irq-map
243  */
244 
245 static void au1000_enable_mac(struct net_device *dev, int force_reset)
246 {
247 	unsigned long flags;
248 	struct au1000_private *aup = netdev_priv(dev);
249 
250 	spin_lock_irqsave(&aup->lock, flags);
251 
252 	if (force_reset || (!aup->mac_enabled)) {
253 		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
254 		wmb(); /* drain writebuffer */
255 		mdelay(2);
256 		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
257 				| MAC_EN_CLOCK_ENABLE), aup->enable);
258 		wmb(); /* drain writebuffer */
259 		mdelay(2);
260 
261 		aup->mac_enabled = 1;
262 	}
263 
264 	spin_unlock_irqrestore(&aup->lock, flags);
265 }
266 
267 /*
268  * MII operations
269  */
270 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
271 {
272 	struct au1000_private *aup = netdev_priv(dev);
273 	u32 *const mii_control_reg = &aup->mac->mii_control;
274 	u32 *const mii_data_reg = &aup->mac->mii_data;
275 	u32 timedout = 20;
276 	u32 mii_control;
277 
278 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
279 		mdelay(1);
280 		if (--timedout == 0) {
281 			netdev_err(dev, "read_MII busy timeout!!\n");
282 			return -1;
283 		}
284 	}
285 
286 	mii_control = MAC_SET_MII_SELECT_REG(reg) |
287 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
288 
289 	writel(mii_control, mii_control_reg);
290 
291 	timedout = 20;
292 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
293 		mdelay(1);
294 		if (--timedout == 0) {
295 			netdev_err(dev, "mdio_read busy timeout!!\n");
296 			return -1;
297 		}
298 	}
299 	return readl(mii_data_reg);
300 }
301 
302 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
303 			      int reg, u16 value)
304 {
305 	struct au1000_private *aup = netdev_priv(dev);
306 	u32 *const mii_control_reg = &aup->mac->mii_control;
307 	u32 *const mii_data_reg = &aup->mac->mii_data;
308 	u32 timedout = 20;
309 	u32 mii_control;
310 
311 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
312 		mdelay(1);
313 		if (--timedout == 0) {
314 			netdev_err(dev, "mdio_write busy timeout!!\n");
315 			return;
316 		}
317 	}
318 
319 	mii_control = MAC_SET_MII_SELECT_REG(reg) |
320 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
321 
322 	writel(value, mii_data_reg);
323 	writel(mii_control, mii_control_reg);
324 }
325 
326 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
327 {
328 	struct net_device *const dev = bus->priv;
329 
330 	/* make sure the MAC associated with this
331 	 * mii_bus is enabled
332 	 */
333 	au1000_enable_mac(dev, 0);
334 
335 	return au1000_mdio_read(dev, phy_addr, regnum);
336 }
337 
338 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
339 				u16 value)
340 {
341 	struct net_device *const dev = bus->priv;
342 
343 	/* make sure the MAC associated with this
344 	 * mii_bus is enabled
345 	 */
346 	au1000_enable_mac(dev, 0);
347 
348 	au1000_mdio_write(dev, phy_addr, regnum, value);
349 	return 0;
350 }
351 
352 static int au1000_mdiobus_reset(struct mii_bus *bus)
353 {
354 	struct net_device *const dev = bus->priv;
355 
356 	/* make sure the MAC associated with this
357 	 * mii_bus is enabled
358 	 */
359 	au1000_enable_mac(dev, 0);
360 
361 	return 0;
362 }
363 
364 static void au1000_hard_stop(struct net_device *dev)
365 {
366 	struct au1000_private *aup = netdev_priv(dev);
367 	u32 reg;
368 
369 	netif_dbg(aup, drv, dev, "hard stop\n");
370 
371 	reg = readl(&aup->mac->control);
372 	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
373 	writel(reg, &aup->mac->control);
374 	wmb(); /* drain writebuffer */
375 	mdelay(10);
376 }
377 
378 static void au1000_enable_rx_tx(struct net_device *dev)
379 {
380 	struct au1000_private *aup = netdev_priv(dev);
381 	u32 reg;
382 
383 	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
384 
385 	reg = readl(&aup->mac->control);
386 	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
387 	writel(reg, &aup->mac->control);
388 	wmb(); /* drain writebuffer */
389 	mdelay(10);
390 }
391 
392 static void
393 au1000_adjust_link(struct net_device *dev)
394 {
395 	struct au1000_private *aup = netdev_priv(dev);
396 	struct phy_device *phydev = dev->phydev;
397 	unsigned long flags;
398 	u32 reg;
399 
400 	int status_change = 0;
401 
402 	BUG_ON(!phydev);
403 
404 	spin_lock_irqsave(&aup->lock, flags);
405 
406 	if (phydev->link && (aup->old_speed != phydev->speed)) {
407 		/* speed changed */
408 
409 		switch (phydev->speed) {
410 		case SPEED_10:
411 		case SPEED_100:
412 			break;
413 		default:
414 			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
415 							phydev->speed);
416 			break;
417 		}
418 
419 		aup->old_speed = phydev->speed;
420 
421 		status_change = 1;
422 	}
423 
424 	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
425 		/* duplex mode changed */
426 
427 		/* switching duplex mode requires to disable rx and tx! */
428 		au1000_hard_stop(dev);
429 
430 		reg = readl(&aup->mac->control);
431 		if (DUPLEX_FULL == phydev->duplex) {
432 			reg |= MAC_FULL_DUPLEX;
433 			reg &= ~MAC_DISABLE_RX_OWN;
434 		} else {
435 			reg &= ~MAC_FULL_DUPLEX;
436 			reg |= MAC_DISABLE_RX_OWN;
437 		}
438 		writel(reg, &aup->mac->control);
439 		wmb(); /* drain writebuffer */
440 		mdelay(1);
441 
442 		au1000_enable_rx_tx(dev);
443 		aup->old_duplex = phydev->duplex;
444 
445 		status_change = 1;
446 	}
447 
448 	if (phydev->link != aup->old_link) {
449 		/* link state changed */
450 
451 		if (!phydev->link) {
452 			/* link went down */
453 			aup->old_speed = 0;
454 			aup->old_duplex = -1;
455 		}
456 
457 		aup->old_link = phydev->link;
458 		status_change = 1;
459 	}
460 
461 	spin_unlock_irqrestore(&aup->lock, flags);
462 
463 	if (status_change) {
464 		if (phydev->link)
465 			netdev_info(dev, "link up (%d/%s)\n",
466 			       phydev->speed,
467 			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
468 		else
469 			netdev_info(dev, "link down\n");
470 	}
471 }
472 
473 static int au1000_mii_probe(struct net_device *dev)
474 {
475 	struct au1000_private *const aup = netdev_priv(dev);
476 	struct phy_device *phydev = NULL;
477 	int phy_addr;
478 
479 	if (aup->phy_static_config) {
480 		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
481 
482 		if (aup->phy_addr)
483 			phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
484 		else
485 			netdev_info(dev, "using PHY-less setup\n");
486 		return 0;
487 	}
488 
489 	/* find the first (lowest address) PHY
490 	 * on the current MAC's MII bus
491 	 */
492 	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
493 		if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
494 			phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
495 			if (!aup->phy_search_highest_addr)
496 				/* break out with first one found */
497 				break;
498 		}
499 
500 	if (aup->phy1_search_mac0) {
501 		/* try harder to find a PHY */
502 		if (!phydev && (aup->mac_id == 1)) {
503 			/* no PHY found, maybe we have a dual PHY? */
504 			dev_info(&dev->dev, ": no PHY found on MAC1, "
505 				"let's see if it's attached to MAC0...\n");
506 
507 			/* find the first (lowest address) non-attached
508 			 * PHY on the MAC0 MII bus
509 			 */
510 			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
511 				struct phy_device *const tmp_phydev =
512 					mdiobus_get_phy(aup->mii_bus,
513 							phy_addr);
514 
515 				if (aup->mac_id == 1)
516 					break;
517 
518 				/* no PHY here... */
519 				if (!tmp_phydev)
520 					continue;
521 
522 				/* already claimed by MAC0 */
523 				if (tmp_phydev->attached_dev)
524 					continue;
525 
526 				phydev = tmp_phydev;
527 				break; /* found it */
528 			}
529 		}
530 	}
531 
532 	if (!phydev) {
533 		netdev_err(dev, "no PHY found\n");
534 		return -1;
535 	}
536 
537 	/* now we are supposed to have a proper phydev, to attach to... */
538 	BUG_ON(phydev->attached_dev);
539 
540 	phydev = phy_connect(dev, phydev_name(phydev),
541 			     &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
542 
543 	if (IS_ERR(phydev)) {
544 		netdev_err(dev, "Could not attach to PHY\n");
545 		return PTR_ERR(phydev);
546 	}
547 
548 	phy_set_max_speed(phydev, SPEED_100);
549 
550 	aup->old_link = 0;
551 	aup->old_speed = 0;
552 	aup->old_duplex = -1;
553 
554 	phy_attached_info(phydev);
555 
556 	return 0;
557 }
558 
559 
560 /*
561  * Buffer allocation/deallocation routines. The buffer descriptor returned
562  * has the virtual and dma address of a buffer suitable for
563  * both, receive and transmit operations.
564  */
565 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
566 {
567 	struct db_dest *pDB;
568 	pDB = aup->pDBfree;
569 
570 	if (pDB)
571 		aup->pDBfree = pDB->pnext;
572 
573 	return pDB;
574 }
575 
576 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
577 {
578 	struct db_dest *pDBfree = aup->pDBfree;
579 	if (pDBfree)
580 		pDBfree->pnext = pDB;
581 	aup->pDBfree = pDB;
582 }
583 
584 static void au1000_reset_mac_unlocked(struct net_device *dev)
585 {
586 	struct au1000_private *const aup = netdev_priv(dev);
587 	int i;
588 
589 	au1000_hard_stop(dev);
590 
591 	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
592 	wmb(); /* drain writebuffer */
593 	mdelay(2);
594 	writel(0, aup->enable);
595 	wmb(); /* drain writebuffer */
596 	mdelay(2);
597 
598 	aup->tx_full = 0;
599 	for (i = 0; i < NUM_RX_DMA; i++) {
600 		/* reset control bits */
601 		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
602 	}
603 	for (i = 0; i < NUM_TX_DMA; i++) {
604 		/* reset control bits */
605 		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
606 	}
607 
608 	aup->mac_enabled = 0;
609 
610 }
611 
612 static void au1000_reset_mac(struct net_device *dev)
613 {
614 	struct au1000_private *const aup = netdev_priv(dev);
615 	unsigned long flags;
616 
617 	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
618 					(unsigned)aup);
619 
620 	spin_lock_irqsave(&aup->lock, flags);
621 
622 	au1000_reset_mac_unlocked(dev);
623 
624 	spin_unlock_irqrestore(&aup->lock, flags);
625 }
626 
627 /*
628  * Setup the receive and transmit "rings".  These pointers are the addresses
629  * of the rx and tx MAC DMA registers so they are fixed by the hardware --
630  * these are not descriptors sitting in memory.
631  */
632 static void
633 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
634 {
635 	int i;
636 
637 	for (i = 0; i < NUM_RX_DMA; i++) {
638 		aup->rx_dma_ring[i] = (struct rx_dma *)
639 			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
640 	}
641 	for (i = 0; i < NUM_TX_DMA; i++) {
642 		aup->tx_dma_ring[i] = (struct tx_dma *)
643 			(tx_base + sizeof(struct tx_dma) * i);
644 	}
645 }
646 
647 /*
648  * ethtool operations
649  */
650 
651 static void
652 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
653 {
654 	struct au1000_private *aup = netdev_priv(dev);
655 
656 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
657 	snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
658 		 aup->mac_id);
659 }
660 
661 static void au1000_set_msglevel(struct net_device *dev, u32 value)
662 {
663 	struct au1000_private *aup = netdev_priv(dev);
664 	aup->msg_enable = value;
665 }
666 
667 static u32 au1000_get_msglevel(struct net_device *dev)
668 {
669 	struct au1000_private *aup = netdev_priv(dev);
670 	return aup->msg_enable;
671 }
672 
673 static const struct ethtool_ops au1000_ethtool_ops = {
674 	.get_drvinfo = au1000_get_drvinfo,
675 	.get_link = ethtool_op_get_link,
676 	.get_msglevel = au1000_get_msglevel,
677 	.set_msglevel = au1000_set_msglevel,
678 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
679 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
680 };
681 
682 
683 /*
684  * Initialize the interface.
685  *
686  * When the device powers up, the clocks are disabled and the
687  * mac is in reset state.  When the interface is closed, we
688  * do the same -- reset the device and disable the clocks to
689  * conserve power. Thus, whenever au1000_init() is called,
690  * the device should already be in reset state.
691  */
692 static int au1000_init(struct net_device *dev)
693 {
694 	struct au1000_private *aup = netdev_priv(dev);
695 	unsigned long flags;
696 	int i;
697 	u32 control;
698 
699 	netif_dbg(aup, hw, dev, "au1000_init\n");
700 
701 	/* bring the device out of reset */
702 	au1000_enable_mac(dev, 1);
703 
704 	spin_lock_irqsave(&aup->lock, flags);
705 
706 	writel(0, &aup->mac->control);
707 	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
708 	aup->tx_tail = aup->tx_head;
709 	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
710 
711 	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
712 					&aup->mac->mac_addr_high);
713 	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
714 		dev->dev_addr[1]<<8 | dev->dev_addr[0],
715 					&aup->mac->mac_addr_low);
716 
717 
718 	for (i = 0; i < NUM_RX_DMA; i++)
719 		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
720 
721 	wmb(); /* drain writebuffer */
722 
723 	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
724 #ifndef CONFIG_CPU_LITTLE_ENDIAN
725 	control |= MAC_BIG_ENDIAN;
726 #endif
727 	if (dev->phydev) {
728 		if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
729 			control |= MAC_FULL_DUPLEX;
730 		else
731 			control |= MAC_DISABLE_RX_OWN;
732 	} else { /* PHY-less op, assume full-duplex */
733 		control |= MAC_FULL_DUPLEX;
734 	}
735 
736 	writel(control, &aup->mac->control);
737 	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
738 	wmb(); /* drain writebuffer */
739 
740 	spin_unlock_irqrestore(&aup->lock, flags);
741 	return 0;
742 }
743 
744 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
745 {
746 	struct net_device_stats *ps = &dev->stats;
747 
748 	ps->rx_packets++;
749 	if (status & RX_MCAST_FRAME)
750 		ps->multicast++;
751 
752 	if (status & RX_ERROR) {
753 		ps->rx_errors++;
754 		if (status & RX_MISSED_FRAME)
755 			ps->rx_missed_errors++;
756 		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
757 			ps->rx_length_errors++;
758 		if (status & RX_CRC_ERROR)
759 			ps->rx_crc_errors++;
760 		if (status & RX_COLL)
761 			ps->collisions++;
762 	} else
763 		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
764 
765 }
766 
767 /*
768  * Au1000 receive routine.
769  */
770 static int au1000_rx(struct net_device *dev)
771 {
772 	struct au1000_private *aup = netdev_priv(dev);
773 	struct sk_buff *skb;
774 	struct rx_dma *prxd;
775 	u32 buff_stat, status;
776 	struct db_dest *pDB;
777 	u32	frmlen;
778 
779 	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
780 
781 	prxd = aup->rx_dma_ring[aup->rx_head];
782 	buff_stat = prxd->buff_stat;
783 	while (buff_stat & RX_T_DONE)  {
784 		status = prxd->status;
785 		pDB = aup->rx_db_inuse[aup->rx_head];
786 		au1000_update_rx_stats(dev, status);
787 		if (!(status & RX_ERROR))  {
788 
789 			/* good frame */
790 			frmlen = (status & RX_FRAME_LEN_MASK);
791 			frmlen -= 4; /* Remove FCS */
792 			skb = netdev_alloc_skb(dev, frmlen + 2);
793 			if (skb == NULL) {
794 				dev->stats.rx_dropped++;
795 				continue;
796 			}
797 			skb_reserve(skb, 2);	/* 16 byte IP header align */
798 			skb_copy_to_linear_data(skb,
799 				(unsigned char *)pDB->vaddr, frmlen);
800 			skb_put(skb, frmlen);
801 			skb->protocol = eth_type_trans(skb, dev);
802 			netif_rx(skb);	/* pass the packet to upper layers */
803 		} else {
804 			if (au1000_debug > 4) {
805 				pr_err("rx_error(s):");
806 				if (status & RX_MISSED_FRAME)
807 					pr_cont(" miss");
808 				if (status & RX_WDOG_TIMER)
809 					pr_cont(" wdog");
810 				if (status & RX_RUNT)
811 					pr_cont(" runt");
812 				if (status & RX_OVERLEN)
813 					pr_cont(" overlen");
814 				if (status & RX_COLL)
815 					pr_cont(" coll");
816 				if (status & RX_MII_ERROR)
817 					pr_cont(" mii error");
818 				if (status & RX_CRC_ERROR)
819 					pr_cont(" crc error");
820 				if (status & RX_LEN_ERROR)
821 					pr_cont(" len error");
822 				if (status & RX_U_CNTRL_FRAME)
823 					pr_cont(" u control frame");
824 				pr_cont("\n");
825 			}
826 		}
827 		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
828 		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
829 		wmb(); /* drain writebuffer */
830 
831 		/* next descriptor */
832 		prxd = aup->rx_dma_ring[aup->rx_head];
833 		buff_stat = prxd->buff_stat;
834 	}
835 	return 0;
836 }
837 
838 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
839 {
840 	struct net_device_stats *ps = &dev->stats;
841 
842 	if (status & TX_FRAME_ABORTED) {
843 		if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
844 			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
845 				/* any other tx errors are only valid
846 				 * in half duplex mode
847 				 */
848 				ps->tx_errors++;
849 				ps->tx_aborted_errors++;
850 			}
851 		} else {
852 			ps->tx_errors++;
853 			ps->tx_aborted_errors++;
854 			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
855 				ps->tx_carrier_errors++;
856 		}
857 	}
858 }
859 
860 /*
861  * Called from the interrupt service routine to acknowledge
862  * the TX DONE bits.  This is a must if the irq is setup as
863  * edge triggered.
864  */
865 static void au1000_tx_ack(struct net_device *dev)
866 {
867 	struct au1000_private *aup = netdev_priv(dev);
868 	struct tx_dma *ptxd;
869 
870 	ptxd = aup->tx_dma_ring[aup->tx_tail];
871 
872 	while (ptxd->buff_stat & TX_T_DONE) {
873 		au1000_update_tx_stats(dev, ptxd->status);
874 		ptxd->buff_stat &= ~TX_T_DONE;
875 		ptxd->len = 0;
876 		wmb(); /* drain writebuffer */
877 
878 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
879 		ptxd = aup->tx_dma_ring[aup->tx_tail];
880 
881 		if (aup->tx_full) {
882 			aup->tx_full = 0;
883 			netif_wake_queue(dev);
884 		}
885 	}
886 }
887 
888 /*
889  * Au1000 interrupt service routine.
890  */
891 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
892 {
893 	struct net_device *dev = dev_id;
894 
895 	/* Handle RX interrupts first to minimize chance of overrun */
896 
897 	au1000_rx(dev);
898 	au1000_tx_ack(dev);
899 	return IRQ_RETVAL(1);
900 }
901 
902 static int au1000_open(struct net_device *dev)
903 {
904 	int retval;
905 	struct au1000_private *aup = netdev_priv(dev);
906 
907 	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
908 
909 	retval = request_irq(dev->irq, au1000_interrupt, 0,
910 					dev->name, dev);
911 	if (retval) {
912 		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
913 		return retval;
914 	}
915 
916 	retval = au1000_init(dev);
917 	if (retval) {
918 		netdev_err(dev, "error in au1000_init\n");
919 		free_irq(dev->irq, dev);
920 		return retval;
921 	}
922 
923 	if (dev->phydev)
924 		phy_start(dev->phydev);
925 
926 	netif_start_queue(dev);
927 
928 	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
929 
930 	return 0;
931 }
932 
933 static int au1000_close(struct net_device *dev)
934 {
935 	unsigned long flags;
936 	struct au1000_private *const aup = netdev_priv(dev);
937 
938 	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
939 
940 	if (dev->phydev)
941 		phy_stop(dev->phydev);
942 
943 	spin_lock_irqsave(&aup->lock, flags);
944 
945 	au1000_reset_mac_unlocked(dev);
946 
947 	/* stop the device */
948 	netif_stop_queue(dev);
949 
950 	/* disable the interrupt */
951 	free_irq(dev->irq, dev);
952 	spin_unlock_irqrestore(&aup->lock, flags);
953 
954 	return 0;
955 }
956 
957 /*
958  * Au1000 transmit routine.
959  */
960 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
961 {
962 	struct au1000_private *aup = netdev_priv(dev);
963 	struct net_device_stats *ps = &dev->stats;
964 	struct tx_dma *ptxd;
965 	u32 buff_stat;
966 	struct db_dest *pDB;
967 	int i;
968 
969 	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
970 				(unsigned)aup, skb->len,
971 				skb->data, aup->tx_head);
972 
973 	ptxd = aup->tx_dma_ring[aup->tx_head];
974 	buff_stat = ptxd->buff_stat;
975 	if (buff_stat & TX_DMA_ENABLE) {
976 		/* We've wrapped around and the transmitter is still busy */
977 		netif_stop_queue(dev);
978 		aup->tx_full = 1;
979 		return NETDEV_TX_BUSY;
980 	} else if (buff_stat & TX_T_DONE) {
981 		au1000_update_tx_stats(dev, ptxd->status);
982 		ptxd->len = 0;
983 	}
984 
985 	if (aup->tx_full) {
986 		aup->tx_full = 0;
987 		netif_wake_queue(dev);
988 	}
989 
990 	pDB = aup->tx_db_inuse[aup->tx_head];
991 	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
992 	if (skb->len < ETH_ZLEN) {
993 		for (i = skb->len; i < ETH_ZLEN; i++)
994 			((char *)pDB->vaddr)[i] = 0;
995 
996 		ptxd->len = ETH_ZLEN;
997 	} else
998 		ptxd->len = skb->len;
999 
1000 	ps->tx_packets++;
1001 	ps->tx_bytes += ptxd->len;
1002 
1003 	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1004 	wmb(); /* drain writebuffer */
1005 	dev_kfree_skb(skb);
1006 	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1007 	return NETDEV_TX_OK;
1008 }
1009 
1010 /*
1011  * The Tx ring has been full longer than the watchdog timeout
1012  * value. The transmitter must be hung?
1013  */
1014 static void au1000_tx_timeout(struct net_device *dev, unsigned int txqueue)
1015 {
1016 	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1017 	au1000_reset_mac(dev);
1018 	au1000_init(dev);
1019 	netif_trans_update(dev); /* prevent tx timeout */
1020 	netif_wake_queue(dev);
1021 }
1022 
1023 static void au1000_multicast_list(struct net_device *dev)
1024 {
1025 	struct au1000_private *aup = netdev_priv(dev);
1026 	u32 reg;
1027 
1028 	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1029 	reg = readl(&aup->mac->control);
1030 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1031 		reg |= MAC_PROMISCUOUS;
1032 	} else if ((dev->flags & IFF_ALLMULTI)  ||
1033 			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1034 		reg |= MAC_PASS_ALL_MULTI;
1035 		reg &= ~MAC_PROMISCUOUS;
1036 		netdev_info(dev, "Pass all multicast\n");
1037 	} else {
1038 		struct netdev_hw_addr *ha;
1039 		u32 mc_filter[2];	/* Multicast hash filter */
1040 
1041 		mc_filter[1] = mc_filter[0] = 0;
1042 		netdev_for_each_mc_addr(ha, dev)
1043 			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1044 					(long *)mc_filter);
1045 		writel(mc_filter[1], &aup->mac->multi_hash_high);
1046 		writel(mc_filter[0], &aup->mac->multi_hash_low);
1047 		reg &= ~MAC_PROMISCUOUS;
1048 		reg |= MAC_HASH_MODE;
1049 	}
1050 	writel(reg, &aup->mac->control);
1051 }
1052 
1053 static const struct net_device_ops au1000_netdev_ops = {
1054 	.ndo_open		= au1000_open,
1055 	.ndo_stop		= au1000_close,
1056 	.ndo_start_xmit		= au1000_tx,
1057 	.ndo_set_rx_mode	= au1000_multicast_list,
1058 	.ndo_do_ioctl		= phy_do_ioctl_running,
1059 	.ndo_tx_timeout		= au1000_tx_timeout,
1060 	.ndo_set_mac_address	= eth_mac_addr,
1061 	.ndo_validate_addr	= eth_validate_addr,
1062 };
1063 
1064 static int au1000_probe(struct platform_device *pdev)
1065 {
1066 	struct au1000_private *aup = NULL;
1067 	struct au1000_eth_platform_data *pd;
1068 	struct net_device *dev = NULL;
1069 	struct db_dest *pDB, *pDBfree;
1070 	int irq, i, err = 0;
1071 	struct resource *base, *macen, *macdma;
1072 
1073 	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1074 	if (!base) {
1075 		dev_err(&pdev->dev, "failed to retrieve base register\n");
1076 		err = -ENODEV;
1077 		goto out;
1078 	}
1079 
1080 	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1081 	if (!macen) {
1082 		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1083 		err = -ENODEV;
1084 		goto out;
1085 	}
1086 
1087 	irq = platform_get_irq(pdev, 0);
1088 	if (irq < 0) {
1089 		err = -ENODEV;
1090 		goto out;
1091 	}
1092 
1093 	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1094 	if (!macdma) {
1095 		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1096 		err = -ENODEV;
1097 		goto out;
1098 	}
1099 
1100 	if (!request_mem_region(base->start, resource_size(base),
1101 							pdev->name)) {
1102 		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1103 		err = -ENXIO;
1104 		goto out;
1105 	}
1106 
1107 	if (!request_mem_region(macen->start, resource_size(macen),
1108 							pdev->name)) {
1109 		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1110 		err = -ENXIO;
1111 		goto err_request;
1112 	}
1113 
1114 	if (!request_mem_region(macdma->start, resource_size(macdma),
1115 							pdev->name)) {
1116 		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1117 		err = -ENXIO;
1118 		goto err_macdma;
1119 	}
1120 
1121 	dev = alloc_etherdev(sizeof(struct au1000_private));
1122 	if (!dev) {
1123 		err = -ENOMEM;
1124 		goto err_alloc;
1125 	}
1126 
1127 	SET_NETDEV_DEV(dev, &pdev->dev);
1128 	platform_set_drvdata(pdev, dev);
1129 	aup = netdev_priv(dev);
1130 
1131 	spin_lock_init(&aup->lock);
1132 	aup->msg_enable = (au1000_debug < 4 ?
1133 				AU1000_DEF_MSG_ENABLE : au1000_debug);
1134 
1135 	/* Allocate the data buffers
1136 	 * Snooping works fine with eth on all au1xxx
1137 	 */
1138 	aup->vaddr = (u32)dma_alloc_attrs(&pdev->dev, MAX_BUF_SIZE *
1139 					  (NUM_TX_BUFFS + NUM_RX_BUFFS),
1140 					  &aup->dma_addr, 0,
1141 					  DMA_ATTR_NON_CONSISTENT);
1142 	if (!aup->vaddr) {
1143 		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1144 		err = -ENOMEM;
1145 		goto err_vaddr;
1146 	}
1147 
1148 	/* aup->mac is the base address of the MAC's registers */
1149 	aup->mac = (struct mac_reg *)
1150 			ioremap(base->start, resource_size(base));
1151 	if (!aup->mac) {
1152 		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1153 		err = -ENXIO;
1154 		goto err_remap1;
1155 	}
1156 
1157 	/* Setup some variables for quick register address access */
1158 	aup->enable = (u32 *)ioremap(macen->start,
1159 						resource_size(macen));
1160 	if (!aup->enable) {
1161 		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1162 		err = -ENXIO;
1163 		goto err_remap2;
1164 	}
1165 	aup->mac_id = pdev->id;
1166 
1167 	aup->macdma = ioremap(macdma->start, resource_size(macdma));
1168 	if (!aup->macdma) {
1169 		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1170 		err = -ENXIO;
1171 		goto err_remap3;
1172 	}
1173 
1174 	au1000_setup_hw_rings(aup, aup->macdma);
1175 
1176 	writel(0, aup->enable);
1177 	aup->mac_enabled = 0;
1178 
1179 	pd = dev_get_platdata(&pdev->dev);
1180 	if (!pd) {
1181 		dev_info(&pdev->dev, "no platform_data passed,"
1182 					" PHY search on MAC0\n");
1183 		aup->phy1_search_mac0 = 1;
1184 	} else {
1185 		if (is_valid_ether_addr(pd->mac)) {
1186 			memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1187 		} else {
1188 			/* Set a random MAC since no valid provided by platform_data. */
1189 			eth_hw_addr_random(dev);
1190 		}
1191 
1192 		aup->phy_static_config = pd->phy_static_config;
1193 		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1194 		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1195 		aup->phy_addr = pd->phy_addr;
1196 		aup->phy_busid = pd->phy_busid;
1197 		aup->phy_irq = pd->phy_irq;
1198 	}
1199 
1200 	if (aup->phy_busid > 0) {
1201 		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1202 		err = -ENODEV;
1203 		goto err_mdiobus_alloc;
1204 	}
1205 
1206 	aup->mii_bus = mdiobus_alloc();
1207 	if (aup->mii_bus == NULL) {
1208 		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1209 		err = -ENOMEM;
1210 		goto err_mdiobus_alloc;
1211 	}
1212 
1213 	aup->mii_bus->priv = dev;
1214 	aup->mii_bus->read = au1000_mdiobus_read;
1215 	aup->mii_bus->write = au1000_mdiobus_write;
1216 	aup->mii_bus->reset = au1000_mdiobus_reset;
1217 	aup->mii_bus->name = "au1000_eth_mii";
1218 	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1219 		pdev->name, aup->mac_id);
1220 
1221 	/* if known, set corresponding PHY IRQs */
1222 	if (aup->phy_static_config)
1223 		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1224 			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1225 
1226 	err = mdiobus_register(aup->mii_bus);
1227 	if (err) {
1228 		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1229 		goto err_mdiobus_reg;
1230 	}
1231 
1232 	err = au1000_mii_probe(dev);
1233 	if (err != 0)
1234 		goto err_out;
1235 
1236 	pDBfree = NULL;
1237 	/* setup the data buffer descriptors and attach a buffer to each one */
1238 	pDB = aup->db;
1239 	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1240 		pDB->pnext = pDBfree;
1241 		pDBfree = pDB;
1242 		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1243 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1244 		pDB++;
1245 	}
1246 	aup->pDBfree = pDBfree;
1247 
1248 	err = -ENODEV;
1249 	for (i = 0; i < NUM_RX_DMA; i++) {
1250 		pDB = au1000_GetFreeDB(aup);
1251 		if (!pDB)
1252 			goto err_out;
1253 
1254 		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1255 		aup->rx_db_inuse[i] = pDB;
1256 	}
1257 
1258 	err = -ENODEV;
1259 	for (i = 0; i < NUM_TX_DMA; i++) {
1260 		pDB = au1000_GetFreeDB(aup);
1261 		if (!pDB)
1262 			goto err_out;
1263 
1264 		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1265 		aup->tx_dma_ring[i]->len = 0;
1266 		aup->tx_db_inuse[i] = pDB;
1267 	}
1268 
1269 	dev->base_addr = base->start;
1270 	dev->irq = irq;
1271 	dev->netdev_ops = &au1000_netdev_ops;
1272 	dev->ethtool_ops = &au1000_ethtool_ops;
1273 	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1274 
1275 	/*
1276 	 * The boot code uses the ethernet controller, so reset it to start
1277 	 * fresh.  au1000_init() expects that the device is in reset state.
1278 	 */
1279 	au1000_reset_mac(dev);
1280 
1281 	err = register_netdev(dev);
1282 	if (err) {
1283 		netdev_err(dev, "Cannot register net device, aborting.\n");
1284 		goto err_out;
1285 	}
1286 
1287 	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1288 			(unsigned long)base->start, irq);
1289 
1290 	return 0;
1291 
1292 err_out:
1293 	if (aup->mii_bus != NULL)
1294 		mdiobus_unregister(aup->mii_bus);
1295 
1296 	/* here we should have a valid dev plus aup-> register addresses
1297 	 * so we can reset the mac properly.
1298 	 */
1299 	au1000_reset_mac(dev);
1300 
1301 	for (i = 0; i < NUM_RX_DMA; i++) {
1302 		if (aup->rx_db_inuse[i])
1303 			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1304 	}
1305 	for (i = 0; i < NUM_TX_DMA; i++) {
1306 		if (aup->tx_db_inuse[i])
1307 			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1308 	}
1309 err_mdiobus_reg:
1310 	mdiobus_free(aup->mii_bus);
1311 err_mdiobus_alloc:
1312 	iounmap(aup->macdma);
1313 err_remap3:
1314 	iounmap(aup->enable);
1315 err_remap2:
1316 	iounmap(aup->mac);
1317 err_remap1:
1318 	dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1319 			(void *)aup->vaddr, aup->dma_addr,
1320 			DMA_ATTR_NON_CONSISTENT);
1321 err_vaddr:
1322 	free_netdev(dev);
1323 err_alloc:
1324 	release_mem_region(macdma->start, resource_size(macdma));
1325 err_macdma:
1326 	release_mem_region(macen->start, resource_size(macen));
1327 err_request:
1328 	release_mem_region(base->start, resource_size(base));
1329 out:
1330 	return err;
1331 }
1332 
1333 static int au1000_remove(struct platform_device *pdev)
1334 {
1335 	struct net_device *dev = platform_get_drvdata(pdev);
1336 	struct au1000_private *aup = netdev_priv(dev);
1337 	int i;
1338 	struct resource *base, *macen;
1339 
1340 	unregister_netdev(dev);
1341 	mdiobus_unregister(aup->mii_bus);
1342 	mdiobus_free(aup->mii_bus);
1343 
1344 	for (i = 0; i < NUM_RX_DMA; i++)
1345 		if (aup->rx_db_inuse[i])
1346 			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1347 
1348 	for (i = 0; i < NUM_TX_DMA; i++)
1349 		if (aup->tx_db_inuse[i])
1350 			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1351 
1352 	dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1353 			(void *)aup->vaddr, aup->dma_addr,
1354 			DMA_ATTR_NON_CONSISTENT);
1355 
1356 	iounmap(aup->macdma);
1357 	iounmap(aup->mac);
1358 	iounmap(aup->enable);
1359 
1360 	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1361 	release_mem_region(base->start, resource_size(base));
1362 
1363 	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1364 	release_mem_region(base->start, resource_size(base));
1365 
1366 	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1367 	release_mem_region(macen->start, resource_size(macen));
1368 
1369 	free_netdev(dev);
1370 
1371 	return 0;
1372 }
1373 
1374 static struct platform_driver au1000_eth_driver = {
1375 	.probe  = au1000_probe,
1376 	.remove = au1000_remove,
1377 	.driver = {
1378 		.name   = "au1000-eth",
1379 	},
1380 };
1381 
1382 module_platform_driver(au1000_eth_driver);
1383 
1384 MODULE_ALIAS("platform:au1000-eth");
1385