1 /* 2 * Copyright 2015 Amazon.com, Inc. or its affiliates. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #ifdef CONFIG_RFS_ACCEL 36 #include <linux/cpu_rmap.h> 37 #endif /* CONFIG_RFS_ACCEL */ 38 #include <linux/ethtool.h> 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/numa.h> 42 #include <linux/pci.h> 43 #include <linux/utsname.h> 44 #include <linux/version.h> 45 #include <linux/vmalloc.h> 46 #include <net/ip.h> 47 48 #include "ena_netdev.h" 49 #include <linux/bpf_trace.h> 50 #include "ena_pci_id_tbl.h" 51 52 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 53 MODULE_DESCRIPTION(DEVICE_NAME); 54 MODULE_LICENSE("GPL"); 55 56 /* Time in jiffies before concluding the transmitter is hung. */ 57 #define TX_TIMEOUT (5 * HZ) 58 59 #define ENA_NAPI_BUDGET 64 60 61 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 62 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 63 static int debug = -1; 64 module_param(debug, int, 0); 65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 66 67 static struct ena_aenq_handlers aenq_handlers; 68 69 static struct workqueue_struct *ena_wq; 70 71 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 72 73 static int ena_rss_init_default(struct ena_adapter *adapter); 74 static void check_for_admin_com_state(struct ena_adapter *adapter); 75 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful); 76 static int ena_restore_device(struct ena_adapter *adapter); 77 78 static void ena_init_io_rings(struct ena_adapter *adapter, 79 int first_index, int count); 80 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index, 81 int count); 82 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index, 83 int count); 84 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid); 85 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 86 int first_index, 87 int count); 88 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid); 89 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid); 90 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget); 91 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter); 92 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter); 93 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 94 int first_index, int count); 95 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 96 int first_index, int count); 97 static int ena_up(struct ena_adapter *adapter); 98 static void ena_down(struct ena_adapter *adapter); 99 static void ena_unmask_interrupt(struct ena_ring *tx_ring, 100 struct ena_ring *rx_ring); 101 static void ena_update_ring_numa_node(struct ena_ring *tx_ring, 102 struct ena_ring *rx_ring); 103 static void ena_unmap_tx_buff(struct ena_ring *tx_ring, 104 struct ena_tx_buffer *tx_info); 105 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 106 int first_index, int count); 107 108 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) 109 { 110 struct ena_adapter *adapter = netdev_priv(dev); 111 112 /* Change the state of the device to trigger reset 113 * Check that we are not in the middle or a trigger already 114 */ 115 116 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 117 return; 118 119 adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD; 120 u64_stats_update_begin(&adapter->syncp); 121 adapter->dev_stats.tx_timeout++; 122 u64_stats_update_end(&adapter->syncp); 123 124 netif_err(adapter, tx_err, dev, "Transmit time out\n"); 125 } 126 127 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 128 { 129 int i; 130 131 for (i = 0; i < adapter->num_io_queues; i++) 132 adapter->rx_ring[i].mtu = mtu; 133 } 134 135 static int ena_change_mtu(struct net_device *dev, int new_mtu) 136 { 137 struct ena_adapter *adapter = netdev_priv(dev); 138 int ret; 139 140 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 141 if (!ret) { 142 netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu); 143 update_rx_ring_mtu(adapter, new_mtu); 144 dev->mtu = new_mtu; 145 } else { 146 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 147 new_mtu); 148 } 149 150 return ret; 151 } 152 153 static int ena_xmit_common(struct net_device *dev, 154 struct ena_ring *ring, 155 struct ena_tx_buffer *tx_info, 156 struct ena_com_tx_ctx *ena_tx_ctx, 157 u16 next_to_use, 158 u32 bytes) 159 { 160 struct ena_adapter *adapter = netdev_priv(dev); 161 int rc, nb_hw_desc; 162 163 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, 164 ena_tx_ctx))) { 165 netif_dbg(adapter, tx_queued, dev, 166 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 167 ring->qid); 168 ena_com_write_sq_doorbell(ring->ena_com_io_sq); 169 } 170 171 /* prepare the packet's descriptors to dma engine */ 172 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, 173 &nb_hw_desc); 174 175 /* In case there isn't enough space in the queue for the packet, 176 * we simply drop it. All other failure reasons of 177 * ena_com_prepare_tx() are fatal and therefore require a device reset. 178 */ 179 if (unlikely(rc)) { 180 netif_err(adapter, tx_queued, dev, 181 "failed to prepare tx bufs\n"); 182 u64_stats_update_begin(&ring->syncp); 183 ring->tx_stats.prepare_ctx_err++; 184 u64_stats_update_end(&ring->syncp); 185 if (rc != -ENOMEM) { 186 adapter->reset_reason = 187 ENA_REGS_RESET_DRIVER_INVALID_STATE; 188 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 189 } 190 return rc; 191 } 192 193 u64_stats_update_begin(&ring->syncp); 194 ring->tx_stats.cnt++; 195 ring->tx_stats.bytes += bytes; 196 u64_stats_update_end(&ring->syncp); 197 198 tx_info->tx_descs = nb_hw_desc; 199 tx_info->last_jiffies = jiffies; 200 tx_info->print_once = 0; 201 202 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 203 ring->ring_size); 204 return 0; 205 } 206 207 /* This is the XDP napi callback. XDP queues use a separate napi callback 208 * than Rx/Tx queues. 209 */ 210 static int ena_xdp_io_poll(struct napi_struct *napi, int budget) 211 { 212 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 213 u32 xdp_work_done, xdp_budget; 214 struct ena_ring *xdp_ring; 215 int napi_comp_call = 0; 216 int ret; 217 218 xdp_ring = ena_napi->xdp_ring; 219 xdp_ring->first_interrupt = ena_napi->first_interrupt; 220 221 xdp_budget = budget; 222 223 if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) || 224 test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) { 225 napi_complete_done(napi, 0); 226 return 0; 227 } 228 229 xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget); 230 231 /* If the device is about to reset or down, avoid unmask 232 * the interrupt and return 0 so NAPI won't reschedule 233 */ 234 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) { 235 napi_complete_done(napi, 0); 236 ret = 0; 237 } else if (xdp_budget > xdp_work_done) { 238 napi_comp_call = 1; 239 if (napi_complete_done(napi, xdp_work_done)) 240 ena_unmask_interrupt(xdp_ring, NULL); 241 ena_update_ring_numa_node(xdp_ring, NULL); 242 ret = xdp_work_done; 243 } else { 244 ret = xdp_budget; 245 } 246 247 u64_stats_update_begin(&xdp_ring->syncp); 248 xdp_ring->tx_stats.napi_comp += napi_comp_call; 249 xdp_ring->tx_stats.tx_poll++; 250 u64_stats_update_end(&xdp_ring->syncp); 251 252 return ret; 253 } 254 255 static int ena_xdp_tx_map_buff(struct ena_ring *xdp_ring, 256 struct ena_tx_buffer *tx_info, 257 struct xdp_buff *xdp, 258 void **push_hdr, 259 u32 *push_len) 260 { 261 struct ena_adapter *adapter = xdp_ring->adapter; 262 struct ena_com_buf *ena_buf; 263 dma_addr_t dma = 0; 264 u32 size; 265 266 tx_info->xdpf = xdp_convert_buff_to_frame(xdp); 267 size = tx_info->xdpf->len; 268 ena_buf = tx_info->bufs; 269 270 /* llq push buffer */ 271 *push_len = min_t(u32, size, xdp_ring->tx_max_header_size); 272 *push_hdr = tx_info->xdpf->data; 273 274 if (size - *push_len > 0) { 275 dma = dma_map_single(xdp_ring->dev, 276 *push_hdr + *push_len, 277 size - *push_len, 278 DMA_TO_DEVICE); 279 if (unlikely(dma_mapping_error(xdp_ring->dev, dma))) 280 goto error_report_dma_error; 281 282 tx_info->map_linear_data = 1; 283 tx_info->num_of_bufs = 1; 284 } 285 286 ena_buf->paddr = dma; 287 ena_buf->len = size; 288 289 return 0; 290 291 error_report_dma_error: 292 u64_stats_update_begin(&xdp_ring->syncp); 293 xdp_ring->tx_stats.dma_mapping_err++; 294 u64_stats_update_end(&xdp_ring->syncp); 295 netdev_warn(adapter->netdev, "failed to map xdp buff\n"); 296 297 xdp_return_frame_rx_napi(tx_info->xdpf); 298 tx_info->xdpf = NULL; 299 tx_info->num_of_bufs = 0; 300 301 return -EINVAL; 302 } 303 304 static int ena_xdp_xmit_buff(struct net_device *dev, 305 struct xdp_buff *xdp, 306 int qid, 307 struct ena_rx_buffer *rx_info) 308 { 309 struct ena_adapter *adapter = netdev_priv(dev); 310 struct ena_com_tx_ctx ena_tx_ctx = {}; 311 struct ena_tx_buffer *tx_info; 312 struct ena_ring *xdp_ring; 313 u16 next_to_use, req_id; 314 int rc; 315 void *push_hdr; 316 u32 push_len; 317 318 xdp_ring = &adapter->tx_ring[qid]; 319 next_to_use = xdp_ring->next_to_use; 320 req_id = xdp_ring->free_ids[next_to_use]; 321 tx_info = &xdp_ring->tx_buffer_info[req_id]; 322 tx_info->num_of_bufs = 0; 323 page_ref_inc(rx_info->page); 324 tx_info->xdp_rx_page = rx_info->page; 325 326 rc = ena_xdp_tx_map_buff(xdp_ring, tx_info, xdp, &push_hdr, &push_len); 327 if (unlikely(rc)) 328 goto error_drop_packet; 329 330 ena_tx_ctx.ena_bufs = tx_info->bufs; 331 ena_tx_ctx.push_header = push_hdr; 332 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 333 ena_tx_ctx.req_id = req_id; 334 ena_tx_ctx.header_len = push_len; 335 336 rc = ena_xmit_common(dev, 337 xdp_ring, 338 tx_info, 339 &ena_tx_ctx, 340 next_to_use, 341 xdp->data_end - xdp->data); 342 if (rc) 343 goto error_unmap_dma; 344 /* trigger the dma engine. ena_com_write_sq_doorbell() 345 * has a mb 346 */ 347 ena_com_write_sq_doorbell(xdp_ring->ena_com_io_sq); 348 u64_stats_update_begin(&xdp_ring->syncp); 349 xdp_ring->tx_stats.doorbells++; 350 u64_stats_update_end(&xdp_ring->syncp); 351 352 return NETDEV_TX_OK; 353 354 error_unmap_dma: 355 ena_unmap_tx_buff(xdp_ring, tx_info); 356 tx_info->xdpf = NULL; 357 error_drop_packet: 358 __free_page(tx_info->xdp_rx_page); 359 return NETDEV_TX_OK; 360 } 361 362 static int ena_xdp_execute(struct ena_ring *rx_ring, 363 struct xdp_buff *xdp, 364 struct ena_rx_buffer *rx_info) 365 { 366 struct bpf_prog *xdp_prog; 367 u32 verdict = XDP_PASS; 368 369 rcu_read_lock(); 370 xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog); 371 372 if (!xdp_prog) 373 goto out; 374 375 verdict = bpf_prog_run_xdp(xdp_prog, xdp); 376 377 if (verdict == XDP_TX) 378 ena_xdp_xmit_buff(rx_ring->netdev, 379 xdp, 380 rx_ring->qid + rx_ring->adapter->num_io_queues, 381 rx_info); 382 else if (unlikely(verdict == XDP_ABORTED)) 383 trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict); 384 else if (unlikely(verdict > XDP_TX)) 385 bpf_warn_invalid_xdp_action(verdict); 386 out: 387 rcu_read_unlock(); 388 return verdict; 389 } 390 391 static void ena_init_all_xdp_queues(struct ena_adapter *adapter) 392 { 393 adapter->xdp_first_ring = adapter->num_io_queues; 394 adapter->xdp_num_queues = adapter->num_io_queues; 395 396 ena_init_io_rings(adapter, 397 adapter->xdp_first_ring, 398 adapter->xdp_num_queues); 399 } 400 401 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter) 402 { 403 int rc = 0; 404 405 rc = ena_setup_tx_resources_in_range(adapter, adapter->xdp_first_ring, 406 adapter->xdp_num_queues); 407 if (rc) 408 goto setup_err; 409 410 rc = ena_create_io_tx_queues_in_range(adapter, 411 adapter->xdp_first_ring, 412 adapter->xdp_num_queues); 413 if (rc) 414 goto create_err; 415 416 return 0; 417 418 create_err: 419 ena_free_all_io_tx_resources(adapter); 420 setup_err: 421 return rc; 422 } 423 424 /* Provides a way for both kernel and bpf-prog to know 425 * more about the RX-queue a given XDP frame arrived on. 426 */ 427 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring) 428 { 429 int rc; 430 431 rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid); 432 433 if (rc) { 434 netif_err(rx_ring->adapter, ifup, rx_ring->netdev, 435 "Failed to register xdp rx queue info. RX queue num %d rc: %d\n", 436 rx_ring->qid, rc); 437 goto err; 438 } 439 440 rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED, 441 NULL); 442 443 if (rc) { 444 netif_err(rx_ring->adapter, ifup, rx_ring->netdev, 445 "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n", 446 rx_ring->qid, rc); 447 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 448 } 449 450 err: 451 return rc; 452 } 453 454 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring) 455 { 456 xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq); 457 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 458 } 459 460 static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter, 461 struct bpf_prog *prog, 462 int first, int count) 463 { 464 struct ena_ring *rx_ring; 465 int i = 0; 466 467 for (i = first; i < count; i++) { 468 rx_ring = &adapter->rx_ring[i]; 469 xchg(&rx_ring->xdp_bpf_prog, prog); 470 if (prog) { 471 ena_xdp_register_rxq_info(rx_ring); 472 rx_ring->rx_headroom = XDP_PACKET_HEADROOM; 473 } else { 474 ena_xdp_unregister_rxq_info(rx_ring); 475 rx_ring->rx_headroom = 0; 476 } 477 } 478 } 479 480 static void ena_xdp_exchange_program(struct ena_adapter *adapter, 481 struct bpf_prog *prog) 482 { 483 struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog); 484 485 ena_xdp_exchange_program_rx_in_range(adapter, 486 prog, 487 0, 488 adapter->num_io_queues); 489 490 if (old_bpf_prog) 491 bpf_prog_put(old_bpf_prog); 492 } 493 494 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter) 495 { 496 bool was_up; 497 int rc; 498 499 was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 500 501 if (was_up) 502 ena_down(adapter); 503 504 adapter->xdp_first_ring = 0; 505 adapter->xdp_num_queues = 0; 506 ena_xdp_exchange_program(adapter, NULL); 507 if (was_up) { 508 rc = ena_up(adapter); 509 if (rc) 510 return rc; 511 } 512 return 0; 513 } 514 515 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf) 516 { 517 struct ena_adapter *adapter = netdev_priv(netdev); 518 struct bpf_prog *prog = bpf->prog; 519 struct bpf_prog *old_bpf_prog; 520 int rc, prev_mtu; 521 bool is_up; 522 523 is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 524 rc = ena_xdp_allowed(adapter); 525 if (rc == ENA_XDP_ALLOWED) { 526 old_bpf_prog = adapter->xdp_bpf_prog; 527 if (prog) { 528 if (!is_up) { 529 ena_init_all_xdp_queues(adapter); 530 } else if (!old_bpf_prog) { 531 ena_down(adapter); 532 ena_init_all_xdp_queues(adapter); 533 } 534 ena_xdp_exchange_program(adapter, prog); 535 536 if (is_up && !old_bpf_prog) { 537 rc = ena_up(adapter); 538 if (rc) 539 return rc; 540 } 541 } else if (old_bpf_prog) { 542 rc = ena_destroy_and_free_all_xdp_queues(adapter); 543 if (rc) 544 return rc; 545 } 546 547 prev_mtu = netdev->max_mtu; 548 netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu; 549 550 if (!old_bpf_prog) 551 netif_info(adapter, drv, adapter->netdev, 552 "xdp program set, changing the max_mtu from %d to %d", 553 prev_mtu, netdev->max_mtu); 554 555 } else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) { 556 netif_err(adapter, drv, adapter->netdev, 557 "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on", 558 netdev->mtu, ENA_XDP_MAX_MTU); 559 NL_SET_ERR_MSG_MOD(bpf->extack, 560 "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info"); 561 return -EINVAL; 562 } else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) { 563 netif_err(adapter, drv, adapter->netdev, 564 "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n", 565 adapter->num_io_queues, adapter->max_num_io_queues); 566 NL_SET_ERR_MSG_MOD(bpf->extack, 567 "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info"); 568 return -EINVAL; 569 } 570 571 return 0; 572 } 573 574 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp 575 * program as well as to query the current xdp program id. 576 */ 577 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf) 578 { 579 switch (bpf->command) { 580 case XDP_SETUP_PROG: 581 return ena_xdp_set(netdev, bpf); 582 default: 583 return -EINVAL; 584 } 585 return 0; 586 } 587 588 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 589 { 590 #ifdef CONFIG_RFS_ACCEL 591 u32 i; 592 int rc; 593 594 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); 595 if (!adapter->netdev->rx_cpu_rmap) 596 return -ENOMEM; 597 for (i = 0; i < adapter->num_io_queues; i++) { 598 int irq_idx = ENA_IO_IRQ_IDX(i); 599 600 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 601 pci_irq_vector(adapter->pdev, irq_idx)); 602 if (rc) { 603 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 604 adapter->netdev->rx_cpu_rmap = NULL; 605 return rc; 606 } 607 } 608 #endif /* CONFIG_RFS_ACCEL */ 609 return 0; 610 } 611 612 static void ena_init_io_rings_common(struct ena_adapter *adapter, 613 struct ena_ring *ring, u16 qid) 614 { 615 ring->qid = qid; 616 ring->pdev = adapter->pdev; 617 ring->dev = &adapter->pdev->dev; 618 ring->netdev = adapter->netdev; 619 ring->napi = &adapter->ena_napi[qid].napi; 620 ring->adapter = adapter; 621 ring->ena_dev = adapter->ena_dev; 622 ring->per_napi_packets = 0; 623 ring->cpu = 0; 624 ring->first_interrupt = false; 625 ring->no_interrupt_event_cnt = 0; 626 u64_stats_init(&ring->syncp); 627 } 628 629 static void ena_init_io_rings(struct ena_adapter *adapter, 630 int first_index, int count) 631 { 632 struct ena_com_dev *ena_dev; 633 struct ena_ring *txr, *rxr; 634 int i; 635 636 ena_dev = adapter->ena_dev; 637 638 for (i = first_index; i < first_index + count; i++) { 639 txr = &adapter->tx_ring[i]; 640 rxr = &adapter->rx_ring[i]; 641 642 /* TX common ring state */ 643 ena_init_io_rings_common(adapter, txr, i); 644 645 /* TX specific ring state */ 646 txr->ring_size = adapter->requested_tx_ring_size; 647 txr->tx_max_header_size = ena_dev->tx_max_header_size; 648 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 649 txr->sgl_size = adapter->max_tx_sgl_size; 650 txr->smoothed_interval = 651 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 652 txr->disable_meta_caching = adapter->disable_meta_caching; 653 654 /* Don't init RX queues for xdp queues */ 655 if (!ENA_IS_XDP_INDEX(adapter, i)) { 656 /* RX common ring state */ 657 ena_init_io_rings_common(adapter, rxr, i); 658 659 /* RX specific ring state */ 660 rxr->ring_size = adapter->requested_rx_ring_size; 661 rxr->rx_copybreak = adapter->rx_copybreak; 662 rxr->sgl_size = adapter->max_rx_sgl_size; 663 rxr->smoothed_interval = 664 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 665 rxr->empty_rx_queue = 0; 666 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 667 } 668 } 669 } 670 671 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 672 * @adapter: network interface device structure 673 * @qid: queue index 674 * 675 * Return 0 on success, negative on failure 676 */ 677 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 678 { 679 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 680 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 681 int size, i, node; 682 683 if (tx_ring->tx_buffer_info) { 684 netif_err(adapter, ifup, 685 adapter->netdev, "tx_buffer_info info is not NULL"); 686 return -EEXIST; 687 } 688 689 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 690 node = cpu_to_node(ena_irq->cpu); 691 692 tx_ring->tx_buffer_info = vzalloc_node(size, node); 693 if (!tx_ring->tx_buffer_info) { 694 tx_ring->tx_buffer_info = vzalloc(size); 695 if (!tx_ring->tx_buffer_info) 696 goto err_tx_buffer_info; 697 } 698 699 size = sizeof(u16) * tx_ring->ring_size; 700 tx_ring->free_ids = vzalloc_node(size, node); 701 if (!tx_ring->free_ids) { 702 tx_ring->free_ids = vzalloc(size); 703 if (!tx_ring->free_ids) 704 goto err_tx_free_ids; 705 } 706 707 size = tx_ring->tx_max_header_size; 708 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 709 if (!tx_ring->push_buf_intermediate_buf) { 710 tx_ring->push_buf_intermediate_buf = vzalloc(size); 711 if (!tx_ring->push_buf_intermediate_buf) 712 goto err_push_buf_intermediate_buf; 713 } 714 715 /* Req id ring for TX out of order completions */ 716 for (i = 0; i < tx_ring->ring_size; i++) 717 tx_ring->free_ids[i] = i; 718 719 /* Reset tx statistics */ 720 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 721 722 tx_ring->next_to_use = 0; 723 tx_ring->next_to_clean = 0; 724 tx_ring->cpu = ena_irq->cpu; 725 return 0; 726 727 err_push_buf_intermediate_buf: 728 vfree(tx_ring->free_ids); 729 tx_ring->free_ids = NULL; 730 err_tx_free_ids: 731 vfree(tx_ring->tx_buffer_info); 732 tx_ring->tx_buffer_info = NULL; 733 err_tx_buffer_info: 734 return -ENOMEM; 735 } 736 737 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 738 * @adapter: network interface device structure 739 * @qid: queue index 740 * 741 * Free all transmit software resources 742 */ 743 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 744 { 745 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 746 747 vfree(tx_ring->tx_buffer_info); 748 tx_ring->tx_buffer_info = NULL; 749 750 vfree(tx_ring->free_ids); 751 tx_ring->free_ids = NULL; 752 753 vfree(tx_ring->push_buf_intermediate_buf); 754 tx_ring->push_buf_intermediate_buf = NULL; 755 } 756 757 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 758 int first_index, 759 int count) 760 { 761 int i, rc = 0; 762 763 for (i = first_index; i < first_index + count; i++) { 764 rc = ena_setup_tx_resources(adapter, i); 765 if (rc) 766 goto err_setup_tx; 767 } 768 769 return 0; 770 771 err_setup_tx: 772 773 netif_err(adapter, ifup, adapter->netdev, 774 "Tx queue %d: allocation failed\n", i); 775 776 /* rewind the index freeing the rings as we go */ 777 while (first_index < i--) 778 ena_free_tx_resources(adapter, i); 779 return rc; 780 } 781 782 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 783 int first_index, int count) 784 { 785 int i; 786 787 for (i = first_index; i < first_index + count; i++) 788 ena_free_tx_resources(adapter, i); 789 } 790 791 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 792 * @adapter: board private structure 793 * 794 * Free all transmit software resources 795 */ 796 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 797 { 798 ena_free_all_io_tx_resources_in_range(adapter, 799 0, 800 adapter->xdp_num_queues + 801 adapter->num_io_queues); 802 } 803 804 static int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id) 805 { 806 if (likely(req_id < rx_ring->ring_size)) 807 return 0; 808 809 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 810 "Invalid rx req_id: %hu\n", req_id); 811 812 u64_stats_update_begin(&rx_ring->syncp); 813 rx_ring->rx_stats.bad_req_id++; 814 u64_stats_update_end(&rx_ring->syncp); 815 816 /* Trigger device reset */ 817 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; 818 set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags); 819 return -EFAULT; 820 } 821 822 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 823 * @adapter: network interface device structure 824 * @qid: queue index 825 * 826 * Returns 0 on success, negative on failure 827 */ 828 static int ena_setup_rx_resources(struct ena_adapter *adapter, 829 u32 qid) 830 { 831 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 832 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 833 int size, node, i; 834 835 if (rx_ring->rx_buffer_info) { 836 netif_err(adapter, ifup, adapter->netdev, 837 "rx_buffer_info is not NULL"); 838 return -EEXIST; 839 } 840 841 /* alloc extra element so in rx path 842 * we can always prefetch rx_info + 1 843 */ 844 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 845 node = cpu_to_node(ena_irq->cpu); 846 847 rx_ring->rx_buffer_info = vzalloc_node(size, node); 848 if (!rx_ring->rx_buffer_info) { 849 rx_ring->rx_buffer_info = vzalloc(size); 850 if (!rx_ring->rx_buffer_info) 851 return -ENOMEM; 852 } 853 854 size = sizeof(u16) * rx_ring->ring_size; 855 rx_ring->free_ids = vzalloc_node(size, node); 856 if (!rx_ring->free_ids) { 857 rx_ring->free_ids = vzalloc(size); 858 if (!rx_ring->free_ids) { 859 vfree(rx_ring->rx_buffer_info); 860 rx_ring->rx_buffer_info = NULL; 861 return -ENOMEM; 862 } 863 } 864 865 /* Req id ring for receiving RX pkts out of order */ 866 for (i = 0; i < rx_ring->ring_size; i++) 867 rx_ring->free_ids[i] = i; 868 869 /* Reset rx statistics */ 870 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 871 872 rx_ring->next_to_clean = 0; 873 rx_ring->next_to_use = 0; 874 rx_ring->cpu = ena_irq->cpu; 875 876 return 0; 877 } 878 879 /* ena_free_rx_resources - Free I/O Rx Resources 880 * @adapter: network interface device structure 881 * @qid: queue index 882 * 883 * Free all receive software resources 884 */ 885 static void ena_free_rx_resources(struct ena_adapter *adapter, 886 u32 qid) 887 { 888 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 889 890 vfree(rx_ring->rx_buffer_info); 891 rx_ring->rx_buffer_info = NULL; 892 893 vfree(rx_ring->free_ids); 894 rx_ring->free_ids = NULL; 895 } 896 897 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 898 * @adapter: board private structure 899 * 900 * Return 0 on success, negative on failure 901 */ 902 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 903 { 904 int i, rc = 0; 905 906 for (i = 0; i < adapter->num_io_queues; i++) { 907 rc = ena_setup_rx_resources(adapter, i); 908 if (rc) 909 goto err_setup_rx; 910 } 911 912 return 0; 913 914 err_setup_rx: 915 916 netif_err(adapter, ifup, adapter->netdev, 917 "Rx queue %d: allocation failed\n", i); 918 919 /* rewind the index freeing the rings as we go */ 920 while (i--) 921 ena_free_rx_resources(adapter, i); 922 return rc; 923 } 924 925 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 926 * @adapter: board private structure 927 * 928 * Free all receive software resources 929 */ 930 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 931 { 932 int i; 933 934 for (i = 0; i < adapter->num_io_queues; i++) 935 ena_free_rx_resources(adapter, i); 936 } 937 938 static int ena_alloc_rx_page(struct ena_ring *rx_ring, 939 struct ena_rx_buffer *rx_info, gfp_t gfp) 940 { 941 struct ena_com_buf *ena_buf; 942 struct page *page; 943 dma_addr_t dma; 944 945 /* if previous allocated page is not used */ 946 if (unlikely(rx_info->page)) 947 return 0; 948 949 page = alloc_page(gfp); 950 if (unlikely(!page)) { 951 u64_stats_update_begin(&rx_ring->syncp); 952 rx_ring->rx_stats.page_alloc_fail++; 953 u64_stats_update_end(&rx_ring->syncp); 954 return -ENOMEM; 955 } 956 957 /* To enable NIC-side port-mirroring, AKA SPAN port, 958 * we make the buffer readable from the nic as well 959 */ 960 dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 961 DMA_BIDIRECTIONAL); 962 if (unlikely(dma_mapping_error(rx_ring->dev, dma))) { 963 u64_stats_update_begin(&rx_ring->syncp); 964 rx_ring->rx_stats.dma_mapping_err++; 965 u64_stats_update_end(&rx_ring->syncp); 966 967 __free_page(page); 968 return -EIO; 969 } 970 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 971 "alloc page %p, rx_info %p\n", page, rx_info); 972 973 rx_info->page = page; 974 rx_info->page_offset = 0; 975 ena_buf = &rx_info->ena_buf; 976 ena_buf->paddr = dma + rx_ring->rx_headroom; 977 ena_buf->len = ENA_PAGE_SIZE - rx_ring->rx_headroom; 978 979 return 0; 980 } 981 982 static void ena_free_rx_page(struct ena_ring *rx_ring, 983 struct ena_rx_buffer *rx_info) 984 { 985 struct page *page = rx_info->page; 986 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 987 988 if (unlikely(!page)) { 989 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 990 "Trying to free unallocated buffer\n"); 991 return; 992 } 993 994 dma_unmap_page(rx_ring->dev, ena_buf->paddr - rx_ring->rx_headroom, 995 ENA_PAGE_SIZE, 996 DMA_BIDIRECTIONAL); 997 998 __free_page(page); 999 rx_info->page = NULL; 1000 } 1001 1002 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 1003 { 1004 u16 next_to_use, req_id; 1005 u32 i; 1006 int rc; 1007 1008 next_to_use = rx_ring->next_to_use; 1009 1010 for (i = 0; i < num; i++) { 1011 struct ena_rx_buffer *rx_info; 1012 1013 req_id = rx_ring->free_ids[next_to_use]; 1014 1015 rx_info = &rx_ring->rx_buffer_info[req_id]; 1016 1017 rc = ena_alloc_rx_page(rx_ring, rx_info, 1018 GFP_ATOMIC | __GFP_COMP); 1019 if (unlikely(rc < 0)) { 1020 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 1021 "failed to alloc buffer for rx queue %d\n", 1022 rx_ring->qid); 1023 break; 1024 } 1025 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 1026 &rx_info->ena_buf, 1027 req_id); 1028 if (unlikely(rc)) { 1029 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 1030 "failed to add buffer for rx queue %d\n", 1031 rx_ring->qid); 1032 break; 1033 } 1034 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 1035 rx_ring->ring_size); 1036 } 1037 1038 if (unlikely(i < num)) { 1039 u64_stats_update_begin(&rx_ring->syncp); 1040 rx_ring->rx_stats.refil_partial++; 1041 u64_stats_update_end(&rx_ring->syncp); 1042 netdev_warn(rx_ring->netdev, 1043 "refilled rx qid %d with only %d buffers (from %d)\n", 1044 rx_ring->qid, i, num); 1045 } 1046 1047 /* ena_com_write_sq_doorbell issues a wmb() */ 1048 if (likely(i)) 1049 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 1050 1051 rx_ring->next_to_use = next_to_use; 1052 1053 return i; 1054 } 1055 1056 static void ena_free_rx_bufs(struct ena_adapter *adapter, 1057 u32 qid) 1058 { 1059 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 1060 u32 i; 1061 1062 for (i = 0; i < rx_ring->ring_size; i++) { 1063 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 1064 1065 if (rx_info->page) 1066 ena_free_rx_page(rx_ring, rx_info); 1067 } 1068 } 1069 1070 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 1071 * @adapter: board private structure 1072 */ 1073 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 1074 { 1075 struct ena_ring *rx_ring; 1076 int i, rc, bufs_num; 1077 1078 for (i = 0; i < adapter->num_io_queues; i++) { 1079 rx_ring = &adapter->rx_ring[i]; 1080 bufs_num = rx_ring->ring_size - 1; 1081 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 1082 1083 if (unlikely(rc != bufs_num)) 1084 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 1085 "refilling Queue %d failed. allocated %d buffers from: %d\n", 1086 i, rc, bufs_num); 1087 } 1088 } 1089 1090 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 1091 { 1092 int i; 1093 1094 for (i = 0; i < adapter->num_io_queues; i++) 1095 ena_free_rx_bufs(adapter, i); 1096 } 1097 1098 static void ena_unmap_tx_buff(struct ena_ring *tx_ring, 1099 struct ena_tx_buffer *tx_info) 1100 { 1101 struct ena_com_buf *ena_buf; 1102 u32 cnt; 1103 int i; 1104 1105 ena_buf = tx_info->bufs; 1106 cnt = tx_info->num_of_bufs; 1107 1108 if (unlikely(!cnt)) 1109 return; 1110 1111 if (tx_info->map_linear_data) { 1112 dma_unmap_single(tx_ring->dev, 1113 dma_unmap_addr(ena_buf, paddr), 1114 dma_unmap_len(ena_buf, len), 1115 DMA_TO_DEVICE); 1116 ena_buf++; 1117 cnt--; 1118 } 1119 1120 /* unmap remaining mapped pages */ 1121 for (i = 0; i < cnt; i++) { 1122 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 1123 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 1124 ena_buf++; 1125 } 1126 } 1127 1128 /* ena_free_tx_bufs - Free Tx Buffers per Queue 1129 * @tx_ring: TX ring for which buffers be freed 1130 */ 1131 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 1132 { 1133 bool print_once = true; 1134 u32 i; 1135 1136 for (i = 0; i < tx_ring->ring_size; i++) { 1137 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 1138 1139 if (!tx_info->skb) 1140 continue; 1141 1142 if (print_once) { 1143 netdev_notice(tx_ring->netdev, 1144 "free uncompleted tx skb qid %d idx 0x%x\n", 1145 tx_ring->qid, i); 1146 print_once = false; 1147 } else { 1148 netdev_dbg(tx_ring->netdev, 1149 "free uncompleted tx skb qid %d idx 0x%x\n", 1150 tx_ring->qid, i); 1151 } 1152 1153 ena_unmap_tx_buff(tx_ring, tx_info); 1154 1155 dev_kfree_skb_any(tx_info->skb); 1156 } 1157 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 1158 tx_ring->qid)); 1159 } 1160 1161 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 1162 { 1163 struct ena_ring *tx_ring; 1164 int i; 1165 1166 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 1167 tx_ring = &adapter->tx_ring[i]; 1168 ena_free_tx_bufs(tx_ring); 1169 } 1170 } 1171 1172 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 1173 { 1174 u16 ena_qid; 1175 int i; 1176 1177 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 1178 ena_qid = ENA_IO_TXQ_IDX(i); 1179 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 1180 } 1181 } 1182 1183 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 1184 { 1185 u16 ena_qid; 1186 int i; 1187 1188 for (i = 0; i < adapter->num_io_queues; i++) { 1189 ena_qid = ENA_IO_RXQ_IDX(i); 1190 cancel_work_sync(&adapter->ena_napi[i].dim.work); 1191 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 1192 } 1193 } 1194 1195 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 1196 { 1197 ena_destroy_all_tx_queues(adapter); 1198 ena_destroy_all_rx_queues(adapter); 1199 } 1200 1201 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, 1202 struct ena_tx_buffer *tx_info, bool is_xdp) 1203 { 1204 if (tx_info) 1205 netif_err(ring->adapter, 1206 tx_done, 1207 ring->netdev, 1208 "tx_info doesn't have valid %s", 1209 is_xdp ? "xdp frame" : "skb"); 1210 else 1211 netif_err(ring->adapter, 1212 tx_done, 1213 ring->netdev, 1214 "Invalid req_id: %hu\n", 1215 req_id); 1216 1217 u64_stats_update_begin(&ring->syncp); 1218 ring->tx_stats.bad_req_id++; 1219 u64_stats_update_end(&ring->syncp); 1220 1221 /* Trigger device reset */ 1222 ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID; 1223 set_bit(ENA_FLAG_TRIGGER_RESET, &ring->adapter->flags); 1224 return -EFAULT; 1225 } 1226 1227 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 1228 { 1229 struct ena_tx_buffer *tx_info = NULL; 1230 1231 if (likely(req_id < tx_ring->ring_size)) { 1232 tx_info = &tx_ring->tx_buffer_info[req_id]; 1233 if (likely(tx_info->skb)) 1234 return 0; 1235 } 1236 1237 return handle_invalid_req_id(tx_ring, req_id, tx_info, false); 1238 } 1239 1240 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id) 1241 { 1242 struct ena_tx_buffer *tx_info = NULL; 1243 1244 if (likely(req_id < xdp_ring->ring_size)) { 1245 tx_info = &xdp_ring->tx_buffer_info[req_id]; 1246 if (likely(tx_info->xdpf)) 1247 return 0; 1248 } 1249 1250 return handle_invalid_req_id(xdp_ring, req_id, tx_info, true); 1251 } 1252 1253 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 1254 { 1255 struct netdev_queue *txq; 1256 bool above_thresh; 1257 u32 tx_bytes = 0; 1258 u32 total_done = 0; 1259 u16 next_to_clean; 1260 u16 req_id; 1261 int tx_pkts = 0; 1262 int rc; 1263 1264 next_to_clean = tx_ring->next_to_clean; 1265 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 1266 1267 while (tx_pkts < budget) { 1268 struct ena_tx_buffer *tx_info; 1269 struct sk_buff *skb; 1270 1271 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 1272 &req_id); 1273 if (rc) 1274 break; 1275 1276 rc = validate_tx_req_id(tx_ring, req_id); 1277 if (rc) 1278 break; 1279 1280 tx_info = &tx_ring->tx_buffer_info[req_id]; 1281 skb = tx_info->skb; 1282 1283 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 1284 prefetch(&skb->end); 1285 1286 tx_info->skb = NULL; 1287 tx_info->last_jiffies = 0; 1288 1289 ena_unmap_tx_buff(tx_ring, tx_info); 1290 1291 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 1292 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 1293 skb); 1294 1295 tx_bytes += skb->len; 1296 dev_kfree_skb(skb); 1297 tx_pkts++; 1298 total_done += tx_info->tx_descs; 1299 1300 tx_ring->free_ids[next_to_clean] = req_id; 1301 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 1302 tx_ring->ring_size); 1303 } 1304 1305 tx_ring->next_to_clean = next_to_clean; 1306 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 1307 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); 1308 1309 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 1310 1311 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 1312 "tx_poll: q %d done. total pkts: %d\n", 1313 tx_ring->qid, tx_pkts); 1314 1315 /* need to make the rings circular update visible to 1316 * ena_start_xmit() before checking for netif_queue_stopped(). 1317 */ 1318 smp_mb(); 1319 1320 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1321 ENA_TX_WAKEUP_THRESH); 1322 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 1323 __netif_tx_lock(txq, smp_processor_id()); 1324 above_thresh = 1325 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1326 ENA_TX_WAKEUP_THRESH); 1327 if (netif_tx_queue_stopped(txq) && above_thresh && 1328 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 1329 netif_tx_wake_queue(txq); 1330 u64_stats_update_begin(&tx_ring->syncp); 1331 tx_ring->tx_stats.queue_wakeup++; 1332 u64_stats_update_end(&tx_ring->syncp); 1333 } 1334 __netif_tx_unlock(txq); 1335 } 1336 1337 return tx_pkts; 1338 } 1339 1340 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags) 1341 { 1342 struct sk_buff *skb; 1343 1344 if (frags) 1345 skb = napi_get_frags(rx_ring->napi); 1346 else 1347 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 1348 rx_ring->rx_copybreak); 1349 1350 if (unlikely(!skb)) { 1351 u64_stats_update_begin(&rx_ring->syncp); 1352 rx_ring->rx_stats.skb_alloc_fail++; 1353 u64_stats_update_end(&rx_ring->syncp); 1354 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1355 "Failed to allocate skb. frags: %d\n", frags); 1356 return NULL; 1357 } 1358 1359 return skb; 1360 } 1361 1362 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 1363 struct ena_com_rx_buf_info *ena_bufs, 1364 u32 descs, 1365 u16 *next_to_clean) 1366 { 1367 struct sk_buff *skb; 1368 struct ena_rx_buffer *rx_info; 1369 u16 len, req_id, buf = 0; 1370 void *va; 1371 int rc; 1372 1373 len = ena_bufs[buf].len; 1374 req_id = ena_bufs[buf].req_id; 1375 1376 rc = validate_rx_req_id(rx_ring, req_id); 1377 if (unlikely(rc < 0)) 1378 return NULL; 1379 1380 rx_info = &rx_ring->rx_buffer_info[req_id]; 1381 1382 if (unlikely(!rx_info->page)) { 1383 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 1384 "Page is NULL\n"); 1385 return NULL; 1386 } 1387 1388 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1389 "rx_info %p page %p\n", 1390 rx_info, rx_info->page); 1391 1392 /* save virt address of first buffer */ 1393 va = page_address(rx_info->page) + rx_info->page_offset; 1394 prefetch(va + NET_IP_ALIGN); 1395 1396 if (len <= rx_ring->rx_copybreak) { 1397 skb = ena_alloc_skb(rx_ring, false); 1398 if (unlikely(!skb)) 1399 return NULL; 1400 1401 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1402 "rx allocated small packet. len %d. data_len %d\n", 1403 skb->len, skb->data_len); 1404 1405 /* sync this buffer for CPU use */ 1406 dma_sync_single_for_cpu(rx_ring->dev, 1407 dma_unmap_addr(&rx_info->ena_buf, paddr), 1408 len, 1409 DMA_FROM_DEVICE); 1410 skb_copy_to_linear_data(skb, va, len); 1411 dma_sync_single_for_device(rx_ring->dev, 1412 dma_unmap_addr(&rx_info->ena_buf, paddr), 1413 len, 1414 DMA_FROM_DEVICE); 1415 1416 skb_put(skb, len); 1417 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1418 rx_ring->free_ids[*next_to_clean] = req_id; 1419 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 1420 rx_ring->ring_size); 1421 return skb; 1422 } 1423 1424 skb = ena_alloc_skb(rx_ring, true); 1425 if (unlikely(!skb)) 1426 return NULL; 1427 1428 do { 1429 dma_unmap_page(rx_ring->dev, 1430 dma_unmap_addr(&rx_info->ena_buf, paddr), 1431 ENA_PAGE_SIZE, DMA_BIDIRECTIONAL); 1432 1433 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 1434 rx_info->page_offset, len, ENA_PAGE_SIZE); 1435 /* The offset is non zero only for the first buffer */ 1436 rx_info->page_offset = 0; 1437 1438 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1439 "rx skb updated. len %d. data_len %d\n", 1440 skb->len, skb->data_len); 1441 1442 rx_info->page = NULL; 1443 1444 rx_ring->free_ids[*next_to_clean] = req_id; 1445 *next_to_clean = 1446 ENA_RX_RING_IDX_NEXT(*next_to_clean, 1447 rx_ring->ring_size); 1448 if (likely(--descs == 0)) 1449 break; 1450 1451 buf++; 1452 len = ena_bufs[buf].len; 1453 req_id = ena_bufs[buf].req_id; 1454 1455 rc = validate_rx_req_id(rx_ring, req_id); 1456 if (unlikely(rc < 0)) 1457 return NULL; 1458 1459 rx_info = &rx_ring->rx_buffer_info[req_id]; 1460 } while (1); 1461 1462 return skb; 1463 } 1464 1465 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 1466 * @adapter: structure containing adapter specific data 1467 * @ena_rx_ctx: received packet context/metadata 1468 * @skb: skb currently being received and modified 1469 */ 1470 static void ena_rx_checksum(struct ena_ring *rx_ring, 1471 struct ena_com_rx_ctx *ena_rx_ctx, 1472 struct sk_buff *skb) 1473 { 1474 /* Rx csum disabled */ 1475 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 1476 skb->ip_summed = CHECKSUM_NONE; 1477 return; 1478 } 1479 1480 /* For fragmented packets the checksum isn't valid */ 1481 if (ena_rx_ctx->frag) { 1482 skb->ip_summed = CHECKSUM_NONE; 1483 return; 1484 } 1485 1486 /* if IP and error */ 1487 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1488 (ena_rx_ctx->l3_csum_err))) { 1489 /* ipv4 checksum error */ 1490 skb->ip_summed = CHECKSUM_NONE; 1491 u64_stats_update_begin(&rx_ring->syncp); 1492 rx_ring->rx_stats.bad_csum++; 1493 u64_stats_update_end(&rx_ring->syncp); 1494 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1495 "RX IPv4 header checksum error\n"); 1496 return; 1497 } 1498 1499 /* if TCP/UDP */ 1500 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1501 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 1502 if (unlikely(ena_rx_ctx->l4_csum_err)) { 1503 /* TCP/UDP checksum error */ 1504 u64_stats_update_begin(&rx_ring->syncp); 1505 rx_ring->rx_stats.bad_csum++; 1506 u64_stats_update_end(&rx_ring->syncp); 1507 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1508 "RX L4 checksum error\n"); 1509 skb->ip_summed = CHECKSUM_NONE; 1510 return; 1511 } 1512 1513 if (likely(ena_rx_ctx->l4_csum_checked)) { 1514 skb->ip_summed = CHECKSUM_UNNECESSARY; 1515 u64_stats_update_begin(&rx_ring->syncp); 1516 rx_ring->rx_stats.csum_good++; 1517 u64_stats_update_end(&rx_ring->syncp); 1518 } else { 1519 u64_stats_update_begin(&rx_ring->syncp); 1520 rx_ring->rx_stats.csum_unchecked++; 1521 u64_stats_update_end(&rx_ring->syncp); 1522 skb->ip_summed = CHECKSUM_NONE; 1523 } 1524 } else { 1525 skb->ip_summed = CHECKSUM_NONE; 1526 return; 1527 } 1528 1529 } 1530 1531 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1532 struct ena_com_rx_ctx *ena_rx_ctx, 1533 struct sk_buff *skb) 1534 { 1535 enum pkt_hash_types hash_type; 1536 1537 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1538 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1539 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1540 1541 hash_type = PKT_HASH_TYPE_L4; 1542 else 1543 hash_type = PKT_HASH_TYPE_NONE; 1544 1545 /* Override hash type if the packet is fragmented */ 1546 if (ena_rx_ctx->frag) 1547 hash_type = PKT_HASH_TYPE_NONE; 1548 1549 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1550 } 1551 } 1552 1553 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp) 1554 { 1555 struct ena_rx_buffer *rx_info; 1556 int ret; 1557 1558 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1559 xdp->data = page_address(rx_info->page) + 1560 rx_info->page_offset + rx_ring->rx_headroom; 1561 xdp_set_data_meta_invalid(xdp); 1562 xdp->data_hard_start = page_address(rx_info->page); 1563 xdp->data_end = xdp->data + rx_ring->ena_bufs[0].len; 1564 /* If for some reason we received a bigger packet than 1565 * we expect, then we simply drop it 1566 */ 1567 if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU)) 1568 return XDP_DROP; 1569 1570 ret = ena_xdp_execute(rx_ring, xdp, rx_info); 1571 1572 /* The xdp program might expand the headers */ 1573 if (ret == XDP_PASS) { 1574 rx_info->page_offset = xdp->data - xdp->data_hard_start; 1575 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; 1576 } 1577 1578 return ret; 1579 } 1580 /* ena_clean_rx_irq - Cleanup RX irq 1581 * @rx_ring: RX ring to clean 1582 * @napi: napi handler 1583 * @budget: how many packets driver is allowed to clean 1584 * 1585 * Returns the number of cleaned buffers. 1586 */ 1587 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1588 u32 budget) 1589 { 1590 u16 next_to_clean = rx_ring->next_to_clean; 1591 struct ena_com_rx_ctx ena_rx_ctx; 1592 struct ena_rx_buffer *rx_info; 1593 struct ena_adapter *adapter; 1594 u32 res_budget, work_done; 1595 int rx_copybreak_pkt = 0; 1596 int refill_threshold; 1597 struct sk_buff *skb; 1598 int refill_required; 1599 struct xdp_buff xdp; 1600 int total_len = 0; 1601 int xdp_verdict; 1602 int rc = 0; 1603 int i; 1604 1605 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1606 "%s qid %d\n", __func__, rx_ring->qid); 1607 res_budget = budget; 1608 xdp.rxq = &rx_ring->xdp_rxq; 1609 xdp.frame_sz = ENA_PAGE_SIZE; 1610 1611 do { 1612 xdp_verdict = XDP_PASS; 1613 skb = NULL; 1614 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1615 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1616 ena_rx_ctx.descs = 0; 1617 ena_rx_ctx.pkt_offset = 0; 1618 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1619 rx_ring->ena_com_io_sq, 1620 &ena_rx_ctx); 1621 if (unlikely(rc)) 1622 goto error; 1623 1624 if (unlikely(ena_rx_ctx.descs == 0)) 1625 break; 1626 1627 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1628 rx_info->page_offset = ena_rx_ctx.pkt_offset; 1629 1630 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1631 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1632 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1633 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1634 1635 if (ena_xdp_present_ring(rx_ring)) 1636 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp); 1637 1638 /* allocate skb and fill it */ 1639 if (xdp_verdict == XDP_PASS) 1640 skb = ena_rx_skb(rx_ring, 1641 rx_ring->ena_bufs, 1642 ena_rx_ctx.descs, 1643 &next_to_clean); 1644 1645 if (unlikely(!skb)) { 1646 if (xdp_verdict == XDP_TX) 1647 ena_free_rx_page(rx_ring, 1648 &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]); 1649 for (i = 0; i < ena_rx_ctx.descs; i++) { 1650 rx_ring->free_ids[next_to_clean] = 1651 rx_ring->ena_bufs[i].req_id; 1652 next_to_clean = 1653 ENA_RX_RING_IDX_NEXT(next_to_clean, 1654 rx_ring->ring_size); 1655 } 1656 if (xdp_verdict != XDP_PASS) { 1657 res_budget--; 1658 continue; 1659 } 1660 break; 1661 } 1662 1663 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1664 1665 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1666 1667 skb_record_rx_queue(skb, rx_ring->qid); 1668 1669 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) { 1670 total_len += rx_ring->ena_bufs[0].len; 1671 rx_copybreak_pkt++; 1672 napi_gro_receive(napi, skb); 1673 } else { 1674 total_len += skb->len; 1675 napi_gro_frags(napi); 1676 } 1677 1678 res_budget--; 1679 } while (likely(res_budget)); 1680 1681 work_done = budget - res_budget; 1682 rx_ring->per_napi_packets += work_done; 1683 u64_stats_update_begin(&rx_ring->syncp); 1684 rx_ring->rx_stats.bytes += total_len; 1685 rx_ring->rx_stats.cnt += work_done; 1686 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1687 u64_stats_update_end(&rx_ring->syncp); 1688 1689 rx_ring->next_to_clean = next_to_clean; 1690 1691 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 1692 refill_threshold = 1693 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1694 ENA_RX_REFILL_THRESH_PACKET); 1695 1696 /* Optimization, try to batch new rx buffers */ 1697 if (refill_required > refill_threshold) { 1698 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 1699 ena_refill_rx_bufs(rx_ring, refill_required); 1700 } 1701 1702 return work_done; 1703 1704 error: 1705 adapter = netdev_priv(rx_ring->netdev); 1706 1707 u64_stats_update_begin(&rx_ring->syncp); 1708 rx_ring->rx_stats.bad_desc_num++; 1709 u64_stats_update_end(&rx_ring->syncp); 1710 1711 /* Too many desc from the device. Trigger reset */ 1712 adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS; 1713 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 1714 1715 return 0; 1716 } 1717 1718 static void ena_dim_work(struct work_struct *w) 1719 { 1720 struct dim *dim = container_of(w, struct dim, work); 1721 struct dim_cq_moder cur_moder = 1722 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1723 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1724 1725 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1726 dim->state = DIM_START_MEASURE; 1727 } 1728 1729 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1730 { 1731 struct dim_sample dim_sample; 1732 struct ena_ring *rx_ring = ena_napi->rx_ring; 1733 1734 if (!rx_ring->per_napi_packets) 1735 return; 1736 1737 rx_ring->non_empty_napi_events++; 1738 1739 dim_update_sample(rx_ring->non_empty_napi_events, 1740 rx_ring->rx_stats.cnt, 1741 rx_ring->rx_stats.bytes, 1742 &dim_sample); 1743 1744 net_dim(&ena_napi->dim, dim_sample); 1745 1746 rx_ring->per_napi_packets = 0; 1747 } 1748 1749 static void ena_unmask_interrupt(struct ena_ring *tx_ring, 1750 struct ena_ring *rx_ring) 1751 { 1752 struct ena_eth_io_intr_reg intr_reg; 1753 u32 rx_interval = 0; 1754 /* Rx ring can be NULL when for XDP tx queues which don't have an 1755 * accompanying rx_ring pair. 1756 */ 1757 if (rx_ring) 1758 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1759 rx_ring->smoothed_interval : 1760 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1761 1762 /* Update intr register: rx intr delay, 1763 * tx intr delay and interrupt unmask 1764 */ 1765 ena_com_update_intr_reg(&intr_reg, 1766 rx_interval, 1767 tx_ring->smoothed_interval, 1768 true); 1769 1770 u64_stats_update_begin(&tx_ring->syncp); 1771 tx_ring->tx_stats.unmask_interrupt++; 1772 u64_stats_update_end(&tx_ring->syncp); 1773 /* It is a shared MSI-X. 1774 * Tx and Rx CQ have pointer to it. 1775 * So we use one of them to reach the intr reg 1776 * The Tx ring is used because the rx_ring is NULL for XDP queues 1777 */ 1778 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); 1779 } 1780 1781 static void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1782 struct ena_ring *rx_ring) 1783 { 1784 int cpu = get_cpu(); 1785 int numa_node; 1786 1787 /* Check only one ring since the 2 rings are running on the same cpu */ 1788 if (likely(tx_ring->cpu == cpu)) 1789 goto out; 1790 1791 numa_node = cpu_to_node(cpu); 1792 put_cpu(); 1793 1794 if (numa_node != NUMA_NO_NODE) { 1795 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1796 if (rx_ring) 1797 ena_com_update_numa_node(rx_ring->ena_com_io_cq, 1798 numa_node); 1799 } 1800 1801 tx_ring->cpu = cpu; 1802 if (rx_ring) 1803 rx_ring->cpu = cpu; 1804 1805 return; 1806 out: 1807 put_cpu(); 1808 } 1809 1810 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget) 1811 { 1812 u32 total_done = 0; 1813 u16 next_to_clean; 1814 u32 tx_bytes = 0; 1815 int tx_pkts = 0; 1816 u16 req_id; 1817 int rc; 1818 1819 if (unlikely(!xdp_ring)) 1820 return 0; 1821 next_to_clean = xdp_ring->next_to_clean; 1822 1823 while (tx_pkts < budget) { 1824 struct ena_tx_buffer *tx_info; 1825 struct xdp_frame *xdpf; 1826 1827 rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq, 1828 &req_id); 1829 if (rc) 1830 break; 1831 1832 rc = validate_xdp_req_id(xdp_ring, req_id); 1833 if (rc) 1834 break; 1835 1836 tx_info = &xdp_ring->tx_buffer_info[req_id]; 1837 xdpf = tx_info->xdpf; 1838 1839 tx_info->xdpf = NULL; 1840 tx_info->last_jiffies = 0; 1841 ena_unmap_tx_buff(xdp_ring, tx_info); 1842 1843 netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev, 1844 "tx_poll: q %d skb %p completed\n", xdp_ring->qid, 1845 xdpf); 1846 1847 tx_bytes += xdpf->len; 1848 tx_pkts++; 1849 total_done += tx_info->tx_descs; 1850 1851 __free_page(tx_info->xdp_rx_page); 1852 xdp_ring->free_ids[next_to_clean] = req_id; 1853 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 1854 xdp_ring->ring_size); 1855 } 1856 1857 xdp_ring->next_to_clean = next_to_clean; 1858 ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done); 1859 ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq); 1860 1861 netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev, 1862 "tx_poll: q %d done. total pkts: %d\n", 1863 xdp_ring->qid, tx_pkts); 1864 1865 return tx_pkts; 1866 } 1867 1868 static int ena_io_poll(struct napi_struct *napi, int budget) 1869 { 1870 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1871 struct ena_ring *tx_ring, *rx_ring; 1872 int tx_work_done; 1873 int rx_work_done = 0; 1874 int tx_budget; 1875 int napi_comp_call = 0; 1876 int ret; 1877 1878 tx_ring = ena_napi->tx_ring; 1879 rx_ring = ena_napi->rx_ring; 1880 1881 tx_ring->first_interrupt = ena_napi->first_interrupt; 1882 rx_ring->first_interrupt = ena_napi->first_interrupt; 1883 1884 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1885 1886 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1887 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1888 napi_complete_done(napi, 0); 1889 return 0; 1890 } 1891 1892 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1893 /* On netpoll the budget is zero and the handler should only clean the 1894 * tx completions. 1895 */ 1896 if (likely(budget)) 1897 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1898 1899 /* If the device is about to reset or down, avoid unmask 1900 * the interrupt and return 0 so NAPI won't reschedule 1901 */ 1902 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1903 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1904 napi_complete_done(napi, 0); 1905 ret = 0; 1906 1907 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1908 napi_comp_call = 1; 1909 1910 /* Update numa and unmask the interrupt only when schedule 1911 * from the interrupt context (vs from sk_busy_loop) 1912 */ 1913 if (napi_complete_done(napi, rx_work_done) && 1914 READ_ONCE(ena_napi->interrupts_masked)) { 1915 smp_rmb(); /* make sure interrupts_masked is read */ 1916 WRITE_ONCE(ena_napi->interrupts_masked, false); 1917 /* We apply adaptive moderation on Rx path only. 1918 * Tx uses static interrupt moderation. 1919 */ 1920 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1921 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1922 1923 ena_unmask_interrupt(tx_ring, rx_ring); 1924 } 1925 1926 ena_update_ring_numa_node(tx_ring, rx_ring); 1927 1928 ret = rx_work_done; 1929 } else { 1930 ret = budget; 1931 } 1932 1933 u64_stats_update_begin(&tx_ring->syncp); 1934 tx_ring->tx_stats.napi_comp += napi_comp_call; 1935 tx_ring->tx_stats.tx_poll++; 1936 u64_stats_update_end(&tx_ring->syncp); 1937 1938 return ret; 1939 } 1940 1941 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1942 { 1943 struct ena_adapter *adapter = (struct ena_adapter *)data; 1944 1945 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1946 1947 /* Don't call the aenq handler before probe is done */ 1948 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1949 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1950 1951 return IRQ_HANDLED; 1952 } 1953 1954 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1955 * @irq: interrupt number 1956 * @data: pointer to a network interface private napi device structure 1957 */ 1958 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1959 { 1960 struct ena_napi *ena_napi = data; 1961 1962 ena_napi->first_interrupt = true; 1963 1964 WRITE_ONCE(ena_napi->interrupts_masked, true); 1965 smp_wmb(); /* write interrupts_masked before calling napi */ 1966 1967 napi_schedule_irqoff(&ena_napi->napi); 1968 1969 return IRQ_HANDLED; 1970 } 1971 1972 /* Reserve a single MSI-X vector for management (admin + aenq). 1973 * plus reserve one vector for each potential io queue. 1974 * the number of potential io queues is the minimum of what the device 1975 * supports and the number of vCPUs. 1976 */ 1977 static int ena_enable_msix(struct ena_adapter *adapter) 1978 { 1979 int msix_vecs, irq_cnt; 1980 1981 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1982 netif_err(adapter, probe, adapter->netdev, 1983 "Error, MSI-X is already enabled\n"); 1984 return -EPERM; 1985 } 1986 1987 /* Reserved the max msix vectors we might need */ 1988 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); 1989 netif_dbg(adapter, probe, adapter->netdev, 1990 "trying to enable MSI-X, vectors %d\n", msix_vecs); 1991 1992 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1993 msix_vecs, PCI_IRQ_MSIX); 1994 1995 if (irq_cnt < 0) { 1996 netif_err(adapter, probe, adapter->netdev, 1997 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1998 return -ENOSPC; 1999 } 2000 2001 if (irq_cnt != msix_vecs) { 2002 netif_notice(adapter, probe, adapter->netdev, 2003 "enable only %d MSI-X (out of %d), reduce the number of queues\n", 2004 irq_cnt, msix_vecs); 2005 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 2006 } 2007 2008 if (ena_init_rx_cpu_rmap(adapter)) 2009 netif_warn(adapter, probe, adapter->netdev, 2010 "Failed to map IRQs to CPUs\n"); 2011 2012 adapter->msix_vecs = irq_cnt; 2013 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 2014 2015 return 0; 2016 } 2017 2018 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 2019 { 2020 u32 cpu; 2021 2022 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 2023 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 2024 pci_name(adapter->pdev)); 2025 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 2026 ena_intr_msix_mgmnt; 2027 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 2028 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 2029 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 2030 cpu = cpumask_first(cpu_online_mask); 2031 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 2032 cpumask_set_cpu(cpu, 2033 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 2034 } 2035 2036 static void ena_setup_io_intr(struct ena_adapter *adapter) 2037 { 2038 struct net_device *netdev; 2039 int irq_idx, i, cpu; 2040 int io_queue_count; 2041 2042 netdev = adapter->netdev; 2043 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2044 2045 for (i = 0; i < io_queue_count; i++) { 2046 irq_idx = ENA_IO_IRQ_IDX(i); 2047 cpu = i % num_online_cpus(); 2048 2049 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 2050 "%s-Tx-Rx-%d", netdev->name, i); 2051 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 2052 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 2053 adapter->irq_tbl[irq_idx].vector = 2054 pci_irq_vector(adapter->pdev, irq_idx); 2055 adapter->irq_tbl[irq_idx].cpu = cpu; 2056 2057 cpumask_set_cpu(cpu, 2058 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 2059 } 2060 } 2061 2062 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 2063 { 2064 unsigned long flags = 0; 2065 struct ena_irq *irq; 2066 int rc; 2067 2068 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 2069 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 2070 irq->data); 2071 if (rc) { 2072 netif_err(adapter, probe, adapter->netdev, 2073 "failed to request admin irq\n"); 2074 return rc; 2075 } 2076 2077 netif_dbg(adapter, probe, adapter->netdev, 2078 "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 2079 irq->affinity_hint_mask.bits[0], irq->vector); 2080 2081 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 2082 2083 return rc; 2084 } 2085 2086 static int ena_request_io_irq(struct ena_adapter *adapter) 2087 { 2088 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2089 unsigned long flags = 0; 2090 struct ena_irq *irq; 2091 int rc = 0, i, k; 2092 2093 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 2094 netif_err(adapter, ifup, adapter->netdev, 2095 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 2096 return -EINVAL; 2097 } 2098 2099 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 2100 irq = &adapter->irq_tbl[i]; 2101 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 2102 irq->data); 2103 if (rc) { 2104 netif_err(adapter, ifup, adapter->netdev, 2105 "Failed to request I/O IRQ. index %d rc %d\n", 2106 i, rc); 2107 goto err; 2108 } 2109 2110 netif_dbg(adapter, ifup, adapter->netdev, 2111 "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 2112 i, irq->affinity_hint_mask.bits[0], irq->vector); 2113 2114 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 2115 } 2116 2117 return rc; 2118 2119 err: 2120 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 2121 irq = &adapter->irq_tbl[k]; 2122 free_irq(irq->vector, irq->data); 2123 } 2124 2125 return rc; 2126 } 2127 2128 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 2129 { 2130 struct ena_irq *irq; 2131 2132 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 2133 synchronize_irq(irq->vector); 2134 irq_set_affinity_hint(irq->vector, NULL); 2135 free_irq(irq->vector, irq->data); 2136 } 2137 2138 static void ena_free_io_irq(struct ena_adapter *adapter) 2139 { 2140 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2141 struct ena_irq *irq; 2142 int i; 2143 2144 #ifdef CONFIG_RFS_ACCEL 2145 if (adapter->msix_vecs >= 1) { 2146 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 2147 adapter->netdev->rx_cpu_rmap = NULL; 2148 } 2149 #endif /* CONFIG_RFS_ACCEL */ 2150 2151 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 2152 irq = &adapter->irq_tbl[i]; 2153 irq_set_affinity_hint(irq->vector, NULL); 2154 free_irq(irq->vector, irq->data); 2155 } 2156 } 2157 2158 static void ena_disable_msix(struct ena_adapter *adapter) 2159 { 2160 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 2161 pci_free_irq_vectors(adapter->pdev); 2162 } 2163 2164 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 2165 { 2166 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2167 int i; 2168 2169 if (!netif_running(adapter->netdev)) 2170 return; 2171 2172 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) 2173 synchronize_irq(adapter->irq_tbl[i].vector); 2174 } 2175 2176 static void ena_del_napi_in_range(struct ena_adapter *adapter, 2177 int first_index, 2178 int count) 2179 { 2180 int i; 2181 2182 for (i = first_index; i < first_index + count; i++) { 2183 netif_napi_del(&adapter->ena_napi[i].napi); 2184 2185 WARN_ON(!ENA_IS_XDP_INDEX(adapter, i) && 2186 adapter->ena_napi[i].xdp_ring); 2187 } 2188 } 2189 2190 static void ena_init_napi_in_range(struct ena_adapter *adapter, 2191 int first_index, int count) 2192 { 2193 int i; 2194 2195 for (i = first_index; i < first_index + count; i++) { 2196 struct ena_napi *napi = &adapter->ena_napi[i]; 2197 2198 netif_napi_add(adapter->netdev, 2199 &napi->napi, 2200 ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll, 2201 ENA_NAPI_BUDGET); 2202 2203 if (!ENA_IS_XDP_INDEX(adapter, i)) { 2204 napi->rx_ring = &adapter->rx_ring[i]; 2205 napi->tx_ring = &adapter->tx_ring[i]; 2206 } else { 2207 napi->xdp_ring = &adapter->tx_ring[i]; 2208 } 2209 napi->qid = i; 2210 } 2211 } 2212 2213 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 2214 int first_index, 2215 int count) 2216 { 2217 int i; 2218 2219 for (i = first_index; i < first_index + count; i++) 2220 napi_disable(&adapter->ena_napi[i].napi); 2221 } 2222 2223 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 2224 int first_index, 2225 int count) 2226 { 2227 int i; 2228 2229 for (i = first_index; i < first_index + count; i++) 2230 napi_enable(&adapter->ena_napi[i].napi); 2231 } 2232 2233 /* Configure the Rx forwarding */ 2234 static int ena_rss_configure(struct ena_adapter *adapter) 2235 { 2236 struct ena_com_dev *ena_dev = adapter->ena_dev; 2237 int rc; 2238 2239 /* In case the RSS table wasn't initialized by probe */ 2240 if (!ena_dev->rss.tbl_log_size) { 2241 rc = ena_rss_init_default(adapter); 2242 if (rc && (rc != -EOPNOTSUPP)) { 2243 netif_err(adapter, ifup, adapter->netdev, 2244 "Failed to init RSS rc: %d\n", rc); 2245 return rc; 2246 } 2247 } 2248 2249 /* Set indirect table */ 2250 rc = ena_com_indirect_table_set(ena_dev); 2251 if (unlikely(rc && rc != -EOPNOTSUPP)) 2252 return rc; 2253 2254 /* Configure hash function (if supported) */ 2255 rc = ena_com_set_hash_function(ena_dev); 2256 if (unlikely(rc && (rc != -EOPNOTSUPP))) 2257 return rc; 2258 2259 /* Configure hash inputs (if supported) */ 2260 rc = ena_com_set_hash_ctrl(ena_dev); 2261 if (unlikely(rc && (rc != -EOPNOTSUPP))) 2262 return rc; 2263 2264 return 0; 2265 } 2266 2267 static int ena_up_complete(struct ena_adapter *adapter) 2268 { 2269 int rc; 2270 2271 rc = ena_rss_configure(adapter); 2272 if (rc) 2273 return rc; 2274 2275 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 2276 2277 ena_refill_all_rx_bufs(adapter); 2278 2279 /* enable transmits */ 2280 netif_tx_start_all_queues(adapter->netdev); 2281 2282 ena_napi_enable_in_range(adapter, 2283 0, 2284 adapter->xdp_num_queues + adapter->num_io_queues); 2285 2286 return 0; 2287 } 2288 2289 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 2290 { 2291 struct ena_com_create_io_ctx ctx; 2292 struct ena_com_dev *ena_dev; 2293 struct ena_ring *tx_ring; 2294 u32 msix_vector; 2295 u16 ena_qid; 2296 int rc; 2297 2298 ena_dev = adapter->ena_dev; 2299 2300 tx_ring = &adapter->tx_ring[qid]; 2301 msix_vector = ENA_IO_IRQ_IDX(qid); 2302 ena_qid = ENA_IO_TXQ_IDX(qid); 2303 2304 memset(&ctx, 0x0, sizeof(ctx)); 2305 2306 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 2307 ctx.qid = ena_qid; 2308 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 2309 ctx.msix_vector = msix_vector; 2310 ctx.queue_size = tx_ring->ring_size; 2311 ctx.numa_node = cpu_to_node(tx_ring->cpu); 2312 2313 rc = ena_com_create_io_queue(ena_dev, &ctx); 2314 if (rc) { 2315 netif_err(adapter, ifup, adapter->netdev, 2316 "Failed to create I/O TX queue num %d rc: %d\n", 2317 qid, rc); 2318 return rc; 2319 } 2320 2321 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 2322 &tx_ring->ena_com_io_sq, 2323 &tx_ring->ena_com_io_cq); 2324 if (rc) { 2325 netif_err(adapter, ifup, adapter->netdev, 2326 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 2327 qid, rc); 2328 ena_com_destroy_io_queue(ena_dev, ena_qid); 2329 return rc; 2330 } 2331 2332 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 2333 return rc; 2334 } 2335 2336 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 2337 int first_index, int count) 2338 { 2339 struct ena_com_dev *ena_dev = adapter->ena_dev; 2340 int rc, i; 2341 2342 for (i = first_index; i < first_index + count; i++) { 2343 rc = ena_create_io_tx_queue(adapter, i); 2344 if (rc) 2345 goto create_err; 2346 } 2347 2348 return 0; 2349 2350 create_err: 2351 while (i-- > first_index) 2352 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 2353 2354 return rc; 2355 } 2356 2357 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 2358 { 2359 struct ena_com_dev *ena_dev; 2360 struct ena_com_create_io_ctx ctx; 2361 struct ena_ring *rx_ring; 2362 u32 msix_vector; 2363 u16 ena_qid; 2364 int rc; 2365 2366 ena_dev = adapter->ena_dev; 2367 2368 rx_ring = &adapter->rx_ring[qid]; 2369 msix_vector = ENA_IO_IRQ_IDX(qid); 2370 ena_qid = ENA_IO_RXQ_IDX(qid); 2371 2372 memset(&ctx, 0x0, sizeof(ctx)); 2373 2374 ctx.qid = ena_qid; 2375 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 2376 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 2377 ctx.msix_vector = msix_vector; 2378 ctx.queue_size = rx_ring->ring_size; 2379 ctx.numa_node = cpu_to_node(rx_ring->cpu); 2380 2381 rc = ena_com_create_io_queue(ena_dev, &ctx); 2382 if (rc) { 2383 netif_err(adapter, ifup, adapter->netdev, 2384 "Failed to create I/O RX queue num %d rc: %d\n", 2385 qid, rc); 2386 return rc; 2387 } 2388 2389 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 2390 &rx_ring->ena_com_io_sq, 2391 &rx_ring->ena_com_io_cq); 2392 if (rc) { 2393 netif_err(adapter, ifup, adapter->netdev, 2394 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 2395 qid, rc); 2396 goto err; 2397 } 2398 2399 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 2400 2401 return rc; 2402 err: 2403 ena_com_destroy_io_queue(ena_dev, ena_qid); 2404 return rc; 2405 } 2406 2407 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 2408 { 2409 struct ena_com_dev *ena_dev = adapter->ena_dev; 2410 int rc, i; 2411 2412 for (i = 0; i < adapter->num_io_queues; i++) { 2413 rc = ena_create_io_rx_queue(adapter, i); 2414 if (rc) 2415 goto create_err; 2416 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 2417 } 2418 2419 return 0; 2420 2421 create_err: 2422 while (i--) { 2423 cancel_work_sync(&adapter->ena_napi[i].dim.work); 2424 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 2425 } 2426 2427 return rc; 2428 } 2429 2430 static void set_io_rings_size(struct ena_adapter *adapter, 2431 int new_tx_size, 2432 int new_rx_size) 2433 { 2434 int i; 2435 2436 for (i = 0; i < adapter->num_io_queues; i++) { 2437 adapter->tx_ring[i].ring_size = new_tx_size; 2438 adapter->rx_ring[i].ring_size = new_rx_size; 2439 } 2440 } 2441 2442 /* This function allows queue allocation to backoff when the system is 2443 * low on memory. If there is not enough memory to allocate io queues 2444 * the driver will try to allocate smaller queues. 2445 * 2446 * The backoff algorithm is as follows: 2447 * 1. Try to allocate TX and RX and if successful. 2448 * 1.1. return success 2449 * 2450 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 2451 * 2452 * 3. If TX or RX is smaller than 256 2453 * 3.1. return failure. 2454 * 4. else 2455 * 4.1. go back to 1. 2456 */ 2457 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 2458 { 2459 int rc, cur_rx_ring_size, cur_tx_ring_size; 2460 int new_rx_ring_size, new_tx_ring_size; 2461 2462 /* current queue sizes might be set to smaller than the requested 2463 * ones due to past queue allocation failures. 2464 */ 2465 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 2466 adapter->requested_rx_ring_size); 2467 2468 while (1) { 2469 if (ena_xdp_present(adapter)) { 2470 rc = ena_setup_and_create_all_xdp_queues(adapter); 2471 2472 if (rc) 2473 goto err_setup_tx; 2474 } 2475 rc = ena_setup_tx_resources_in_range(adapter, 2476 0, 2477 adapter->num_io_queues); 2478 if (rc) 2479 goto err_setup_tx; 2480 2481 rc = ena_create_io_tx_queues_in_range(adapter, 2482 0, 2483 adapter->num_io_queues); 2484 if (rc) 2485 goto err_create_tx_queues; 2486 2487 rc = ena_setup_all_rx_resources(adapter); 2488 if (rc) 2489 goto err_setup_rx; 2490 2491 rc = ena_create_all_io_rx_queues(adapter); 2492 if (rc) 2493 goto err_create_rx_queues; 2494 2495 return 0; 2496 2497 err_create_rx_queues: 2498 ena_free_all_io_rx_resources(adapter); 2499 err_setup_rx: 2500 ena_destroy_all_tx_queues(adapter); 2501 err_create_tx_queues: 2502 ena_free_all_io_tx_resources(adapter); 2503 err_setup_tx: 2504 if (rc != -ENOMEM) { 2505 netif_err(adapter, ifup, adapter->netdev, 2506 "Queue creation failed with error code %d\n", 2507 rc); 2508 return rc; 2509 } 2510 2511 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 2512 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 2513 2514 netif_err(adapter, ifup, adapter->netdev, 2515 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 2516 cur_tx_ring_size, cur_rx_ring_size); 2517 2518 new_tx_ring_size = cur_tx_ring_size; 2519 new_rx_ring_size = cur_rx_ring_size; 2520 2521 /* Decrease the size of the larger queue, or 2522 * decrease both if they are the same size. 2523 */ 2524 if (cur_rx_ring_size <= cur_tx_ring_size) 2525 new_tx_ring_size = cur_tx_ring_size / 2; 2526 if (cur_rx_ring_size >= cur_tx_ring_size) 2527 new_rx_ring_size = cur_rx_ring_size / 2; 2528 2529 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 2530 new_rx_ring_size < ENA_MIN_RING_SIZE) { 2531 netif_err(adapter, ifup, adapter->netdev, 2532 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 2533 ENA_MIN_RING_SIZE); 2534 return rc; 2535 } 2536 2537 netif_err(adapter, ifup, adapter->netdev, 2538 "Retrying queue creation with sizes TX=%d, RX=%d\n", 2539 new_tx_ring_size, 2540 new_rx_ring_size); 2541 2542 set_io_rings_size(adapter, new_tx_ring_size, 2543 new_rx_ring_size); 2544 } 2545 } 2546 2547 static int ena_up(struct ena_adapter *adapter) 2548 { 2549 int io_queue_count, rc, i; 2550 2551 netdev_dbg(adapter->netdev, "%s\n", __func__); 2552 2553 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2554 ena_setup_io_intr(adapter); 2555 2556 /* napi poll functions should be initialized before running 2557 * request_irq(), to handle a rare condition where there is a pending 2558 * interrupt, causing the ISR to fire immediately while the poll 2559 * function wasn't set yet, causing a null dereference 2560 */ 2561 ena_init_napi_in_range(adapter, 0, io_queue_count); 2562 2563 rc = ena_request_io_irq(adapter); 2564 if (rc) 2565 goto err_req_irq; 2566 2567 rc = create_queues_with_size_backoff(adapter); 2568 if (rc) 2569 goto err_create_queues_with_backoff; 2570 2571 rc = ena_up_complete(adapter); 2572 if (rc) 2573 goto err_up; 2574 2575 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2576 netif_carrier_on(adapter->netdev); 2577 2578 u64_stats_update_begin(&adapter->syncp); 2579 adapter->dev_stats.interface_up++; 2580 u64_stats_update_end(&adapter->syncp); 2581 2582 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2583 2584 /* Enable completion queues interrupt */ 2585 for (i = 0; i < adapter->num_io_queues; i++) 2586 ena_unmask_interrupt(&adapter->tx_ring[i], 2587 &adapter->rx_ring[i]); 2588 2589 /* schedule napi in case we had pending packets 2590 * from the last time we disable napi 2591 */ 2592 for (i = 0; i < io_queue_count; i++) 2593 napi_schedule(&adapter->ena_napi[i].napi); 2594 2595 return rc; 2596 2597 err_up: 2598 ena_destroy_all_tx_queues(adapter); 2599 ena_free_all_io_tx_resources(adapter); 2600 ena_destroy_all_rx_queues(adapter); 2601 ena_free_all_io_rx_resources(adapter); 2602 err_create_queues_with_backoff: 2603 ena_free_io_irq(adapter); 2604 err_req_irq: 2605 ena_del_napi_in_range(adapter, 0, io_queue_count); 2606 2607 return rc; 2608 } 2609 2610 static void ena_down(struct ena_adapter *adapter) 2611 { 2612 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2613 2614 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__); 2615 2616 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2617 2618 u64_stats_update_begin(&adapter->syncp); 2619 adapter->dev_stats.interface_down++; 2620 u64_stats_update_end(&adapter->syncp); 2621 2622 netif_carrier_off(adapter->netdev); 2623 netif_tx_disable(adapter->netdev); 2624 2625 /* After this point the napi handler won't enable the tx queue */ 2626 ena_napi_disable_in_range(adapter, 0, io_queue_count); 2627 2628 /* After destroy the queue there won't be any new interrupts */ 2629 2630 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 2631 int rc; 2632 2633 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2634 if (rc) 2635 dev_err(&adapter->pdev->dev, "Device reset failed\n"); 2636 /* stop submitting admin commands on a device that was reset */ 2637 ena_com_set_admin_running_state(adapter->ena_dev, false); 2638 } 2639 2640 ena_destroy_all_io_queues(adapter); 2641 2642 ena_disable_io_intr_sync(adapter); 2643 ena_free_io_irq(adapter); 2644 ena_del_napi_in_range(adapter, 0, io_queue_count); 2645 2646 ena_free_all_tx_bufs(adapter); 2647 ena_free_all_rx_bufs(adapter); 2648 ena_free_all_io_tx_resources(adapter); 2649 ena_free_all_io_rx_resources(adapter); 2650 } 2651 2652 /* ena_open - Called when a network interface is made active 2653 * @netdev: network interface device structure 2654 * 2655 * Returns 0 on success, negative value on failure 2656 * 2657 * The open entry point is called when a network interface is made 2658 * active by the system (IFF_UP). At this point all resources needed 2659 * for transmit and receive operations are allocated, the interrupt 2660 * handler is registered with the OS, the watchdog timer is started, 2661 * and the stack is notified that the interface is ready. 2662 */ 2663 static int ena_open(struct net_device *netdev) 2664 { 2665 struct ena_adapter *adapter = netdev_priv(netdev); 2666 int rc; 2667 2668 /* Notify the stack of the actual queue counts. */ 2669 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 2670 if (rc) { 2671 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 2672 return rc; 2673 } 2674 2675 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 2676 if (rc) { 2677 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2678 return rc; 2679 } 2680 2681 rc = ena_up(adapter); 2682 if (rc) 2683 return rc; 2684 2685 return rc; 2686 } 2687 2688 /* ena_close - Disables a network interface 2689 * @netdev: network interface device structure 2690 * 2691 * Returns 0, this is not allowed to fail 2692 * 2693 * The close entry point is called when an interface is de-activated 2694 * by the OS. The hardware is still under the drivers control, but 2695 * needs to be disabled. A global MAC reset is issued to stop the 2696 * hardware, and all transmit and receive resources are freed. 2697 */ 2698 static int ena_close(struct net_device *netdev) 2699 { 2700 struct ena_adapter *adapter = netdev_priv(netdev); 2701 2702 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2703 2704 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2705 return 0; 2706 2707 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2708 ena_down(adapter); 2709 2710 /* Check for device status and issue reset if needed*/ 2711 check_for_admin_com_state(adapter); 2712 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2713 netif_err(adapter, ifdown, adapter->netdev, 2714 "Destroy failure, restarting device\n"); 2715 ena_dump_stats_to_dmesg(adapter); 2716 /* rtnl lock already obtained in dev_ioctl() layer */ 2717 ena_destroy_device(adapter, false); 2718 ena_restore_device(adapter); 2719 } 2720 2721 return 0; 2722 } 2723 2724 int ena_update_queue_sizes(struct ena_adapter *adapter, 2725 u32 new_tx_size, 2726 u32 new_rx_size) 2727 { 2728 bool dev_was_up; 2729 2730 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2731 ena_close(adapter->netdev); 2732 adapter->requested_tx_ring_size = new_tx_size; 2733 adapter->requested_rx_ring_size = new_rx_size; 2734 ena_init_io_rings(adapter, 2735 0, 2736 adapter->xdp_num_queues + 2737 adapter->num_io_queues); 2738 return dev_was_up ? ena_up(adapter) : 0; 2739 } 2740 2741 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2742 { 2743 struct ena_com_dev *ena_dev = adapter->ena_dev; 2744 int prev_channel_count; 2745 bool dev_was_up; 2746 2747 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2748 ena_close(adapter->netdev); 2749 prev_channel_count = adapter->num_io_queues; 2750 adapter->num_io_queues = new_channel_count; 2751 if (ena_xdp_present(adapter) && 2752 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { 2753 adapter->xdp_first_ring = new_channel_count; 2754 adapter->xdp_num_queues = new_channel_count; 2755 if (prev_channel_count > new_channel_count) 2756 ena_xdp_exchange_program_rx_in_range(adapter, 2757 NULL, 2758 new_channel_count, 2759 prev_channel_count); 2760 else 2761 ena_xdp_exchange_program_rx_in_range(adapter, 2762 adapter->xdp_bpf_prog, 2763 prev_channel_count, 2764 new_channel_count); 2765 } 2766 2767 /* We need to destroy the rss table so that the indirection 2768 * table will be reinitialized by ena_up() 2769 */ 2770 ena_com_rss_destroy(ena_dev); 2771 ena_init_io_rings(adapter, 2772 0, 2773 adapter->xdp_num_queues + 2774 adapter->num_io_queues); 2775 return dev_was_up ? ena_open(adapter->netdev) : 0; 2776 } 2777 2778 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, 2779 struct sk_buff *skb, 2780 bool disable_meta_caching) 2781 { 2782 u32 mss = skb_shinfo(skb)->gso_size; 2783 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2784 u8 l4_protocol = 0; 2785 2786 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2787 ena_tx_ctx->l4_csum_enable = 1; 2788 if (mss) { 2789 ena_tx_ctx->tso_enable = 1; 2790 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2791 ena_tx_ctx->l4_csum_partial = 0; 2792 } else { 2793 ena_tx_ctx->tso_enable = 0; 2794 ena_meta->l4_hdr_len = 0; 2795 ena_tx_ctx->l4_csum_partial = 1; 2796 } 2797 2798 switch (ip_hdr(skb)->version) { 2799 case IPVERSION: 2800 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2801 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2802 ena_tx_ctx->df = 1; 2803 if (mss) 2804 ena_tx_ctx->l3_csum_enable = 1; 2805 l4_protocol = ip_hdr(skb)->protocol; 2806 break; 2807 case 6: 2808 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2809 l4_protocol = ipv6_hdr(skb)->nexthdr; 2810 break; 2811 default: 2812 break; 2813 } 2814 2815 if (l4_protocol == IPPROTO_TCP) 2816 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2817 else 2818 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2819 2820 ena_meta->mss = mss; 2821 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2822 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2823 ena_tx_ctx->meta_valid = 1; 2824 } else if (disable_meta_caching) { 2825 memset(ena_meta, 0, sizeof(*ena_meta)); 2826 ena_tx_ctx->meta_valid = 1; 2827 } else { 2828 ena_tx_ctx->meta_valid = 0; 2829 } 2830 } 2831 2832 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2833 struct sk_buff *skb) 2834 { 2835 int num_frags, header_len, rc; 2836 2837 num_frags = skb_shinfo(skb)->nr_frags; 2838 header_len = skb_headlen(skb); 2839 2840 if (num_frags < tx_ring->sgl_size) 2841 return 0; 2842 2843 if ((num_frags == tx_ring->sgl_size) && 2844 (header_len < tx_ring->tx_max_header_size)) 2845 return 0; 2846 2847 u64_stats_update_begin(&tx_ring->syncp); 2848 tx_ring->tx_stats.linearize++; 2849 u64_stats_update_end(&tx_ring->syncp); 2850 2851 rc = skb_linearize(skb); 2852 if (unlikely(rc)) { 2853 u64_stats_update_begin(&tx_ring->syncp); 2854 tx_ring->tx_stats.linearize_failed++; 2855 u64_stats_update_end(&tx_ring->syncp); 2856 } 2857 2858 return rc; 2859 } 2860 2861 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2862 struct ena_tx_buffer *tx_info, 2863 struct sk_buff *skb, 2864 void **push_hdr, 2865 u16 *header_len) 2866 { 2867 struct ena_adapter *adapter = tx_ring->adapter; 2868 struct ena_com_buf *ena_buf; 2869 dma_addr_t dma; 2870 u32 skb_head_len, frag_len, last_frag; 2871 u16 push_len = 0; 2872 u16 delta = 0; 2873 int i = 0; 2874 2875 skb_head_len = skb_headlen(skb); 2876 tx_info->skb = skb; 2877 ena_buf = tx_info->bufs; 2878 2879 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2880 /* When the device is LLQ mode, the driver will copy 2881 * the header into the device memory space. 2882 * the ena_com layer assume the header is in a linear 2883 * memory space. 2884 * This assumption might be wrong since part of the header 2885 * can be in the fragmented buffers. 2886 * Use skb_header_pointer to make sure the header is in a 2887 * linear memory space. 2888 */ 2889 2890 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2891 *push_hdr = skb_header_pointer(skb, 0, push_len, 2892 tx_ring->push_buf_intermediate_buf); 2893 *header_len = push_len; 2894 if (unlikely(skb->data != *push_hdr)) { 2895 u64_stats_update_begin(&tx_ring->syncp); 2896 tx_ring->tx_stats.llq_buffer_copy++; 2897 u64_stats_update_end(&tx_ring->syncp); 2898 2899 delta = push_len - skb_head_len; 2900 } 2901 } else { 2902 *push_hdr = NULL; 2903 *header_len = min_t(u32, skb_head_len, 2904 tx_ring->tx_max_header_size); 2905 } 2906 2907 netif_dbg(adapter, tx_queued, adapter->netdev, 2908 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2909 *push_hdr, push_len); 2910 2911 if (skb_head_len > push_len) { 2912 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2913 skb_head_len - push_len, DMA_TO_DEVICE); 2914 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2915 goto error_report_dma_error; 2916 2917 ena_buf->paddr = dma; 2918 ena_buf->len = skb_head_len - push_len; 2919 2920 ena_buf++; 2921 tx_info->num_of_bufs++; 2922 tx_info->map_linear_data = 1; 2923 } else { 2924 tx_info->map_linear_data = 0; 2925 } 2926 2927 last_frag = skb_shinfo(skb)->nr_frags; 2928 2929 for (i = 0; i < last_frag; i++) { 2930 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2931 2932 frag_len = skb_frag_size(frag); 2933 2934 if (unlikely(delta >= frag_len)) { 2935 delta -= frag_len; 2936 continue; 2937 } 2938 2939 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2940 frag_len - delta, DMA_TO_DEVICE); 2941 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2942 goto error_report_dma_error; 2943 2944 ena_buf->paddr = dma; 2945 ena_buf->len = frag_len - delta; 2946 ena_buf++; 2947 tx_info->num_of_bufs++; 2948 delta = 0; 2949 } 2950 2951 return 0; 2952 2953 error_report_dma_error: 2954 u64_stats_update_begin(&tx_ring->syncp); 2955 tx_ring->tx_stats.dma_mapping_err++; 2956 u64_stats_update_end(&tx_ring->syncp); 2957 netdev_warn(adapter->netdev, "failed to map skb\n"); 2958 2959 tx_info->skb = NULL; 2960 2961 tx_info->num_of_bufs += i; 2962 ena_unmap_tx_buff(tx_ring, tx_info); 2963 2964 return -EINVAL; 2965 } 2966 2967 /* Called with netif_tx_lock. */ 2968 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2969 { 2970 struct ena_adapter *adapter = netdev_priv(dev); 2971 struct ena_tx_buffer *tx_info; 2972 struct ena_com_tx_ctx ena_tx_ctx; 2973 struct ena_ring *tx_ring; 2974 struct netdev_queue *txq; 2975 void *push_hdr; 2976 u16 next_to_use, req_id, header_len; 2977 int qid, rc; 2978 2979 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2980 /* Determine which tx ring we will be placed on */ 2981 qid = skb_get_queue_mapping(skb); 2982 tx_ring = &adapter->tx_ring[qid]; 2983 txq = netdev_get_tx_queue(dev, qid); 2984 2985 rc = ena_check_and_linearize_skb(tx_ring, skb); 2986 if (unlikely(rc)) 2987 goto error_drop_packet; 2988 2989 skb_tx_timestamp(skb); 2990 2991 next_to_use = tx_ring->next_to_use; 2992 req_id = tx_ring->free_ids[next_to_use]; 2993 tx_info = &tx_ring->tx_buffer_info[req_id]; 2994 tx_info->num_of_bufs = 0; 2995 2996 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 2997 2998 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 2999 if (unlikely(rc)) 3000 goto error_drop_packet; 3001 3002 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 3003 ena_tx_ctx.ena_bufs = tx_info->bufs; 3004 ena_tx_ctx.push_header = push_hdr; 3005 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 3006 ena_tx_ctx.req_id = req_id; 3007 ena_tx_ctx.header_len = header_len; 3008 3009 /* set flags and meta data */ 3010 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching); 3011 3012 rc = ena_xmit_common(dev, 3013 tx_ring, 3014 tx_info, 3015 &ena_tx_ctx, 3016 next_to_use, 3017 skb->len); 3018 if (rc) 3019 goto error_unmap_dma; 3020 3021 netdev_tx_sent_queue(txq, skb->len); 3022 3023 /* stop the queue when no more space available, the packet can have up 3024 * to sgl_size + 2. one for the meta descriptor and one for header 3025 * (if the header is larger than tx_max_header_size). 3026 */ 3027 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3028 tx_ring->sgl_size + 2))) { 3029 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 3030 __func__, qid); 3031 3032 netif_tx_stop_queue(txq); 3033 u64_stats_update_begin(&tx_ring->syncp); 3034 tx_ring->tx_stats.queue_stop++; 3035 u64_stats_update_end(&tx_ring->syncp); 3036 3037 /* There is a rare condition where this function decide to 3038 * stop the queue but meanwhile clean_tx_irq updates 3039 * next_to_completion and terminates. 3040 * The queue will remain stopped forever. 3041 * To solve this issue add a mb() to make sure that 3042 * netif_tx_stop_queue() write is vissible before checking if 3043 * there is additional space in the queue. 3044 */ 3045 smp_mb(); 3046 3047 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3048 ENA_TX_WAKEUP_THRESH)) { 3049 netif_tx_wake_queue(txq); 3050 u64_stats_update_begin(&tx_ring->syncp); 3051 tx_ring->tx_stats.queue_wakeup++; 3052 u64_stats_update_end(&tx_ring->syncp); 3053 } 3054 } 3055 3056 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) { 3057 /* trigger the dma engine. ena_com_write_sq_doorbell() 3058 * has a mb 3059 */ 3060 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 3061 u64_stats_update_begin(&tx_ring->syncp); 3062 tx_ring->tx_stats.doorbells++; 3063 u64_stats_update_end(&tx_ring->syncp); 3064 } 3065 3066 return NETDEV_TX_OK; 3067 3068 error_unmap_dma: 3069 ena_unmap_tx_buff(tx_ring, tx_info); 3070 tx_info->skb = NULL; 3071 3072 error_drop_packet: 3073 dev_kfree_skb(skb); 3074 return NETDEV_TX_OK; 3075 } 3076 3077 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb, 3078 struct net_device *sb_dev) 3079 { 3080 u16 qid; 3081 /* we suspect that this is good for in--kernel network services that 3082 * want to loop incoming skb rx to tx in normal user generated traffic, 3083 * most probably we will not get to this 3084 */ 3085 if (skb_rx_queue_recorded(skb)) 3086 qid = skb_get_rx_queue(skb); 3087 else 3088 qid = netdev_pick_tx(dev, skb, NULL); 3089 3090 return qid; 3091 } 3092 3093 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3094 { 3095 struct ena_admin_host_info *host_info; 3096 int rc; 3097 3098 /* Allocate only the host info */ 3099 rc = ena_com_allocate_host_info(ena_dev); 3100 if (rc) { 3101 pr_err("Cannot allocate host info\n"); 3102 return; 3103 } 3104 3105 host_info = ena_dev->host_attr.host_info; 3106 3107 host_info->bdf = (pdev->bus->number << 8) | pdev->devfn; 3108 host_info->os_type = ENA_ADMIN_OS_LINUX; 3109 host_info->kernel_ver = LINUX_VERSION_CODE; 3110 strlcpy(host_info->kernel_ver_str, utsname()->version, 3111 sizeof(host_info->kernel_ver_str) - 1); 3112 host_info->os_dist = 0; 3113 strncpy(host_info->os_dist_str, utsname()->release, 3114 sizeof(host_info->os_dist_str) - 1); 3115 host_info->driver_version = 3116 (DRV_MODULE_GEN_MAJOR) | 3117 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 3118 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 3119 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 3120 host_info->num_cpus = num_online_cpus(); 3121 3122 host_info->driver_supported_features = 3123 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK | 3124 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK | 3125 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK | 3126 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK; 3127 3128 rc = ena_com_set_host_attributes(ena_dev); 3129 if (rc) { 3130 if (rc == -EOPNOTSUPP) 3131 pr_warn("Cannot set host attributes\n"); 3132 else 3133 pr_err("Cannot set host attributes\n"); 3134 3135 goto err; 3136 } 3137 3138 return; 3139 3140 err: 3141 ena_com_delete_host_info(ena_dev); 3142 } 3143 3144 static void ena_config_debug_area(struct ena_adapter *adapter) 3145 { 3146 u32 debug_area_size; 3147 int rc, ss_count; 3148 3149 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 3150 if (ss_count <= 0) { 3151 netif_err(adapter, drv, adapter->netdev, 3152 "SS count is negative\n"); 3153 return; 3154 } 3155 3156 /* allocate 32 bytes for each string and 64bit for the value */ 3157 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 3158 3159 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 3160 if (rc) { 3161 pr_err("Cannot allocate debug area\n"); 3162 return; 3163 } 3164 3165 rc = ena_com_set_host_attributes(adapter->ena_dev); 3166 if (rc) { 3167 if (rc == -EOPNOTSUPP) 3168 netif_warn(adapter, drv, adapter->netdev, 3169 "Cannot set host attributes\n"); 3170 else 3171 netif_err(adapter, drv, adapter->netdev, 3172 "Cannot set host attributes\n"); 3173 goto err; 3174 } 3175 3176 return; 3177 err: 3178 ena_com_delete_debug_area(adapter->ena_dev); 3179 } 3180 3181 static void ena_get_stats64(struct net_device *netdev, 3182 struct rtnl_link_stats64 *stats) 3183 { 3184 struct ena_adapter *adapter = netdev_priv(netdev); 3185 struct ena_ring *rx_ring, *tx_ring; 3186 unsigned int start; 3187 u64 rx_drops; 3188 u64 tx_drops; 3189 int i; 3190 3191 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3192 return; 3193 3194 for (i = 0; i < adapter->num_io_queues; i++) { 3195 u64 bytes, packets; 3196 3197 tx_ring = &adapter->tx_ring[i]; 3198 3199 do { 3200 start = u64_stats_fetch_begin_irq(&tx_ring->syncp); 3201 packets = tx_ring->tx_stats.cnt; 3202 bytes = tx_ring->tx_stats.bytes; 3203 } while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start)); 3204 3205 stats->tx_packets += packets; 3206 stats->tx_bytes += bytes; 3207 3208 rx_ring = &adapter->rx_ring[i]; 3209 3210 do { 3211 start = u64_stats_fetch_begin_irq(&rx_ring->syncp); 3212 packets = rx_ring->rx_stats.cnt; 3213 bytes = rx_ring->rx_stats.bytes; 3214 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); 3215 3216 stats->rx_packets += packets; 3217 stats->rx_bytes += bytes; 3218 } 3219 3220 do { 3221 start = u64_stats_fetch_begin_irq(&adapter->syncp); 3222 rx_drops = adapter->dev_stats.rx_drops; 3223 tx_drops = adapter->dev_stats.tx_drops; 3224 } while (u64_stats_fetch_retry_irq(&adapter->syncp, start)); 3225 3226 stats->rx_dropped = rx_drops; 3227 stats->tx_dropped = tx_drops; 3228 3229 stats->multicast = 0; 3230 stats->collisions = 0; 3231 3232 stats->rx_length_errors = 0; 3233 stats->rx_crc_errors = 0; 3234 stats->rx_frame_errors = 0; 3235 stats->rx_fifo_errors = 0; 3236 stats->rx_missed_errors = 0; 3237 stats->tx_window_errors = 0; 3238 3239 stats->rx_errors = 0; 3240 stats->tx_errors = 0; 3241 } 3242 3243 static const struct net_device_ops ena_netdev_ops = { 3244 .ndo_open = ena_open, 3245 .ndo_stop = ena_close, 3246 .ndo_start_xmit = ena_start_xmit, 3247 .ndo_select_queue = ena_select_queue, 3248 .ndo_get_stats64 = ena_get_stats64, 3249 .ndo_tx_timeout = ena_tx_timeout, 3250 .ndo_change_mtu = ena_change_mtu, 3251 .ndo_set_mac_address = NULL, 3252 .ndo_validate_addr = eth_validate_addr, 3253 .ndo_bpf = ena_xdp, 3254 }; 3255 3256 static int ena_device_validate_params(struct ena_adapter *adapter, 3257 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3258 { 3259 struct net_device *netdev = adapter->netdev; 3260 int rc; 3261 3262 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 3263 adapter->mac_addr); 3264 if (!rc) { 3265 netif_err(adapter, drv, netdev, 3266 "Error, mac address are different\n"); 3267 return -EINVAL; 3268 } 3269 3270 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 3271 netif_err(adapter, drv, netdev, 3272 "Error, device max mtu is smaller than netdev MTU\n"); 3273 return -EINVAL; 3274 } 3275 3276 return 0; 3277 } 3278 3279 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config) 3280 { 3281 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 3282 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 3283 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 3284 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 3285 llq_config->llq_ring_entry_size_value = 128; 3286 } 3287 3288 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3289 struct ena_com_dev *ena_dev, 3290 struct ena_admin_feature_llq_desc *llq, 3291 struct ena_llq_configurations *llq_default_configurations) 3292 { 3293 int rc; 3294 u32 llq_feature_mask; 3295 3296 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3297 if (!(ena_dev->supported_features & llq_feature_mask)) { 3298 dev_err(&pdev->dev, 3299 "LLQ is not supported Fallback to host mode policy.\n"); 3300 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3301 return 0; 3302 } 3303 3304 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3305 if (unlikely(rc)) { 3306 dev_err(&pdev->dev, 3307 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3308 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3309 } 3310 3311 return 0; 3312 } 3313 3314 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, 3315 int bars) 3316 { 3317 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR)); 3318 3319 if (!has_mem_bar) { 3320 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 3321 dev_err(&pdev->dev, 3322 "ENA device does not expose LLQ bar. Fallback to host mode policy.\n"); 3323 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3324 } 3325 3326 return 0; 3327 } 3328 3329 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3330 pci_resource_start(pdev, ENA_MEM_BAR), 3331 pci_resource_len(pdev, ENA_MEM_BAR)); 3332 3333 if (!ena_dev->mem_bar) 3334 return -EFAULT; 3335 3336 return 0; 3337 } 3338 3339 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev, 3340 struct ena_com_dev_get_features_ctx *get_feat_ctx, 3341 bool *wd_state) 3342 { 3343 struct ena_llq_configurations llq_config; 3344 struct device *dev = &pdev->dev; 3345 bool readless_supported; 3346 u32 aenq_groups; 3347 int dma_width; 3348 int rc; 3349 3350 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3351 if (rc) { 3352 dev_err(dev, "failed to init mmio read less\n"); 3353 return rc; 3354 } 3355 3356 /* The PCIe configuration space revision id indicate if mmio reg 3357 * read is disabled 3358 */ 3359 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 3360 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3361 3362 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3363 if (rc) { 3364 dev_err(dev, "Can not reset device\n"); 3365 goto err_mmio_read_less; 3366 } 3367 3368 rc = ena_com_validate_version(ena_dev); 3369 if (rc) { 3370 dev_err(dev, "device version is too low\n"); 3371 goto err_mmio_read_less; 3372 } 3373 3374 dma_width = ena_com_get_dma_width(ena_dev); 3375 if (dma_width < 0) { 3376 dev_err(dev, "Invalid dma width value %d", dma_width); 3377 rc = dma_width; 3378 goto err_mmio_read_less; 3379 } 3380 3381 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 3382 if (rc) { 3383 dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc); 3384 goto err_mmio_read_less; 3385 } 3386 3387 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 3388 if (rc) { 3389 dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n", 3390 rc); 3391 goto err_mmio_read_less; 3392 } 3393 3394 /* ENA admin level init */ 3395 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 3396 if (rc) { 3397 dev_err(dev, 3398 "Can not initialize ena admin queue with device\n"); 3399 goto err_mmio_read_less; 3400 } 3401 3402 /* To enable the msix interrupts the driver needs to know the number 3403 * of queues. So the driver uses polling mode to retrieve this 3404 * information 3405 */ 3406 ena_com_set_admin_polling_mode(ena_dev, true); 3407 3408 ena_config_host_info(ena_dev, pdev); 3409 3410 /* Get Device Attributes*/ 3411 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3412 if (rc) { 3413 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 3414 goto err_admin_init; 3415 } 3416 3417 /* Try to turn all the available aenq groups */ 3418 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 3419 BIT(ENA_ADMIN_FATAL_ERROR) | 3420 BIT(ENA_ADMIN_WARNING) | 3421 BIT(ENA_ADMIN_NOTIFICATION) | 3422 BIT(ENA_ADMIN_KEEP_ALIVE); 3423 3424 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3425 3426 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3427 if (rc) { 3428 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 3429 goto err_admin_init; 3430 } 3431 3432 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3433 3434 set_default_llq_configurations(&llq_config); 3435 3436 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq, 3437 &llq_config); 3438 if (rc) { 3439 dev_err(&pdev->dev, "ena device init failed\n"); 3440 goto err_admin_init; 3441 } 3442 3443 return 0; 3444 3445 err_admin_init: 3446 ena_com_delete_host_info(ena_dev); 3447 ena_com_admin_destroy(ena_dev); 3448 err_mmio_read_less: 3449 ena_com_mmio_reg_read_request_destroy(ena_dev); 3450 3451 return rc; 3452 } 3453 3454 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 3455 { 3456 struct ena_com_dev *ena_dev = adapter->ena_dev; 3457 struct device *dev = &adapter->pdev->dev; 3458 int rc; 3459 3460 rc = ena_enable_msix(adapter); 3461 if (rc) { 3462 dev_err(dev, "Can not reserve msix vectors\n"); 3463 return rc; 3464 } 3465 3466 ena_setup_mgmnt_intr(adapter); 3467 3468 rc = ena_request_mgmnt_irq(adapter); 3469 if (rc) { 3470 dev_err(dev, "Can not setup management interrupts\n"); 3471 goto err_disable_msix; 3472 } 3473 3474 ena_com_set_admin_polling_mode(ena_dev, false); 3475 3476 ena_com_admin_aenq_enable(ena_dev); 3477 3478 return 0; 3479 3480 err_disable_msix: 3481 ena_disable_msix(adapter); 3482 3483 return rc; 3484 } 3485 3486 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful) 3487 { 3488 struct net_device *netdev = adapter->netdev; 3489 struct ena_com_dev *ena_dev = adapter->ena_dev; 3490 bool dev_up; 3491 3492 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3493 return; 3494 3495 netif_carrier_off(netdev); 3496 3497 del_timer_sync(&adapter->timer_service); 3498 3499 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 3500 adapter->dev_up_before_reset = dev_up; 3501 if (!graceful) 3502 ena_com_set_admin_running_state(ena_dev, false); 3503 3504 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3505 ena_down(adapter); 3506 3507 /* Stop the device from sending AENQ events (in case reset flag is set 3508 * and device is up, ena_down() already reset the device. 3509 */ 3510 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 3511 ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 3512 3513 ena_free_mgmnt_irq(adapter); 3514 3515 ena_disable_msix(adapter); 3516 3517 ena_com_abort_admin_commands(ena_dev); 3518 3519 ena_com_wait_for_abort_completion(ena_dev); 3520 3521 ena_com_admin_destroy(ena_dev); 3522 3523 ena_com_mmio_reg_read_request_destroy(ena_dev); 3524 3525 /* return reset reason to default value */ 3526 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3527 3528 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3529 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3530 } 3531 3532 static int ena_restore_device(struct ena_adapter *adapter) 3533 { 3534 struct ena_com_dev_get_features_ctx get_feat_ctx; 3535 struct ena_com_dev *ena_dev = adapter->ena_dev; 3536 struct pci_dev *pdev = adapter->pdev; 3537 bool wd_state; 3538 int rc; 3539 3540 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3541 rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state); 3542 if (rc) { 3543 dev_err(&pdev->dev, "Can not initialize device\n"); 3544 goto err; 3545 } 3546 adapter->wd_state = wd_state; 3547 3548 rc = ena_device_validate_params(adapter, &get_feat_ctx); 3549 if (rc) { 3550 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 3551 goto err_device_destroy; 3552 } 3553 3554 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3555 if (rc) { 3556 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 3557 goto err_device_destroy; 3558 } 3559 /* If the interface was up before the reset bring it up */ 3560 if (adapter->dev_up_before_reset) { 3561 rc = ena_up(adapter); 3562 if (rc) { 3563 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 3564 goto err_disable_msix; 3565 } 3566 } 3567 3568 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3569 3570 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3571 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 3572 netif_carrier_on(adapter->netdev); 3573 3574 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3575 dev_err(&pdev->dev, "Device reset completed successfully\n"); 3576 adapter->last_keep_alive_jiffies = jiffies; 3577 3578 return rc; 3579 err_disable_msix: 3580 ena_free_mgmnt_irq(adapter); 3581 ena_disable_msix(adapter); 3582 err_device_destroy: 3583 ena_com_abort_admin_commands(ena_dev); 3584 ena_com_wait_for_abort_completion(ena_dev); 3585 ena_com_admin_destroy(ena_dev); 3586 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 3587 ena_com_mmio_reg_read_request_destroy(ena_dev); 3588 err: 3589 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3590 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3591 dev_err(&pdev->dev, 3592 "Reset attempt failed. Can not reset the device\n"); 3593 3594 return rc; 3595 } 3596 3597 static void ena_fw_reset_device(struct work_struct *work) 3598 { 3599 struct ena_adapter *adapter = 3600 container_of(work, struct ena_adapter, reset_task); 3601 3602 rtnl_lock(); 3603 3604 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3605 ena_destroy_device(adapter, false); 3606 ena_restore_device(adapter); 3607 } 3608 3609 rtnl_unlock(); 3610 } 3611 3612 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 3613 struct ena_ring *rx_ring) 3614 { 3615 if (likely(rx_ring->first_interrupt)) 3616 return 0; 3617 3618 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 3619 return 0; 3620 3621 rx_ring->no_interrupt_event_cnt++; 3622 3623 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 3624 netif_err(adapter, rx_err, adapter->netdev, 3625 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 3626 rx_ring->qid); 3627 adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; 3628 smp_mb__before_atomic(); 3629 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3630 return -EIO; 3631 } 3632 3633 return 0; 3634 } 3635 3636 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 3637 struct ena_ring *tx_ring) 3638 { 3639 struct ena_tx_buffer *tx_buf; 3640 unsigned long last_jiffies; 3641 u32 missed_tx = 0; 3642 int i, rc = 0; 3643 3644 for (i = 0; i < tx_ring->ring_size; i++) { 3645 tx_buf = &tx_ring->tx_buffer_info[i]; 3646 last_jiffies = tx_buf->last_jiffies; 3647 3648 if (last_jiffies == 0) 3649 /* no pending Tx at this location */ 3650 continue; 3651 3652 if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies + 3653 2 * adapter->missing_tx_completion_to))) { 3654 /* If after graceful period interrupt is still not 3655 * received, we schedule a reset 3656 */ 3657 netif_err(adapter, tx_err, adapter->netdev, 3658 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 3659 tx_ring->qid); 3660 adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; 3661 smp_mb__before_atomic(); 3662 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3663 return -EIO; 3664 } 3665 3666 if (unlikely(time_is_before_jiffies(last_jiffies + 3667 adapter->missing_tx_completion_to))) { 3668 if (!tx_buf->print_once) 3669 netif_notice(adapter, tx_err, adapter->netdev, 3670 "Found a Tx that wasn't completed on time, qid %d, index %d.\n", 3671 tx_ring->qid, i); 3672 3673 tx_buf->print_once = 1; 3674 missed_tx++; 3675 } 3676 } 3677 3678 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 3679 netif_err(adapter, tx_err, adapter->netdev, 3680 "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n", 3681 missed_tx, 3682 adapter->missing_tx_completion_threshold); 3683 adapter->reset_reason = 3684 ENA_REGS_RESET_MISS_TX_CMPL; 3685 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3686 rc = -EIO; 3687 } 3688 3689 u64_stats_update_begin(&tx_ring->syncp); 3690 tx_ring->tx_stats.missed_tx += missed_tx; 3691 u64_stats_update_end(&tx_ring->syncp); 3692 3693 return rc; 3694 } 3695 3696 static void check_for_missing_completions(struct ena_adapter *adapter) 3697 { 3698 struct ena_ring *tx_ring; 3699 struct ena_ring *rx_ring; 3700 int i, budget, rc; 3701 int io_queue_count; 3702 3703 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; 3704 /* Make sure the driver doesn't turn the device in other process */ 3705 smp_rmb(); 3706 3707 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3708 return; 3709 3710 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3711 return; 3712 3713 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 3714 return; 3715 3716 budget = ENA_MONITORED_TX_QUEUES; 3717 3718 for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) { 3719 tx_ring = &adapter->tx_ring[i]; 3720 rx_ring = &adapter->rx_ring[i]; 3721 3722 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 3723 if (unlikely(rc)) 3724 return; 3725 3726 rc = !ENA_IS_XDP_INDEX(adapter, i) ? 3727 check_for_rx_interrupt_queue(adapter, rx_ring) : 0; 3728 if (unlikely(rc)) 3729 return; 3730 3731 budget--; 3732 if (!budget) 3733 break; 3734 } 3735 3736 adapter->last_monitored_tx_qid = i % io_queue_count; 3737 } 3738 3739 /* trigger napi schedule after 2 consecutive detections */ 3740 #define EMPTY_RX_REFILL 2 3741 /* For the rare case where the device runs out of Rx descriptors and the 3742 * napi handler failed to refill new Rx descriptors (due to a lack of memory 3743 * for example). 3744 * This case will lead to a deadlock: 3745 * The device won't send interrupts since all the new Rx packets will be dropped 3746 * The napi handler won't allocate new Rx descriptors so the device will be 3747 * able to send new packets. 3748 * 3749 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 3750 * It is recommended to have at least 512MB, with a minimum of 128MB for 3751 * constrained environment). 3752 * 3753 * When such a situation is detected - Reschedule napi 3754 */ 3755 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3756 { 3757 struct ena_ring *rx_ring; 3758 int i, refill_required; 3759 3760 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3761 return; 3762 3763 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3764 return; 3765 3766 for (i = 0; i < adapter->num_io_queues; i++) { 3767 rx_ring = &adapter->rx_ring[i]; 3768 3769 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 3770 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3771 rx_ring->empty_rx_queue++; 3772 3773 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3774 u64_stats_update_begin(&rx_ring->syncp); 3775 rx_ring->rx_stats.empty_rx_ring++; 3776 u64_stats_update_end(&rx_ring->syncp); 3777 3778 netif_err(adapter, drv, adapter->netdev, 3779 "trigger refill for ring %d\n", i); 3780 3781 napi_schedule(rx_ring->napi); 3782 rx_ring->empty_rx_queue = 0; 3783 } 3784 } else { 3785 rx_ring->empty_rx_queue = 0; 3786 } 3787 } 3788 } 3789 3790 /* Check for keep alive expiration */ 3791 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3792 { 3793 unsigned long keep_alive_expired; 3794 3795 if (!adapter->wd_state) 3796 return; 3797 3798 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3799 return; 3800 3801 keep_alive_expired = adapter->last_keep_alive_jiffies + 3802 adapter->keep_alive_timeout; 3803 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3804 netif_err(adapter, drv, adapter->netdev, 3805 "Keep alive watchdog timeout.\n"); 3806 u64_stats_update_begin(&adapter->syncp); 3807 adapter->dev_stats.wd_expired++; 3808 u64_stats_update_end(&adapter->syncp); 3809 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO; 3810 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3811 } 3812 } 3813 3814 static void check_for_admin_com_state(struct ena_adapter *adapter) 3815 { 3816 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3817 netif_err(adapter, drv, adapter->netdev, 3818 "ENA admin queue is not in running state!\n"); 3819 u64_stats_update_begin(&adapter->syncp); 3820 adapter->dev_stats.admin_q_pause++; 3821 u64_stats_update_end(&adapter->syncp); 3822 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO; 3823 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3824 } 3825 } 3826 3827 static void ena_update_hints(struct ena_adapter *adapter, 3828 struct ena_admin_ena_hw_hints *hints) 3829 { 3830 struct net_device *netdev = adapter->netdev; 3831 3832 if (hints->admin_completion_tx_timeout) 3833 adapter->ena_dev->admin_queue.completion_timeout = 3834 hints->admin_completion_tx_timeout * 1000; 3835 3836 if (hints->mmio_read_timeout) 3837 /* convert to usec */ 3838 adapter->ena_dev->mmio_read.reg_read_to = 3839 hints->mmio_read_timeout * 1000; 3840 3841 if (hints->missed_tx_completion_count_threshold_to_reset) 3842 adapter->missing_tx_completion_threshold = 3843 hints->missed_tx_completion_count_threshold_to_reset; 3844 3845 if (hints->missing_tx_completion_timeout) { 3846 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3847 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3848 else 3849 adapter->missing_tx_completion_to = 3850 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3851 } 3852 3853 if (hints->netdev_wd_timeout) 3854 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3855 3856 if (hints->driver_watchdog_timeout) { 3857 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3858 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3859 else 3860 adapter->keep_alive_timeout = 3861 msecs_to_jiffies(hints->driver_watchdog_timeout); 3862 } 3863 } 3864 3865 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3866 struct net_device *netdev) 3867 { 3868 host_info->supported_network_features[0] = 3869 netdev->features & GENMASK_ULL(31, 0); 3870 host_info->supported_network_features[1] = 3871 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3872 } 3873 3874 static void ena_timer_service(struct timer_list *t) 3875 { 3876 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 3877 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3878 struct ena_admin_host_info *host_info = 3879 adapter->ena_dev->host_attr.host_info; 3880 3881 check_for_missing_keep_alive(adapter); 3882 3883 check_for_admin_com_state(adapter); 3884 3885 check_for_missing_completions(adapter); 3886 3887 check_for_empty_rx_ring(adapter); 3888 3889 if (debug_area) 3890 ena_dump_stats_to_buf(adapter, debug_area); 3891 3892 if (host_info) 3893 ena_update_host_info(host_info, adapter->netdev); 3894 3895 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3896 netif_err(adapter, drv, adapter->netdev, 3897 "Trigger reset is on\n"); 3898 ena_dump_stats_to_dmesg(adapter); 3899 queue_work(ena_wq, &adapter->reset_task); 3900 return; 3901 } 3902 3903 /* Reset the timer */ 3904 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3905 } 3906 3907 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev, 3908 struct ena_com_dev *ena_dev, 3909 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3910 { 3911 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3912 3913 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3914 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3915 &get_feat_ctx->max_queue_ext.max_queue_ext; 3916 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3917 max_queue_ext->max_rx_cq_num); 3918 3919 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3920 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3921 } else { 3922 struct ena_admin_queue_feature_desc *max_queues = 3923 &get_feat_ctx->max_queues; 3924 io_tx_sq_num = max_queues->max_sq_num; 3925 io_tx_cq_num = max_queues->max_cq_num; 3926 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3927 } 3928 3929 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3930 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3931 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3932 3933 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3934 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3935 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3936 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3937 /* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */ 3938 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3939 if (unlikely(!max_num_io_queues)) { 3940 dev_err(&pdev->dev, "The device doesn't have io queues\n"); 3941 return -EFAULT; 3942 } 3943 3944 return max_num_io_queues; 3945 } 3946 3947 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3948 struct net_device *netdev) 3949 { 3950 netdev_features_t dev_features = 0; 3951 3952 /* Set offload features */ 3953 if (feat->offload.tx & 3954 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3955 dev_features |= NETIF_F_IP_CSUM; 3956 3957 if (feat->offload.tx & 3958 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3959 dev_features |= NETIF_F_IPV6_CSUM; 3960 3961 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3962 dev_features |= NETIF_F_TSO; 3963 3964 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3965 dev_features |= NETIF_F_TSO6; 3966 3967 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3968 dev_features |= NETIF_F_TSO_ECN; 3969 3970 if (feat->offload.rx_supported & 3971 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3972 dev_features |= NETIF_F_RXCSUM; 3973 3974 if (feat->offload.rx_supported & 3975 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3976 dev_features |= NETIF_F_RXCSUM; 3977 3978 netdev->features = 3979 dev_features | 3980 NETIF_F_SG | 3981 NETIF_F_RXHASH | 3982 NETIF_F_HIGHDMA; 3983 3984 netdev->hw_features |= netdev->features; 3985 netdev->vlan_features |= netdev->features; 3986 } 3987 3988 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3989 struct ena_com_dev_get_features_ctx *feat) 3990 { 3991 struct net_device *netdev = adapter->netdev; 3992 3993 /* Copy mac address */ 3994 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 3995 eth_hw_addr_random(netdev); 3996 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 3997 } else { 3998 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 3999 ether_addr_copy(netdev->dev_addr, adapter->mac_addr); 4000 } 4001 4002 /* Set offload features */ 4003 ena_set_dev_offloads(feat, netdev); 4004 4005 adapter->max_mtu = feat->dev_attr.max_mtu; 4006 netdev->max_mtu = adapter->max_mtu; 4007 netdev->min_mtu = ENA_MIN_MTU; 4008 } 4009 4010 static int ena_rss_init_default(struct ena_adapter *adapter) 4011 { 4012 struct ena_com_dev *ena_dev = adapter->ena_dev; 4013 struct device *dev = &adapter->pdev->dev; 4014 int rc, i; 4015 u32 val; 4016 4017 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 4018 if (unlikely(rc)) { 4019 dev_err(dev, "Cannot init indirect table\n"); 4020 goto err_rss_init; 4021 } 4022 4023 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 4024 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 4025 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 4026 ENA_IO_RXQ_IDX(val)); 4027 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 4028 dev_err(dev, "Cannot fill indirect table\n"); 4029 goto err_fill_indir; 4030 } 4031 } 4032 4033 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, 4034 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 4035 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 4036 dev_err(dev, "Cannot fill hash function\n"); 4037 goto err_fill_indir; 4038 } 4039 4040 rc = ena_com_set_default_hash_ctrl(ena_dev); 4041 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 4042 dev_err(dev, "Cannot fill hash control\n"); 4043 goto err_fill_indir; 4044 } 4045 4046 return 0; 4047 4048 err_fill_indir: 4049 ena_com_rss_destroy(ena_dev); 4050 err_rss_init: 4051 4052 return rc; 4053 } 4054 4055 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 4056 { 4057 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 4058 4059 pci_release_selected_regions(pdev, release_bars); 4060 } 4061 4062 4063 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx) 4064 { 4065 struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq; 4066 struct ena_com_dev *ena_dev = ctx->ena_dev; 4067 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 4068 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 4069 u32 max_tx_queue_size; 4070 u32 max_rx_queue_size; 4071 4072 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 4073 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 4074 &ctx->get_feat_ctx->max_queue_ext.max_queue_ext; 4075 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 4076 max_queue_ext->max_rx_sq_depth); 4077 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 4078 4079 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4080 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4081 llq->max_llq_depth); 4082 else 4083 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4084 max_queue_ext->max_tx_sq_depth); 4085 4086 ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4087 max_queue_ext->max_per_packet_tx_descs); 4088 ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4089 max_queue_ext->max_per_packet_rx_descs); 4090 } else { 4091 struct ena_admin_queue_feature_desc *max_queues = 4092 &ctx->get_feat_ctx->max_queues; 4093 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 4094 max_queues->max_sq_depth); 4095 max_tx_queue_size = max_queues->max_cq_depth; 4096 4097 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4098 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4099 llq->max_llq_depth); 4100 else 4101 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4102 max_queues->max_sq_depth); 4103 4104 ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4105 max_queues->max_packet_tx_descs); 4106 ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4107 max_queues->max_packet_rx_descs); 4108 } 4109 4110 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 4111 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 4112 4113 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 4114 max_tx_queue_size); 4115 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 4116 max_rx_queue_size); 4117 4118 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 4119 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 4120 4121 ctx->max_tx_queue_size = max_tx_queue_size; 4122 ctx->max_rx_queue_size = max_rx_queue_size; 4123 ctx->tx_queue_size = tx_queue_size; 4124 ctx->rx_queue_size = rx_queue_size; 4125 4126 return 0; 4127 } 4128 4129 /* ena_probe - Device Initialization Routine 4130 * @pdev: PCI device information struct 4131 * @ent: entry in ena_pci_tbl 4132 * 4133 * Returns 0 on success, negative on failure 4134 * 4135 * ena_probe initializes an adapter identified by a pci_dev structure. 4136 * The OS initialization, configuring of the adapter private structure, 4137 * and a hardware reset occur. 4138 */ 4139 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4140 { 4141 struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 }; 4142 struct ena_com_dev_get_features_ctx get_feat_ctx; 4143 struct ena_com_dev *ena_dev = NULL; 4144 struct ena_adapter *adapter; 4145 struct net_device *netdev; 4146 static int adapters_found; 4147 u32 max_num_io_queues; 4148 char *queue_type_str; 4149 bool wd_state; 4150 int bars, rc; 4151 4152 dev_dbg(&pdev->dev, "%s\n", __func__); 4153 4154 rc = pci_enable_device_mem(pdev); 4155 if (rc) { 4156 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 4157 return rc; 4158 } 4159 4160 pci_set_master(pdev); 4161 4162 ena_dev = vzalloc(sizeof(*ena_dev)); 4163 if (!ena_dev) { 4164 rc = -ENOMEM; 4165 goto err_disable_device; 4166 } 4167 4168 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 4169 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 4170 if (rc) { 4171 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 4172 rc); 4173 goto err_free_ena_dev; 4174 } 4175 4176 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 4177 pci_resource_start(pdev, ENA_REG_BAR), 4178 pci_resource_len(pdev, ENA_REG_BAR)); 4179 if (!ena_dev->reg_bar) { 4180 dev_err(&pdev->dev, "failed to remap regs bar\n"); 4181 rc = -EFAULT; 4182 goto err_free_region; 4183 } 4184 4185 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US; 4186 4187 ena_dev->dmadev = &pdev->dev; 4188 4189 rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state); 4190 if (rc) { 4191 dev_err(&pdev->dev, "ena device init failed\n"); 4192 if (rc == -ETIME) 4193 rc = -EPROBE_DEFER; 4194 goto err_free_region; 4195 } 4196 4197 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars); 4198 if (rc) { 4199 dev_err(&pdev->dev, "ena llq bar mapping failed\n"); 4200 goto err_free_ena_dev; 4201 } 4202 4203 calc_queue_ctx.ena_dev = ena_dev; 4204 calc_queue_ctx.get_feat_ctx = &get_feat_ctx; 4205 calc_queue_ctx.pdev = pdev; 4206 4207 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity. 4208 * Updated during device initialization with the real granularity 4209 */ 4210 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 4211 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 4212 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 4213 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 4214 rc = ena_calc_io_queue_size(&calc_queue_ctx); 4215 if (rc || !max_num_io_queues) { 4216 rc = -EFAULT; 4217 goto err_device_destroy; 4218 } 4219 4220 /* dev zeroed in init_etherdev */ 4221 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues); 4222 if (!netdev) { 4223 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 4224 rc = -ENOMEM; 4225 goto err_device_destroy; 4226 } 4227 4228 SET_NETDEV_DEV(netdev, &pdev->dev); 4229 4230 adapter = netdev_priv(netdev); 4231 pci_set_drvdata(pdev, adapter); 4232 4233 adapter->ena_dev = ena_dev; 4234 adapter->netdev = netdev; 4235 adapter->pdev = pdev; 4236 4237 ena_set_conf_feat_params(adapter, &get_feat_ctx); 4238 4239 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4240 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 4241 4242 adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size; 4243 adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size; 4244 adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size; 4245 adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size; 4246 adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size; 4247 adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size; 4248 4249 adapter->num_io_queues = max_num_io_queues; 4250 adapter->max_num_io_queues = max_num_io_queues; 4251 adapter->last_monitored_tx_qid = 0; 4252 4253 adapter->xdp_first_ring = 0; 4254 adapter->xdp_num_queues = 0; 4255 4256 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 4257 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4258 adapter->disable_meta_caching = 4259 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & 4260 BIT(ENA_ADMIN_DISABLE_META_CACHING)); 4261 4262 adapter->wd_state = wd_state; 4263 4264 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 4265 4266 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 4267 if (rc) { 4268 dev_err(&pdev->dev, 4269 "Failed to query interrupt moderation feature\n"); 4270 goto err_netdev_destroy; 4271 } 4272 ena_init_io_rings(adapter, 4273 0, 4274 adapter->xdp_num_queues + 4275 adapter->num_io_queues); 4276 4277 netdev->netdev_ops = &ena_netdev_ops; 4278 netdev->watchdog_timeo = TX_TIMEOUT; 4279 ena_set_ethtool_ops(netdev); 4280 4281 netdev->priv_flags |= IFF_UNICAST_FLT; 4282 4283 u64_stats_init(&adapter->syncp); 4284 4285 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 4286 if (rc) { 4287 dev_err(&pdev->dev, 4288 "Failed to enable and set the admin interrupts\n"); 4289 goto err_worker_destroy; 4290 } 4291 rc = ena_rss_init_default(adapter); 4292 if (rc && (rc != -EOPNOTSUPP)) { 4293 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 4294 goto err_free_msix; 4295 } 4296 4297 ena_config_debug_area(adapter); 4298 4299 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 4300 4301 netif_carrier_off(netdev); 4302 4303 rc = register_netdev(netdev); 4304 if (rc) { 4305 dev_err(&pdev->dev, "Cannot register net device\n"); 4306 goto err_rss; 4307 } 4308 4309 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 4310 4311 adapter->last_keep_alive_jiffies = jiffies; 4312 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 4313 adapter->missing_tx_completion_to = TX_TIMEOUT; 4314 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 4315 4316 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 4317 4318 timer_setup(&adapter->timer_service, ena_timer_service, 0); 4319 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 4320 4321 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) 4322 queue_type_str = "Regular"; 4323 else 4324 queue_type_str = "Low Latency"; 4325 4326 dev_info(&pdev->dev, 4327 "%s found at mem %lx, mac addr %pM, Placement policy: %s\n", 4328 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 4329 netdev->dev_addr, queue_type_str); 4330 4331 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 4332 4333 adapters_found++; 4334 4335 return 0; 4336 4337 err_rss: 4338 ena_com_delete_debug_area(ena_dev); 4339 ena_com_rss_destroy(ena_dev); 4340 err_free_msix: 4341 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 4342 /* stop submitting admin commands on a device that was reset */ 4343 ena_com_set_admin_running_state(ena_dev, false); 4344 ena_free_mgmnt_irq(adapter); 4345 ena_disable_msix(adapter); 4346 err_worker_destroy: 4347 del_timer(&adapter->timer_service); 4348 err_netdev_destroy: 4349 free_netdev(netdev); 4350 err_device_destroy: 4351 ena_com_delete_host_info(ena_dev); 4352 ena_com_admin_destroy(ena_dev); 4353 err_free_region: 4354 ena_release_bars(ena_dev, pdev); 4355 err_free_ena_dev: 4356 vfree(ena_dev); 4357 err_disable_device: 4358 pci_disable_device(pdev); 4359 return rc; 4360 } 4361 4362 /*****************************************************************************/ 4363 4364 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines 4365 * @pdev: PCI device information struct 4366 * @shutdown: Is it a shutdown operation? If false, means it is a removal 4367 * 4368 * __ena_shutoff is a helper routine that does the real work on shutdown and 4369 * removal paths; the difference between those paths is with regards to whether 4370 * dettach or unregister the netdevice. 4371 */ 4372 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) 4373 { 4374 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4375 struct ena_com_dev *ena_dev; 4376 struct net_device *netdev; 4377 4378 ena_dev = adapter->ena_dev; 4379 netdev = adapter->netdev; 4380 4381 #ifdef CONFIG_RFS_ACCEL 4382 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 4383 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 4384 netdev->rx_cpu_rmap = NULL; 4385 } 4386 #endif /* CONFIG_RFS_ACCEL */ 4387 4388 /* Make sure timer and reset routine won't be called after 4389 * freeing device resources. 4390 */ 4391 del_timer_sync(&adapter->timer_service); 4392 cancel_work_sync(&adapter->reset_task); 4393 4394 rtnl_lock(); /* lock released inside the below if-else block */ 4395 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN; 4396 ena_destroy_device(adapter, true); 4397 if (shutdown) { 4398 netif_device_detach(netdev); 4399 dev_close(netdev); 4400 rtnl_unlock(); 4401 } else { 4402 rtnl_unlock(); 4403 unregister_netdev(netdev); 4404 free_netdev(netdev); 4405 } 4406 4407 ena_com_rss_destroy(ena_dev); 4408 4409 ena_com_delete_debug_area(ena_dev); 4410 4411 ena_com_delete_host_info(ena_dev); 4412 4413 ena_release_bars(ena_dev, pdev); 4414 4415 pci_disable_device(pdev); 4416 4417 vfree(ena_dev); 4418 } 4419 4420 /* ena_remove - Device Removal Routine 4421 * @pdev: PCI device information struct 4422 * 4423 * ena_remove is called by the PCI subsystem to alert the driver 4424 * that it should release a PCI device. 4425 */ 4426 4427 static void ena_remove(struct pci_dev *pdev) 4428 { 4429 __ena_shutoff(pdev, false); 4430 } 4431 4432 /* ena_shutdown - Device Shutdown Routine 4433 * @pdev: PCI device information struct 4434 * 4435 * ena_shutdown is called by the PCI subsystem to alert the driver that 4436 * a shutdown/reboot (or kexec) is happening and device must be disabled. 4437 */ 4438 4439 static void ena_shutdown(struct pci_dev *pdev) 4440 { 4441 __ena_shutoff(pdev, true); 4442 } 4443 4444 /* ena_suspend - PM suspend callback 4445 * @dev_d: Device information struct 4446 */ 4447 static int __maybe_unused ena_suspend(struct device *dev_d) 4448 { 4449 struct pci_dev *pdev = to_pci_dev(dev_d); 4450 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4451 4452 u64_stats_update_begin(&adapter->syncp); 4453 adapter->dev_stats.suspend++; 4454 u64_stats_update_end(&adapter->syncp); 4455 4456 rtnl_lock(); 4457 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4458 dev_err(&pdev->dev, 4459 "ignoring device reset request as the device is being suspended\n"); 4460 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 4461 } 4462 ena_destroy_device(adapter, true); 4463 rtnl_unlock(); 4464 return 0; 4465 } 4466 4467 /* ena_resume - PM resume callback 4468 * @dev_d: Device information struct 4469 */ 4470 static int __maybe_unused ena_resume(struct device *dev_d) 4471 { 4472 struct ena_adapter *adapter = dev_get_drvdata(dev_d); 4473 int rc; 4474 4475 u64_stats_update_begin(&adapter->syncp); 4476 adapter->dev_stats.resume++; 4477 u64_stats_update_end(&adapter->syncp); 4478 4479 rtnl_lock(); 4480 rc = ena_restore_device(adapter); 4481 rtnl_unlock(); 4482 return rc; 4483 } 4484 4485 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume); 4486 4487 static struct pci_driver ena_pci_driver = { 4488 .name = DRV_MODULE_NAME, 4489 .id_table = ena_pci_tbl, 4490 .probe = ena_probe, 4491 .remove = ena_remove, 4492 .shutdown = ena_shutdown, 4493 .driver.pm = &ena_pm_ops, 4494 .sriov_configure = pci_sriov_configure_simple, 4495 }; 4496 4497 static int __init ena_init(void) 4498 { 4499 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 4500 if (!ena_wq) { 4501 pr_err("Failed to create workqueue\n"); 4502 return -ENOMEM; 4503 } 4504 4505 return pci_register_driver(&ena_pci_driver); 4506 } 4507 4508 static void __exit ena_cleanup(void) 4509 { 4510 pci_unregister_driver(&ena_pci_driver); 4511 4512 if (ena_wq) { 4513 destroy_workqueue(ena_wq); 4514 ena_wq = NULL; 4515 } 4516 } 4517 4518 /****************************************************************************** 4519 ******************************** AENQ Handlers ******************************* 4520 *****************************************************************************/ 4521 /* ena_update_on_link_change: 4522 * Notify the network interface about the change in link status 4523 */ 4524 static void ena_update_on_link_change(void *adapter_data, 4525 struct ena_admin_aenq_entry *aenq_e) 4526 { 4527 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4528 struct ena_admin_aenq_link_change_desc *aenq_desc = 4529 (struct ena_admin_aenq_link_change_desc *)aenq_e; 4530 int status = aenq_desc->flags & 4531 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 4532 4533 if (status) { 4534 netdev_dbg(adapter->netdev, "%s\n", __func__); 4535 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4536 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 4537 netif_carrier_on(adapter->netdev); 4538 } else { 4539 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4540 netif_carrier_off(adapter->netdev); 4541 } 4542 } 4543 4544 static void ena_keep_alive_wd(void *adapter_data, 4545 struct ena_admin_aenq_entry *aenq_e) 4546 { 4547 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4548 struct ena_admin_aenq_keep_alive_desc *desc; 4549 u64 rx_drops; 4550 u64 tx_drops; 4551 4552 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 4553 adapter->last_keep_alive_jiffies = jiffies; 4554 4555 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 4556 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low; 4557 4558 u64_stats_update_begin(&adapter->syncp); 4559 /* These stats are accumulated by the device, so the counters indicate 4560 * all drops since last reset. 4561 */ 4562 adapter->dev_stats.rx_drops = rx_drops; 4563 adapter->dev_stats.tx_drops = tx_drops; 4564 u64_stats_update_end(&adapter->syncp); 4565 } 4566 4567 static void ena_notification(void *adapter_data, 4568 struct ena_admin_aenq_entry *aenq_e) 4569 { 4570 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4571 struct ena_admin_ena_hw_hints *hints; 4572 4573 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 4574 "Invalid group(%x) expected %x\n", 4575 aenq_e->aenq_common_desc.group, 4576 ENA_ADMIN_NOTIFICATION); 4577 4578 switch (aenq_e->aenq_common_desc.syndrom) { 4579 case ENA_ADMIN_UPDATE_HINTS: 4580 hints = (struct ena_admin_ena_hw_hints *) 4581 (&aenq_e->inline_data_w4); 4582 ena_update_hints(adapter, hints); 4583 break; 4584 default: 4585 netif_err(adapter, drv, adapter->netdev, 4586 "Invalid aenq notification link state %d\n", 4587 aenq_e->aenq_common_desc.syndrom); 4588 } 4589 } 4590 4591 /* This handler will called for unknown event group or unimplemented handlers*/ 4592 static void unimplemented_aenq_handler(void *data, 4593 struct ena_admin_aenq_entry *aenq_e) 4594 { 4595 struct ena_adapter *adapter = (struct ena_adapter *)data; 4596 4597 netif_err(adapter, drv, adapter->netdev, 4598 "Unknown event was received or event with unimplemented handler\n"); 4599 } 4600 4601 static struct ena_aenq_handlers aenq_handlers = { 4602 .handlers = { 4603 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 4604 [ENA_ADMIN_NOTIFICATION] = ena_notification, 4605 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 4606 }, 4607 .unimplemented_handler = unimplemented_aenq_handler 4608 }; 4609 4610 module_init(ena_init); 4611 module_exit(ena_cleanup); 4612