1 /*
2  * Copyright 2015 Amazon.com, Inc. or its affiliates.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #ifdef CONFIG_RFS_ACCEL
36 #include <linux/cpu_rmap.h>
37 #endif /* CONFIG_RFS_ACCEL */
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/numa.h>
43 #include <linux/pci.h>
44 #include <linux/utsname.h>
45 #include <linux/version.h>
46 #include <linux/vmalloc.h>
47 #include <net/ip.h>
48 
49 #include "ena_netdev.h"
50 #include "ena_pci_id_tbl.h"
51 
52 static char version[] = DEVICE_NAME " v" DRV_MODULE_VERSION "\n";
53 
54 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
55 MODULE_DESCRIPTION(DEVICE_NAME);
56 MODULE_LICENSE("GPL");
57 MODULE_VERSION(DRV_MODULE_VERSION);
58 
59 /* Time in jiffies before concluding the transmitter is hung. */
60 #define TX_TIMEOUT  (5 * HZ)
61 
62 #define ENA_NAPI_BUDGET 64
63 
64 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
65 		NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
66 static int debug = -1;
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69 
70 static struct ena_aenq_handlers aenq_handlers;
71 
72 static struct workqueue_struct *ena_wq;
73 
74 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
75 
76 static int ena_rss_init_default(struct ena_adapter *adapter);
77 static void check_for_admin_com_state(struct ena_adapter *adapter);
78 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
79 static int ena_restore_device(struct ena_adapter *adapter);
80 
81 static void ena_tx_timeout(struct net_device *dev)
82 {
83 	struct ena_adapter *adapter = netdev_priv(dev);
84 
85 	/* Change the state of the device to trigger reset
86 	 * Check that we are not in the middle or a trigger already
87 	 */
88 
89 	if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
90 		return;
91 
92 	adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD;
93 	u64_stats_update_begin(&adapter->syncp);
94 	adapter->dev_stats.tx_timeout++;
95 	u64_stats_update_end(&adapter->syncp);
96 
97 	netif_err(adapter, tx_err, dev, "Transmit time out\n");
98 }
99 
100 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
101 {
102 	int i;
103 
104 	for (i = 0; i < adapter->num_io_queues; i++)
105 		adapter->rx_ring[i].mtu = mtu;
106 }
107 
108 static int ena_change_mtu(struct net_device *dev, int new_mtu)
109 {
110 	struct ena_adapter *adapter = netdev_priv(dev);
111 	int ret;
112 
113 	ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
114 	if (!ret) {
115 		netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu);
116 		update_rx_ring_mtu(adapter, new_mtu);
117 		dev->mtu = new_mtu;
118 	} else {
119 		netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
120 			  new_mtu);
121 	}
122 
123 	return ret;
124 }
125 
126 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
127 {
128 #ifdef CONFIG_RFS_ACCEL
129 	u32 i;
130 	int rc;
131 
132 	adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
133 	if (!adapter->netdev->rx_cpu_rmap)
134 		return -ENOMEM;
135 	for (i = 0; i < adapter->num_io_queues; i++) {
136 		int irq_idx = ENA_IO_IRQ_IDX(i);
137 
138 		rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
139 				      pci_irq_vector(adapter->pdev, irq_idx));
140 		if (rc) {
141 			free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
142 			adapter->netdev->rx_cpu_rmap = NULL;
143 			return rc;
144 		}
145 	}
146 #endif /* CONFIG_RFS_ACCEL */
147 	return 0;
148 }
149 
150 static void ena_init_io_rings_common(struct ena_adapter *adapter,
151 				     struct ena_ring *ring, u16 qid)
152 {
153 	ring->qid = qid;
154 	ring->pdev = adapter->pdev;
155 	ring->dev = &adapter->pdev->dev;
156 	ring->netdev = adapter->netdev;
157 	ring->napi = &adapter->ena_napi[qid].napi;
158 	ring->adapter = adapter;
159 	ring->ena_dev = adapter->ena_dev;
160 	ring->per_napi_packets = 0;
161 	ring->cpu = 0;
162 	ring->first_interrupt = false;
163 	ring->no_interrupt_event_cnt = 0;
164 	u64_stats_init(&ring->syncp);
165 }
166 
167 static void ena_init_io_rings(struct ena_adapter *adapter)
168 {
169 	struct ena_com_dev *ena_dev;
170 	struct ena_ring *txr, *rxr;
171 	int i;
172 
173 	ena_dev = adapter->ena_dev;
174 
175 	for (i = 0; i < adapter->num_io_queues; i++) {
176 		txr = &adapter->tx_ring[i];
177 		rxr = &adapter->rx_ring[i];
178 
179 		/* TX/RX common ring state */
180 		ena_init_io_rings_common(adapter, txr, i);
181 		ena_init_io_rings_common(adapter, rxr, i);
182 
183 		/* TX specific ring state */
184 		txr->ring_size = adapter->requested_tx_ring_size;
185 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
186 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
187 		txr->sgl_size = adapter->max_tx_sgl_size;
188 		txr->smoothed_interval =
189 			ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
190 
191 		/* RX specific ring state */
192 		rxr->ring_size = adapter->requested_rx_ring_size;
193 		rxr->rx_copybreak = adapter->rx_copybreak;
194 		rxr->sgl_size = adapter->max_rx_sgl_size;
195 		rxr->smoothed_interval =
196 			ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
197 		rxr->empty_rx_queue = 0;
198 		adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
199 	}
200 }
201 
202 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
203  * @adapter: network interface device structure
204  * @qid: queue index
205  *
206  * Return 0 on success, negative on failure
207  */
208 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
209 {
210 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
211 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
212 	int size, i, node;
213 
214 	if (tx_ring->tx_buffer_info) {
215 		netif_err(adapter, ifup,
216 			  adapter->netdev, "tx_buffer_info info is not NULL");
217 		return -EEXIST;
218 	}
219 
220 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
221 	node = cpu_to_node(ena_irq->cpu);
222 
223 	tx_ring->tx_buffer_info = vzalloc_node(size, node);
224 	if (!tx_ring->tx_buffer_info) {
225 		tx_ring->tx_buffer_info = vzalloc(size);
226 		if (!tx_ring->tx_buffer_info)
227 			goto err_tx_buffer_info;
228 	}
229 
230 	size = sizeof(u16) * tx_ring->ring_size;
231 	tx_ring->free_ids = vzalloc_node(size, node);
232 	if (!tx_ring->free_ids) {
233 		tx_ring->free_ids = vzalloc(size);
234 		if (!tx_ring->free_ids)
235 			goto err_tx_free_ids;
236 	}
237 
238 	size = tx_ring->tx_max_header_size;
239 	tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
240 	if (!tx_ring->push_buf_intermediate_buf) {
241 		tx_ring->push_buf_intermediate_buf = vzalloc(size);
242 		if (!tx_ring->push_buf_intermediate_buf)
243 			goto err_push_buf_intermediate_buf;
244 	}
245 
246 	/* Req id ring for TX out of order completions */
247 	for (i = 0; i < tx_ring->ring_size; i++)
248 		tx_ring->free_ids[i] = i;
249 
250 	/* Reset tx statistics */
251 	memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
252 
253 	tx_ring->next_to_use = 0;
254 	tx_ring->next_to_clean = 0;
255 	tx_ring->cpu = ena_irq->cpu;
256 	return 0;
257 
258 err_push_buf_intermediate_buf:
259 	vfree(tx_ring->free_ids);
260 	tx_ring->free_ids = NULL;
261 err_tx_free_ids:
262 	vfree(tx_ring->tx_buffer_info);
263 	tx_ring->tx_buffer_info = NULL;
264 err_tx_buffer_info:
265 	return -ENOMEM;
266 }
267 
268 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
269  * @adapter: network interface device structure
270  * @qid: queue index
271  *
272  * Free all transmit software resources
273  */
274 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
275 {
276 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
277 
278 	vfree(tx_ring->tx_buffer_info);
279 	tx_ring->tx_buffer_info = NULL;
280 
281 	vfree(tx_ring->free_ids);
282 	tx_ring->free_ids = NULL;
283 
284 	vfree(tx_ring->push_buf_intermediate_buf);
285 	tx_ring->push_buf_intermediate_buf = NULL;
286 }
287 
288 /* ena_setup_all_tx_resources - allocate I/O Tx queues resources for All queues
289  * @adapter: private structure
290  *
291  * Return 0 on success, negative on failure
292  */
293 static int ena_setup_all_tx_resources(struct ena_adapter *adapter)
294 {
295 	int i, rc = 0;
296 
297 	for (i = 0; i < adapter->num_io_queues; i++) {
298 		rc = ena_setup_tx_resources(adapter, i);
299 		if (rc)
300 			goto err_setup_tx;
301 	}
302 
303 	return 0;
304 
305 err_setup_tx:
306 
307 	netif_err(adapter, ifup, adapter->netdev,
308 		  "Tx queue %d: allocation failed\n", i);
309 
310 	/* rewind the index freeing the rings as we go */
311 	while (i--)
312 		ena_free_tx_resources(adapter, i);
313 	return rc;
314 }
315 
316 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
317  * @adapter: board private structure
318  *
319  * Free all transmit software resources
320  */
321 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
322 {
323 	int i;
324 
325 	for (i = 0; i < adapter->num_io_queues; i++)
326 		ena_free_tx_resources(adapter, i);
327 }
328 
329 static int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id)
330 {
331 	if (likely(req_id < rx_ring->ring_size))
332 		return 0;
333 
334 	netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
335 		  "Invalid rx req_id: %hu\n", req_id);
336 
337 	u64_stats_update_begin(&rx_ring->syncp);
338 	rx_ring->rx_stats.bad_req_id++;
339 	u64_stats_update_end(&rx_ring->syncp);
340 
341 	/* Trigger device reset */
342 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
343 	set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags);
344 	return -EFAULT;
345 }
346 
347 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
348  * @adapter: network interface device structure
349  * @qid: queue index
350  *
351  * Returns 0 on success, negative on failure
352  */
353 static int ena_setup_rx_resources(struct ena_adapter *adapter,
354 				  u32 qid)
355 {
356 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
357 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
358 	int size, node, i;
359 
360 	if (rx_ring->rx_buffer_info) {
361 		netif_err(adapter, ifup, adapter->netdev,
362 			  "rx_buffer_info is not NULL");
363 		return -EEXIST;
364 	}
365 
366 	/* alloc extra element so in rx path
367 	 * we can always prefetch rx_info + 1
368 	 */
369 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
370 	node = cpu_to_node(ena_irq->cpu);
371 
372 	rx_ring->rx_buffer_info = vzalloc_node(size, node);
373 	if (!rx_ring->rx_buffer_info) {
374 		rx_ring->rx_buffer_info = vzalloc(size);
375 		if (!rx_ring->rx_buffer_info)
376 			return -ENOMEM;
377 	}
378 
379 	size = sizeof(u16) * rx_ring->ring_size;
380 	rx_ring->free_ids = vzalloc_node(size, node);
381 	if (!rx_ring->free_ids) {
382 		rx_ring->free_ids = vzalloc(size);
383 		if (!rx_ring->free_ids) {
384 			vfree(rx_ring->rx_buffer_info);
385 			rx_ring->rx_buffer_info = NULL;
386 			return -ENOMEM;
387 		}
388 	}
389 
390 	/* Req id ring for receiving RX pkts out of order */
391 	for (i = 0; i < rx_ring->ring_size; i++)
392 		rx_ring->free_ids[i] = i;
393 
394 	/* Reset rx statistics */
395 	memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
396 
397 	rx_ring->next_to_clean = 0;
398 	rx_ring->next_to_use = 0;
399 	rx_ring->cpu = ena_irq->cpu;
400 
401 	return 0;
402 }
403 
404 /* ena_free_rx_resources - Free I/O Rx Resources
405  * @adapter: network interface device structure
406  * @qid: queue index
407  *
408  * Free all receive software resources
409  */
410 static void ena_free_rx_resources(struct ena_adapter *adapter,
411 				  u32 qid)
412 {
413 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
414 
415 	vfree(rx_ring->rx_buffer_info);
416 	rx_ring->rx_buffer_info = NULL;
417 
418 	vfree(rx_ring->free_ids);
419 	rx_ring->free_ids = NULL;
420 }
421 
422 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
423  * @adapter: board private structure
424  *
425  * Return 0 on success, negative on failure
426  */
427 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
428 {
429 	int i, rc = 0;
430 
431 	for (i = 0; i < adapter->num_io_queues; i++) {
432 		rc = ena_setup_rx_resources(adapter, i);
433 		if (rc)
434 			goto err_setup_rx;
435 	}
436 
437 	return 0;
438 
439 err_setup_rx:
440 
441 	netif_err(adapter, ifup, adapter->netdev,
442 		  "Rx queue %d: allocation failed\n", i);
443 
444 	/* rewind the index freeing the rings as we go */
445 	while (i--)
446 		ena_free_rx_resources(adapter, i);
447 	return rc;
448 }
449 
450 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
451  * @adapter: board private structure
452  *
453  * Free all receive software resources
454  */
455 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
456 {
457 	int i;
458 
459 	for (i = 0; i < adapter->num_io_queues; i++)
460 		ena_free_rx_resources(adapter, i);
461 }
462 
463 static int ena_alloc_rx_page(struct ena_ring *rx_ring,
464 				    struct ena_rx_buffer *rx_info, gfp_t gfp)
465 {
466 	struct ena_com_buf *ena_buf;
467 	struct page *page;
468 	dma_addr_t dma;
469 
470 	/* if previous allocated page is not used */
471 	if (unlikely(rx_info->page))
472 		return 0;
473 
474 	page = alloc_page(gfp);
475 	if (unlikely(!page)) {
476 		u64_stats_update_begin(&rx_ring->syncp);
477 		rx_ring->rx_stats.page_alloc_fail++;
478 		u64_stats_update_end(&rx_ring->syncp);
479 		return -ENOMEM;
480 	}
481 
482 	dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
483 			   DMA_FROM_DEVICE);
484 	if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
485 		u64_stats_update_begin(&rx_ring->syncp);
486 		rx_ring->rx_stats.dma_mapping_err++;
487 		u64_stats_update_end(&rx_ring->syncp);
488 
489 		__free_page(page);
490 		return -EIO;
491 	}
492 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
493 		  "alloc page %p, rx_info %p\n", page, rx_info);
494 
495 	rx_info->page = page;
496 	rx_info->page_offset = 0;
497 	ena_buf = &rx_info->ena_buf;
498 	ena_buf->paddr = dma;
499 	ena_buf->len = ENA_PAGE_SIZE;
500 
501 	return 0;
502 }
503 
504 static void ena_free_rx_page(struct ena_ring *rx_ring,
505 			     struct ena_rx_buffer *rx_info)
506 {
507 	struct page *page = rx_info->page;
508 	struct ena_com_buf *ena_buf = &rx_info->ena_buf;
509 
510 	if (unlikely(!page)) {
511 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
512 			   "Trying to free unallocated buffer\n");
513 		return;
514 	}
515 
516 	dma_unmap_page(rx_ring->dev, ena_buf->paddr, ENA_PAGE_SIZE,
517 		       DMA_FROM_DEVICE);
518 
519 	__free_page(page);
520 	rx_info->page = NULL;
521 }
522 
523 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
524 {
525 	u16 next_to_use, req_id;
526 	u32 i;
527 	int rc;
528 
529 	next_to_use = rx_ring->next_to_use;
530 
531 	for (i = 0; i < num; i++) {
532 		struct ena_rx_buffer *rx_info;
533 
534 		req_id = rx_ring->free_ids[next_to_use];
535 		rc = validate_rx_req_id(rx_ring, req_id);
536 		if (unlikely(rc < 0))
537 			break;
538 
539 		rx_info = &rx_ring->rx_buffer_info[req_id];
540 
541 
542 		rc = ena_alloc_rx_page(rx_ring, rx_info,
543 				       GFP_ATOMIC | __GFP_COMP);
544 		if (unlikely(rc < 0)) {
545 			netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
546 				   "failed to alloc buffer for rx queue %d\n",
547 				   rx_ring->qid);
548 			break;
549 		}
550 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
551 						&rx_info->ena_buf,
552 						req_id);
553 		if (unlikely(rc)) {
554 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
555 				   "failed to add buffer for rx queue %d\n",
556 				   rx_ring->qid);
557 			break;
558 		}
559 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
560 						   rx_ring->ring_size);
561 	}
562 
563 	if (unlikely(i < num)) {
564 		u64_stats_update_begin(&rx_ring->syncp);
565 		rx_ring->rx_stats.refil_partial++;
566 		u64_stats_update_end(&rx_ring->syncp);
567 		netdev_warn(rx_ring->netdev,
568 			    "refilled rx qid %d with only %d buffers (from %d)\n",
569 			    rx_ring->qid, i, num);
570 	}
571 
572 	/* ena_com_write_sq_doorbell issues a wmb() */
573 	if (likely(i))
574 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
575 
576 	rx_ring->next_to_use = next_to_use;
577 
578 	return i;
579 }
580 
581 static void ena_free_rx_bufs(struct ena_adapter *adapter,
582 			     u32 qid)
583 {
584 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
585 	u32 i;
586 
587 	for (i = 0; i < rx_ring->ring_size; i++) {
588 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
589 
590 		if (rx_info->page)
591 			ena_free_rx_page(rx_ring, rx_info);
592 	}
593 }
594 
595 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
596  * @adapter: board private structure
597  */
598 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
599 {
600 	struct ena_ring *rx_ring;
601 	int i, rc, bufs_num;
602 
603 	for (i = 0; i < adapter->num_io_queues; i++) {
604 		rx_ring = &adapter->rx_ring[i];
605 		bufs_num = rx_ring->ring_size - 1;
606 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
607 
608 		if (unlikely(rc != bufs_num))
609 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
610 				   "refilling Queue %d failed. allocated %d buffers from: %d\n",
611 				   i, rc, bufs_num);
612 	}
613 }
614 
615 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
616 {
617 	int i;
618 
619 	for (i = 0; i < adapter->num_io_queues; i++)
620 		ena_free_rx_bufs(adapter, i);
621 }
622 
623 static void ena_unmap_tx_skb(struct ena_ring *tx_ring,
624 				    struct ena_tx_buffer *tx_info)
625 {
626 	struct ena_com_buf *ena_buf;
627 	u32 cnt;
628 	int i;
629 
630 	ena_buf = tx_info->bufs;
631 	cnt = tx_info->num_of_bufs;
632 
633 	if (unlikely(!cnt))
634 		return;
635 
636 	if (tx_info->map_linear_data) {
637 		dma_unmap_single(tx_ring->dev,
638 				 dma_unmap_addr(ena_buf, paddr),
639 				 dma_unmap_len(ena_buf, len),
640 				 DMA_TO_DEVICE);
641 		ena_buf++;
642 		cnt--;
643 	}
644 
645 	/* unmap remaining mapped pages */
646 	for (i = 0; i < cnt; i++) {
647 		dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
648 			       dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
649 		ena_buf++;
650 	}
651 }
652 
653 /* ena_free_tx_bufs - Free Tx Buffers per Queue
654  * @tx_ring: TX ring for which buffers be freed
655  */
656 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
657 {
658 	bool print_once = true;
659 	u32 i;
660 
661 	for (i = 0; i < tx_ring->ring_size; i++) {
662 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
663 
664 		if (!tx_info->skb)
665 			continue;
666 
667 		if (print_once) {
668 			netdev_notice(tx_ring->netdev,
669 				      "free uncompleted tx skb qid %d idx 0x%x\n",
670 				      tx_ring->qid, i);
671 			print_once = false;
672 		} else {
673 			netdev_dbg(tx_ring->netdev,
674 				   "free uncompleted tx skb qid %d idx 0x%x\n",
675 				   tx_ring->qid, i);
676 		}
677 
678 		ena_unmap_tx_skb(tx_ring, tx_info);
679 
680 		dev_kfree_skb_any(tx_info->skb);
681 	}
682 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
683 						  tx_ring->qid));
684 }
685 
686 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
687 {
688 	struct ena_ring *tx_ring;
689 	int i;
690 
691 	for (i = 0; i < adapter->num_io_queues; i++) {
692 		tx_ring = &adapter->tx_ring[i];
693 		ena_free_tx_bufs(tx_ring);
694 	}
695 }
696 
697 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
698 {
699 	u16 ena_qid;
700 	int i;
701 
702 	for (i = 0; i < adapter->num_io_queues; i++) {
703 		ena_qid = ENA_IO_TXQ_IDX(i);
704 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
705 	}
706 }
707 
708 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
709 {
710 	u16 ena_qid;
711 	int i;
712 
713 	for (i = 0; i < adapter->num_io_queues; i++) {
714 		ena_qid = ENA_IO_RXQ_IDX(i);
715 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
716 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
717 	}
718 }
719 
720 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
721 {
722 	ena_destroy_all_tx_queues(adapter);
723 	ena_destroy_all_rx_queues(adapter);
724 }
725 
726 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
727 {
728 	struct ena_tx_buffer *tx_info = NULL;
729 
730 	if (likely(req_id < tx_ring->ring_size)) {
731 		tx_info = &tx_ring->tx_buffer_info[req_id];
732 		if (likely(tx_info->skb))
733 			return 0;
734 	}
735 
736 	if (tx_info)
737 		netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
738 			  "tx_info doesn't have valid skb\n");
739 	else
740 		netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
741 			  "Invalid req_id: %hu\n", req_id);
742 
743 	u64_stats_update_begin(&tx_ring->syncp);
744 	tx_ring->tx_stats.bad_req_id++;
745 	u64_stats_update_end(&tx_ring->syncp);
746 
747 	/* Trigger device reset */
748 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
749 	set_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags);
750 	return -EFAULT;
751 }
752 
753 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
754 {
755 	struct netdev_queue *txq;
756 	bool above_thresh;
757 	u32 tx_bytes = 0;
758 	u32 total_done = 0;
759 	u16 next_to_clean;
760 	u16 req_id;
761 	int tx_pkts = 0;
762 	int rc;
763 
764 	next_to_clean = tx_ring->next_to_clean;
765 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
766 
767 	while (tx_pkts < budget) {
768 		struct ena_tx_buffer *tx_info;
769 		struct sk_buff *skb;
770 
771 		rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
772 						&req_id);
773 		if (rc)
774 			break;
775 
776 		rc = validate_tx_req_id(tx_ring, req_id);
777 		if (rc)
778 			break;
779 
780 		tx_info = &tx_ring->tx_buffer_info[req_id];
781 		skb = tx_info->skb;
782 
783 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
784 		prefetch(&skb->end);
785 
786 		tx_info->skb = NULL;
787 		tx_info->last_jiffies = 0;
788 
789 		ena_unmap_tx_skb(tx_ring, tx_info);
790 
791 		netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
792 			  "tx_poll: q %d skb %p completed\n", tx_ring->qid,
793 			  skb);
794 
795 		tx_bytes += skb->len;
796 		dev_kfree_skb(skb);
797 		tx_pkts++;
798 		total_done += tx_info->tx_descs;
799 
800 		tx_ring->free_ids[next_to_clean] = req_id;
801 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
802 						     tx_ring->ring_size);
803 	}
804 
805 	tx_ring->next_to_clean = next_to_clean;
806 	ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
807 	ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
808 
809 	netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
810 
811 	netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
812 		  "tx_poll: q %d done. total pkts: %d\n",
813 		  tx_ring->qid, tx_pkts);
814 
815 	/* need to make the rings circular update visible to
816 	 * ena_start_xmit() before checking for netif_queue_stopped().
817 	 */
818 	smp_mb();
819 
820 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
821 						    ENA_TX_WAKEUP_THRESH);
822 	if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
823 		__netif_tx_lock(txq, smp_processor_id());
824 		above_thresh =
825 			ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
826 						     ENA_TX_WAKEUP_THRESH);
827 		if (netif_tx_queue_stopped(txq) && above_thresh &&
828 		    test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
829 			netif_tx_wake_queue(txq);
830 			u64_stats_update_begin(&tx_ring->syncp);
831 			tx_ring->tx_stats.queue_wakeup++;
832 			u64_stats_update_end(&tx_ring->syncp);
833 		}
834 		__netif_tx_unlock(txq);
835 	}
836 
837 	return tx_pkts;
838 }
839 
840 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags)
841 {
842 	struct sk_buff *skb;
843 
844 	if (frags)
845 		skb = napi_get_frags(rx_ring->napi);
846 	else
847 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
848 						rx_ring->rx_copybreak);
849 
850 	if (unlikely(!skb)) {
851 		u64_stats_update_begin(&rx_ring->syncp);
852 		rx_ring->rx_stats.skb_alloc_fail++;
853 		u64_stats_update_end(&rx_ring->syncp);
854 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
855 			  "Failed to allocate skb. frags: %d\n", frags);
856 		return NULL;
857 	}
858 
859 	return skb;
860 }
861 
862 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
863 				  struct ena_com_rx_buf_info *ena_bufs,
864 				  u32 descs,
865 				  u16 *next_to_clean)
866 {
867 	struct sk_buff *skb;
868 	struct ena_rx_buffer *rx_info;
869 	u16 len, req_id, buf = 0;
870 	void *va;
871 
872 	len = ena_bufs[buf].len;
873 	req_id = ena_bufs[buf].req_id;
874 	rx_info = &rx_ring->rx_buffer_info[req_id];
875 
876 	if (unlikely(!rx_info->page)) {
877 		netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
878 			  "Page is NULL\n");
879 		return NULL;
880 	}
881 
882 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
883 		  "rx_info %p page %p\n",
884 		  rx_info, rx_info->page);
885 
886 	/* save virt address of first buffer */
887 	va = page_address(rx_info->page) + rx_info->page_offset;
888 	prefetch(va + NET_IP_ALIGN);
889 
890 	if (len <= rx_ring->rx_copybreak) {
891 		skb = ena_alloc_skb(rx_ring, false);
892 		if (unlikely(!skb))
893 			return NULL;
894 
895 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
896 			  "rx allocated small packet. len %d. data_len %d\n",
897 			  skb->len, skb->data_len);
898 
899 		/* sync this buffer for CPU use */
900 		dma_sync_single_for_cpu(rx_ring->dev,
901 					dma_unmap_addr(&rx_info->ena_buf, paddr),
902 					len,
903 					DMA_FROM_DEVICE);
904 		skb_copy_to_linear_data(skb, va, len);
905 		dma_sync_single_for_device(rx_ring->dev,
906 					   dma_unmap_addr(&rx_info->ena_buf, paddr),
907 					   len,
908 					   DMA_FROM_DEVICE);
909 
910 		skb_put(skb, len);
911 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
912 		rx_ring->free_ids[*next_to_clean] = req_id;
913 		*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
914 						     rx_ring->ring_size);
915 		return skb;
916 	}
917 
918 	skb = ena_alloc_skb(rx_ring, true);
919 	if (unlikely(!skb))
920 		return NULL;
921 
922 	do {
923 		dma_unmap_page(rx_ring->dev,
924 			       dma_unmap_addr(&rx_info->ena_buf, paddr),
925 			       ENA_PAGE_SIZE, DMA_FROM_DEVICE);
926 
927 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
928 				rx_info->page_offset, len, ENA_PAGE_SIZE);
929 
930 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
931 			  "rx skb updated. len %d. data_len %d\n",
932 			  skb->len, skb->data_len);
933 
934 		rx_info->page = NULL;
935 
936 		rx_ring->free_ids[*next_to_clean] = req_id;
937 		*next_to_clean =
938 			ENA_RX_RING_IDX_NEXT(*next_to_clean,
939 					     rx_ring->ring_size);
940 		if (likely(--descs == 0))
941 			break;
942 
943 		buf++;
944 		len = ena_bufs[buf].len;
945 		req_id = ena_bufs[buf].req_id;
946 		rx_info = &rx_ring->rx_buffer_info[req_id];
947 	} while (1);
948 
949 	return skb;
950 }
951 
952 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
953  * @adapter: structure containing adapter specific data
954  * @ena_rx_ctx: received packet context/metadata
955  * @skb: skb currently being received and modified
956  */
957 static void ena_rx_checksum(struct ena_ring *rx_ring,
958 				   struct ena_com_rx_ctx *ena_rx_ctx,
959 				   struct sk_buff *skb)
960 {
961 	/* Rx csum disabled */
962 	if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
963 		skb->ip_summed = CHECKSUM_NONE;
964 		return;
965 	}
966 
967 	/* For fragmented packets the checksum isn't valid */
968 	if (ena_rx_ctx->frag) {
969 		skb->ip_summed = CHECKSUM_NONE;
970 		return;
971 	}
972 
973 	/* if IP and error */
974 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
975 		     (ena_rx_ctx->l3_csum_err))) {
976 		/* ipv4 checksum error */
977 		skb->ip_summed = CHECKSUM_NONE;
978 		u64_stats_update_begin(&rx_ring->syncp);
979 		rx_ring->rx_stats.bad_csum++;
980 		u64_stats_update_end(&rx_ring->syncp);
981 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
982 			  "RX IPv4 header checksum error\n");
983 		return;
984 	}
985 
986 	/* if TCP/UDP */
987 	if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
988 		   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
989 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
990 			/* TCP/UDP checksum error */
991 			u64_stats_update_begin(&rx_ring->syncp);
992 			rx_ring->rx_stats.bad_csum++;
993 			u64_stats_update_end(&rx_ring->syncp);
994 			netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
995 				  "RX L4 checksum error\n");
996 			skb->ip_summed = CHECKSUM_NONE;
997 			return;
998 		}
999 
1000 		if (likely(ena_rx_ctx->l4_csum_checked)) {
1001 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1002 			u64_stats_update_begin(&rx_ring->syncp);
1003 			rx_ring->rx_stats.csum_good++;
1004 			u64_stats_update_end(&rx_ring->syncp);
1005 		} else {
1006 			u64_stats_update_begin(&rx_ring->syncp);
1007 			rx_ring->rx_stats.csum_unchecked++;
1008 			u64_stats_update_end(&rx_ring->syncp);
1009 			skb->ip_summed = CHECKSUM_NONE;
1010 		}
1011 	} else {
1012 		skb->ip_summed = CHECKSUM_NONE;
1013 		return;
1014 	}
1015 
1016 }
1017 
1018 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1019 			    struct ena_com_rx_ctx *ena_rx_ctx,
1020 			    struct sk_buff *skb)
1021 {
1022 	enum pkt_hash_types hash_type;
1023 
1024 	if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1025 		if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1026 			   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1027 
1028 			hash_type = PKT_HASH_TYPE_L4;
1029 		else
1030 			hash_type = PKT_HASH_TYPE_NONE;
1031 
1032 		/* Override hash type if the packet is fragmented */
1033 		if (ena_rx_ctx->frag)
1034 			hash_type = PKT_HASH_TYPE_NONE;
1035 
1036 		skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1037 	}
1038 }
1039 
1040 /* ena_clean_rx_irq - Cleanup RX irq
1041  * @rx_ring: RX ring to clean
1042  * @napi: napi handler
1043  * @budget: how many packets driver is allowed to clean
1044  *
1045  * Returns the number of cleaned buffers.
1046  */
1047 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1048 			    u32 budget)
1049 {
1050 	u16 next_to_clean = rx_ring->next_to_clean;
1051 	u32 res_budget, work_done;
1052 
1053 	struct ena_com_rx_ctx ena_rx_ctx;
1054 	struct ena_adapter *adapter;
1055 	struct sk_buff *skb;
1056 	int refill_required;
1057 	int refill_threshold;
1058 	int rc = 0;
1059 	int total_len = 0;
1060 	int rx_copybreak_pkt = 0;
1061 	int i;
1062 
1063 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1064 		  "%s qid %d\n", __func__, rx_ring->qid);
1065 	res_budget = budget;
1066 
1067 	do {
1068 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1069 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1070 		ena_rx_ctx.descs = 0;
1071 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1072 				    rx_ring->ena_com_io_sq,
1073 				    &ena_rx_ctx);
1074 		if (unlikely(rc))
1075 			goto error;
1076 
1077 		if (unlikely(ena_rx_ctx.descs == 0))
1078 			break;
1079 
1080 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1081 			  "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1082 			  rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1083 			  ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1084 
1085 		/* allocate skb and fill it */
1086 		skb = ena_rx_skb(rx_ring, rx_ring->ena_bufs, ena_rx_ctx.descs,
1087 				 &next_to_clean);
1088 
1089 		/* exit if we failed to retrieve a buffer */
1090 		if (unlikely(!skb)) {
1091 			for (i = 0; i < ena_rx_ctx.descs; i++) {
1092 				rx_ring->free_ids[next_to_clean] =
1093 					rx_ring->ena_bufs[i].req_id;
1094 				next_to_clean =
1095 					ENA_RX_RING_IDX_NEXT(next_to_clean,
1096 							     rx_ring->ring_size);
1097 			}
1098 			break;
1099 		}
1100 
1101 		ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1102 
1103 		ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1104 
1105 		skb_record_rx_queue(skb, rx_ring->qid);
1106 
1107 		if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
1108 			total_len += rx_ring->ena_bufs[0].len;
1109 			rx_copybreak_pkt++;
1110 			napi_gro_receive(napi, skb);
1111 		} else {
1112 			total_len += skb->len;
1113 			napi_gro_frags(napi);
1114 		}
1115 
1116 		res_budget--;
1117 	} while (likely(res_budget));
1118 
1119 	work_done = budget - res_budget;
1120 	rx_ring->per_napi_packets += work_done;
1121 	u64_stats_update_begin(&rx_ring->syncp);
1122 	rx_ring->rx_stats.bytes += total_len;
1123 	rx_ring->rx_stats.cnt += work_done;
1124 	rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1125 	u64_stats_update_end(&rx_ring->syncp);
1126 
1127 	rx_ring->next_to_clean = next_to_clean;
1128 
1129 	refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
1130 	refill_threshold =
1131 		min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1132 		      ENA_RX_REFILL_THRESH_PACKET);
1133 
1134 	/* Optimization, try to batch new rx buffers */
1135 	if (refill_required > refill_threshold) {
1136 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1137 		ena_refill_rx_bufs(rx_ring, refill_required);
1138 	}
1139 
1140 	return work_done;
1141 
1142 error:
1143 	adapter = netdev_priv(rx_ring->netdev);
1144 
1145 	u64_stats_update_begin(&rx_ring->syncp);
1146 	rx_ring->rx_stats.bad_desc_num++;
1147 	u64_stats_update_end(&rx_ring->syncp);
1148 
1149 	/* Too many desc from the device. Trigger reset */
1150 	adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
1151 	set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
1152 
1153 	return 0;
1154 }
1155 
1156 static void ena_dim_work(struct work_struct *w)
1157 {
1158 	struct dim *dim = container_of(w, struct dim, work);
1159 	struct dim_cq_moder cur_moder =
1160 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1161 	struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1162 
1163 	ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1164 	dim->state = DIM_START_MEASURE;
1165 }
1166 
1167 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1168 {
1169 	struct dim_sample dim_sample;
1170 	struct ena_ring *rx_ring = ena_napi->rx_ring;
1171 
1172 	if (!rx_ring->per_napi_packets)
1173 		return;
1174 
1175 	rx_ring->non_empty_napi_events++;
1176 
1177 	dim_update_sample(rx_ring->non_empty_napi_events,
1178 			  rx_ring->rx_stats.cnt,
1179 			  rx_ring->rx_stats.bytes,
1180 			  &dim_sample);
1181 
1182 	net_dim(&ena_napi->dim, dim_sample);
1183 
1184 	rx_ring->per_napi_packets = 0;
1185 }
1186 
1187 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
1188 					struct ena_ring *rx_ring)
1189 {
1190 	struct ena_eth_io_intr_reg intr_reg;
1191 	u32 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1192 		rx_ring->smoothed_interval :
1193 		ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1194 
1195 	/* Update intr register: rx intr delay,
1196 	 * tx intr delay and interrupt unmask
1197 	 */
1198 	ena_com_update_intr_reg(&intr_reg,
1199 				rx_interval,
1200 				tx_ring->smoothed_interval,
1201 				true);
1202 
1203 	/* It is a shared MSI-X.
1204 	 * Tx and Rx CQ have pointer to it.
1205 	 * So we use one of them to reach the intr reg
1206 	 */
1207 	ena_com_unmask_intr(rx_ring->ena_com_io_cq, &intr_reg);
1208 }
1209 
1210 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1211 					     struct ena_ring *rx_ring)
1212 {
1213 	int cpu = get_cpu();
1214 	int numa_node;
1215 
1216 	/* Check only one ring since the 2 rings are running on the same cpu */
1217 	if (likely(tx_ring->cpu == cpu))
1218 		goto out;
1219 
1220 	numa_node = cpu_to_node(cpu);
1221 	put_cpu();
1222 
1223 	if (numa_node != NUMA_NO_NODE) {
1224 		ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1225 		ena_com_update_numa_node(rx_ring->ena_com_io_cq, numa_node);
1226 	}
1227 
1228 	tx_ring->cpu = cpu;
1229 	rx_ring->cpu = cpu;
1230 
1231 	return;
1232 out:
1233 	put_cpu();
1234 }
1235 
1236 static int ena_io_poll(struct napi_struct *napi, int budget)
1237 {
1238 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1239 	struct ena_ring *tx_ring, *rx_ring;
1240 
1241 	u32 tx_work_done;
1242 	u32 rx_work_done;
1243 	int tx_budget;
1244 	int napi_comp_call = 0;
1245 	int ret;
1246 
1247 	tx_ring = ena_napi->tx_ring;
1248 	rx_ring = ena_napi->rx_ring;
1249 
1250 	tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1251 
1252 	if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1253 	    test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1254 		napi_complete_done(napi, 0);
1255 		return 0;
1256 	}
1257 
1258 	tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1259 	rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1260 
1261 	/* If the device is about to reset or down, avoid unmask
1262 	 * the interrupt and return 0 so NAPI won't reschedule
1263 	 */
1264 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1265 		     test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1266 		napi_complete_done(napi, 0);
1267 		ret = 0;
1268 
1269 	} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1270 		napi_comp_call = 1;
1271 
1272 		/* Update numa and unmask the interrupt only when schedule
1273 		 * from the interrupt context (vs from sk_busy_loop)
1274 		 */
1275 		if (napi_complete_done(napi, rx_work_done)) {
1276 			/* We apply adaptive moderation on Rx path only.
1277 			 * Tx uses static interrupt moderation.
1278 			 */
1279 			if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1280 				ena_adjust_adaptive_rx_intr_moderation(ena_napi);
1281 
1282 			ena_unmask_interrupt(tx_ring, rx_ring);
1283 		}
1284 
1285 		ena_update_ring_numa_node(tx_ring, rx_ring);
1286 
1287 		ret = rx_work_done;
1288 	} else {
1289 		ret = budget;
1290 	}
1291 
1292 	u64_stats_update_begin(&tx_ring->syncp);
1293 	tx_ring->tx_stats.napi_comp += napi_comp_call;
1294 	tx_ring->tx_stats.tx_poll++;
1295 	u64_stats_update_end(&tx_ring->syncp);
1296 
1297 	return ret;
1298 }
1299 
1300 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1301 {
1302 	struct ena_adapter *adapter = (struct ena_adapter *)data;
1303 
1304 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1305 
1306 	/* Don't call the aenq handler before probe is done */
1307 	if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1308 		ena_com_aenq_intr_handler(adapter->ena_dev, data);
1309 
1310 	return IRQ_HANDLED;
1311 }
1312 
1313 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1314  * @irq: interrupt number
1315  * @data: pointer to a network interface private napi device structure
1316  */
1317 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1318 {
1319 	struct ena_napi *ena_napi = data;
1320 
1321 	ena_napi->tx_ring->first_interrupt = true;
1322 	ena_napi->rx_ring->first_interrupt = true;
1323 
1324 	napi_schedule_irqoff(&ena_napi->napi);
1325 
1326 	return IRQ_HANDLED;
1327 }
1328 
1329 /* Reserve a single MSI-X vector for management (admin + aenq).
1330  * plus reserve one vector for each potential io queue.
1331  * the number of potential io queues is the minimum of what the device
1332  * supports and the number of vCPUs.
1333  */
1334 static int ena_enable_msix(struct ena_adapter *adapter)
1335 {
1336 	int msix_vecs, irq_cnt;
1337 
1338 	if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1339 		netif_err(adapter, probe, adapter->netdev,
1340 			  "Error, MSI-X is already enabled\n");
1341 		return -EPERM;
1342 	}
1343 
1344 	/* Reserved the max msix vectors we might need */
1345 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->num_io_queues);
1346 	netif_dbg(adapter, probe, adapter->netdev,
1347 		  "trying to enable MSI-X, vectors %d\n", msix_vecs);
1348 
1349 	irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
1350 					msix_vecs, PCI_IRQ_MSIX);
1351 
1352 	if (irq_cnt < 0) {
1353 		netif_err(adapter, probe, adapter->netdev,
1354 			  "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
1355 		return -ENOSPC;
1356 	}
1357 
1358 	if (irq_cnt != msix_vecs) {
1359 		netif_notice(adapter, probe, adapter->netdev,
1360 			     "enable only %d MSI-X (out of %d), reduce the number of queues\n",
1361 			     irq_cnt, msix_vecs);
1362 		adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
1363 	}
1364 
1365 	if (ena_init_rx_cpu_rmap(adapter))
1366 		netif_warn(adapter, probe, adapter->netdev,
1367 			   "Failed to map IRQs to CPUs\n");
1368 
1369 	adapter->msix_vecs = irq_cnt;
1370 	set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
1371 
1372 	return 0;
1373 }
1374 
1375 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
1376 {
1377 	u32 cpu;
1378 
1379 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
1380 		 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
1381 		 pci_name(adapter->pdev));
1382 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
1383 		ena_intr_msix_mgmnt;
1384 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
1385 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
1386 		pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
1387 	cpu = cpumask_first(cpu_online_mask);
1388 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
1389 	cpumask_set_cpu(cpu,
1390 			&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
1391 }
1392 
1393 static void ena_setup_io_intr(struct ena_adapter *adapter)
1394 {
1395 	struct net_device *netdev;
1396 	int irq_idx, i, cpu;
1397 
1398 	netdev = adapter->netdev;
1399 
1400 	for (i = 0; i < adapter->num_io_queues; i++) {
1401 		irq_idx = ENA_IO_IRQ_IDX(i);
1402 		cpu = i % num_online_cpus();
1403 
1404 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1405 			 "%s-Tx-Rx-%d", netdev->name, i);
1406 		adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
1407 		adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
1408 		adapter->irq_tbl[irq_idx].vector =
1409 			pci_irq_vector(adapter->pdev, irq_idx);
1410 		adapter->irq_tbl[irq_idx].cpu = cpu;
1411 
1412 		cpumask_set_cpu(cpu,
1413 				&adapter->irq_tbl[irq_idx].affinity_hint_mask);
1414 	}
1415 }
1416 
1417 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
1418 {
1419 	unsigned long flags = 0;
1420 	struct ena_irq *irq;
1421 	int rc;
1422 
1423 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1424 	rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1425 			 irq->data);
1426 	if (rc) {
1427 		netif_err(adapter, probe, adapter->netdev,
1428 			  "failed to request admin irq\n");
1429 		return rc;
1430 	}
1431 
1432 	netif_dbg(adapter, probe, adapter->netdev,
1433 		  "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
1434 		  irq->affinity_hint_mask.bits[0], irq->vector);
1435 
1436 	irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1437 
1438 	return rc;
1439 }
1440 
1441 static int ena_request_io_irq(struct ena_adapter *adapter)
1442 {
1443 	unsigned long flags = 0;
1444 	struct ena_irq *irq;
1445 	int rc = 0, i, k;
1446 
1447 	if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1448 		netif_err(adapter, ifup, adapter->netdev,
1449 			  "Failed to request I/O IRQ: MSI-X is not enabled\n");
1450 		return -EINVAL;
1451 	}
1452 
1453 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
1454 		irq = &adapter->irq_tbl[i];
1455 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1456 				 irq->data);
1457 		if (rc) {
1458 			netif_err(adapter, ifup, adapter->netdev,
1459 				  "Failed to request I/O IRQ. index %d rc %d\n",
1460 				   i, rc);
1461 			goto err;
1462 		}
1463 
1464 		netif_dbg(adapter, ifup, adapter->netdev,
1465 			  "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
1466 			  i, irq->affinity_hint_mask.bits[0], irq->vector);
1467 
1468 		irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1469 	}
1470 
1471 	return rc;
1472 
1473 err:
1474 	for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
1475 		irq = &adapter->irq_tbl[k];
1476 		free_irq(irq->vector, irq->data);
1477 	}
1478 
1479 	return rc;
1480 }
1481 
1482 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
1483 {
1484 	struct ena_irq *irq;
1485 
1486 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1487 	synchronize_irq(irq->vector);
1488 	irq_set_affinity_hint(irq->vector, NULL);
1489 	free_irq(irq->vector, irq->data);
1490 }
1491 
1492 static void ena_free_io_irq(struct ena_adapter *adapter)
1493 {
1494 	struct ena_irq *irq;
1495 	int i;
1496 
1497 #ifdef CONFIG_RFS_ACCEL
1498 	if (adapter->msix_vecs >= 1) {
1499 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
1500 		adapter->netdev->rx_cpu_rmap = NULL;
1501 	}
1502 #endif /* CONFIG_RFS_ACCEL */
1503 
1504 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
1505 		irq = &adapter->irq_tbl[i];
1506 		irq_set_affinity_hint(irq->vector, NULL);
1507 		free_irq(irq->vector, irq->data);
1508 	}
1509 }
1510 
1511 static void ena_disable_msix(struct ena_adapter *adapter)
1512 {
1513 	if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
1514 		pci_free_irq_vectors(adapter->pdev);
1515 }
1516 
1517 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
1518 {
1519 	int i;
1520 
1521 	if (!netif_running(adapter->netdev))
1522 		return;
1523 
1524 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++)
1525 		synchronize_irq(adapter->irq_tbl[i].vector);
1526 }
1527 
1528 static void ena_del_napi(struct ena_adapter *adapter)
1529 {
1530 	int i;
1531 
1532 	for (i = 0; i < adapter->num_io_queues; i++)
1533 		netif_napi_del(&adapter->ena_napi[i].napi);
1534 }
1535 
1536 static void ena_init_napi(struct ena_adapter *adapter)
1537 {
1538 	struct ena_napi *napi;
1539 	int i;
1540 
1541 	for (i = 0; i < adapter->num_io_queues; i++) {
1542 		napi = &adapter->ena_napi[i];
1543 
1544 		netif_napi_add(adapter->netdev,
1545 			       &adapter->ena_napi[i].napi,
1546 			       ena_io_poll,
1547 			       ENA_NAPI_BUDGET);
1548 		napi->rx_ring = &adapter->rx_ring[i];
1549 		napi->tx_ring = &adapter->tx_ring[i];
1550 		napi->qid = i;
1551 	}
1552 }
1553 
1554 static void ena_napi_disable_all(struct ena_adapter *adapter)
1555 {
1556 	int i;
1557 
1558 	for (i = 0; i < adapter->num_io_queues; i++)
1559 		napi_disable(&adapter->ena_napi[i].napi);
1560 }
1561 
1562 static void ena_napi_enable_all(struct ena_adapter *adapter)
1563 {
1564 	int i;
1565 
1566 	for (i = 0; i < adapter->num_io_queues; i++)
1567 		napi_enable(&adapter->ena_napi[i].napi);
1568 }
1569 
1570 /* Configure the Rx forwarding */
1571 static int ena_rss_configure(struct ena_adapter *adapter)
1572 {
1573 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1574 	int rc;
1575 
1576 	/* In case the RSS table wasn't initialized by probe */
1577 	if (!ena_dev->rss.tbl_log_size) {
1578 		rc = ena_rss_init_default(adapter);
1579 		if (rc && (rc != -EOPNOTSUPP)) {
1580 			netif_err(adapter, ifup, adapter->netdev,
1581 				  "Failed to init RSS rc: %d\n", rc);
1582 			return rc;
1583 		}
1584 	}
1585 
1586 	/* Set indirect table */
1587 	rc = ena_com_indirect_table_set(ena_dev);
1588 	if (unlikely(rc && rc != -EOPNOTSUPP))
1589 		return rc;
1590 
1591 	/* Configure hash function (if supported) */
1592 	rc = ena_com_set_hash_function(ena_dev);
1593 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
1594 		return rc;
1595 
1596 	/* Configure hash inputs (if supported) */
1597 	rc = ena_com_set_hash_ctrl(ena_dev);
1598 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
1599 		return rc;
1600 
1601 	return 0;
1602 }
1603 
1604 static int ena_up_complete(struct ena_adapter *adapter)
1605 {
1606 	int rc;
1607 
1608 	rc = ena_rss_configure(adapter);
1609 	if (rc)
1610 		return rc;
1611 
1612 	ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
1613 
1614 	ena_refill_all_rx_bufs(adapter);
1615 
1616 	/* enable transmits */
1617 	netif_tx_start_all_queues(adapter->netdev);
1618 
1619 	ena_napi_enable_all(adapter);
1620 
1621 	return 0;
1622 }
1623 
1624 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
1625 {
1626 	struct ena_com_create_io_ctx ctx;
1627 	struct ena_com_dev *ena_dev;
1628 	struct ena_ring *tx_ring;
1629 	u32 msix_vector;
1630 	u16 ena_qid;
1631 	int rc;
1632 
1633 	ena_dev = adapter->ena_dev;
1634 
1635 	tx_ring = &adapter->tx_ring[qid];
1636 	msix_vector = ENA_IO_IRQ_IDX(qid);
1637 	ena_qid = ENA_IO_TXQ_IDX(qid);
1638 
1639 	memset(&ctx, 0x0, sizeof(ctx));
1640 
1641 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1642 	ctx.qid = ena_qid;
1643 	ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1644 	ctx.msix_vector = msix_vector;
1645 	ctx.queue_size = tx_ring->ring_size;
1646 	ctx.numa_node = cpu_to_node(tx_ring->cpu);
1647 
1648 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1649 	if (rc) {
1650 		netif_err(adapter, ifup, adapter->netdev,
1651 			  "Failed to create I/O TX queue num %d rc: %d\n",
1652 			  qid, rc);
1653 		return rc;
1654 	}
1655 
1656 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1657 				     &tx_ring->ena_com_io_sq,
1658 				     &tx_ring->ena_com_io_cq);
1659 	if (rc) {
1660 		netif_err(adapter, ifup, adapter->netdev,
1661 			  "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
1662 			  qid, rc);
1663 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1664 		return rc;
1665 	}
1666 
1667 	ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
1668 	return rc;
1669 }
1670 
1671 static int ena_create_all_io_tx_queues(struct ena_adapter *adapter)
1672 {
1673 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1674 	int rc, i;
1675 
1676 	for (i = 0; i < adapter->num_io_queues; i++) {
1677 		rc = ena_create_io_tx_queue(adapter, i);
1678 		if (rc)
1679 			goto create_err;
1680 	}
1681 
1682 	return 0;
1683 
1684 create_err:
1685 	while (i--)
1686 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1687 
1688 	return rc;
1689 }
1690 
1691 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
1692 {
1693 	struct ena_com_dev *ena_dev;
1694 	struct ena_com_create_io_ctx ctx;
1695 	struct ena_ring *rx_ring;
1696 	u32 msix_vector;
1697 	u16 ena_qid;
1698 	int rc;
1699 
1700 	ena_dev = adapter->ena_dev;
1701 
1702 	rx_ring = &adapter->rx_ring[qid];
1703 	msix_vector = ENA_IO_IRQ_IDX(qid);
1704 	ena_qid = ENA_IO_RXQ_IDX(qid);
1705 
1706 	memset(&ctx, 0x0, sizeof(ctx));
1707 
1708 	ctx.qid = ena_qid;
1709 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1710 	ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1711 	ctx.msix_vector = msix_vector;
1712 	ctx.queue_size = rx_ring->ring_size;
1713 	ctx.numa_node = cpu_to_node(rx_ring->cpu);
1714 
1715 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1716 	if (rc) {
1717 		netif_err(adapter, ifup, adapter->netdev,
1718 			  "Failed to create I/O RX queue num %d rc: %d\n",
1719 			  qid, rc);
1720 		return rc;
1721 	}
1722 
1723 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1724 				     &rx_ring->ena_com_io_sq,
1725 				     &rx_ring->ena_com_io_cq);
1726 	if (rc) {
1727 		netif_err(adapter, ifup, adapter->netdev,
1728 			  "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
1729 			  qid, rc);
1730 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1731 		return rc;
1732 	}
1733 
1734 	ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
1735 
1736 	return rc;
1737 }
1738 
1739 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
1740 {
1741 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1742 	int rc, i;
1743 
1744 	for (i = 0; i < adapter->num_io_queues; i++) {
1745 		rc = ena_create_io_rx_queue(adapter, i);
1746 		if (rc)
1747 			goto create_err;
1748 		INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
1749 	}
1750 
1751 	return 0;
1752 
1753 create_err:
1754 	while (i--) {
1755 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
1756 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1757 	}
1758 
1759 	return rc;
1760 }
1761 
1762 static void set_io_rings_size(struct ena_adapter *adapter,
1763 				     int new_tx_size, int new_rx_size)
1764 {
1765 	int i;
1766 
1767 	for (i = 0; i < adapter->num_io_queues; i++) {
1768 		adapter->tx_ring[i].ring_size = new_tx_size;
1769 		adapter->rx_ring[i].ring_size = new_rx_size;
1770 	}
1771 }
1772 
1773 /* This function allows queue allocation to backoff when the system is
1774  * low on memory. If there is not enough memory to allocate io queues
1775  * the driver will try to allocate smaller queues.
1776  *
1777  * The backoff algorithm is as follows:
1778  *  1. Try to allocate TX and RX and if successful.
1779  *  1.1. return success
1780  *
1781  *  2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
1782  *
1783  *  3. If TX or RX is smaller than 256
1784  *  3.1. return failure.
1785  *  4. else
1786  *  4.1. go back to 1.
1787  */
1788 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
1789 {
1790 	int rc, cur_rx_ring_size, cur_tx_ring_size;
1791 	int new_rx_ring_size, new_tx_ring_size;
1792 
1793 	/* current queue sizes might be set to smaller than the requested
1794 	 * ones due to past queue allocation failures.
1795 	 */
1796 	set_io_rings_size(adapter, adapter->requested_tx_ring_size,
1797 			  adapter->requested_rx_ring_size);
1798 
1799 	while (1) {
1800 		rc = ena_setup_all_tx_resources(adapter);
1801 		if (rc)
1802 			goto err_setup_tx;
1803 
1804 		rc = ena_create_all_io_tx_queues(adapter);
1805 		if (rc)
1806 			goto err_create_tx_queues;
1807 
1808 		rc = ena_setup_all_rx_resources(adapter);
1809 		if (rc)
1810 			goto err_setup_rx;
1811 
1812 		rc = ena_create_all_io_rx_queues(adapter);
1813 		if (rc)
1814 			goto err_create_rx_queues;
1815 
1816 		return 0;
1817 
1818 err_create_rx_queues:
1819 		ena_free_all_io_rx_resources(adapter);
1820 err_setup_rx:
1821 		ena_destroy_all_tx_queues(adapter);
1822 err_create_tx_queues:
1823 		ena_free_all_io_tx_resources(adapter);
1824 err_setup_tx:
1825 		if (rc != -ENOMEM) {
1826 			netif_err(adapter, ifup, adapter->netdev,
1827 				  "Queue creation failed with error code %d\n",
1828 				  rc);
1829 			return rc;
1830 		}
1831 
1832 		cur_tx_ring_size = adapter->tx_ring[0].ring_size;
1833 		cur_rx_ring_size = adapter->rx_ring[0].ring_size;
1834 
1835 		netif_err(adapter, ifup, adapter->netdev,
1836 			  "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
1837 			  cur_tx_ring_size, cur_rx_ring_size);
1838 
1839 		new_tx_ring_size = cur_tx_ring_size;
1840 		new_rx_ring_size = cur_rx_ring_size;
1841 
1842 		/* Decrease the size of the larger queue, or
1843 		 * decrease both if they are the same size.
1844 		 */
1845 		if (cur_rx_ring_size <= cur_tx_ring_size)
1846 			new_tx_ring_size = cur_tx_ring_size / 2;
1847 		if (cur_rx_ring_size >= cur_tx_ring_size)
1848 			new_rx_ring_size = cur_rx_ring_size / 2;
1849 
1850 		if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
1851 		    new_rx_ring_size < ENA_MIN_RING_SIZE) {
1852 			netif_err(adapter, ifup, adapter->netdev,
1853 				  "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
1854 				  ENA_MIN_RING_SIZE);
1855 			return rc;
1856 		}
1857 
1858 		netif_err(adapter, ifup, adapter->netdev,
1859 			  "Retrying queue creation with sizes TX=%d, RX=%d\n",
1860 			  new_tx_ring_size,
1861 			  new_rx_ring_size);
1862 
1863 		set_io_rings_size(adapter, new_tx_ring_size,
1864 				  new_rx_ring_size);
1865 	}
1866 }
1867 
1868 static int ena_up(struct ena_adapter *adapter)
1869 {
1870 	int rc, i;
1871 
1872 	netdev_dbg(adapter->netdev, "%s\n", __func__);
1873 
1874 	ena_setup_io_intr(adapter);
1875 
1876 	/* napi poll functions should be initialized before running
1877 	 * request_irq(), to handle a rare condition where there is a pending
1878 	 * interrupt, causing the ISR to fire immediately while the poll
1879 	 * function wasn't set yet, causing a null dereference
1880 	 */
1881 	ena_init_napi(adapter);
1882 
1883 	rc = ena_request_io_irq(adapter);
1884 	if (rc)
1885 		goto err_req_irq;
1886 
1887 	rc = create_queues_with_size_backoff(adapter);
1888 	if (rc)
1889 		goto err_create_queues_with_backoff;
1890 
1891 	rc = ena_up_complete(adapter);
1892 	if (rc)
1893 		goto err_up;
1894 
1895 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
1896 		netif_carrier_on(adapter->netdev);
1897 
1898 	u64_stats_update_begin(&adapter->syncp);
1899 	adapter->dev_stats.interface_up++;
1900 	u64_stats_update_end(&adapter->syncp);
1901 
1902 	set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
1903 
1904 	/* Enable completion queues interrupt */
1905 	for (i = 0; i < adapter->num_io_queues; i++)
1906 		ena_unmask_interrupt(&adapter->tx_ring[i],
1907 				     &adapter->rx_ring[i]);
1908 
1909 	/* schedule napi in case we had pending packets
1910 	 * from the last time we disable napi
1911 	 */
1912 	for (i = 0; i < adapter->num_io_queues; i++)
1913 		napi_schedule(&adapter->ena_napi[i].napi);
1914 
1915 	return rc;
1916 
1917 err_up:
1918 	ena_destroy_all_tx_queues(adapter);
1919 	ena_free_all_io_tx_resources(adapter);
1920 	ena_destroy_all_rx_queues(adapter);
1921 	ena_free_all_io_rx_resources(adapter);
1922 err_create_queues_with_backoff:
1923 	ena_free_io_irq(adapter);
1924 err_req_irq:
1925 	ena_del_napi(adapter);
1926 
1927 	return rc;
1928 }
1929 
1930 static void ena_down(struct ena_adapter *adapter)
1931 {
1932 	netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
1933 
1934 	clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
1935 
1936 	u64_stats_update_begin(&adapter->syncp);
1937 	adapter->dev_stats.interface_down++;
1938 	u64_stats_update_end(&adapter->syncp);
1939 
1940 	netif_carrier_off(adapter->netdev);
1941 	netif_tx_disable(adapter->netdev);
1942 
1943 	/* After this point the napi handler won't enable the tx queue */
1944 	ena_napi_disable_all(adapter);
1945 
1946 	/* After destroy the queue there won't be any new interrupts */
1947 
1948 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
1949 		int rc;
1950 
1951 		rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
1952 		if (rc)
1953 			dev_err(&adapter->pdev->dev, "Device reset failed\n");
1954 		/* stop submitting admin commands on a device that was reset */
1955 		ena_com_set_admin_running_state(adapter->ena_dev, false);
1956 	}
1957 
1958 	ena_destroy_all_io_queues(adapter);
1959 
1960 	ena_disable_io_intr_sync(adapter);
1961 	ena_free_io_irq(adapter);
1962 	ena_del_napi(adapter);
1963 
1964 	ena_free_all_tx_bufs(adapter);
1965 	ena_free_all_rx_bufs(adapter);
1966 	ena_free_all_io_tx_resources(adapter);
1967 	ena_free_all_io_rx_resources(adapter);
1968 }
1969 
1970 /* ena_open - Called when a network interface is made active
1971  * @netdev: network interface device structure
1972  *
1973  * Returns 0 on success, negative value on failure
1974  *
1975  * The open entry point is called when a network interface is made
1976  * active by the system (IFF_UP).  At this point all resources needed
1977  * for transmit and receive operations are allocated, the interrupt
1978  * handler is registered with the OS, the watchdog timer is started,
1979  * and the stack is notified that the interface is ready.
1980  */
1981 static int ena_open(struct net_device *netdev)
1982 {
1983 	struct ena_adapter *adapter = netdev_priv(netdev);
1984 	int rc;
1985 
1986 	/* Notify the stack of the actual queue counts. */
1987 	rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
1988 	if (rc) {
1989 		netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
1990 		return rc;
1991 	}
1992 
1993 	rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
1994 	if (rc) {
1995 		netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
1996 		return rc;
1997 	}
1998 
1999 	rc = ena_up(adapter);
2000 	if (rc)
2001 		return rc;
2002 
2003 	return rc;
2004 }
2005 
2006 /* ena_close - Disables a network interface
2007  * @netdev: network interface device structure
2008  *
2009  * Returns 0, this is not allowed to fail
2010  *
2011  * The close entry point is called when an interface is de-activated
2012  * by the OS.  The hardware is still under the drivers control, but
2013  * needs to be disabled.  A global MAC reset is issued to stop the
2014  * hardware, and all transmit and receive resources are freed.
2015  */
2016 static int ena_close(struct net_device *netdev)
2017 {
2018 	struct ena_adapter *adapter = netdev_priv(netdev);
2019 
2020 	netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2021 
2022 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2023 		return 0;
2024 
2025 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2026 		ena_down(adapter);
2027 
2028 	/* Check for device status and issue reset if needed*/
2029 	check_for_admin_com_state(adapter);
2030 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2031 		netif_err(adapter, ifdown, adapter->netdev,
2032 			  "Destroy failure, restarting device\n");
2033 		ena_dump_stats_to_dmesg(adapter);
2034 		/* rtnl lock already obtained in dev_ioctl() layer */
2035 		ena_destroy_device(adapter, false);
2036 		ena_restore_device(adapter);
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 int ena_update_queue_sizes(struct ena_adapter *adapter,
2043 			   u32 new_tx_size,
2044 			   u32 new_rx_size)
2045 {
2046 	bool dev_was_up;
2047 
2048 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2049 	ena_close(adapter->netdev);
2050 	adapter->requested_tx_ring_size = new_tx_size;
2051 	adapter->requested_rx_ring_size = new_rx_size;
2052 	ena_init_io_rings(adapter);
2053 	return dev_was_up ? ena_up(adapter) : 0;
2054 }
2055 
2056 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2057 {
2058 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2059 	bool dev_was_up;
2060 
2061 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2062 	ena_close(adapter->netdev);
2063 	adapter->num_io_queues = new_channel_count;
2064 	/* We need to destroy the rss table so that the indirection
2065 	 * table will be reinitialized by ena_up()
2066 	 */
2067 	ena_com_rss_destroy(ena_dev);
2068 	ena_init_io_rings(adapter);
2069 	return dev_was_up ? ena_open(adapter->netdev) : 0;
2070 }
2071 
2072 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb)
2073 {
2074 	u32 mss = skb_shinfo(skb)->gso_size;
2075 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2076 	u8 l4_protocol = 0;
2077 
2078 	if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2079 		ena_tx_ctx->l4_csum_enable = 1;
2080 		if (mss) {
2081 			ena_tx_ctx->tso_enable = 1;
2082 			ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2083 			ena_tx_ctx->l4_csum_partial = 0;
2084 		} else {
2085 			ena_tx_ctx->tso_enable = 0;
2086 			ena_meta->l4_hdr_len = 0;
2087 			ena_tx_ctx->l4_csum_partial = 1;
2088 		}
2089 
2090 		switch (ip_hdr(skb)->version) {
2091 		case IPVERSION:
2092 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2093 			if (ip_hdr(skb)->frag_off & htons(IP_DF))
2094 				ena_tx_ctx->df = 1;
2095 			if (mss)
2096 				ena_tx_ctx->l3_csum_enable = 1;
2097 			l4_protocol = ip_hdr(skb)->protocol;
2098 			break;
2099 		case 6:
2100 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2101 			l4_protocol = ipv6_hdr(skb)->nexthdr;
2102 			break;
2103 		default:
2104 			break;
2105 		}
2106 
2107 		if (l4_protocol == IPPROTO_TCP)
2108 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2109 		else
2110 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2111 
2112 		ena_meta->mss = mss;
2113 		ena_meta->l3_hdr_len = skb_network_header_len(skb);
2114 		ena_meta->l3_hdr_offset = skb_network_offset(skb);
2115 		ena_tx_ctx->meta_valid = 1;
2116 
2117 	} else {
2118 		ena_tx_ctx->meta_valid = 0;
2119 	}
2120 }
2121 
2122 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
2123 				       struct sk_buff *skb)
2124 {
2125 	int num_frags, header_len, rc;
2126 
2127 	num_frags = skb_shinfo(skb)->nr_frags;
2128 	header_len = skb_headlen(skb);
2129 
2130 	if (num_frags < tx_ring->sgl_size)
2131 		return 0;
2132 
2133 	if ((num_frags == tx_ring->sgl_size) &&
2134 	    (header_len < tx_ring->tx_max_header_size))
2135 		return 0;
2136 
2137 	u64_stats_update_begin(&tx_ring->syncp);
2138 	tx_ring->tx_stats.linearize++;
2139 	u64_stats_update_end(&tx_ring->syncp);
2140 
2141 	rc = skb_linearize(skb);
2142 	if (unlikely(rc)) {
2143 		u64_stats_update_begin(&tx_ring->syncp);
2144 		tx_ring->tx_stats.linearize_failed++;
2145 		u64_stats_update_end(&tx_ring->syncp);
2146 	}
2147 
2148 	return rc;
2149 }
2150 
2151 static int ena_tx_map_skb(struct ena_ring *tx_ring,
2152 			  struct ena_tx_buffer *tx_info,
2153 			  struct sk_buff *skb,
2154 			  void **push_hdr,
2155 			  u16 *header_len)
2156 {
2157 	struct ena_adapter *adapter = tx_ring->adapter;
2158 	struct ena_com_buf *ena_buf;
2159 	dma_addr_t dma;
2160 	u32 skb_head_len, frag_len, last_frag;
2161 	u16 push_len = 0;
2162 	u16 delta = 0;
2163 	int i = 0;
2164 
2165 	skb_head_len = skb_headlen(skb);
2166 	tx_info->skb = skb;
2167 	ena_buf = tx_info->bufs;
2168 
2169 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2170 		/* When the device is LLQ mode, the driver will copy
2171 		 * the header into the device memory space.
2172 		 * the ena_com layer assume the header is in a linear
2173 		 * memory space.
2174 		 * This assumption might be wrong since part of the header
2175 		 * can be in the fragmented buffers.
2176 		 * Use skb_header_pointer to make sure the header is in a
2177 		 * linear memory space.
2178 		 */
2179 
2180 		push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
2181 		*push_hdr = skb_header_pointer(skb, 0, push_len,
2182 					       tx_ring->push_buf_intermediate_buf);
2183 		*header_len = push_len;
2184 		if (unlikely(skb->data != *push_hdr)) {
2185 			u64_stats_update_begin(&tx_ring->syncp);
2186 			tx_ring->tx_stats.llq_buffer_copy++;
2187 			u64_stats_update_end(&tx_ring->syncp);
2188 
2189 			delta = push_len - skb_head_len;
2190 		}
2191 	} else {
2192 		*push_hdr = NULL;
2193 		*header_len = min_t(u32, skb_head_len,
2194 				    tx_ring->tx_max_header_size);
2195 	}
2196 
2197 	netif_dbg(adapter, tx_queued, adapter->netdev,
2198 		  "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
2199 		  *push_hdr, push_len);
2200 
2201 	if (skb_head_len > push_len) {
2202 		dma = dma_map_single(tx_ring->dev, skb->data + push_len,
2203 				     skb_head_len - push_len, DMA_TO_DEVICE);
2204 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2205 			goto error_report_dma_error;
2206 
2207 		ena_buf->paddr = dma;
2208 		ena_buf->len = skb_head_len - push_len;
2209 
2210 		ena_buf++;
2211 		tx_info->num_of_bufs++;
2212 		tx_info->map_linear_data = 1;
2213 	} else {
2214 		tx_info->map_linear_data = 0;
2215 	}
2216 
2217 	last_frag = skb_shinfo(skb)->nr_frags;
2218 
2219 	for (i = 0; i < last_frag; i++) {
2220 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2221 
2222 		frag_len = skb_frag_size(frag);
2223 
2224 		if (unlikely(delta >= frag_len)) {
2225 			delta -= frag_len;
2226 			continue;
2227 		}
2228 
2229 		dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
2230 				       frag_len - delta, DMA_TO_DEVICE);
2231 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2232 			goto error_report_dma_error;
2233 
2234 		ena_buf->paddr = dma;
2235 		ena_buf->len = frag_len - delta;
2236 		ena_buf++;
2237 		tx_info->num_of_bufs++;
2238 		delta = 0;
2239 	}
2240 
2241 	return 0;
2242 
2243 error_report_dma_error:
2244 	u64_stats_update_begin(&tx_ring->syncp);
2245 	tx_ring->tx_stats.dma_mapping_err++;
2246 	u64_stats_update_end(&tx_ring->syncp);
2247 	netdev_warn(adapter->netdev, "failed to map skb\n");
2248 
2249 	tx_info->skb = NULL;
2250 
2251 	tx_info->num_of_bufs += i;
2252 	ena_unmap_tx_skb(tx_ring, tx_info);
2253 
2254 	return -EINVAL;
2255 }
2256 
2257 /* Called with netif_tx_lock. */
2258 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
2259 {
2260 	struct ena_adapter *adapter = netdev_priv(dev);
2261 	struct ena_tx_buffer *tx_info;
2262 	struct ena_com_tx_ctx ena_tx_ctx;
2263 	struct ena_ring *tx_ring;
2264 	struct netdev_queue *txq;
2265 	void *push_hdr;
2266 	u16 next_to_use, req_id, header_len;
2267 	int qid, rc, nb_hw_desc;
2268 
2269 	netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
2270 	/*  Determine which tx ring we will be placed on */
2271 	qid = skb_get_queue_mapping(skb);
2272 	tx_ring = &adapter->tx_ring[qid];
2273 	txq = netdev_get_tx_queue(dev, qid);
2274 
2275 	rc = ena_check_and_linearize_skb(tx_ring, skb);
2276 	if (unlikely(rc))
2277 		goto error_drop_packet;
2278 
2279 	skb_tx_timestamp(skb);
2280 
2281 	next_to_use = tx_ring->next_to_use;
2282 	req_id = tx_ring->free_ids[next_to_use];
2283 	tx_info = &tx_ring->tx_buffer_info[req_id];
2284 	tx_info->num_of_bufs = 0;
2285 
2286 	WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
2287 
2288 	rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
2289 	if (unlikely(rc))
2290 		goto error_drop_packet;
2291 
2292 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2293 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2294 	ena_tx_ctx.push_header = push_hdr;
2295 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2296 	ena_tx_ctx.req_id = req_id;
2297 	ena_tx_ctx.header_len = header_len;
2298 
2299 	/* set flags and meta data */
2300 	ena_tx_csum(&ena_tx_ctx, skb);
2301 
2302 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx))) {
2303 		netif_dbg(adapter, tx_queued, dev,
2304 			  "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2305 			  qid);
2306 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2307 	}
2308 
2309 	/* prepare the packet's descriptors to dma engine */
2310 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2311 				&nb_hw_desc);
2312 
2313 	/* ena_com_prepare_tx() can't fail due to overflow of tx queue,
2314 	 * since the number of free descriptors in the queue is checked
2315 	 * after sending the previous packet. In case there isn't enough
2316 	 * space in the queue for the next packet, it is stopped
2317 	 * until there is again enough available space in the queue.
2318 	 * All other failure reasons of ena_com_prepare_tx() are fatal
2319 	 * and therefore require a device reset.
2320 	 */
2321 	if (unlikely(rc)) {
2322 		netif_err(adapter, tx_queued, dev,
2323 			  "failed to prepare tx bufs\n");
2324 		u64_stats_update_begin(&tx_ring->syncp);
2325 		tx_ring->tx_stats.prepare_ctx_err++;
2326 		u64_stats_update_end(&tx_ring->syncp);
2327 		adapter->reset_reason = ENA_REGS_RESET_DRIVER_INVALID_STATE;
2328 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2329 		goto error_unmap_dma;
2330 	}
2331 
2332 	netdev_tx_sent_queue(txq, skb->len);
2333 
2334 	u64_stats_update_begin(&tx_ring->syncp);
2335 	tx_ring->tx_stats.cnt++;
2336 	tx_ring->tx_stats.bytes += skb->len;
2337 	u64_stats_update_end(&tx_ring->syncp);
2338 
2339 	tx_info->tx_descs = nb_hw_desc;
2340 	tx_info->last_jiffies = jiffies;
2341 	tx_info->print_once = 0;
2342 
2343 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2344 		tx_ring->ring_size);
2345 
2346 	/* stop the queue when no more space available, the packet can have up
2347 	 * to sgl_size + 2. one for the meta descriptor and one for header
2348 	 * (if the header is larger than tx_max_header_size).
2349 	 */
2350 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2351 						   tx_ring->sgl_size + 2))) {
2352 		netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
2353 			  __func__, qid);
2354 
2355 		netif_tx_stop_queue(txq);
2356 		u64_stats_update_begin(&tx_ring->syncp);
2357 		tx_ring->tx_stats.queue_stop++;
2358 		u64_stats_update_end(&tx_ring->syncp);
2359 
2360 		/* There is a rare condition where this function decide to
2361 		 * stop the queue but meanwhile clean_tx_irq updates
2362 		 * next_to_completion and terminates.
2363 		 * The queue will remain stopped forever.
2364 		 * To solve this issue add a mb() to make sure that
2365 		 * netif_tx_stop_queue() write is vissible before checking if
2366 		 * there is additional space in the queue.
2367 		 */
2368 		smp_mb();
2369 
2370 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2371 						 ENA_TX_WAKEUP_THRESH)) {
2372 			netif_tx_wake_queue(txq);
2373 			u64_stats_update_begin(&tx_ring->syncp);
2374 			tx_ring->tx_stats.queue_wakeup++;
2375 			u64_stats_update_end(&tx_ring->syncp);
2376 		}
2377 	}
2378 
2379 	if (netif_xmit_stopped(txq) || !netdev_xmit_more()) {
2380 		/* trigger the dma engine. ena_com_write_sq_doorbell()
2381 		 * has a mb
2382 		 */
2383 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2384 		u64_stats_update_begin(&tx_ring->syncp);
2385 		tx_ring->tx_stats.doorbells++;
2386 		u64_stats_update_end(&tx_ring->syncp);
2387 	}
2388 
2389 	return NETDEV_TX_OK;
2390 
2391 error_unmap_dma:
2392 	ena_unmap_tx_skb(tx_ring, tx_info);
2393 	tx_info->skb = NULL;
2394 
2395 error_drop_packet:
2396 	dev_kfree_skb(skb);
2397 	return NETDEV_TX_OK;
2398 }
2399 
2400 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
2401 			    struct net_device *sb_dev)
2402 {
2403 	u16 qid;
2404 	/* we suspect that this is good for in--kernel network services that
2405 	 * want to loop incoming skb rx to tx in normal user generated traffic,
2406 	 * most probably we will not get to this
2407 	 */
2408 	if (skb_rx_queue_recorded(skb))
2409 		qid = skb_get_rx_queue(skb);
2410 	else
2411 		qid = netdev_pick_tx(dev, skb, NULL);
2412 
2413 	return qid;
2414 }
2415 
2416 static void ena_config_host_info(struct ena_com_dev *ena_dev,
2417 				 struct pci_dev *pdev)
2418 {
2419 	struct ena_admin_host_info *host_info;
2420 	int rc;
2421 
2422 	/* Allocate only the host info */
2423 	rc = ena_com_allocate_host_info(ena_dev);
2424 	if (rc) {
2425 		pr_err("Cannot allocate host info\n");
2426 		return;
2427 	}
2428 
2429 	host_info = ena_dev->host_attr.host_info;
2430 
2431 	host_info->bdf = (pdev->bus->number << 8) | pdev->devfn;
2432 	host_info->os_type = ENA_ADMIN_OS_LINUX;
2433 	host_info->kernel_ver = LINUX_VERSION_CODE;
2434 	strlcpy(host_info->kernel_ver_str, utsname()->version,
2435 		sizeof(host_info->kernel_ver_str) - 1);
2436 	host_info->os_dist = 0;
2437 	strncpy(host_info->os_dist_str, utsname()->release,
2438 		sizeof(host_info->os_dist_str) - 1);
2439 	host_info->driver_version =
2440 		(DRV_MODULE_VER_MAJOR) |
2441 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
2442 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
2443 		("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
2444 	host_info->num_cpus = num_online_cpus();
2445 
2446 	host_info->driver_supported_features =
2447 		ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK;
2448 
2449 	rc = ena_com_set_host_attributes(ena_dev);
2450 	if (rc) {
2451 		if (rc == -EOPNOTSUPP)
2452 			pr_warn("Cannot set host attributes\n");
2453 		else
2454 			pr_err("Cannot set host attributes\n");
2455 
2456 		goto err;
2457 	}
2458 
2459 	return;
2460 
2461 err:
2462 	ena_com_delete_host_info(ena_dev);
2463 }
2464 
2465 static void ena_config_debug_area(struct ena_adapter *adapter)
2466 {
2467 	u32 debug_area_size;
2468 	int rc, ss_count;
2469 
2470 	ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
2471 	if (ss_count <= 0) {
2472 		netif_err(adapter, drv, adapter->netdev,
2473 			  "SS count is negative\n");
2474 		return;
2475 	}
2476 
2477 	/* allocate 32 bytes for each string and 64bit for the value */
2478 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
2479 
2480 	rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
2481 	if (rc) {
2482 		pr_err("Cannot allocate debug area\n");
2483 		return;
2484 	}
2485 
2486 	rc = ena_com_set_host_attributes(adapter->ena_dev);
2487 	if (rc) {
2488 		if (rc == -EOPNOTSUPP)
2489 			netif_warn(adapter, drv, adapter->netdev,
2490 				   "Cannot set host attributes\n");
2491 		else
2492 			netif_err(adapter, drv, adapter->netdev,
2493 				  "Cannot set host attributes\n");
2494 		goto err;
2495 	}
2496 
2497 	return;
2498 err:
2499 	ena_com_delete_debug_area(adapter->ena_dev);
2500 }
2501 
2502 static void ena_get_stats64(struct net_device *netdev,
2503 			    struct rtnl_link_stats64 *stats)
2504 {
2505 	struct ena_adapter *adapter = netdev_priv(netdev);
2506 	struct ena_ring *rx_ring, *tx_ring;
2507 	unsigned int start;
2508 	u64 rx_drops;
2509 	int i;
2510 
2511 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2512 		return;
2513 
2514 	for (i = 0; i < adapter->num_io_queues; i++) {
2515 		u64 bytes, packets;
2516 
2517 		tx_ring = &adapter->tx_ring[i];
2518 
2519 		do {
2520 			start = u64_stats_fetch_begin_irq(&tx_ring->syncp);
2521 			packets = tx_ring->tx_stats.cnt;
2522 			bytes = tx_ring->tx_stats.bytes;
2523 		} while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start));
2524 
2525 		stats->tx_packets += packets;
2526 		stats->tx_bytes += bytes;
2527 
2528 		rx_ring = &adapter->rx_ring[i];
2529 
2530 		do {
2531 			start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
2532 			packets = rx_ring->rx_stats.cnt;
2533 			bytes = rx_ring->rx_stats.bytes;
2534 		} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
2535 
2536 		stats->rx_packets += packets;
2537 		stats->rx_bytes += bytes;
2538 	}
2539 
2540 	do {
2541 		start = u64_stats_fetch_begin_irq(&adapter->syncp);
2542 		rx_drops = adapter->dev_stats.rx_drops;
2543 	} while (u64_stats_fetch_retry_irq(&adapter->syncp, start));
2544 
2545 	stats->rx_dropped = rx_drops;
2546 
2547 	stats->multicast = 0;
2548 	stats->collisions = 0;
2549 
2550 	stats->rx_length_errors = 0;
2551 	stats->rx_crc_errors = 0;
2552 	stats->rx_frame_errors = 0;
2553 	stats->rx_fifo_errors = 0;
2554 	stats->rx_missed_errors = 0;
2555 	stats->tx_window_errors = 0;
2556 
2557 	stats->rx_errors = 0;
2558 	stats->tx_errors = 0;
2559 }
2560 
2561 static const struct net_device_ops ena_netdev_ops = {
2562 	.ndo_open		= ena_open,
2563 	.ndo_stop		= ena_close,
2564 	.ndo_start_xmit		= ena_start_xmit,
2565 	.ndo_select_queue	= ena_select_queue,
2566 	.ndo_get_stats64	= ena_get_stats64,
2567 	.ndo_tx_timeout		= ena_tx_timeout,
2568 	.ndo_change_mtu		= ena_change_mtu,
2569 	.ndo_set_mac_address	= NULL,
2570 	.ndo_validate_addr	= eth_validate_addr,
2571 };
2572 
2573 static int ena_device_validate_params(struct ena_adapter *adapter,
2574 				      struct ena_com_dev_get_features_ctx *get_feat_ctx)
2575 {
2576 	struct net_device *netdev = adapter->netdev;
2577 	int rc;
2578 
2579 	rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
2580 			      adapter->mac_addr);
2581 	if (!rc) {
2582 		netif_err(adapter, drv, netdev,
2583 			  "Error, mac address are different\n");
2584 		return -EINVAL;
2585 	}
2586 
2587 	if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
2588 		netif_err(adapter, drv, netdev,
2589 			  "Error, device max mtu is smaller than netdev MTU\n");
2590 		return -EINVAL;
2591 	}
2592 
2593 	return 0;
2594 }
2595 
2596 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
2597 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
2598 			   bool *wd_state)
2599 {
2600 	struct device *dev = &pdev->dev;
2601 	bool readless_supported;
2602 	u32 aenq_groups;
2603 	int dma_width;
2604 	int rc;
2605 
2606 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
2607 	if (rc) {
2608 		dev_err(dev, "failed to init mmio read less\n");
2609 		return rc;
2610 	}
2611 
2612 	/* The PCIe configuration space revision id indicate if mmio reg
2613 	 * read is disabled
2614 	 */
2615 	readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
2616 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
2617 
2618 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
2619 	if (rc) {
2620 		dev_err(dev, "Can not reset device\n");
2621 		goto err_mmio_read_less;
2622 	}
2623 
2624 	rc = ena_com_validate_version(ena_dev);
2625 	if (rc) {
2626 		dev_err(dev, "device version is too low\n");
2627 		goto err_mmio_read_less;
2628 	}
2629 
2630 	dma_width = ena_com_get_dma_width(ena_dev);
2631 	if (dma_width < 0) {
2632 		dev_err(dev, "Invalid dma width value %d", dma_width);
2633 		rc = dma_width;
2634 		goto err_mmio_read_less;
2635 	}
2636 
2637 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width));
2638 	if (rc) {
2639 		dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc);
2640 		goto err_mmio_read_less;
2641 	}
2642 
2643 	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width));
2644 	if (rc) {
2645 		dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n",
2646 			rc);
2647 		goto err_mmio_read_less;
2648 	}
2649 
2650 	/* ENA admin level init */
2651 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
2652 	if (rc) {
2653 		dev_err(dev,
2654 			"Can not initialize ena admin queue with device\n");
2655 		goto err_mmio_read_less;
2656 	}
2657 
2658 	/* To enable the msix interrupts the driver needs to know the number
2659 	 * of queues. So the driver uses polling mode to retrieve this
2660 	 * information
2661 	 */
2662 	ena_com_set_admin_polling_mode(ena_dev, true);
2663 
2664 	ena_config_host_info(ena_dev, pdev);
2665 
2666 	/* Get Device Attributes*/
2667 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
2668 	if (rc) {
2669 		dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
2670 		goto err_admin_init;
2671 	}
2672 
2673 	/* Try to turn all the available aenq groups */
2674 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
2675 		BIT(ENA_ADMIN_FATAL_ERROR) |
2676 		BIT(ENA_ADMIN_WARNING) |
2677 		BIT(ENA_ADMIN_NOTIFICATION) |
2678 		BIT(ENA_ADMIN_KEEP_ALIVE);
2679 
2680 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
2681 
2682 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
2683 	if (rc) {
2684 		dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
2685 		goto err_admin_init;
2686 	}
2687 
2688 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
2689 
2690 	return 0;
2691 
2692 err_admin_init:
2693 	ena_com_delete_host_info(ena_dev);
2694 	ena_com_admin_destroy(ena_dev);
2695 err_mmio_read_less:
2696 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2697 
2698 	return rc;
2699 }
2700 
2701 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
2702 {
2703 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2704 	struct device *dev = &adapter->pdev->dev;
2705 	int rc;
2706 
2707 	rc = ena_enable_msix(adapter);
2708 	if (rc) {
2709 		dev_err(dev, "Can not reserve msix vectors\n");
2710 		return rc;
2711 	}
2712 
2713 	ena_setup_mgmnt_intr(adapter);
2714 
2715 	rc = ena_request_mgmnt_irq(adapter);
2716 	if (rc) {
2717 		dev_err(dev, "Can not setup management interrupts\n");
2718 		goto err_disable_msix;
2719 	}
2720 
2721 	ena_com_set_admin_polling_mode(ena_dev, false);
2722 
2723 	ena_com_admin_aenq_enable(ena_dev);
2724 
2725 	return 0;
2726 
2727 err_disable_msix:
2728 	ena_disable_msix(adapter);
2729 
2730 	return rc;
2731 }
2732 
2733 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
2734 {
2735 	struct net_device *netdev = adapter->netdev;
2736 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2737 	bool dev_up;
2738 
2739 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2740 		return;
2741 
2742 	netif_carrier_off(netdev);
2743 
2744 	del_timer_sync(&adapter->timer_service);
2745 
2746 	dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2747 	adapter->dev_up_before_reset = dev_up;
2748 	if (!graceful)
2749 		ena_com_set_admin_running_state(ena_dev, false);
2750 
2751 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2752 		ena_down(adapter);
2753 
2754 	/* Stop the device from sending AENQ events (in case reset flag is set
2755 	 *  and device is up, ena_down() already reset the device.
2756 	 */
2757 	if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
2758 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2759 
2760 	ena_free_mgmnt_irq(adapter);
2761 
2762 	ena_disable_msix(adapter);
2763 
2764 	ena_com_abort_admin_commands(ena_dev);
2765 
2766 	ena_com_wait_for_abort_completion(ena_dev);
2767 
2768 	ena_com_admin_destroy(ena_dev);
2769 
2770 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2771 
2772 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
2773 
2774 	clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2775 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
2776 }
2777 
2778 static int ena_restore_device(struct ena_adapter *adapter)
2779 {
2780 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2781 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2782 	struct pci_dev *pdev = adapter->pdev;
2783 	bool wd_state;
2784 	int rc;
2785 
2786 	set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
2787 	rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
2788 	if (rc) {
2789 		dev_err(&pdev->dev, "Can not initialize device\n");
2790 		goto err;
2791 	}
2792 	adapter->wd_state = wd_state;
2793 
2794 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
2795 	if (rc) {
2796 		dev_err(&pdev->dev, "Validation of device parameters failed\n");
2797 		goto err_device_destroy;
2798 	}
2799 
2800 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
2801 	if (rc) {
2802 		dev_err(&pdev->dev, "Enable MSI-X failed\n");
2803 		goto err_device_destroy;
2804 	}
2805 	/* If the interface was up before the reset bring it up */
2806 	if (adapter->dev_up_before_reset) {
2807 		rc = ena_up(adapter);
2808 		if (rc) {
2809 			dev_err(&pdev->dev, "Failed to create I/O queues\n");
2810 			goto err_disable_msix;
2811 		}
2812 	}
2813 
2814 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
2815 
2816 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
2817 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2818 		netif_carrier_on(adapter->netdev);
2819 
2820 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
2821 	dev_err(&pdev->dev,
2822 		"Device reset completed successfully, Driver info: %s\n",
2823 		version);
2824 
2825 	return rc;
2826 err_disable_msix:
2827 	ena_free_mgmnt_irq(adapter);
2828 	ena_disable_msix(adapter);
2829 err_device_destroy:
2830 	ena_com_abort_admin_commands(ena_dev);
2831 	ena_com_wait_for_abort_completion(ena_dev);
2832 	ena_com_admin_destroy(ena_dev);
2833 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
2834 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2835 err:
2836 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
2837 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
2838 	dev_err(&pdev->dev,
2839 		"Reset attempt failed. Can not reset the device\n");
2840 
2841 	return rc;
2842 }
2843 
2844 static void ena_fw_reset_device(struct work_struct *work)
2845 {
2846 	struct ena_adapter *adapter =
2847 		container_of(work, struct ena_adapter, reset_task);
2848 	struct pci_dev *pdev = adapter->pdev;
2849 
2850 	if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2851 		dev_err(&pdev->dev,
2852 			"device reset schedule while reset bit is off\n");
2853 		return;
2854 	}
2855 	rtnl_lock();
2856 	ena_destroy_device(adapter, false);
2857 	ena_restore_device(adapter);
2858 	rtnl_unlock();
2859 }
2860 
2861 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
2862 					struct ena_ring *rx_ring)
2863 {
2864 	if (likely(rx_ring->first_interrupt))
2865 		return 0;
2866 
2867 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
2868 		return 0;
2869 
2870 	rx_ring->no_interrupt_event_cnt++;
2871 
2872 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
2873 		netif_err(adapter, rx_err, adapter->netdev,
2874 			  "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
2875 			  rx_ring->qid);
2876 		adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
2877 		smp_mb__before_atomic();
2878 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2879 		return -EIO;
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
2886 					  struct ena_ring *tx_ring)
2887 {
2888 	struct ena_tx_buffer *tx_buf;
2889 	unsigned long last_jiffies;
2890 	u32 missed_tx = 0;
2891 	int i, rc = 0;
2892 
2893 	for (i = 0; i < tx_ring->ring_size; i++) {
2894 		tx_buf = &tx_ring->tx_buffer_info[i];
2895 		last_jiffies = tx_buf->last_jiffies;
2896 
2897 		if (last_jiffies == 0)
2898 			/* no pending Tx at this location */
2899 			continue;
2900 
2901 		if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies +
2902 			     2 * adapter->missing_tx_completion_to))) {
2903 			/* If after graceful period interrupt is still not
2904 			 * received, we schedule a reset
2905 			 */
2906 			netif_err(adapter, tx_err, adapter->netdev,
2907 				  "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
2908 				  tx_ring->qid);
2909 			adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
2910 			smp_mb__before_atomic();
2911 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2912 			return -EIO;
2913 		}
2914 
2915 		if (unlikely(time_is_before_jiffies(last_jiffies +
2916 				adapter->missing_tx_completion_to))) {
2917 			if (!tx_buf->print_once)
2918 				netif_notice(adapter, tx_err, adapter->netdev,
2919 					     "Found a Tx that wasn't completed on time, qid %d, index %d.\n",
2920 					     tx_ring->qid, i);
2921 
2922 			tx_buf->print_once = 1;
2923 			missed_tx++;
2924 		}
2925 	}
2926 
2927 	if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
2928 		netif_err(adapter, tx_err, adapter->netdev,
2929 			  "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
2930 			  missed_tx,
2931 			  adapter->missing_tx_completion_threshold);
2932 		adapter->reset_reason =
2933 			ENA_REGS_RESET_MISS_TX_CMPL;
2934 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2935 		rc = -EIO;
2936 	}
2937 
2938 	u64_stats_update_begin(&tx_ring->syncp);
2939 	tx_ring->tx_stats.missed_tx = missed_tx;
2940 	u64_stats_update_end(&tx_ring->syncp);
2941 
2942 	return rc;
2943 }
2944 
2945 static void check_for_missing_completions(struct ena_adapter *adapter)
2946 {
2947 	struct ena_ring *tx_ring;
2948 	struct ena_ring *rx_ring;
2949 	int i, budget, rc;
2950 
2951 	/* Make sure the driver doesn't turn the device in other process */
2952 	smp_rmb();
2953 
2954 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2955 		return;
2956 
2957 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
2958 		return;
2959 
2960 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
2961 		return;
2962 
2963 	budget = ENA_MONITORED_TX_QUEUES;
2964 
2965 	for (i = adapter->last_monitored_tx_qid; i < adapter->num_io_queues; i++) {
2966 		tx_ring = &adapter->tx_ring[i];
2967 		rx_ring = &adapter->rx_ring[i];
2968 
2969 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
2970 		if (unlikely(rc))
2971 			return;
2972 
2973 		rc = check_for_rx_interrupt_queue(adapter, rx_ring);
2974 		if (unlikely(rc))
2975 			return;
2976 
2977 		budget--;
2978 		if (!budget)
2979 			break;
2980 	}
2981 
2982 	adapter->last_monitored_tx_qid = i % adapter->num_io_queues;
2983 }
2984 
2985 /* trigger napi schedule after 2 consecutive detections */
2986 #define EMPTY_RX_REFILL 2
2987 /* For the rare case where the device runs out of Rx descriptors and the
2988  * napi handler failed to refill new Rx descriptors (due to a lack of memory
2989  * for example).
2990  * This case will lead to a deadlock:
2991  * The device won't send interrupts since all the new Rx packets will be dropped
2992  * The napi handler won't allocate new Rx descriptors so the device will be
2993  * able to send new packets.
2994  *
2995  * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
2996  * It is recommended to have at least 512MB, with a minimum of 128MB for
2997  * constrained environment).
2998  *
2999  * When such a situation is detected - Reschedule napi
3000  */
3001 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
3002 {
3003 	struct ena_ring *rx_ring;
3004 	int i, refill_required;
3005 
3006 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3007 		return;
3008 
3009 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3010 		return;
3011 
3012 	for (i = 0; i < adapter->num_io_queues; i++) {
3013 		rx_ring = &adapter->rx_ring[i];
3014 
3015 		refill_required =
3016 			ena_com_free_desc(rx_ring->ena_com_io_sq);
3017 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3018 			rx_ring->empty_rx_queue++;
3019 
3020 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3021 				u64_stats_update_begin(&rx_ring->syncp);
3022 				rx_ring->rx_stats.empty_rx_ring++;
3023 				u64_stats_update_end(&rx_ring->syncp);
3024 
3025 				netif_err(adapter, drv, adapter->netdev,
3026 					  "trigger refill for ring %d\n", i);
3027 
3028 				napi_schedule(rx_ring->napi);
3029 				rx_ring->empty_rx_queue = 0;
3030 			}
3031 		} else {
3032 			rx_ring->empty_rx_queue = 0;
3033 		}
3034 	}
3035 }
3036 
3037 /* Check for keep alive expiration */
3038 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3039 {
3040 	unsigned long keep_alive_expired;
3041 
3042 	if (!adapter->wd_state)
3043 		return;
3044 
3045 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3046 		return;
3047 
3048 	keep_alive_expired = round_jiffies(adapter->last_keep_alive_jiffies +
3049 					   adapter->keep_alive_timeout);
3050 	if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
3051 		netif_err(adapter, drv, adapter->netdev,
3052 			  "Keep alive watchdog timeout.\n");
3053 		u64_stats_update_begin(&adapter->syncp);
3054 		adapter->dev_stats.wd_expired++;
3055 		u64_stats_update_end(&adapter->syncp);
3056 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3057 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3058 	}
3059 }
3060 
3061 static void check_for_admin_com_state(struct ena_adapter *adapter)
3062 {
3063 	if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
3064 		netif_err(adapter, drv, adapter->netdev,
3065 			  "ENA admin queue is not in running state!\n");
3066 		u64_stats_update_begin(&adapter->syncp);
3067 		adapter->dev_stats.admin_q_pause++;
3068 		u64_stats_update_end(&adapter->syncp);
3069 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3070 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3071 	}
3072 }
3073 
3074 static void ena_update_hints(struct ena_adapter *adapter,
3075 			     struct ena_admin_ena_hw_hints *hints)
3076 {
3077 	struct net_device *netdev = adapter->netdev;
3078 
3079 	if (hints->admin_completion_tx_timeout)
3080 		adapter->ena_dev->admin_queue.completion_timeout =
3081 			hints->admin_completion_tx_timeout * 1000;
3082 
3083 	if (hints->mmio_read_timeout)
3084 		/* convert to usec */
3085 		adapter->ena_dev->mmio_read.reg_read_to =
3086 			hints->mmio_read_timeout * 1000;
3087 
3088 	if (hints->missed_tx_completion_count_threshold_to_reset)
3089 		adapter->missing_tx_completion_threshold =
3090 			hints->missed_tx_completion_count_threshold_to_reset;
3091 
3092 	if (hints->missing_tx_completion_timeout) {
3093 		if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3094 			adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
3095 		else
3096 			adapter->missing_tx_completion_to =
3097 				msecs_to_jiffies(hints->missing_tx_completion_timeout);
3098 	}
3099 
3100 	if (hints->netdev_wd_timeout)
3101 		netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
3102 
3103 	if (hints->driver_watchdog_timeout) {
3104 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3105 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3106 		else
3107 			adapter->keep_alive_timeout =
3108 				msecs_to_jiffies(hints->driver_watchdog_timeout);
3109 	}
3110 }
3111 
3112 static void ena_update_host_info(struct ena_admin_host_info *host_info,
3113 				 struct net_device *netdev)
3114 {
3115 	host_info->supported_network_features[0] =
3116 		netdev->features & GENMASK_ULL(31, 0);
3117 	host_info->supported_network_features[1] =
3118 		(netdev->features & GENMASK_ULL(63, 32)) >> 32;
3119 }
3120 
3121 static void ena_timer_service(struct timer_list *t)
3122 {
3123 	struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
3124 	u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
3125 	struct ena_admin_host_info *host_info =
3126 		adapter->ena_dev->host_attr.host_info;
3127 
3128 	check_for_missing_keep_alive(adapter);
3129 
3130 	check_for_admin_com_state(adapter);
3131 
3132 	check_for_missing_completions(adapter);
3133 
3134 	check_for_empty_rx_ring(adapter);
3135 
3136 	if (debug_area)
3137 		ena_dump_stats_to_buf(adapter, debug_area);
3138 
3139 	if (host_info)
3140 		ena_update_host_info(host_info, adapter->netdev);
3141 
3142 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3143 		netif_err(adapter, drv, adapter->netdev,
3144 			  "Trigger reset is on\n");
3145 		ena_dump_stats_to_dmesg(adapter);
3146 		queue_work(ena_wq, &adapter->reset_task);
3147 		return;
3148 	}
3149 
3150 	/* Reset the timer */
3151 	mod_timer(&adapter->timer_service, jiffies + HZ);
3152 }
3153 
3154 static int ena_calc_max_io_queue_num(struct pci_dev *pdev,
3155 				     struct ena_com_dev *ena_dev,
3156 				     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3157 {
3158 	int io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
3159 
3160 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3161 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3162 			&get_feat_ctx->max_queue_ext.max_queue_ext;
3163 		io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
3164 				  max_queue_ext->max_rx_cq_num);
3165 
3166 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
3167 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
3168 	} else {
3169 		struct ena_admin_queue_feature_desc *max_queues =
3170 			&get_feat_ctx->max_queues;
3171 		io_tx_sq_num = max_queues->max_sq_num;
3172 		io_tx_cq_num = max_queues->max_cq_num;
3173 		io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
3174 	}
3175 
3176 	/* In case of LLQ use the llq fields for the tx SQ/CQ */
3177 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3178 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
3179 
3180 	max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
3181 	max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
3182 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
3183 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
3184 	/* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */
3185 	max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
3186 	if (unlikely(!max_num_io_queues)) {
3187 		dev_err(&pdev->dev, "The device doesn't have io queues\n");
3188 		return -EFAULT;
3189 	}
3190 
3191 	return max_num_io_queues;
3192 }
3193 
3194 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3195 					   struct ena_com_dev *ena_dev,
3196 					   struct ena_admin_feature_llq_desc *llq,
3197 					   struct ena_llq_configurations *llq_default_configurations)
3198 {
3199 	bool has_mem_bar;
3200 	int rc;
3201 	u32 llq_feature_mask;
3202 
3203 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3204 	if (!(ena_dev->supported_features & llq_feature_mask)) {
3205 		dev_err(&pdev->dev,
3206 			"LLQ is not supported Fallback to host mode policy.\n");
3207 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3208 		return 0;
3209 	}
3210 
3211 	has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR);
3212 
3213 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3214 	if (unlikely(rc)) {
3215 		dev_err(&pdev->dev,
3216 			"Failed to configure the device mode.  Fallback to host mode policy.\n");
3217 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3218 		return 0;
3219 	}
3220 
3221 	/* Nothing to config, exit */
3222 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
3223 		return 0;
3224 
3225 	if (!has_mem_bar) {
3226 		dev_err(&pdev->dev,
3227 			"ENA device does not expose LLQ bar. Fallback to host mode policy.\n");
3228 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3229 		return 0;
3230 	}
3231 
3232 	ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3233 					   pci_resource_start(pdev, ENA_MEM_BAR),
3234 					   pci_resource_len(pdev, ENA_MEM_BAR));
3235 
3236 	if (!ena_dev->mem_bar)
3237 		return -EFAULT;
3238 
3239 	return 0;
3240 }
3241 
3242 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
3243 				 struct net_device *netdev)
3244 {
3245 	netdev_features_t dev_features = 0;
3246 
3247 	/* Set offload features */
3248 	if (feat->offload.tx &
3249 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
3250 		dev_features |= NETIF_F_IP_CSUM;
3251 
3252 	if (feat->offload.tx &
3253 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
3254 		dev_features |= NETIF_F_IPV6_CSUM;
3255 
3256 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
3257 		dev_features |= NETIF_F_TSO;
3258 
3259 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
3260 		dev_features |= NETIF_F_TSO6;
3261 
3262 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
3263 		dev_features |= NETIF_F_TSO_ECN;
3264 
3265 	if (feat->offload.rx_supported &
3266 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
3267 		dev_features |= NETIF_F_RXCSUM;
3268 
3269 	if (feat->offload.rx_supported &
3270 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
3271 		dev_features |= NETIF_F_RXCSUM;
3272 
3273 	netdev->features =
3274 		dev_features |
3275 		NETIF_F_SG |
3276 		NETIF_F_RXHASH |
3277 		NETIF_F_HIGHDMA;
3278 
3279 	netdev->hw_features |= netdev->features;
3280 	netdev->vlan_features |= netdev->features;
3281 }
3282 
3283 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
3284 				     struct ena_com_dev_get_features_ctx *feat)
3285 {
3286 	struct net_device *netdev = adapter->netdev;
3287 
3288 	/* Copy mac address */
3289 	if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
3290 		eth_hw_addr_random(netdev);
3291 		ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
3292 	} else {
3293 		ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
3294 		ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
3295 	}
3296 
3297 	/* Set offload features */
3298 	ena_set_dev_offloads(feat, netdev);
3299 
3300 	adapter->max_mtu = feat->dev_attr.max_mtu;
3301 	netdev->max_mtu = adapter->max_mtu;
3302 	netdev->min_mtu = ENA_MIN_MTU;
3303 }
3304 
3305 static int ena_rss_init_default(struct ena_adapter *adapter)
3306 {
3307 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3308 	struct device *dev = &adapter->pdev->dev;
3309 	int rc, i;
3310 	u32 val;
3311 
3312 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3313 	if (unlikely(rc)) {
3314 		dev_err(dev, "Cannot init indirect table\n");
3315 		goto err_rss_init;
3316 	}
3317 
3318 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3319 		val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
3320 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3321 						       ENA_IO_RXQ_IDX(val));
3322 		if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3323 			dev_err(dev, "Cannot fill indirect table\n");
3324 			goto err_fill_indir;
3325 		}
3326 	}
3327 
3328 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3329 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3330 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3331 		dev_err(dev, "Cannot fill hash function\n");
3332 		goto err_fill_indir;
3333 	}
3334 
3335 	rc = ena_com_set_default_hash_ctrl(ena_dev);
3336 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3337 		dev_err(dev, "Cannot fill hash control\n");
3338 		goto err_fill_indir;
3339 	}
3340 
3341 	return 0;
3342 
3343 err_fill_indir:
3344 	ena_com_rss_destroy(ena_dev);
3345 err_rss_init:
3346 
3347 	return rc;
3348 }
3349 
3350 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3351 {
3352 	int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
3353 
3354 	pci_release_selected_regions(pdev, release_bars);
3355 }
3356 
3357 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config)
3358 {
3359 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
3360 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
3361 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
3362 	llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
3363 	llq_config->llq_ring_entry_size_value = 128;
3364 }
3365 
3366 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx)
3367 {
3368 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
3369 	struct ena_com_dev *ena_dev = ctx->ena_dev;
3370 	u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
3371 	u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
3372 	u32 max_tx_queue_size;
3373 	u32 max_rx_queue_size;
3374 
3375 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3376 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3377 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
3378 		max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
3379 					  max_queue_ext->max_rx_sq_depth);
3380 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
3381 
3382 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3383 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3384 						  llq->max_llq_depth);
3385 		else
3386 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3387 						  max_queue_ext->max_tx_sq_depth);
3388 
3389 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3390 					     max_queue_ext->max_per_packet_tx_descs);
3391 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3392 					     max_queue_ext->max_per_packet_rx_descs);
3393 	} else {
3394 		struct ena_admin_queue_feature_desc *max_queues =
3395 			&ctx->get_feat_ctx->max_queues;
3396 		max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
3397 					  max_queues->max_sq_depth);
3398 		max_tx_queue_size = max_queues->max_cq_depth;
3399 
3400 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3401 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3402 						  llq->max_llq_depth);
3403 		else
3404 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3405 						  max_queues->max_sq_depth);
3406 
3407 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3408 					     max_queues->max_packet_tx_descs);
3409 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3410 					     max_queues->max_packet_rx_descs);
3411 	}
3412 
3413 	max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
3414 	max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
3415 
3416 	tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
3417 				  max_tx_queue_size);
3418 	rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
3419 				  max_rx_queue_size);
3420 
3421 	tx_queue_size = rounddown_pow_of_two(tx_queue_size);
3422 	rx_queue_size = rounddown_pow_of_two(rx_queue_size);
3423 
3424 	ctx->max_tx_queue_size = max_tx_queue_size;
3425 	ctx->max_rx_queue_size = max_rx_queue_size;
3426 	ctx->tx_queue_size = tx_queue_size;
3427 	ctx->rx_queue_size = rx_queue_size;
3428 
3429 	return 0;
3430 }
3431 
3432 /* ena_probe - Device Initialization Routine
3433  * @pdev: PCI device information struct
3434  * @ent: entry in ena_pci_tbl
3435  *
3436  * Returns 0 on success, negative on failure
3437  *
3438  * ena_probe initializes an adapter identified by a pci_dev structure.
3439  * The OS initialization, configuring of the adapter private structure,
3440  * and a hardware reset occur.
3441  */
3442 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3443 {
3444 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3445 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
3446 	struct ena_llq_configurations llq_config;
3447 	struct ena_com_dev *ena_dev = NULL;
3448 	struct ena_adapter *adapter;
3449 	struct net_device *netdev;
3450 	static int adapters_found;
3451 	u32 max_num_io_queues;
3452 	char *queue_type_str;
3453 	bool wd_state;
3454 	int bars, rc;
3455 
3456 	dev_dbg(&pdev->dev, "%s\n", __func__);
3457 
3458 	dev_info_once(&pdev->dev, "%s", version);
3459 
3460 	rc = pci_enable_device_mem(pdev);
3461 	if (rc) {
3462 		dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
3463 		return rc;
3464 	}
3465 
3466 	pci_set_master(pdev);
3467 
3468 	ena_dev = vzalloc(sizeof(*ena_dev));
3469 	if (!ena_dev) {
3470 		rc = -ENOMEM;
3471 		goto err_disable_device;
3472 	}
3473 
3474 	bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
3475 	rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
3476 	if (rc) {
3477 		dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
3478 			rc);
3479 		goto err_free_ena_dev;
3480 	}
3481 
3482 	ena_dev->reg_bar = devm_ioremap(&pdev->dev,
3483 					pci_resource_start(pdev, ENA_REG_BAR),
3484 					pci_resource_len(pdev, ENA_REG_BAR));
3485 	if (!ena_dev->reg_bar) {
3486 		dev_err(&pdev->dev, "failed to remap regs bar\n");
3487 		rc = -EFAULT;
3488 		goto err_free_region;
3489 	}
3490 
3491 	ena_dev->dmadev = &pdev->dev;
3492 
3493 	rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
3494 	if (rc) {
3495 		dev_err(&pdev->dev, "ena device init failed\n");
3496 		if (rc == -ETIME)
3497 			rc = -EPROBE_DEFER;
3498 		goto err_free_region;
3499 	}
3500 
3501 	set_default_llq_configurations(&llq_config);
3502 
3503 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx.llq,
3504 					     &llq_config);
3505 	if (rc) {
3506 		dev_err(&pdev->dev, "ena device init failed\n");
3507 		goto err_device_destroy;
3508 	}
3509 
3510 	calc_queue_ctx.ena_dev = ena_dev;
3511 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
3512 	calc_queue_ctx.pdev = pdev;
3513 
3514 	/* Initial Tx and RX interrupt delay. Assumes 1 usec granularity.
3515 	 * Updated during device initialization with the real granularity
3516 	 */
3517 	ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
3518 	ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
3519 	ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
3520 	max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
3521 	rc = ena_calc_io_queue_size(&calc_queue_ctx);
3522 	if (rc || !max_num_io_queues) {
3523 		rc = -EFAULT;
3524 		goto err_device_destroy;
3525 	}
3526 
3527 	/* dev zeroed in init_etherdev */
3528 	netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues);
3529 	if (!netdev) {
3530 		dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
3531 		rc = -ENOMEM;
3532 		goto err_device_destroy;
3533 	}
3534 
3535 	SET_NETDEV_DEV(netdev, &pdev->dev);
3536 
3537 	adapter = netdev_priv(netdev);
3538 	pci_set_drvdata(pdev, adapter);
3539 
3540 	adapter->ena_dev = ena_dev;
3541 	adapter->netdev = netdev;
3542 	adapter->pdev = pdev;
3543 
3544 	ena_set_conf_feat_params(adapter, &get_feat_ctx);
3545 
3546 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3547 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3548 
3549 	adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size;
3550 	adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size;
3551 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
3552 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
3553 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
3554 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
3555 
3556 	adapter->num_io_queues = max_num_io_queues;
3557 	adapter->max_num_io_queues = max_num_io_queues;
3558 
3559 	adapter->last_monitored_tx_qid = 0;
3560 
3561 	adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
3562 	adapter->wd_state = wd_state;
3563 
3564 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
3565 
3566 	rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
3567 	if (rc) {
3568 		dev_err(&pdev->dev,
3569 			"Failed to query interrupt moderation feature\n");
3570 		goto err_netdev_destroy;
3571 	}
3572 	ena_init_io_rings(adapter);
3573 
3574 	netdev->netdev_ops = &ena_netdev_ops;
3575 	netdev->watchdog_timeo = TX_TIMEOUT;
3576 	ena_set_ethtool_ops(netdev);
3577 
3578 	netdev->priv_flags |= IFF_UNICAST_FLT;
3579 
3580 	u64_stats_init(&adapter->syncp);
3581 
3582 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3583 	if (rc) {
3584 		dev_err(&pdev->dev,
3585 			"Failed to enable and set the admin interrupts\n");
3586 		goto err_worker_destroy;
3587 	}
3588 	rc = ena_rss_init_default(adapter);
3589 	if (rc && (rc != -EOPNOTSUPP)) {
3590 		dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
3591 		goto err_free_msix;
3592 	}
3593 
3594 	ena_config_debug_area(adapter);
3595 
3596 	memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
3597 
3598 	netif_carrier_off(netdev);
3599 
3600 	rc = register_netdev(netdev);
3601 	if (rc) {
3602 		dev_err(&pdev->dev, "Cannot register net device\n");
3603 		goto err_rss;
3604 	}
3605 
3606 	INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
3607 
3608 	adapter->last_keep_alive_jiffies = jiffies;
3609 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
3610 	adapter->missing_tx_completion_to = TX_TIMEOUT;
3611 	adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
3612 
3613 	ena_update_hints(adapter, &get_feat_ctx.hw_hints);
3614 
3615 	timer_setup(&adapter->timer_service, ena_timer_service, 0);
3616 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3617 
3618 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
3619 		queue_type_str = "Regular";
3620 	else
3621 		queue_type_str = "Low Latency";
3622 
3623 	dev_info(&pdev->dev,
3624 		 "%s found at mem %lx, mac addr %pM, Placement policy: %s\n",
3625 		 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
3626 		 netdev->dev_addr, queue_type_str);
3627 
3628 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3629 
3630 	adapters_found++;
3631 
3632 	return 0;
3633 
3634 err_rss:
3635 	ena_com_delete_debug_area(ena_dev);
3636 	ena_com_rss_destroy(ena_dev);
3637 err_free_msix:
3638 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
3639 	/* stop submitting admin commands on a device that was reset */
3640 	ena_com_set_admin_running_state(ena_dev, false);
3641 	ena_free_mgmnt_irq(adapter);
3642 	ena_disable_msix(adapter);
3643 err_worker_destroy:
3644 	del_timer(&adapter->timer_service);
3645 err_netdev_destroy:
3646 	free_netdev(netdev);
3647 err_device_destroy:
3648 	ena_com_delete_host_info(ena_dev);
3649 	ena_com_admin_destroy(ena_dev);
3650 err_free_region:
3651 	ena_release_bars(ena_dev, pdev);
3652 err_free_ena_dev:
3653 	vfree(ena_dev);
3654 err_disable_device:
3655 	pci_disable_device(pdev);
3656 	return rc;
3657 }
3658 
3659 /*****************************************************************************/
3660 
3661 /* ena_remove - Device Removal Routine
3662  * @pdev: PCI device information struct
3663  *
3664  * ena_remove is called by the PCI subsystem to alert the driver
3665  * that it should release a PCI device.
3666  */
3667 static void ena_remove(struct pci_dev *pdev)
3668 {
3669 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
3670 	struct ena_com_dev *ena_dev;
3671 	struct net_device *netdev;
3672 
3673 	ena_dev = adapter->ena_dev;
3674 	netdev = adapter->netdev;
3675 
3676 #ifdef CONFIG_RFS_ACCEL
3677 	if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
3678 		free_irq_cpu_rmap(netdev->rx_cpu_rmap);
3679 		netdev->rx_cpu_rmap = NULL;
3680 	}
3681 #endif /* CONFIG_RFS_ACCEL */
3682 	del_timer_sync(&adapter->timer_service);
3683 
3684 	cancel_work_sync(&adapter->reset_task);
3685 
3686 	rtnl_lock();
3687 	ena_destroy_device(adapter, true);
3688 	rtnl_unlock();
3689 
3690 	unregister_netdev(netdev);
3691 
3692 	free_netdev(netdev);
3693 
3694 	ena_com_rss_destroy(ena_dev);
3695 
3696 	ena_com_delete_debug_area(ena_dev);
3697 
3698 	ena_com_delete_host_info(ena_dev);
3699 
3700 	ena_release_bars(ena_dev, pdev);
3701 
3702 	pci_disable_device(pdev);
3703 
3704 	vfree(ena_dev);
3705 }
3706 
3707 #ifdef CONFIG_PM
3708 /* ena_suspend - PM suspend callback
3709  * @pdev: PCI device information struct
3710  * @state:power state
3711  */
3712 static int ena_suspend(struct pci_dev *pdev,  pm_message_t state)
3713 {
3714 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
3715 
3716 	u64_stats_update_begin(&adapter->syncp);
3717 	adapter->dev_stats.suspend++;
3718 	u64_stats_update_end(&adapter->syncp);
3719 
3720 	rtnl_lock();
3721 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3722 		dev_err(&pdev->dev,
3723 			"ignoring device reset request as the device is being suspended\n");
3724 		clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3725 	}
3726 	ena_destroy_device(adapter, true);
3727 	rtnl_unlock();
3728 	return 0;
3729 }
3730 
3731 /* ena_resume - PM resume callback
3732  * @pdev: PCI device information struct
3733  *
3734  */
3735 static int ena_resume(struct pci_dev *pdev)
3736 {
3737 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
3738 	int rc;
3739 
3740 	u64_stats_update_begin(&adapter->syncp);
3741 	adapter->dev_stats.resume++;
3742 	u64_stats_update_end(&adapter->syncp);
3743 
3744 	rtnl_lock();
3745 	rc = ena_restore_device(adapter);
3746 	rtnl_unlock();
3747 	return rc;
3748 }
3749 #endif
3750 
3751 static struct pci_driver ena_pci_driver = {
3752 	.name		= DRV_MODULE_NAME,
3753 	.id_table	= ena_pci_tbl,
3754 	.probe		= ena_probe,
3755 	.remove		= ena_remove,
3756 #ifdef CONFIG_PM
3757 	.suspend    = ena_suspend,
3758 	.resume     = ena_resume,
3759 #endif
3760 	.sriov_configure = pci_sriov_configure_simple,
3761 };
3762 
3763 static int __init ena_init(void)
3764 {
3765 	pr_info("%s", version);
3766 
3767 	ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
3768 	if (!ena_wq) {
3769 		pr_err("Failed to create workqueue\n");
3770 		return -ENOMEM;
3771 	}
3772 
3773 	return pci_register_driver(&ena_pci_driver);
3774 }
3775 
3776 static void __exit ena_cleanup(void)
3777 {
3778 	pci_unregister_driver(&ena_pci_driver);
3779 
3780 	if (ena_wq) {
3781 		destroy_workqueue(ena_wq);
3782 		ena_wq = NULL;
3783 	}
3784 }
3785 
3786 /******************************************************************************
3787  ******************************** AENQ Handlers *******************************
3788  *****************************************************************************/
3789 /* ena_update_on_link_change:
3790  * Notify the network interface about the change in link status
3791  */
3792 static void ena_update_on_link_change(void *adapter_data,
3793 				      struct ena_admin_aenq_entry *aenq_e)
3794 {
3795 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3796 	struct ena_admin_aenq_link_change_desc *aenq_desc =
3797 		(struct ena_admin_aenq_link_change_desc *)aenq_e;
3798 	int status = aenq_desc->flags &
3799 		ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3800 
3801 	if (status) {
3802 		netdev_dbg(adapter->netdev, "%s\n", __func__);
3803 		set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
3804 		if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
3805 			netif_carrier_on(adapter->netdev);
3806 	} else {
3807 		clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
3808 		netif_carrier_off(adapter->netdev);
3809 	}
3810 }
3811 
3812 static void ena_keep_alive_wd(void *adapter_data,
3813 			      struct ena_admin_aenq_entry *aenq_e)
3814 {
3815 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3816 	struct ena_admin_aenq_keep_alive_desc *desc;
3817 	u64 rx_drops;
3818 
3819 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3820 	adapter->last_keep_alive_jiffies = jiffies;
3821 
3822 	rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
3823 
3824 	u64_stats_update_begin(&adapter->syncp);
3825 	adapter->dev_stats.rx_drops = rx_drops;
3826 	u64_stats_update_end(&adapter->syncp);
3827 }
3828 
3829 static void ena_notification(void *adapter_data,
3830 			     struct ena_admin_aenq_entry *aenq_e)
3831 {
3832 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3833 	struct ena_admin_ena_hw_hints *hints;
3834 
3835 	WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
3836 	     "Invalid group(%x) expected %x\n",
3837 	     aenq_e->aenq_common_desc.group,
3838 	     ENA_ADMIN_NOTIFICATION);
3839 
3840 	switch (aenq_e->aenq_common_desc.syndrom) {
3841 	case ENA_ADMIN_UPDATE_HINTS:
3842 		hints = (struct ena_admin_ena_hw_hints *)
3843 			(&aenq_e->inline_data_w4);
3844 		ena_update_hints(adapter, hints);
3845 		break;
3846 	default:
3847 		netif_err(adapter, drv, adapter->netdev,
3848 			  "Invalid aenq notification link state %d\n",
3849 			  aenq_e->aenq_common_desc.syndrom);
3850 	}
3851 }
3852 
3853 /* This handler will called for unknown event group or unimplemented handlers*/
3854 static void unimplemented_aenq_handler(void *data,
3855 				       struct ena_admin_aenq_entry *aenq_e)
3856 {
3857 	struct ena_adapter *adapter = (struct ena_adapter *)data;
3858 
3859 	netif_err(adapter, drv, adapter->netdev,
3860 		  "Unknown event was received or event with unimplemented handler\n");
3861 }
3862 
3863 static struct ena_aenq_handlers aenq_handlers = {
3864 	.handlers = {
3865 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3866 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3867 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3868 	},
3869 	.unimplemented_handler = unimplemented_aenq_handler
3870 };
3871 
3872 module_init(ena_init);
3873 module_exit(ena_cleanup);
3874