1 /* 2 * Copyright 2015 Amazon.com, Inc. or its affiliates. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #ifdef CONFIG_RFS_ACCEL 36 #include <linux/cpu_rmap.h> 37 #endif /* CONFIG_RFS_ACCEL */ 38 #include <linux/ethtool.h> 39 #include <linux/if_vlan.h> 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/numa.h> 43 #include <linux/pci.h> 44 #include <linux/utsname.h> 45 #include <linux/version.h> 46 #include <linux/vmalloc.h> 47 #include <net/ip.h> 48 49 #include "ena_netdev.h" 50 #include "ena_pci_id_tbl.h" 51 52 static char version[] = DEVICE_NAME " v" DRV_MODULE_VERSION "\n"; 53 54 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 55 MODULE_DESCRIPTION(DEVICE_NAME); 56 MODULE_LICENSE("GPL"); 57 MODULE_VERSION(DRV_MODULE_VERSION); 58 59 /* Time in jiffies before concluding the transmitter is hung. */ 60 #define TX_TIMEOUT (5 * HZ) 61 62 #define ENA_NAPI_BUDGET 64 63 64 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 65 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 66 static int debug = -1; 67 module_param(debug, int, 0); 68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 69 70 static struct ena_aenq_handlers aenq_handlers; 71 72 static struct workqueue_struct *ena_wq; 73 74 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 75 76 static int ena_rss_init_default(struct ena_adapter *adapter); 77 static void check_for_admin_com_state(struct ena_adapter *adapter); 78 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful); 79 static int ena_restore_device(struct ena_adapter *adapter); 80 81 static void ena_tx_timeout(struct net_device *dev) 82 { 83 struct ena_adapter *adapter = netdev_priv(dev); 84 85 /* Change the state of the device to trigger reset 86 * Check that we are not in the middle or a trigger already 87 */ 88 89 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 90 return; 91 92 adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD; 93 u64_stats_update_begin(&adapter->syncp); 94 adapter->dev_stats.tx_timeout++; 95 u64_stats_update_end(&adapter->syncp); 96 97 netif_err(adapter, tx_err, dev, "Transmit time out\n"); 98 } 99 100 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 101 { 102 int i; 103 104 for (i = 0; i < adapter->num_io_queues; i++) 105 adapter->rx_ring[i].mtu = mtu; 106 } 107 108 static int ena_change_mtu(struct net_device *dev, int new_mtu) 109 { 110 struct ena_adapter *adapter = netdev_priv(dev); 111 int ret; 112 113 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 114 if (!ret) { 115 netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu); 116 update_rx_ring_mtu(adapter, new_mtu); 117 dev->mtu = new_mtu; 118 } else { 119 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 120 new_mtu); 121 } 122 123 return ret; 124 } 125 126 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 127 { 128 #ifdef CONFIG_RFS_ACCEL 129 u32 i; 130 int rc; 131 132 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); 133 if (!adapter->netdev->rx_cpu_rmap) 134 return -ENOMEM; 135 for (i = 0; i < adapter->num_io_queues; i++) { 136 int irq_idx = ENA_IO_IRQ_IDX(i); 137 138 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 139 pci_irq_vector(adapter->pdev, irq_idx)); 140 if (rc) { 141 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 142 adapter->netdev->rx_cpu_rmap = NULL; 143 return rc; 144 } 145 } 146 #endif /* CONFIG_RFS_ACCEL */ 147 return 0; 148 } 149 150 static void ena_init_io_rings_common(struct ena_adapter *adapter, 151 struct ena_ring *ring, u16 qid) 152 { 153 ring->qid = qid; 154 ring->pdev = adapter->pdev; 155 ring->dev = &adapter->pdev->dev; 156 ring->netdev = adapter->netdev; 157 ring->napi = &adapter->ena_napi[qid].napi; 158 ring->adapter = adapter; 159 ring->ena_dev = adapter->ena_dev; 160 ring->per_napi_packets = 0; 161 ring->cpu = 0; 162 ring->first_interrupt = false; 163 ring->no_interrupt_event_cnt = 0; 164 u64_stats_init(&ring->syncp); 165 } 166 167 static void ena_init_io_rings(struct ena_adapter *adapter) 168 { 169 struct ena_com_dev *ena_dev; 170 struct ena_ring *txr, *rxr; 171 int i; 172 173 ena_dev = adapter->ena_dev; 174 175 for (i = 0; i < adapter->num_io_queues; i++) { 176 txr = &adapter->tx_ring[i]; 177 rxr = &adapter->rx_ring[i]; 178 179 /* TX/RX common ring state */ 180 ena_init_io_rings_common(adapter, txr, i); 181 ena_init_io_rings_common(adapter, rxr, i); 182 183 /* TX specific ring state */ 184 txr->ring_size = adapter->requested_tx_ring_size; 185 txr->tx_max_header_size = ena_dev->tx_max_header_size; 186 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 187 txr->sgl_size = adapter->max_tx_sgl_size; 188 txr->smoothed_interval = 189 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 190 191 /* RX specific ring state */ 192 rxr->ring_size = adapter->requested_rx_ring_size; 193 rxr->rx_copybreak = adapter->rx_copybreak; 194 rxr->sgl_size = adapter->max_rx_sgl_size; 195 rxr->smoothed_interval = 196 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 197 rxr->empty_rx_queue = 0; 198 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 199 } 200 } 201 202 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 203 * @adapter: network interface device structure 204 * @qid: queue index 205 * 206 * Return 0 on success, negative on failure 207 */ 208 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 209 { 210 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 211 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 212 int size, i, node; 213 214 if (tx_ring->tx_buffer_info) { 215 netif_err(adapter, ifup, 216 adapter->netdev, "tx_buffer_info info is not NULL"); 217 return -EEXIST; 218 } 219 220 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 221 node = cpu_to_node(ena_irq->cpu); 222 223 tx_ring->tx_buffer_info = vzalloc_node(size, node); 224 if (!tx_ring->tx_buffer_info) { 225 tx_ring->tx_buffer_info = vzalloc(size); 226 if (!tx_ring->tx_buffer_info) 227 goto err_tx_buffer_info; 228 } 229 230 size = sizeof(u16) * tx_ring->ring_size; 231 tx_ring->free_ids = vzalloc_node(size, node); 232 if (!tx_ring->free_ids) { 233 tx_ring->free_ids = vzalloc(size); 234 if (!tx_ring->free_ids) 235 goto err_tx_free_ids; 236 } 237 238 size = tx_ring->tx_max_header_size; 239 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 240 if (!tx_ring->push_buf_intermediate_buf) { 241 tx_ring->push_buf_intermediate_buf = vzalloc(size); 242 if (!tx_ring->push_buf_intermediate_buf) 243 goto err_push_buf_intermediate_buf; 244 } 245 246 /* Req id ring for TX out of order completions */ 247 for (i = 0; i < tx_ring->ring_size; i++) 248 tx_ring->free_ids[i] = i; 249 250 /* Reset tx statistics */ 251 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 252 253 tx_ring->next_to_use = 0; 254 tx_ring->next_to_clean = 0; 255 tx_ring->cpu = ena_irq->cpu; 256 return 0; 257 258 err_push_buf_intermediate_buf: 259 vfree(tx_ring->free_ids); 260 tx_ring->free_ids = NULL; 261 err_tx_free_ids: 262 vfree(tx_ring->tx_buffer_info); 263 tx_ring->tx_buffer_info = NULL; 264 err_tx_buffer_info: 265 return -ENOMEM; 266 } 267 268 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 269 * @adapter: network interface device structure 270 * @qid: queue index 271 * 272 * Free all transmit software resources 273 */ 274 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 275 { 276 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 277 278 vfree(tx_ring->tx_buffer_info); 279 tx_ring->tx_buffer_info = NULL; 280 281 vfree(tx_ring->free_ids); 282 tx_ring->free_ids = NULL; 283 284 vfree(tx_ring->push_buf_intermediate_buf); 285 tx_ring->push_buf_intermediate_buf = NULL; 286 } 287 288 /* ena_setup_all_tx_resources - allocate I/O Tx queues resources for All queues 289 * @adapter: private structure 290 * 291 * Return 0 on success, negative on failure 292 */ 293 static int ena_setup_all_tx_resources(struct ena_adapter *adapter) 294 { 295 int i, rc = 0; 296 297 for (i = 0; i < adapter->num_io_queues; i++) { 298 rc = ena_setup_tx_resources(adapter, i); 299 if (rc) 300 goto err_setup_tx; 301 } 302 303 return 0; 304 305 err_setup_tx: 306 307 netif_err(adapter, ifup, adapter->netdev, 308 "Tx queue %d: allocation failed\n", i); 309 310 /* rewind the index freeing the rings as we go */ 311 while (i--) 312 ena_free_tx_resources(adapter, i); 313 return rc; 314 } 315 316 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 317 * @adapter: board private structure 318 * 319 * Free all transmit software resources 320 */ 321 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 322 { 323 int i; 324 325 for (i = 0; i < adapter->num_io_queues; i++) 326 ena_free_tx_resources(adapter, i); 327 } 328 329 static int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id) 330 { 331 if (likely(req_id < rx_ring->ring_size)) 332 return 0; 333 334 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 335 "Invalid rx req_id: %hu\n", req_id); 336 337 u64_stats_update_begin(&rx_ring->syncp); 338 rx_ring->rx_stats.bad_req_id++; 339 u64_stats_update_end(&rx_ring->syncp); 340 341 /* Trigger device reset */ 342 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; 343 set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags); 344 return -EFAULT; 345 } 346 347 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 348 * @adapter: network interface device structure 349 * @qid: queue index 350 * 351 * Returns 0 on success, negative on failure 352 */ 353 static int ena_setup_rx_resources(struct ena_adapter *adapter, 354 u32 qid) 355 { 356 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 357 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 358 int size, node, i; 359 360 if (rx_ring->rx_buffer_info) { 361 netif_err(adapter, ifup, adapter->netdev, 362 "rx_buffer_info is not NULL"); 363 return -EEXIST; 364 } 365 366 /* alloc extra element so in rx path 367 * we can always prefetch rx_info + 1 368 */ 369 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 370 node = cpu_to_node(ena_irq->cpu); 371 372 rx_ring->rx_buffer_info = vzalloc_node(size, node); 373 if (!rx_ring->rx_buffer_info) { 374 rx_ring->rx_buffer_info = vzalloc(size); 375 if (!rx_ring->rx_buffer_info) 376 return -ENOMEM; 377 } 378 379 size = sizeof(u16) * rx_ring->ring_size; 380 rx_ring->free_ids = vzalloc_node(size, node); 381 if (!rx_ring->free_ids) { 382 rx_ring->free_ids = vzalloc(size); 383 if (!rx_ring->free_ids) { 384 vfree(rx_ring->rx_buffer_info); 385 rx_ring->rx_buffer_info = NULL; 386 return -ENOMEM; 387 } 388 } 389 390 /* Req id ring for receiving RX pkts out of order */ 391 for (i = 0; i < rx_ring->ring_size; i++) 392 rx_ring->free_ids[i] = i; 393 394 /* Reset rx statistics */ 395 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 396 397 rx_ring->next_to_clean = 0; 398 rx_ring->next_to_use = 0; 399 rx_ring->cpu = ena_irq->cpu; 400 401 return 0; 402 } 403 404 /* ena_free_rx_resources - Free I/O Rx Resources 405 * @adapter: network interface device structure 406 * @qid: queue index 407 * 408 * Free all receive software resources 409 */ 410 static void ena_free_rx_resources(struct ena_adapter *adapter, 411 u32 qid) 412 { 413 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 414 415 vfree(rx_ring->rx_buffer_info); 416 rx_ring->rx_buffer_info = NULL; 417 418 vfree(rx_ring->free_ids); 419 rx_ring->free_ids = NULL; 420 } 421 422 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 423 * @adapter: board private structure 424 * 425 * Return 0 on success, negative on failure 426 */ 427 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 428 { 429 int i, rc = 0; 430 431 for (i = 0; i < adapter->num_io_queues; i++) { 432 rc = ena_setup_rx_resources(adapter, i); 433 if (rc) 434 goto err_setup_rx; 435 } 436 437 return 0; 438 439 err_setup_rx: 440 441 netif_err(adapter, ifup, adapter->netdev, 442 "Rx queue %d: allocation failed\n", i); 443 444 /* rewind the index freeing the rings as we go */ 445 while (i--) 446 ena_free_rx_resources(adapter, i); 447 return rc; 448 } 449 450 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 451 * @adapter: board private structure 452 * 453 * Free all receive software resources 454 */ 455 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 456 { 457 int i; 458 459 for (i = 0; i < adapter->num_io_queues; i++) 460 ena_free_rx_resources(adapter, i); 461 } 462 463 static int ena_alloc_rx_page(struct ena_ring *rx_ring, 464 struct ena_rx_buffer *rx_info, gfp_t gfp) 465 { 466 struct ena_com_buf *ena_buf; 467 struct page *page; 468 dma_addr_t dma; 469 470 /* if previous allocated page is not used */ 471 if (unlikely(rx_info->page)) 472 return 0; 473 474 page = alloc_page(gfp); 475 if (unlikely(!page)) { 476 u64_stats_update_begin(&rx_ring->syncp); 477 rx_ring->rx_stats.page_alloc_fail++; 478 u64_stats_update_end(&rx_ring->syncp); 479 return -ENOMEM; 480 } 481 482 dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 483 DMA_FROM_DEVICE); 484 if (unlikely(dma_mapping_error(rx_ring->dev, dma))) { 485 u64_stats_update_begin(&rx_ring->syncp); 486 rx_ring->rx_stats.dma_mapping_err++; 487 u64_stats_update_end(&rx_ring->syncp); 488 489 __free_page(page); 490 return -EIO; 491 } 492 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 493 "alloc page %p, rx_info %p\n", page, rx_info); 494 495 rx_info->page = page; 496 rx_info->page_offset = 0; 497 ena_buf = &rx_info->ena_buf; 498 ena_buf->paddr = dma; 499 ena_buf->len = ENA_PAGE_SIZE; 500 501 return 0; 502 } 503 504 static void ena_free_rx_page(struct ena_ring *rx_ring, 505 struct ena_rx_buffer *rx_info) 506 { 507 struct page *page = rx_info->page; 508 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 509 510 if (unlikely(!page)) { 511 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 512 "Trying to free unallocated buffer\n"); 513 return; 514 } 515 516 dma_unmap_page(rx_ring->dev, ena_buf->paddr, ENA_PAGE_SIZE, 517 DMA_FROM_DEVICE); 518 519 __free_page(page); 520 rx_info->page = NULL; 521 } 522 523 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 524 { 525 u16 next_to_use, req_id; 526 u32 i; 527 int rc; 528 529 next_to_use = rx_ring->next_to_use; 530 531 for (i = 0; i < num; i++) { 532 struct ena_rx_buffer *rx_info; 533 534 req_id = rx_ring->free_ids[next_to_use]; 535 rc = validate_rx_req_id(rx_ring, req_id); 536 if (unlikely(rc < 0)) 537 break; 538 539 rx_info = &rx_ring->rx_buffer_info[req_id]; 540 541 542 rc = ena_alloc_rx_page(rx_ring, rx_info, 543 GFP_ATOMIC | __GFP_COMP); 544 if (unlikely(rc < 0)) { 545 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 546 "failed to alloc buffer for rx queue %d\n", 547 rx_ring->qid); 548 break; 549 } 550 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 551 &rx_info->ena_buf, 552 req_id); 553 if (unlikely(rc)) { 554 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 555 "failed to add buffer for rx queue %d\n", 556 rx_ring->qid); 557 break; 558 } 559 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 560 rx_ring->ring_size); 561 } 562 563 if (unlikely(i < num)) { 564 u64_stats_update_begin(&rx_ring->syncp); 565 rx_ring->rx_stats.refil_partial++; 566 u64_stats_update_end(&rx_ring->syncp); 567 netdev_warn(rx_ring->netdev, 568 "refilled rx qid %d with only %d buffers (from %d)\n", 569 rx_ring->qid, i, num); 570 } 571 572 /* ena_com_write_sq_doorbell issues a wmb() */ 573 if (likely(i)) 574 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 575 576 rx_ring->next_to_use = next_to_use; 577 578 return i; 579 } 580 581 static void ena_free_rx_bufs(struct ena_adapter *adapter, 582 u32 qid) 583 { 584 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 585 u32 i; 586 587 for (i = 0; i < rx_ring->ring_size; i++) { 588 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 589 590 if (rx_info->page) 591 ena_free_rx_page(rx_ring, rx_info); 592 } 593 } 594 595 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 596 * @adapter: board private structure 597 */ 598 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 599 { 600 struct ena_ring *rx_ring; 601 int i, rc, bufs_num; 602 603 for (i = 0; i < adapter->num_io_queues; i++) { 604 rx_ring = &adapter->rx_ring[i]; 605 bufs_num = rx_ring->ring_size - 1; 606 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 607 608 if (unlikely(rc != bufs_num)) 609 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 610 "refilling Queue %d failed. allocated %d buffers from: %d\n", 611 i, rc, bufs_num); 612 } 613 } 614 615 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 616 { 617 int i; 618 619 for (i = 0; i < adapter->num_io_queues; i++) 620 ena_free_rx_bufs(adapter, i); 621 } 622 623 static void ena_unmap_tx_skb(struct ena_ring *tx_ring, 624 struct ena_tx_buffer *tx_info) 625 { 626 struct ena_com_buf *ena_buf; 627 u32 cnt; 628 int i; 629 630 ena_buf = tx_info->bufs; 631 cnt = tx_info->num_of_bufs; 632 633 if (unlikely(!cnt)) 634 return; 635 636 if (tx_info->map_linear_data) { 637 dma_unmap_single(tx_ring->dev, 638 dma_unmap_addr(ena_buf, paddr), 639 dma_unmap_len(ena_buf, len), 640 DMA_TO_DEVICE); 641 ena_buf++; 642 cnt--; 643 } 644 645 /* unmap remaining mapped pages */ 646 for (i = 0; i < cnt; i++) { 647 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 648 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 649 ena_buf++; 650 } 651 } 652 653 /* ena_free_tx_bufs - Free Tx Buffers per Queue 654 * @tx_ring: TX ring for which buffers be freed 655 */ 656 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 657 { 658 bool print_once = true; 659 u32 i; 660 661 for (i = 0; i < tx_ring->ring_size; i++) { 662 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 663 664 if (!tx_info->skb) 665 continue; 666 667 if (print_once) { 668 netdev_notice(tx_ring->netdev, 669 "free uncompleted tx skb qid %d idx 0x%x\n", 670 tx_ring->qid, i); 671 print_once = false; 672 } else { 673 netdev_dbg(tx_ring->netdev, 674 "free uncompleted tx skb qid %d idx 0x%x\n", 675 tx_ring->qid, i); 676 } 677 678 ena_unmap_tx_skb(tx_ring, tx_info); 679 680 dev_kfree_skb_any(tx_info->skb); 681 } 682 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 683 tx_ring->qid)); 684 } 685 686 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 687 { 688 struct ena_ring *tx_ring; 689 int i; 690 691 for (i = 0; i < adapter->num_io_queues; i++) { 692 tx_ring = &adapter->tx_ring[i]; 693 ena_free_tx_bufs(tx_ring); 694 } 695 } 696 697 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 698 { 699 u16 ena_qid; 700 int i; 701 702 for (i = 0; i < adapter->num_io_queues; i++) { 703 ena_qid = ENA_IO_TXQ_IDX(i); 704 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 705 } 706 } 707 708 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 709 { 710 u16 ena_qid; 711 int i; 712 713 for (i = 0; i < adapter->num_io_queues; i++) { 714 ena_qid = ENA_IO_RXQ_IDX(i); 715 cancel_work_sync(&adapter->ena_napi[i].dim.work); 716 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 717 } 718 } 719 720 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 721 { 722 ena_destroy_all_tx_queues(adapter); 723 ena_destroy_all_rx_queues(adapter); 724 } 725 726 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 727 { 728 struct ena_tx_buffer *tx_info = NULL; 729 730 if (likely(req_id < tx_ring->ring_size)) { 731 tx_info = &tx_ring->tx_buffer_info[req_id]; 732 if (likely(tx_info->skb)) 733 return 0; 734 } 735 736 if (tx_info) 737 netif_err(tx_ring->adapter, tx_done, tx_ring->netdev, 738 "tx_info doesn't have valid skb\n"); 739 else 740 netif_err(tx_ring->adapter, tx_done, tx_ring->netdev, 741 "Invalid req_id: %hu\n", req_id); 742 743 u64_stats_update_begin(&tx_ring->syncp); 744 tx_ring->tx_stats.bad_req_id++; 745 u64_stats_update_end(&tx_ring->syncp); 746 747 /* Trigger device reset */ 748 tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID; 749 set_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags); 750 return -EFAULT; 751 } 752 753 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 754 { 755 struct netdev_queue *txq; 756 bool above_thresh; 757 u32 tx_bytes = 0; 758 u32 total_done = 0; 759 u16 next_to_clean; 760 u16 req_id; 761 int tx_pkts = 0; 762 int rc; 763 764 next_to_clean = tx_ring->next_to_clean; 765 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 766 767 while (tx_pkts < budget) { 768 struct ena_tx_buffer *tx_info; 769 struct sk_buff *skb; 770 771 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 772 &req_id); 773 if (rc) 774 break; 775 776 rc = validate_tx_req_id(tx_ring, req_id); 777 if (rc) 778 break; 779 780 tx_info = &tx_ring->tx_buffer_info[req_id]; 781 skb = tx_info->skb; 782 783 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 784 prefetch(&skb->end); 785 786 tx_info->skb = NULL; 787 tx_info->last_jiffies = 0; 788 789 ena_unmap_tx_skb(tx_ring, tx_info); 790 791 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 792 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 793 skb); 794 795 tx_bytes += skb->len; 796 dev_kfree_skb(skb); 797 tx_pkts++; 798 total_done += tx_info->tx_descs; 799 800 tx_ring->free_ids[next_to_clean] = req_id; 801 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 802 tx_ring->ring_size); 803 } 804 805 tx_ring->next_to_clean = next_to_clean; 806 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 807 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); 808 809 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 810 811 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 812 "tx_poll: q %d done. total pkts: %d\n", 813 tx_ring->qid, tx_pkts); 814 815 /* need to make the rings circular update visible to 816 * ena_start_xmit() before checking for netif_queue_stopped(). 817 */ 818 smp_mb(); 819 820 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 821 ENA_TX_WAKEUP_THRESH); 822 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 823 __netif_tx_lock(txq, smp_processor_id()); 824 above_thresh = 825 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 826 ENA_TX_WAKEUP_THRESH); 827 if (netif_tx_queue_stopped(txq) && above_thresh && 828 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 829 netif_tx_wake_queue(txq); 830 u64_stats_update_begin(&tx_ring->syncp); 831 tx_ring->tx_stats.queue_wakeup++; 832 u64_stats_update_end(&tx_ring->syncp); 833 } 834 __netif_tx_unlock(txq); 835 } 836 837 return tx_pkts; 838 } 839 840 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags) 841 { 842 struct sk_buff *skb; 843 844 if (frags) 845 skb = napi_get_frags(rx_ring->napi); 846 else 847 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 848 rx_ring->rx_copybreak); 849 850 if (unlikely(!skb)) { 851 u64_stats_update_begin(&rx_ring->syncp); 852 rx_ring->rx_stats.skb_alloc_fail++; 853 u64_stats_update_end(&rx_ring->syncp); 854 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 855 "Failed to allocate skb. frags: %d\n", frags); 856 return NULL; 857 } 858 859 return skb; 860 } 861 862 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 863 struct ena_com_rx_buf_info *ena_bufs, 864 u32 descs, 865 u16 *next_to_clean) 866 { 867 struct sk_buff *skb; 868 struct ena_rx_buffer *rx_info; 869 u16 len, req_id, buf = 0; 870 void *va; 871 872 len = ena_bufs[buf].len; 873 req_id = ena_bufs[buf].req_id; 874 rx_info = &rx_ring->rx_buffer_info[req_id]; 875 876 if (unlikely(!rx_info->page)) { 877 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 878 "Page is NULL\n"); 879 return NULL; 880 } 881 882 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 883 "rx_info %p page %p\n", 884 rx_info, rx_info->page); 885 886 /* save virt address of first buffer */ 887 va = page_address(rx_info->page) + rx_info->page_offset; 888 prefetch(va + NET_IP_ALIGN); 889 890 if (len <= rx_ring->rx_copybreak) { 891 skb = ena_alloc_skb(rx_ring, false); 892 if (unlikely(!skb)) 893 return NULL; 894 895 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 896 "rx allocated small packet. len %d. data_len %d\n", 897 skb->len, skb->data_len); 898 899 /* sync this buffer for CPU use */ 900 dma_sync_single_for_cpu(rx_ring->dev, 901 dma_unmap_addr(&rx_info->ena_buf, paddr), 902 len, 903 DMA_FROM_DEVICE); 904 skb_copy_to_linear_data(skb, va, len); 905 dma_sync_single_for_device(rx_ring->dev, 906 dma_unmap_addr(&rx_info->ena_buf, paddr), 907 len, 908 DMA_FROM_DEVICE); 909 910 skb_put(skb, len); 911 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 912 rx_ring->free_ids[*next_to_clean] = req_id; 913 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 914 rx_ring->ring_size); 915 return skb; 916 } 917 918 skb = ena_alloc_skb(rx_ring, true); 919 if (unlikely(!skb)) 920 return NULL; 921 922 do { 923 dma_unmap_page(rx_ring->dev, 924 dma_unmap_addr(&rx_info->ena_buf, paddr), 925 ENA_PAGE_SIZE, DMA_FROM_DEVICE); 926 927 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 928 rx_info->page_offset, len, ENA_PAGE_SIZE); 929 930 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 931 "rx skb updated. len %d. data_len %d\n", 932 skb->len, skb->data_len); 933 934 rx_info->page = NULL; 935 936 rx_ring->free_ids[*next_to_clean] = req_id; 937 *next_to_clean = 938 ENA_RX_RING_IDX_NEXT(*next_to_clean, 939 rx_ring->ring_size); 940 if (likely(--descs == 0)) 941 break; 942 943 buf++; 944 len = ena_bufs[buf].len; 945 req_id = ena_bufs[buf].req_id; 946 rx_info = &rx_ring->rx_buffer_info[req_id]; 947 } while (1); 948 949 return skb; 950 } 951 952 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 953 * @adapter: structure containing adapter specific data 954 * @ena_rx_ctx: received packet context/metadata 955 * @skb: skb currently being received and modified 956 */ 957 static void ena_rx_checksum(struct ena_ring *rx_ring, 958 struct ena_com_rx_ctx *ena_rx_ctx, 959 struct sk_buff *skb) 960 { 961 /* Rx csum disabled */ 962 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 963 skb->ip_summed = CHECKSUM_NONE; 964 return; 965 } 966 967 /* For fragmented packets the checksum isn't valid */ 968 if (ena_rx_ctx->frag) { 969 skb->ip_summed = CHECKSUM_NONE; 970 return; 971 } 972 973 /* if IP and error */ 974 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 975 (ena_rx_ctx->l3_csum_err))) { 976 /* ipv4 checksum error */ 977 skb->ip_summed = CHECKSUM_NONE; 978 u64_stats_update_begin(&rx_ring->syncp); 979 rx_ring->rx_stats.bad_csum++; 980 u64_stats_update_end(&rx_ring->syncp); 981 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 982 "RX IPv4 header checksum error\n"); 983 return; 984 } 985 986 /* if TCP/UDP */ 987 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 988 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 989 if (unlikely(ena_rx_ctx->l4_csum_err)) { 990 /* TCP/UDP checksum error */ 991 u64_stats_update_begin(&rx_ring->syncp); 992 rx_ring->rx_stats.bad_csum++; 993 u64_stats_update_end(&rx_ring->syncp); 994 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 995 "RX L4 checksum error\n"); 996 skb->ip_summed = CHECKSUM_NONE; 997 return; 998 } 999 1000 if (likely(ena_rx_ctx->l4_csum_checked)) { 1001 skb->ip_summed = CHECKSUM_UNNECESSARY; 1002 u64_stats_update_begin(&rx_ring->syncp); 1003 rx_ring->rx_stats.csum_good++; 1004 u64_stats_update_end(&rx_ring->syncp); 1005 } else { 1006 u64_stats_update_begin(&rx_ring->syncp); 1007 rx_ring->rx_stats.csum_unchecked++; 1008 u64_stats_update_end(&rx_ring->syncp); 1009 skb->ip_summed = CHECKSUM_NONE; 1010 } 1011 } else { 1012 skb->ip_summed = CHECKSUM_NONE; 1013 return; 1014 } 1015 1016 } 1017 1018 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1019 struct ena_com_rx_ctx *ena_rx_ctx, 1020 struct sk_buff *skb) 1021 { 1022 enum pkt_hash_types hash_type; 1023 1024 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1025 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1026 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1027 1028 hash_type = PKT_HASH_TYPE_L4; 1029 else 1030 hash_type = PKT_HASH_TYPE_NONE; 1031 1032 /* Override hash type if the packet is fragmented */ 1033 if (ena_rx_ctx->frag) 1034 hash_type = PKT_HASH_TYPE_NONE; 1035 1036 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1037 } 1038 } 1039 1040 /* ena_clean_rx_irq - Cleanup RX irq 1041 * @rx_ring: RX ring to clean 1042 * @napi: napi handler 1043 * @budget: how many packets driver is allowed to clean 1044 * 1045 * Returns the number of cleaned buffers. 1046 */ 1047 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1048 u32 budget) 1049 { 1050 u16 next_to_clean = rx_ring->next_to_clean; 1051 u32 res_budget, work_done; 1052 1053 struct ena_com_rx_ctx ena_rx_ctx; 1054 struct ena_adapter *adapter; 1055 struct sk_buff *skb; 1056 int refill_required; 1057 int refill_threshold; 1058 int rc = 0; 1059 int total_len = 0; 1060 int rx_copybreak_pkt = 0; 1061 int i; 1062 1063 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1064 "%s qid %d\n", __func__, rx_ring->qid); 1065 res_budget = budget; 1066 1067 do { 1068 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1069 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1070 ena_rx_ctx.descs = 0; 1071 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1072 rx_ring->ena_com_io_sq, 1073 &ena_rx_ctx); 1074 if (unlikely(rc)) 1075 goto error; 1076 1077 if (unlikely(ena_rx_ctx.descs == 0)) 1078 break; 1079 1080 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1081 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1082 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1083 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1084 1085 /* allocate skb and fill it */ 1086 skb = ena_rx_skb(rx_ring, rx_ring->ena_bufs, ena_rx_ctx.descs, 1087 &next_to_clean); 1088 1089 /* exit if we failed to retrieve a buffer */ 1090 if (unlikely(!skb)) { 1091 for (i = 0; i < ena_rx_ctx.descs; i++) { 1092 rx_ring->free_ids[next_to_clean] = 1093 rx_ring->ena_bufs[i].req_id; 1094 next_to_clean = 1095 ENA_RX_RING_IDX_NEXT(next_to_clean, 1096 rx_ring->ring_size); 1097 } 1098 break; 1099 } 1100 1101 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1102 1103 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1104 1105 skb_record_rx_queue(skb, rx_ring->qid); 1106 1107 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) { 1108 total_len += rx_ring->ena_bufs[0].len; 1109 rx_copybreak_pkt++; 1110 napi_gro_receive(napi, skb); 1111 } else { 1112 total_len += skb->len; 1113 napi_gro_frags(napi); 1114 } 1115 1116 res_budget--; 1117 } while (likely(res_budget)); 1118 1119 work_done = budget - res_budget; 1120 rx_ring->per_napi_packets += work_done; 1121 u64_stats_update_begin(&rx_ring->syncp); 1122 rx_ring->rx_stats.bytes += total_len; 1123 rx_ring->rx_stats.cnt += work_done; 1124 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1125 u64_stats_update_end(&rx_ring->syncp); 1126 1127 rx_ring->next_to_clean = next_to_clean; 1128 1129 refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq); 1130 refill_threshold = 1131 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1132 ENA_RX_REFILL_THRESH_PACKET); 1133 1134 /* Optimization, try to batch new rx buffers */ 1135 if (refill_required > refill_threshold) { 1136 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 1137 ena_refill_rx_bufs(rx_ring, refill_required); 1138 } 1139 1140 return work_done; 1141 1142 error: 1143 adapter = netdev_priv(rx_ring->netdev); 1144 1145 u64_stats_update_begin(&rx_ring->syncp); 1146 rx_ring->rx_stats.bad_desc_num++; 1147 u64_stats_update_end(&rx_ring->syncp); 1148 1149 /* Too many desc from the device. Trigger reset */ 1150 adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS; 1151 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 1152 1153 return 0; 1154 } 1155 1156 static void ena_dim_work(struct work_struct *w) 1157 { 1158 struct dim *dim = container_of(w, struct dim, work); 1159 struct dim_cq_moder cur_moder = 1160 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1161 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1162 1163 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1164 dim->state = DIM_START_MEASURE; 1165 } 1166 1167 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1168 { 1169 struct dim_sample dim_sample; 1170 struct ena_ring *rx_ring = ena_napi->rx_ring; 1171 1172 if (!rx_ring->per_napi_packets) 1173 return; 1174 1175 rx_ring->non_empty_napi_events++; 1176 1177 dim_update_sample(rx_ring->non_empty_napi_events, 1178 rx_ring->rx_stats.cnt, 1179 rx_ring->rx_stats.bytes, 1180 &dim_sample); 1181 1182 net_dim(&ena_napi->dim, dim_sample); 1183 1184 rx_ring->per_napi_packets = 0; 1185 } 1186 1187 static void ena_unmask_interrupt(struct ena_ring *tx_ring, 1188 struct ena_ring *rx_ring) 1189 { 1190 struct ena_eth_io_intr_reg intr_reg; 1191 u32 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1192 rx_ring->smoothed_interval : 1193 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1194 1195 /* Update intr register: rx intr delay, 1196 * tx intr delay and interrupt unmask 1197 */ 1198 ena_com_update_intr_reg(&intr_reg, 1199 rx_interval, 1200 tx_ring->smoothed_interval, 1201 true); 1202 1203 /* It is a shared MSI-X. 1204 * Tx and Rx CQ have pointer to it. 1205 * So we use one of them to reach the intr reg 1206 */ 1207 ena_com_unmask_intr(rx_ring->ena_com_io_cq, &intr_reg); 1208 } 1209 1210 static void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1211 struct ena_ring *rx_ring) 1212 { 1213 int cpu = get_cpu(); 1214 int numa_node; 1215 1216 /* Check only one ring since the 2 rings are running on the same cpu */ 1217 if (likely(tx_ring->cpu == cpu)) 1218 goto out; 1219 1220 numa_node = cpu_to_node(cpu); 1221 put_cpu(); 1222 1223 if (numa_node != NUMA_NO_NODE) { 1224 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1225 ena_com_update_numa_node(rx_ring->ena_com_io_cq, numa_node); 1226 } 1227 1228 tx_ring->cpu = cpu; 1229 rx_ring->cpu = cpu; 1230 1231 return; 1232 out: 1233 put_cpu(); 1234 } 1235 1236 static int ena_io_poll(struct napi_struct *napi, int budget) 1237 { 1238 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1239 struct ena_ring *tx_ring, *rx_ring; 1240 1241 u32 tx_work_done; 1242 u32 rx_work_done; 1243 int tx_budget; 1244 int napi_comp_call = 0; 1245 int ret; 1246 1247 tx_ring = ena_napi->tx_ring; 1248 rx_ring = ena_napi->rx_ring; 1249 1250 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1251 1252 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1253 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1254 napi_complete_done(napi, 0); 1255 return 0; 1256 } 1257 1258 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1259 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1260 1261 /* If the device is about to reset or down, avoid unmask 1262 * the interrupt and return 0 so NAPI won't reschedule 1263 */ 1264 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1265 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1266 napi_complete_done(napi, 0); 1267 ret = 0; 1268 1269 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1270 napi_comp_call = 1; 1271 1272 /* Update numa and unmask the interrupt only when schedule 1273 * from the interrupt context (vs from sk_busy_loop) 1274 */ 1275 if (napi_complete_done(napi, rx_work_done)) { 1276 /* We apply adaptive moderation on Rx path only. 1277 * Tx uses static interrupt moderation. 1278 */ 1279 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1280 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1281 1282 ena_unmask_interrupt(tx_ring, rx_ring); 1283 } 1284 1285 ena_update_ring_numa_node(tx_ring, rx_ring); 1286 1287 ret = rx_work_done; 1288 } else { 1289 ret = budget; 1290 } 1291 1292 u64_stats_update_begin(&tx_ring->syncp); 1293 tx_ring->tx_stats.napi_comp += napi_comp_call; 1294 tx_ring->tx_stats.tx_poll++; 1295 u64_stats_update_end(&tx_ring->syncp); 1296 1297 return ret; 1298 } 1299 1300 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1301 { 1302 struct ena_adapter *adapter = (struct ena_adapter *)data; 1303 1304 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1305 1306 /* Don't call the aenq handler before probe is done */ 1307 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1308 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1309 1310 return IRQ_HANDLED; 1311 } 1312 1313 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1314 * @irq: interrupt number 1315 * @data: pointer to a network interface private napi device structure 1316 */ 1317 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1318 { 1319 struct ena_napi *ena_napi = data; 1320 1321 ena_napi->tx_ring->first_interrupt = true; 1322 ena_napi->rx_ring->first_interrupt = true; 1323 1324 napi_schedule_irqoff(&ena_napi->napi); 1325 1326 return IRQ_HANDLED; 1327 } 1328 1329 /* Reserve a single MSI-X vector for management (admin + aenq). 1330 * plus reserve one vector for each potential io queue. 1331 * the number of potential io queues is the minimum of what the device 1332 * supports and the number of vCPUs. 1333 */ 1334 static int ena_enable_msix(struct ena_adapter *adapter) 1335 { 1336 int msix_vecs, irq_cnt; 1337 1338 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1339 netif_err(adapter, probe, adapter->netdev, 1340 "Error, MSI-X is already enabled\n"); 1341 return -EPERM; 1342 } 1343 1344 /* Reserved the max msix vectors we might need */ 1345 msix_vecs = ENA_MAX_MSIX_VEC(adapter->num_io_queues); 1346 netif_dbg(adapter, probe, adapter->netdev, 1347 "trying to enable MSI-X, vectors %d\n", msix_vecs); 1348 1349 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1350 msix_vecs, PCI_IRQ_MSIX); 1351 1352 if (irq_cnt < 0) { 1353 netif_err(adapter, probe, adapter->netdev, 1354 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1355 return -ENOSPC; 1356 } 1357 1358 if (irq_cnt != msix_vecs) { 1359 netif_notice(adapter, probe, adapter->netdev, 1360 "enable only %d MSI-X (out of %d), reduce the number of queues\n", 1361 irq_cnt, msix_vecs); 1362 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 1363 } 1364 1365 if (ena_init_rx_cpu_rmap(adapter)) 1366 netif_warn(adapter, probe, adapter->netdev, 1367 "Failed to map IRQs to CPUs\n"); 1368 1369 adapter->msix_vecs = irq_cnt; 1370 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 1371 1372 return 0; 1373 } 1374 1375 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 1376 { 1377 u32 cpu; 1378 1379 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 1380 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 1381 pci_name(adapter->pdev)); 1382 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 1383 ena_intr_msix_mgmnt; 1384 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 1385 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 1386 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 1387 cpu = cpumask_first(cpu_online_mask); 1388 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 1389 cpumask_set_cpu(cpu, 1390 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 1391 } 1392 1393 static void ena_setup_io_intr(struct ena_adapter *adapter) 1394 { 1395 struct net_device *netdev; 1396 int irq_idx, i, cpu; 1397 1398 netdev = adapter->netdev; 1399 1400 for (i = 0; i < adapter->num_io_queues; i++) { 1401 irq_idx = ENA_IO_IRQ_IDX(i); 1402 cpu = i % num_online_cpus(); 1403 1404 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 1405 "%s-Tx-Rx-%d", netdev->name, i); 1406 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 1407 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 1408 adapter->irq_tbl[irq_idx].vector = 1409 pci_irq_vector(adapter->pdev, irq_idx); 1410 adapter->irq_tbl[irq_idx].cpu = cpu; 1411 1412 cpumask_set_cpu(cpu, 1413 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 1414 } 1415 } 1416 1417 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 1418 { 1419 unsigned long flags = 0; 1420 struct ena_irq *irq; 1421 int rc; 1422 1423 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1424 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1425 irq->data); 1426 if (rc) { 1427 netif_err(adapter, probe, adapter->netdev, 1428 "failed to request admin irq\n"); 1429 return rc; 1430 } 1431 1432 netif_dbg(adapter, probe, adapter->netdev, 1433 "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 1434 irq->affinity_hint_mask.bits[0], irq->vector); 1435 1436 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1437 1438 return rc; 1439 } 1440 1441 static int ena_request_io_irq(struct ena_adapter *adapter) 1442 { 1443 unsigned long flags = 0; 1444 struct ena_irq *irq; 1445 int rc = 0, i, k; 1446 1447 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1448 netif_err(adapter, ifup, adapter->netdev, 1449 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 1450 return -EINVAL; 1451 } 1452 1453 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) { 1454 irq = &adapter->irq_tbl[i]; 1455 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1456 irq->data); 1457 if (rc) { 1458 netif_err(adapter, ifup, adapter->netdev, 1459 "Failed to request I/O IRQ. index %d rc %d\n", 1460 i, rc); 1461 goto err; 1462 } 1463 1464 netif_dbg(adapter, ifup, adapter->netdev, 1465 "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 1466 i, irq->affinity_hint_mask.bits[0], irq->vector); 1467 1468 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1469 } 1470 1471 return rc; 1472 1473 err: 1474 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 1475 irq = &adapter->irq_tbl[k]; 1476 free_irq(irq->vector, irq->data); 1477 } 1478 1479 return rc; 1480 } 1481 1482 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 1483 { 1484 struct ena_irq *irq; 1485 1486 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1487 synchronize_irq(irq->vector); 1488 irq_set_affinity_hint(irq->vector, NULL); 1489 free_irq(irq->vector, irq->data); 1490 } 1491 1492 static void ena_free_io_irq(struct ena_adapter *adapter) 1493 { 1494 struct ena_irq *irq; 1495 int i; 1496 1497 #ifdef CONFIG_RFS_ACCEL 1498 if (adapter->msix_vecs >= 1) { 1499 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 1500 adapter->netdev->rx_cpu_rmap = NULL; 1501 } 1502 #endif /* CONFIG_RFS_ACCEL */ 1503 1504 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) { 1505 irq = &adapter->irq_tbl[i]; 1506 irq_set_affinity_hint(irq->vector, NULL); 1507 free_irq(irq->vector, irq->data); 1508 } 1509 } 1510 1511 static void ena_disable_msix(struct ena_adapter *adapter) 1512 { 1513 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 1514 pci_free_irq_vectors(adapter->pdev); 1515 } 1516 1517 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 1518 { 1519 int i; 1520 1521 if (!netif_running(adapter->netdev)) 1522 return; 1523 1524 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) 1525 synchronize_irq(adapter->irq_tbl[i].vector); 1526 } 1527 1528 static void ena_del_napi(struct ena_adapter *adapter) 1529 { 1530 int i; 1531 1532 for (i = 0; i < adapter->num_io_queues; i++) 1533 netif_napi_del(&adapter->ena_napi[i].napi); 1534 } 1535 1536 static void ena_init_napi(struct ena_adapter *adapter) 1537 { 1538 struct ena_napi *napi; 1539 int i; 1540 1541 for (i = 0; i < adapter->num_io_queues; i++) { 1542 napi = &adapter->ena_napi[i]; 1543 1544 netif_napi_add(adapter->netdev, 1545 &adapter->ena_napi[i].napi, 1546 ena_io_poll, 1547 ENA_NAPI_BUDGET); 1548 napi->rx_ring = &adapter->rx_ring[i]; 1549 napi->tx_ring = &adapter->tx_ring[i]; 1550 napi->qid = i; 1551 } 1552 } 1553 1554 static void ena_napi_disable_all(struct ena_adapter *adapter) 1555 { 1556 int i; 1557 1558 for (i = 0; i < adapter->num_io_queues; i++) 1559 napi_disable(&adapter->ena_napi[i].napi); 1560 } 1561 1562 static void ena_napi_enable_all(struct ena_adapter *adapter) 1563 { 1564 int i; 1565 1566 for (i = 0; i < adapter->num_io_queues; i++) 1567 napi_enable(&adapter->ena_napi[i].napi); 1568 } 1569 1570 /* Configure the Rx forwarding */ 1571 static int ena_rss_configure(struct ena_adapter *adapter) 1572 { 1573 struct ena_com_dev *ena_dev = adapter->ena_dev; 1574 int rc; 1575 1576 /* In case the RSS table wasn't initialized by probe */ 1577 if (!ena_dev->rss.tbl_log_size) { 1578 rc = ena_rss_init_default(adapter); 1579 if (rc && (rc != -EOPNOTSUPP)) { 1580 netif_err(adapter, ifup, adapter->netdev, 1581 "Failed to init RSS rc: %d\n", rc); 1582 return rc; 1583 } 1584 } 1585 1586 /* Set indirect table */ 1587 rc = ena_com_indirect_table_set(ena_dev); 1588 if (unlikely(rc && rc != -EOPNOTSUPP)) 1589 return rc; 1590 1591 /* Configure hash function (if supported) */ 1592 rc = ena_com_set_hash_function(ena_dev); 1593 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1594 return rc; 1595 1596 /* Configure hash inputs (if supported) */ 1597 rc = ena_com_set_hash_ctrl(ena_dev); 1598 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1599 return rc; 1600 1601 return 0; 1602 } 1603 1604 static int ena_up_complete(struct ena_adapter *adapter) 1605 { 1606 int rc; 1607 1608 rc = ena_rss_configure(adapter); 1609 if (rc) 1610 return rc; 1611 1612 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 1613 1614 ena_refill_all_rx_bufs(adapter); 1615 1616 /* enable transmits */ 1617 netif_tx_start_all_queues(adapter->netdev); 1618 1619 ena_napi_enable_all(adapter); 1620 1621 return 0; 1622 } 1623 1624 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 1625 { 1626 struct ena_com_create_io_ctx ctx; 1627 struct ena_com_dev *ena_dev; 1628 struct ena_ring *tx_ring; 1629 u32 msix_vector; 1630 u16 ena_qid; 1631 int rc; 1632 1633 ena_dev = adapter->ena_dev; 1634 1635 tx_ring = &adapter->tx_ring[qid]; 1636 msix_vector = ENA_IO_IRQ_IDX(qid); 1637 ena_qid = ENA_IO_TXQ_IDX(qid); 1638 1639 memset(&ctx, 0x0, sizeof(ctx)); 1640 1641 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1642 ctx.qid = ena_qid; 1643 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1644 ctx.msix_vector = msix_vector; 1645 ctx.queue_size = tx_ring->ring_size; 1646 ctx.numa_node = cpu_to_node(tx_ring->cpu); 1647 1648 rc = ena_com_create_io_queue(ena_dev, &ctx); 1649 if (rc) { 1650 netif_err(adapter, ifup, adapter->netdev, 1651 "Failed to create I/O TX queue num %d rc: %d\n", 1652 qid, rc); 1653 return rc; 1654 } 1655 1656 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1657 &tx_ring->ena_com_io_sq, 1658 &tx_ring->ena_com_io_cq); 1659 if (rc) { 1660 netif_err(adapter, ifup, adapter->netdev, 1661 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 1662 qid, rc); 1663 ena_com_destroy_io_queue(ena_dev, ena_qid); 1664 return rc; 1665 } 1666 1667 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 1668 return rc; 1669 } 1670 1671 static int ena_create_all_io_tx_queues(struct ena_adapter *adapter) 1672 { 1673 struct ena_com_dev *ena_dev = adapter->ena_dev; 1674 int rc, i; 1675 1676 for (i = 0; i < adapter->num_io_queues; i++) { 1677 rc = ena_create_io_tx_queue(adapter, i); 1678 if (rc) 1679 goto create_err; 1680 } 1681 1682 return 0; 1683 1684 create_err: 1685 while (i--) 1686 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 1687 1688 return rc; 1689 } 1690 1691 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 1692 { 1693 struct ena_com_dev *ena_dev; 1694 struct ena_com_create_io_ctx ctx; 1695 struct ena_ring *rx_ring; 1696 u32 msix_vector; 1697 u16 ena_qid; 1698 int rc; 1699 1700 ena_dev = adapter->ena_dev; 1701 1702 rx_ring = &adapter->rx_ring[qid]; 1703 msix_vector = ENA_IO_IRQ_IDX(qid); 1704 ena_qid = ENA_IO_RXQ_IDX(qid); 1705 1706 memset(&ctx, 0x0, sizeof(ctx)); 1707 1708 ctx.qid = ena_qid; 1709 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1710 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1711 ctx.msix_vector = msix_vector; 1712 ctx.queue_size = rx_ring->ring_size; 1713 ctx.numa_node = cpu_to_node(rx_ring->cpu); 1714 1715 rc = ena_com_create_io_queue(ena_dev, &ctx); 1716 if (rc) { 1717 netif_err(adapter, ifup, adapter->netdev, 1718 "Failed to create I/O RX queue num %d rc: %d\n", 1719 qid, rc); 1720 return rc; 1721 } 1722 1723 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1724 &rx_ring->ena_com_io_sq, 1725 &rx_ring->ena_com_io_cq); 1726 if (rc) { 1727 netif_err(adapter, ifup, adapter->netdev, 1728 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 1729 qid, rc); 1730 ena_com_destroy_io_queue(ena_dev, ena_qid); 1731 return rc; 1732 } 1733 1734 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 1735 1736 return rc; 1737 } 1738 1739 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 1740 { 1741 struct ena_com_dev *ena_dev = adapter->ena_dev; 1742 int rc, i; 1743 1744 for (i = 0; i < adapter->num_io_queues; i++) { 1745 rc = ena_create_io_rx_queue(adapter, i); 1746 if (rc) 1747 goto create_err; 1748 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 1749 } 1750 1751 return 0; 1752 1753 create_err: 1754 while (i--) { 1755 cancel_work_sync(&adapter->ena_napi[i].dim.work); 1756 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 1757 } 1758 1759 return rc; 1760 } 1761 1762 static void set_io_rings_size(struct ena_adapter *adapter, 1763 int new_tx_size, int new_rx_size) 1764 { 1765 int i; 1766 1767 for (i = 0; i < adapter->num_io_queues; i++) { 1768 adapter->tx_ring[i].ring_size = new_tx_size; 1769 adapter->rx_ring[i].ring_size = new_rx_size; 1770 } 1771 } 1772 1773 /* This function allows queue allocation to backoff when the system is 1774 * low on memory. If there is not enough memory to allocate io queues 1775 * the driver will try to allocate smaller queues. 1776 * 1777 * The backoff algorithm is as follows: 1778 * 1. Try to allocate TX and RX and if successful. 1779 * 1.1. return success 1780 * 1781 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 1782 * 1783 * 3. If TX or RX is smaller than 256 1784 * 3.1. return failure. 1785 * 4. else 1786 * 4.1. go back to 1. 1787 */ 1788 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 1789 { 1790 int rc, cur_rx_ring_size, cur_tx_ring_size; 1791 int new_rx_ring_size, new_tx_ring_size; 1792 1793 /* current queue sizes might be set to smaller than the requested 1794 * ones due to past queue allocation failures. 1795 */ 1796 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 1797 adapter->requested_rx_ring_size); 1798 1799 while (1) { 1800 rc = ena_setup_all_tx_resources(adapter); 1801 if (rc) 1802 goto err_setup_tx; 1803 1804 rc = ena_create_all_io_tx_queues(adapter); 1805 if (rc) 1806 goto err_create_tx_queues; 1807 1808 rc = ena_setup_all_rx_resources(adapter); 1809 if (rc) 1810 goto err_setup_rx; 1811 1812 rc = ena_create_all_io_rx_queues(adapter); 1813 if (rc) 1814 goto err_create_rx_queues; 1815 1816 return 0; 1817 1818 err_create_rx_queues: 1819 ena_free_all_io_rx_resources(adapter); 1820 err_setup_rx: 1821 ena_destroy_all_tx_queues(adapter); 1822 err_create_tx_queues: 1823 ena_free_all_io_tx_resources(adapter); 1824 err_setup_tx: 1825 if (rc != -ENOMEM) { 1826 netif_err(adapter, ifup, adapter->netdev, 1827 "Queue creation failed with error code %d\n", 1828 rc); 1829 return rc; 1830 } 1831 1832 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 1833 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 1834 1835 netif_err(adapter, ifup, adapter->netdev, 1836 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 1837 cur_tx_ring_size, cur_rx_ring_size); 1838 1839 new_tx_ring_size = cur_tx_ring_size; 1840 new_rx_ring_size = cur_rx_ring_size; 1841 1842 /* Decrease the size of the larger queue, or 1843 * decrease both if they are the same size. 1844 */ 1845 if (cur_rx_ring_size <= cur_tx_ring_size) 1846 new_tx_ring_size = cur_tx_ring_size / 2; 1847 if (cur_rx_ring_size >= cur_tx_ring_size) 1848 new_rx_ring_size = cur_rx_ring_size / 2; 1849 1850 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 1851 new_rx_ring_size < ENA_MIN_RING_SIZE) { 1852 netif_err(adapter, ifup, adapter->netdev, 1853 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 1854 ENA_MIN_RING_SIZE); 1855 return rc; 1856 } 1857 1858 netif_err(adapter, ifup, adapter->netdev, 1859 "Retrying queue creation with sizes TX=%d, RX=%d\n", 1860 new_tx_ring_size, 1861 new_rx_ring_size); 1862 1863 set_io_rings_size(adapter, new_tx_ring_size, 1864 new_rx_ring_size); 1865 } 1866 } 1867 1868 static int ena_up(struct ena_adapter *adapter) 1869 { 1870 int rc, i; 1871 1872 netdev_dbg(adapter->netdev, "%s\n", __func__); 1873 1874 ena_setup_io_intr(adapter); 1875 1876 /* napi poll functions should be initialized before running 1877 * request_irq(), to handle a rare condition where there is a pending 1878 * interrupt, causing the ISR to fire immediately while the poll 1879 * function wasn't set yet, causing a null dereference 1880 */ 1881 ena_init_napi(adapter); 1882 1883 rc = ena_request_io_irq(adapter); 1884 if (rc) 1885 goto err_req_irq; 1886 1887 rc = create_queues_with_size_backoff(adapter); 1888 if (rc) 1889 goto err_create_queues_with_backoff; 1890 1891 rc = ena_up_complete(adapter); 1892 if (rc) 1893 goto err_up; 1894 1895 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 1896 netif_carrier_on(adapter->netdev); 1897 1898 u64_stats_update_begin(&adapter->syncp); 1899 adapter->dev_stats.interface_up++; 1900 u64_stats_update_end(&adapter->syncp); 1901 1902 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 1903 1904 /* Enable completion queues interrupt */ 1905 for (i = 0; i < adapter->num_io_queues; i++) 1906 ena_unmask_interrupt(&adapter->tx_ring[i], 1907 &adapter->rx_ring[i]); 1908 1909 /* schedule napi in case we had pending packets 1910 * from the last time we disable napi 1911 */ 1912 for (i = 0; i < adapter->num_io_queues; i++) 1913 napi_schedule(&adapter->ena_napi[i].napi); 1914 1915 return rc; 1916 1917 err_up: 1918 ena_destroy_all_tx_queues(adapter); 1919 ena_free_all_io_tx_resources(adapter); 1920 ena_destroy_all_rx_queues(adapter); 1921 ena_free_all_io_rx_resources(adapter); 1922 err_create_queues_with_backoff: 1923 ena_free_io_irq(adapter); 1924 err_req_irq: 1925 ena_del_napi(adapter); 1926 1927 return rc; 1928 } 1929 1930 static void ena_down(struct ena_adapter *adapter) 1931 { 1932 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__); 1933 1934 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 1935 1936 u64_stats_update_begin(&adapter->syncp); 1937 adapter->dev_stats.interface_down++; 1938 u64_stats_update_end(&adapter->syncp); 1939 1940 netif_carrier_off(adapter->netdev); 1941 netif_tx_disable(adapter->netdev); 1942 1943 /* After this point the napi handler won't enable the tx queue */ 1944 ena_napi_disable_all(adapter); 1945 1946 /* After destroy the queue there won't be any new interrupts */ 1947 1948 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 1949 int rc; 1950 1951 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 1952 if (rc) 1953 dev_err(&adapter->pdev->dev, "Device reset failed\n"); 1954 /* stop submitting admin commands on a device that was reset */ 1955 ena_com_set_admin_running_state(adapter->ena_dev, false); 1956 } 1957 1958 ena_destroy_all_io_queues(adapter); 1959 1960 ena_disable_io_intr_sync(adapter); 1961 ena_free_io_irq(adapter); 1962 ena_del_napi(adapter); 1963 1964 ena_free_all_tx_bufs(adapter); 1965 ena_free_all_rx_bufs(adapter); 1966 ena_free_all_io_tx_resources(adapter); 1967 ena_free_all_io_rx_resources(adapter); 1968 } 1969 1970 /* ena_open - Called when a network interface is made active 1971 * @netdev: network interface device structure 1972 * 1973 * Returns 0 on success, negative value on failure 1974 * 1975 * The open entry point is called when a network interface is made 1976 * active by the system (IFF_UP). At this point all resources needed 1977 * for transmit and receive operations are allocated, the interrupt 1978 * handler is registered with the OS, the watchdog timer is started, 1979 * and the stack is notified that the interface is ready. 1980 */ 1981 static int ena_open(struct net_device *netdev) 1982 { 1983 struct ena_adapter *adapter = netdev_priv(netdev); 1984 int rc; 1985 1986 /* Notify the stack of the actual queue counts. */ 1987 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 1988 if (rc) { 1989 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 1990 return rc; 1991 } 1992 1993 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 1994 if (rc) { 1995 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 1996 return rc; 1997 } 1998 1999 rc = ena_up(adapter); 2000 if (rc) 2001 return rc; 2002 2003 return rc; 2004 } 2005 2006 /* ena_close - Disables a network interface 2007 * @netdev: network interface device structure 2008 * 2009 * Returns 0, this is not allowed to fail 2010 * 2011 * The close entry point is called when an interface is de-activated 2012 * by the OS. The hardware is still under the drivers control, but 2013 * needs to be disabled. A global MAC reset is issued to stop the 2014 * hardware, and all transmit and receive resources are freed. 2015 */ 2016 static int ena_close(struct net_device *netdev) 2017 { 2018 struct ena_adapter *adapter = netdev_priv(netdev); 2019 2020 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2021 2022 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2023 return 0; 2024 2025 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2026 ena_down(adapter); 2027 2028 /* Check for device status and issue reset if needed*/ 2029 check_for_admin_com_state(adapter); 2030 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2031 netif_err(adapter, ifdown, adapter->netdev, 2032 "Destroy failure, restarting device\n"); 2033 ena_dump_stats_to_dmesg(adapter); 2034 /* rtnl lock already obtained in dev_ioctl() layer */ 2035 ena_destroy_device(adapter, false); 2036 ena_restore_device(adapter); 2037 } 2038 2039 return 0; 2040 } 2041 2042 int ena_update_queue_sizes(struct ena_adapter *adapter, 2043 u32 new_tx_size, 2044 u32 new_rx_size) 2045 { 2046 bool dev_was_up; 2047 2048 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2049 ena_close(adapter->netdev); 2050 adapter->requested_tx_ring_size = new_tx_size; 2051 adapter->requested_rx_ring_size = new_rx_size; 2052 ena_init_io_rings(adapter); 2053 return dev_was_up ? ena_up(adapter) : 0; 2054 } 2055 2056 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2057 { 2058 struct ena_com_dev *ena_dev = adapter->ena_dev; 2059 bool dev_was_up; 2060 2061 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2062 ena_close(adapter->netdev); 2063 adapter->num_io_queues = new_channel_count; 2064 /* We need to destroy the rss table so that the indirection 2065 * table will be reinitialized by ena_up() 2066 */ 2067 ena_com_rss_destroy(ena_dev); 2068 ena_init_io_rings(adapter); 2069 return dev_was_up ? ena_open(adapter->netdev) : 0; 2070 } 2071 2072 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb) 2073 { 2074 u32 mss = skb_shinfo(skb)->gso_size; 2075 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2076 u8 l4_protocol = 0; 2077 2078 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2079 ena_tx_ctx->l4_csum_enable = 1; 2080 if (mss) { 2081 ena_tx_ctx->tso_enable = 1; 2082 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2083 ena_tx_ctx->l4_csum_partial = 0; 2084 } else { 2085 ena_tx_ctx->tso_enable = 0; 2086 ena_meta->l4_hdr_len = 0; 2087 ena_tx_ctx->l4_csum_partial = 1; 2088 } 2089 2090 switch (ip_hdr(skb)->version) { 2091 case IPVERSION: 2092 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2093 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2094 ena_tx_ctx->df = 1; 2095 if (mss) 2096 ena_tx_ctx->l3_csum_enable = 1; 2097 l4_protocol = ip_hdr(skb)->protocol; 2098 break; 2099 case 6: 2100 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2101 l4_protocol = ipv6_hdr(skb)->nexthdr; 2102 break; 2103 default: 2104 break; 2105 } 2106 2107 if (l4_protocol == IPPROTO_TCP) 2108 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2109 else 2110 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2111 2112 ena_meta->mss = mss; 2113 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2114 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2115 ena_tx_ctx->meta_valid = 1; 2116 2117 } else { 2118 ena_tx_ctx->meta_valid = 0; 2119 } 2120 } 2121 2122 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2123 struct sk_buff *skb) 2124 { 2125 int num_frags, header_len, rc; 2126 2127 num_frags = skb_shinfo(skb)->nr_frags; 2128 header_len = skb_headlen(skb); 2129 2130 if (num_frags < tx_ring->sgl_size) 2131 return 0; 2132 2133 if ((num_frags == tx_ring->sgl_size) && 2134 (header_len < tx_ring->tx_max_header_size)) 2135 return 0; 2136 2137 u64_stats_update_begin(&tx_ring->syncp); 2138 tx_ring->tx_stats.linearize++; 2139 u64_stats_update_end(&tx_ring->syncp); 2140 2141 rc = skb_linearize(skb); 2142 if (unlikely(rc)) { 2143 u64_stats_update_begin(&tx_ring->syncp); 2144 tx_ring->tx_stats.linearize_failed++; 2145 u64_stats_update_end(&tx_ring->syncp); 2146 } 2147 2148 return rc; 2149 } 2150 2151 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2152 struct ena_tx_buffer *tx_info, 2153 struct sk_buff *skb, 2154 void **push_hdr, 2155 u16 *header_len) 2156 { 2157 struct ena_adapter *adapter = tx_ring->adapter; 2158 struct ena_com_buf *ena_buf; 2159 dma_addr_t dma; 2160 u32 skb_head_len, frag_len, last_frag; 2161 u16 push_len = 0; 2162 u16 delta = 0; 2163 int i = 0; 2164 2165 skb_head_len = skb_headlen(skb); 2166 tx_info->skb = skb; 2167 ena_buf = tx_info->bufs; 2168 2169 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2170 /* When the device is LLQ mode, the driver will copy 2171 * the header into the device memory space. 2172 * the ena_com layer assume the header is in a linear 2173 * memory space. 2174 * This assumption might be wrong since part of the header 2175 * can be in the fragmented buffers. 2176 * Use skb_header_pointer to make sure the header is in a 2177 * linear memory space. 2178 */ 2179 2180 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2181 *push_hdr = skb_header_pointer(skb, 0, push_len, 2182 tx_ring->push_buf_intermediate_buf); 2183 *header_len = push_len; 2184 if (unlikely(skb->data != *push_hdr)) { 2185 u64_stats_update_begin(&tx_ring->syncp); 2186 tx_ring->tx_stats.llq_buffer_copy++; 2187 u64_stats_update_end(&tx_ring->syncp); 2188 2189 delta = push_len - skb_head_len; 2190 } 2191 } else { 2192 *push_hdr = NULL; 2193 *header_len = min_t(u32, skb_head_len, 2194 tx_ring->tx_max_header_size); 2195 } 2196 2197 netif_dbg(adapter, tx_queued, adapter->netdev, 2198 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2199 *push_hdr, push_len); 2200 2201 if (skb_head_len > push_len) { 2202 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2203 skb_head_len - push_len, DMA_TO_DEVICE); 2204 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2205 goto error_report_dma_error; 2206 2207 ena_buf->paddr = dma; 2208 ena_buf->len = skb_head_len - push_len; 2209 2210 ena_buf++; 2211 tx_info->num_of_bufs++; 2212 tx_info->map_linear_data = 1; 2213 } else { 2214 tx_info->map_linear_data = 0; 2215 } 2216 2217 last_frag = skb_shinfo(skb)->nr_frags; 2218 2219 for (i = 0; i < last_frag; i++) { 2220 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2221 2222 frag_len = skb_frag_size(frag); 2223 2224 if (unlikely(delta >= frag_len)) { 2225 delta -= frag_len; 2226 continue; 2227 } 2228 2229 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2230 frag_len - delta, DMA_TO_DEVICE); 2231 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2232 goto error_report_dma_error; 2233 2234 ena_buf->paddr = dma; 2235 ena_buf->len = frag_len - delta; 2236 ena_buf++; 2237 tx_info->num_of_bufs++; 2238 delta = 0; 2239 } 2240 2241 return 0; 2242 2243 error_report_dma_error: 2244 u64_stats_update_begin(&tx_ring->syncp); 2245 tx_ring->tx_stats.dma_mapping_err++; 2246 u64_stats_update_end(&tx_ring->syncp); 2247 netdev_warn(adapter->netdev, "failed to map skb\n"); 2248 2249 tx_info->skb = NULL; 2250 2251 tx_info->num_of_bufs += i; 2252 ena_unmap_tx_skb(tx_ring, tx_info); 2253 2254 return -EINVAL; 2255 } 2256 2257 /* Called with netif_tx_lock. */ 2258 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2259 { 2260 struct ena_adapter *adapter = netdev_priv(dev); 2261 struct ena_tx_buffer *tx_info; 2262 struct ena_com_tx_ctx ena_tx_ctx; 2263 struct ena_ring *tx_ring; 2264 struct netdev_queue *txq; 2265 void *push_hdr; 2266 u16 next_to_use, req_id, header_len; 2267 int qid, rc, nb_hw_desc; 2268 2269 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2270 /* Determine which tx ring we will be placed on */ 2271 qid = skb_get_queue_mapping(skb); 2272 tx_ring = &adapter->tx_ring[qid]; 2273 txq = netdev_get_tx_queue(dev, qid); 2274 2275 rc = ena_check_and_linearize_skb(tx_ring, skb); 2276 if (unlikely(rc)) 2277 goto error_drop_packet; 2278 2279 skb_tx_timestamp(skb); 2280 2281 next_to_use = tx_ring->next_to_use; 2282 req_id = tx_ring->free_ids[next_to_use]; 2283 tx_info = &tx_ring->tx_buffer_info[req_id]; 2284 tx_info->num_of_bufs = 0; 2285 2286 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 2287 2288 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 2289 if (unlikely(rc)) 2290 goto error_drop_packet; 2291 2292 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 2293 ena_tx_ctx.ena_bufs = tx_info->bufs; 2294 ena_tx_ctx.push_header = push_hdr; 2295 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2296 ena_tx_ctx.req_id = req_id; 2297 ena_tx_ctx.header_len = header_len; 2298 2299 /* set flags and meta data */ 2300 ena_tx_csum(&ena_tx_ctx, skb); 2301 2302 if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx))) { 2303 netif_dbg(adapter, tx_queued, dev, 2304 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 2305 qid); 2306 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 2307 } 2308 2309 /* prepare the packet's descriptors to dma engine */ 2310 rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx, 2311 &nb_hw_desc); 2312 2313 /* ena_com_prepare_tx() can't fail due to overflow of tx queue, 2314 * since the number of free descriptors in the queue is checked 2315 * after sending the previous packet. In case there isn't enough 2316 * space in the queue for the next packet, it is stopped 2317 * until there is again enough available space in the queue. 2318 * All other failure reasons of ena_com_prepare_tx() are fatal 2319 * and therefore require a device reset. 2320 */ 2321 if (unlikely(rc)) { 2322 netif_err(adapter, tx_queued, dev, 2323 "failed to prepare tx bufs\n"); 2324 u64_stats_update_begin(&tx_ring->syncp); 2325 tx_ring->tx_stats.prepare_ctx_err++; 2326 u64_stats_update_end(&tx_ring->syncp); 2327 adapter->reset_reason = ENA_REGS_RESET_DRIVER_INVALID_STATE; 2328 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2329 goto error_unmap_dma; 2330 } 2331 2332 netdev_tx_sent_queue(txq, skb->len); 2333 2334 u64_stats_update_begin(&tx_ring->syncp); 2335 tx_ring->tx_stats.cnt++; 2336 tx_ring->tx_stats.bytes += skb->len; 2337 u64_stats_update_end(&tx_ring->syncp); 2338 2339 tx_info->tx_descs = nb_hw_desc; 2340 tx_info->last_jiffies = jiffies; 2341 tx_info->print_once = 0; 2342 2343 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 2344 tx_ring->ring_size); 2345 2346 /* stop the queue when no more space available, the packet can have up 2347 * to sgl_size + 2. one for the meta descriptor and one for header 2348 * (if the header is larger than tx_max_header_size). 2349 */ 2350 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2351 tx_ring->sgl_size + 2))) { 2352 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 2353 __func__, qid); 2354 2355 netif_tx_stop_queue(txq); 2356 u64_stats_update_begin(&tx_ring->syncp); 2357 tx_ring->tx_stats.queue_stop++; 2358 u64_stats_update_end(&tx_ring->syncp); 2359 2360 /* There is a rare condition where this function decide to 2361 * stop the queue but meanwhile clean_tx_irq updates 2362 * next_to_completion and terminates. 2363 * The queue will remain stopped forever. 2364 * To solve this issue add a mb() to make sure that 2365 * netif_tx_stop_queue() write is vissible before checking if 2366 * there is additional space in the queue. 2367 */ 2368 smp_mb(); 2369 2370 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2371 ENA_TX_WAKEUP_THRESH)) { 2372 netif_tx_wake_queue(txq); 2373 u64_stats_update_begin(&tx_ring->syncp); 2374 tx_ring->tx_stats.queue_wakeup++; 2375 u64_stats_update_end(&tx_ring->syncp); 2376 } 2377 } 2378 2379 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) { 2380 /* trigger the dma engine. ena_com_write_sq_doorbell() 2381 * has a mb 2382 */ 2383 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 2384 u64_stats_update_begin(&tx_ring->syncp); 2385 tx_ring->tx_stats.doorbells++; 2386 u64_stats_update_end(&tx_ring->syncp); 2387 } 2388 2389 return NETDEV_TX_OK; 2390 2391 error_unmap_dma: 2392 ena_unmap_tx_skb(tx_ring, tx_info); 2393 tx_info->skb = NULL; 2394 2395 error_drop_packet: 2396 dev_kfree_skb(skb); 2397 return NETDEV_TX_OK; 2398 } 2399 2400 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb, 2401 struct net_device *sb_dev) 2402 { 2403 u16 qid; 2404 /* we suspect that this is good for in--kernel network services that 2405 * want to loop incoming skb rx to tx in normal user generated traffic, 2406 * most probably we will not get to this 2407 */ 2408 if (skb_rx_queue_recorded(skb)) 2409 qid = skb_get_rx_queue(skb); 2410 else 2411 qid = netdev_pick_tx(dev, skb, NULL); 2412 2413 return qid; 2414 } 2415 2416 static void ena_config_host_info(struct ena_com_dev *ena_dev, 2417 struct pci_dev *pdev) 2418 { 2419 struct ena_admin_host_info *host_info; 2420 int rc; 2421 2422 /* Allocate only the host info */ 2423 rc = ena_com_allocate_host_info(ena_dev); 2424 if (rc) { 2425 pr_err("Cannot allocate host info\n"); 2426 return; 2427 } 2428 2429 host_info = ena_dev->host_attr.host_info; 2430 2431 host_info->bdf = (pdev->bus->number << 8) | pdev->devfn; 2432 host_info->os_type = ENA_ADMIN_OS_LINUX; 2433 host_info->kernel_ver = LINUX_VERSION_CODE; 2434 strlcpy(host_info->kernel_ver_str, utsname()->version, 2435 sizeof(host_info->kernel_ver_str) - 1); 2436 host_info->os_dist = 0; 2437 strncpy(host_info->os_dist_str, utsname()->release, 2438 sizeof(host_info->os_dist_str) - 1); 2439 host_info->driver_version = 2440 (DRV_MODULE_VER_MAJOR) | 2441 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 2442 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 2443 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 2444 host_info->num_cpus = num_online_cpus(); 2445 2446 host_info->driver_supported_features = 2447 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK; 2448 2449 rc = ena_com_set_host_attributes(ena_dev); 2450 if (rc) { 2451 if (rc == -EOPNOTSUPP) 2452 pr_warn("Cannot set host attributes\n"); 2453 else 2454 pr_err("Cannot set host attributes\n"); 2455 2456 goto err; 2457 } 2458 2459 return; 2460 2461 err: 2462 ena_com_delete_host_info(ena_dev); 2463 } 2464 2465 static void ena_config_debug_area(struct ena_adapter *adapter) 2466 { 2467 u32 debug_area_size; 2468 int rc, ss_count; 2469 2470 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 2471 if (ss_count <= 0) { 2472 netif_err(adapter, drv, adapter->netdev, 2473 "SS count is negative\n"); 2474 return; 2475 } 2476 2477 /* allocate 32 bytes for each string and 64bit for the value */ 2478 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 2479 2480 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 2481 if (rc) { 2482 pr_err("Cannot allocate debug area\n"); 2483 return; 2484 } 2485 2486 rc = ena_com_set_host_attributes(adapter->ena_dev); 2487 if (rc) { 2488 if (rc == -EOPNOTSUPP) 2489 netif_warn(adapter, drv, adapter->netdev, 2490 "Cannot set host attributes\n"); 2491 else 2492 netif_err(adapter, drv, adapter->netdev, 2493 "Cannot set host attributes\n"); 2494 goto err; 2495 } 2496 2497 return; 2498 err: 2499 ena_com_delete_debug_area(adapter->ena_dev); 2500 } 2501 2502 static void ena_get_stats64(struct net_device *netdev, 2503 struct rtnl_link_stats64 *stats) 2504 { 2505 struct ena_adapter *adapter = netdev_priv(netdev); 2506 struct ena_ring *rx_ring, *tx_ring; 2507 unsigned int start; 2508 u64 rx_drops; 2509 int i; 2510 2511 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2512 return; 2513 2514 for (i = 0; i < adapter->num_io_queues; i++) { 2515 u64 bytes, packets; 2516 2517 tx_ring = &adapter->tx_ring[i]; 2518 2519 do { 2520 start = u64_stats_fetch_begin_irq(&tx_ring->syncp); 2521 packets = tx_ring->tx_stats.cnt; 2522 bytes = tx_ring->tx_stats.bytes; 2523 } while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start)); 2524 2525 stats->tx_packets += packets; 2526 stats->tx_bytes += bytes; 2527 2528 rx_ring = &adapter->rx_ring[i]; 2529 2530 do { 2531 start = u64_stats_fetch_begin_irq(&rx_ring->syncp); 2532 packets = rx_ring->rx_stats.cnt; 2533 bytes = rx_ring->rx_stats.bytes; 2534 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); 2535 2536 stats->rx_packets += packets; 2537 stats->rx_bytes += bytes; 2538 } 2539 2540 do { 2541 start = u64_stats_fetch_begin_irq(&adapter->syncp); 2542 rx_drops = adapter->dev_stats.rx_drops; 2543 } while (u64_stats_fetch_retry_irq(&adapter->syncp, start)); 2544 2545 stats->rx_dropped = rx_drops; 2546 2547 stats->multicast = 0; 2548 stats->collisions = 0; 2549 2550 stats->rx_length_errors = 0; 2551 stats->rx_crc_errors = 0; 2552 stats->rx_frame_errors = 0; 2553 stats->rx_fifo_errors = 0; 2554 stats->rx_missed_errors = 0; 2555 stats->tx_window_errors = 0; 2556 2557 stats->rx_errors = 0; 2558 stats->tx_errors = 0; 2559 } 2560 2561 static const struct net_device_ops ena_netdev_ops = { 2562 .ndo_open = ena_open, 2563 .ndo_stop = ena_close, 2564 .ndo_start_xmit = ena_start_xmit, 2565 .ndo_select_queue = ena_select_queue, 2566 .ndo_get_stats64 = ena_get_stats64, 2567 .ndo_tx_timeout = ena_tx_timeout, 2568 .ndo_change_mtu = ena_change_mtu, 2569 .ndo_set_mac_address = NULL, 2570 .ndo_validate_addr = eth_validate_addr, 2571 }; 2572 2573 static int ena_device_validate_params(struct ena_adapter *adapter, 2574 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2575 { 2576 struct net_device *netdev = adapter->netdev; 2577 int rc; 2578 2579 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 2580 adapter->mac_addr); 2581 if (!rc) { 2582 netif_err(adapter, drv, netdev, 2583 "Error, mac address are different\n"); 2584 return -EINVAL; 2585 } 2586 2587 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 2588 netif_err(adapter, drv, netdev, 2589 "Error, device max mtu is smaller than netdev MTU\n"); 2590 return -EINVAL; 2591 } 2592 2593 return 0; 2594 } 2595 2596 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev, 2597 struct ena_com_dev_get_features_ctx *get_feat_ctx, 2598 bool *wd_state) 2599 { 2600 struct device *dev = &pdev->dev; 2601 bool readless_supported; 2602 u32 aenq_groups; 2603 int dma_width; 2604 int rc; 2605 2606 rc = ena_com_mmio_reg_read_request_init(ena_dev); 2607 if (rc) { 2608 dev_err(dev, "failed to init mmio read less\n"); 2609 return rc; 2610 } 2611 2612 /* The PCIe configuration space revision id indicate if mmio reg 2613 * read is disabled 2614 */ 2615 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 2616 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 2617 2618 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 2619 if (rc) { 2620 dev_err(dev, "Can not reset device\n"); 2621 goto err_mmio_read_less; 2622 } 2623 2624 rc = ena_com_validate_version(ena_dev); 2625 if (rc) { 2626 dev_err(dev, "device version is too low\n"); 2627 goto err_mmio_read_less; 2628 } 2629 2630 dma_width = ena_com_get_dma_width(ena_dev); 2631 if (dma_width < 0) { 2632 dev_err(dev, "Invalid dma width value %d", dma_width); 2633 rc = dma_width; 2634 goto err_mmio_read_less; 2635 } 2636 2637 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 2638 if (rc) { 2639 dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc); 2640 goto err_mmio_read_less; 2641 } 2642 2643 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 2644 if (rc) { 2645 dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n", 2646 rc); 2647 goto err_mmio_read_less; 2648 } 2649 2650 /* ENA admin level init */ 2651 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 2652 if (rc) { 2653 dev_err(dev, 2654 "Can not initialize ena admin queue with device\n"); 2655 goto err_mmio_read_less; 2656 } 2657 2658 /* To enable the msix interrupts the driver needs to know the number 2659 * of queues. So the driver uses polling mode to retrieve this 2660 * information 2661 */ 2662 ena_com_set_admin_polling_mode(ena_dev, true); 2663 2664 ena_config_host_info(ena_dev, pdev); 2665 2666 /* Get Device Attributes*/ 2667 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 2668 if (rc) { 2669 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 2670 goto err_admin_init; 2671 } 2672 2673 /* Try to turn all the available aenq groups */ 2674 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 2675 BIT(ENA_ADMIN_FATAL_ERROR) | 2676 BIT(ENA_ADMIN_WARNING) | 2677 BIT(ENA_ADMIN_NOTIFICATION) | 2678 BIT(ENA_ADMIN_KEEP_ALIVE); 2679 2680 aenq_groups &= get_feat_ctx->aenq.supported_groups; 2681 2682 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 2683 if (rc) { 2684 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 2685 goto err_admin_init; 2686 } 2687 2688 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 2689 2690 return 0; 2691 2692 err_admin_init: 2693 ena_com_delete_host_info(ena_dev); 2694 ena_com_admin_destroy(ena_dev); 2695 err_mmio_read_less: 2696 ena_com_mmio_reg_read_request_destroy(ena_dev); 2697 2698 return rc; 2699 } 2700 2701 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 2702 { 2703 struct ena_com_dev *ena_dev = adapter->ena_dev; 2704 struct device *dev = &adapter->pdev->dev; 2705 int rc; 2706 2707 rc = ena_enable_msix(adapter); 2708 if (rc) { 2709 dev_err(dev, "Can not reserve msix vectors\n"); 2710 return rc; 2711 } 2712 2713 ena_setup_mgmnt_intr(adapter); 2714 2715 rc = ena_request_mgmnt_irq(adapter); 2716 if (rc) { 2717 dev_err(dev, "Can not setup management interrupts\n"); 2718 goto err_disable_msix; 2719 } 2720 2721 ena_com_set_admin_polling_mode(ena_dev, false); 2722 2723 ena_com_admin_aenq_enable(ena_dev); 2724 2725 return 0; 2726 2727 err_disable_msix: 2728 ena_disable_msix(adapter); 2729 2730 return rc; 2731 } 2732 2733 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful) 2734 { 2735 struct net_device *netdev = adapter->netdev; 2736 struct ena_com_dev *ena_dev = adapter->ena_dev; 2737 bool dev_up; 2738 2739 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2740 return; 2741 2742 netif_carrier_off(netdev); 2743 2744 del_timer_sync(&adapter->timer_service); 2745 2746 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2747 adapter->dev_up_before_reset = dev_up; 2748 if (!graceful) 2749 ena_com_set_admin_running_state(ena_dev, false); 2750 2751 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2752 ena_down(adapter); 2753 2754 /* Stop the device from sending AENQ events (in case reset flag is set 2755 * and device is up, ena_down() already reset the device. 2756 */ 2757 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 2758 ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2759 2760 ena_free_mgmnt_irq(adapter); 2761 2762 ena_disable_msix(adapter); 2763 2764 ena_com_abort_admin_commands(ena_dev); 2765 2766 ena_com_wait_for_abort_completion(ena_dev); 2767 2768 ena_com_admin_destroy(ena_dev); 2769 2770 ena_com_mmio_reg_read_request_destroy(ena_dev); 2771 2772 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 2773 2774 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2775 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 2776 } 2777 2778 static int ena_restore_device(struct ena_adapter *adapter) 2779 { 2780 struct ena_com_dev_get_features_ctx get_feat_ctx; 2781 struct ena_com_dev *ena_dev = adapter->ena_dev; 2782 struct pci_dev *pdev = adapter->pdev; 2783 bool wd_state; 2784 int rc; 2785 2786 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 2787 rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state); 2788 if (rc) { 2789 dev_err(&pdev->dev, "Can not initialize device\n"); 2790 goto err; 2791 } 2792 adapter->wd_state = wd_state; 2793 2794 rc = ena_device_validate_params(adapter, &get_feat_ctx); 2795 if (rc) { 2796 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 2797 goto err_device_destroy; 2798 } 2799 2800 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 2801 if (rc) { 2802 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 2803 goto err_device_destroy; 2804 } 2805 /* If the interface was up before the reset bring it up */ 2806 if (adapter->dev_up_before_reset) { 2807 rc = ena_up(adapter); 2808 if (rc) { 2809 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 2810 goto err_disable_msix; 2811 } 2812 } 2813 2814 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 2815 2816 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 2817 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2818 netif_carrier_on(adapter->netdev); 2819 2820 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 2821 dev_err(&pdev->dev, 2822 "Device reset completed successfully, Driver info: %s\n", 2823 version); 2824 2825 return rc; 2826 err_disable_msix: 2827 ena_free_mgmnt_irq(adapter); 2828 ena_disable_msix(adapter); 2829 err_device_destroy: 2830 ena_com_abort_admin_commands(ena_dev); 2831 ena_com_wait_for_abort_completion(ena_dev); 2832 ena_com_admin_destroy(ena_dev); 2833 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 2834 ena_com_mmio_reg_read_request_destroy(ena_dev); 2835 err: 2836 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 2837 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 2838 dev_err(&pdev->dev, 2839 "Reset attempt failed. Can not reset the device\n"); 2840 2841 return rc; 2842 } 2843 2844 static void ena_fw_reset_device(struct work_struct *work) 2845 { 2846 struct ena_adapter *adapter = 2847 container_of(work, struct ena_adapter, reset_task); 2848 struct pci_dev *pdev = adapter->pdev; 2849 2850 if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2851 dev_err(&pdev->dev, 2852 "device reset schedule while reset bit is off\n"); 2853 return; 2854 } 2855 rtnl_lock(); 2856 ena_destroy_device(adapter, false); 2857 ena_restore_device(adapter); 2858 rtnl_unlock(); 2859 } 2860 2861 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 2862 struct ena_ring *rx_ring) 2863 { 2864 if (likely(rx_ring->first_interrupt)) 2865 return 0; 2866 2867 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 2868 return 0; 2869 2870 rx_ring->no_interrupt_event_cnt++; 2871 2872 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 2873 netif_err(adapter, rx_err, adapter->netdev, 2874 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 2875 rx_ring->qid); 2876 adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; 2877 smp_mb__before_atomic(); 2878 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2879 return -EIO; 2880 } 2881 2882 return 0; 2883 } 2884 2885 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 2886 struct ena_ring *tx_ring) 2887 { 2888 struct ena_tx_buffer *tx_buf; 2889 unsigned long last_jiffies; 2890 u32 missed_tx = 0; 2891 int i, rc = 0; 2892 2893 for (i = 0; i < tx_ring->ring_size; i++) { 2894 tx_buf = &tx_ring->tx_buffer_info[i]; 2895 last_jiffies = tx_buf->last_jiffies; 2896 2897 if (last_jiffies == 0) 2898 /* no pending Tx at this location */ 2899 continue; 2900 2901 if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies + 2902 2 * adapter->missing_tx_completion_to))) { 2903 /* If after graceful period interrupt is still not 2904 * received, we schedule a reset 2905 */ 2906 netif_err(adapter, tx_err, adapter->netdev, 2907 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 2908 tx_ring->qid); 2909 adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; 2910 smp_mb__before_atomic(); 2911 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2912 return -EIO; 2913 } 2914 2915 if (unlikely(time_is_before_jiffies(last_jiffies + 2916 adapter->missing_tx_completion_to))) { 2917 if (!tx_buf->print_once) 2918 netif_notice(adapter, tx_err, adapter->netdev, 2919 "Found a Tx that wasn't completed on time, qid %d, index %d.\n", 2920 tx_ring->qid, i); 2921 2922 tx_buf->print_once = 1; 2923 missed_tx++; 2924 } 2925 } 2926 2927 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 2928 netif_err(adapter, tx_err, adapter->netdev, 2929 "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n", 2930 missed_tx, 2931 adapter->missing_tx_completion_threshold); 2932 adapter->reset_reason = 2933 ENA_REGS_RESET_MISS_TX_CMPL; 2934 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2935 rc = -EIO; 2936 } 2937 2938 u64_stats_update_begin(&tx_ring->syncp); 2939 tx_ring->tx_stats.missed_tx = missed_tx; 2940 u64_stats_update_end(&tx_ring->syncp); 2941 2942 return rc; 2943 } 2944 2945 static void check_for_missing_completions(struct ena_adapter *adapter) 2946 { 2947 struct ena_ring *tx_ring; 2948 struct ena_ring *rx_ring; 2949 int i, budget, rc; 2950 2951 /* Make sure the driver doesn't turn the device in other process */ 2952 smp_rmb(); 2953 2954 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2955 return; 2956 2957 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 2958 return; 2959 2960 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 2961 return; 2962 2963 budget = ENA_MONITORED_TX_QUEUES; 2964 2965 for (i = adapter->last_monitored_tx_qid; i < adapter->num_io_queues; i++) { 2966 tx_ring = &adapter->tx_ring[i]; 2967 rx_ring = &adapter->rx_ring[i]; 2968 2969 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 2970 if (unlikely(rc)) 2971 return; 2972 2973 rc = check_for_rx_interrupt_queue(adapter, rx_ring); 2974 if (unlikely(rc)) 2975 return; 2976 2977 budget--; 2978 if (!budget) 2979 break; 2980 } 2981 2982 adapter->last_monitored_tx_qid = i % adapter->num_io_queues; 2983 } 2984 2985 /* trigger napi schedule after 2 consecutive detections */ 2986 #define EMPTY_RX_REFILL 2 2987 /* For the rare case where the device runs out of Rx descriptors and the 2988 * napi handler failed to refill new Rx descriptors (due to a lack of memory 2989 * for example). 2990 * This case will lead to a deadlock: 2991 * The device won't send interrupts since all the new Rx packets will be dropped 2992 * The napi handler won't allocate new Rx descriptors so the device will be 2993 * able to send new packets. 2994 * 2995 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 2996 * It is recommended to have at least 512MB, with a minimum of 128MB for 2997 * constrained environment). 2998 * 2999 * When such a situation is detected - Reschedule napi 3000 */ 3001 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3002 { 3003 struct ena_ring *rx_ring; 3004 int i, refill_required; 3005 3006 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3007 return; 3008 3009 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3010 return; 3011 3012 for (i = 0; i < adapter->num_io_queues; i++) { 3013 rx_ring = &adapter->rx_ring[i]; 3014 3015 refill_required = 3016 ena_com_free_desc(rx_ring->ena_com_io_sq); 3017 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3018 rx_ring->empty_rx_queue++; 3019 3020 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3021 u64_stats_update_begin(&rx_ring->syncp); 3022 rx_ring->rx_stats.empty_rx_ring++; 3023 u64_stats_update_end(&rx_ring->syncp); 3024 3025 netif_err(adapter, drv, adapter->netdev, 3026 "trigger refill for ring %d\n", i); 3027 3028 napi_schedule(rx_ring->napi); 3029 rx_ring->empty_rx_queue = 0; 3030 } 3031 } else { 3032 rx_ring->empty_rx_queue = 0; 3033 } 3034 } 3035 } 3036 3037 /* Check for keep alive expiration */ 3038 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3039 { 3040 unsigned long keep_alive_expired; 3041 3042 if (!adapter->wd_state) 3043 return; 3044 3045 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3046 return; 3047 3048 keep_alive_expired = round_jiffies(adapter->last_keep_alive_jiffies + 3049 adapter->keep_alive_timeout); 3050 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3051 netif_err(adapter, drv, adapter->netdev, 3052 "Keep alive watchdog timeout.\n"); 3053 u64_stats_update_begin(&adapter->syncp); 3054 adapter->dev_stats.wd_expired++; 3055 u64_stats_update_end(&adapter->syncp); 3056 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO; 3057 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3058 } 3059 } 3060 3061 static void check_for_admin_com_state(struct ena_adapter *adapter) 3062 { 3063 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3064 netif_err(adapter, drv, adapter->netdev, 3065 "ENA admin queue is not in running state!\n"); 3066 u64_stats_update_begin(&adapter->syncp); 3067 adapter->dev_stats.admin_q_pause++; 3068 u64_stats_update_end(&adapter->syncp); 3069 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO; 3070 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3071 } 3072 } 3073 3074 static void ena_update_hints(struct ena_adapter *adapter, 3075 struct ena_admin_ena_hw_hints *hints) 3076 { 3077 struct net_device *netdev = adapter->netdev; 3078 3079 if (hints->admin_completion_tx_timeout) 3080 adapter->ena_dev->admin_queue.completion_timeout = 3081 hints->admin_completion_tx_timeout * 1000; 3082 3083 if (hints->mmio_read_timeout) 3084 /* convert to usec */ 3085 adapter->ena_dev->mmio_read.reg_read_to = 3086 hints->mmio_read_timeout * 1000; 3087 3088 if (hints->missed_tx_completion_count_threshold_to_reset) 3089 adapter->missing_tx_completion_threshold = 3090 hints->missed_tx_completion_count_threshold_to_reset; 3091 3092 if (hints->missing_tx_completion_timeout) { 3093 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3094 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3095 else 3096 adapter->missing_tx_completion_to = 3097 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3098 } 3099 3100 if (hints->netdev_wd_timeout) 3101 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3102 3103 if (hints->driver_watchdog_timeout) { 3104 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3105 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3106 else 3107 adapter->keep_alive_timeout = 3108 msecs_to_jiffies(hints->driver_watchdog_timeout); 3109 } 3110 } 3111 3112 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3113 struct net_device *netdev) 3114 { 3115 host_info->supported_network_features[0] = 3116 netdev->features & GENMASK_ULL(31, 0); 3117 host_info->supported_network_features[1] = 3118 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3119 } 3120 3121 static void ena_timer_service(struct timer_list *t) 3122 { 3123 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 3124 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3125 struct ena_admin_host_info *host_info = 3126 adapter->ena_dev->host_attr.host_info; 3127 3128 check_for_missing_keep_alive(adapter); 3129 3130 check_for_admin_com_state(adapter); 3131 3132 check_for_missing_completions(adapter); 3133 3134 check_for_empty_rx_ring(adapter); 3135 3136 if (debug_area) 3137 ena_dump_stats_to_buf(adapter, debug_area); 3138 3139 if (host_info) 3140 ena_update_host_info(host_info, adapter->netdev); 3141 3142 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3143 netif_err(adapter, drv, adapter->netdev, 3144 "Trigger reset is on\n"); 3145 ena_dump_stats_to_dmesg(adapter); 3146 queue_work(ena_wq, &adapter->reset_task); 3147 return; 3148 } 3149 3150 /* Reset the timer */ 3151 mod_timer(&adapter->timer_service, jiffies + HZ); 3152 } 3153 3154 static int ena_calc_max_io_queue_num(struct pci_dev *pdev, 3155 struct ena_com_dev *ena_dev, 3156 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3157 { 3158 int io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3159 3160 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3161 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3162 &get_feat_ctx->max_queue_ext.max_queue_ext; 3163 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3164 max_queue_ext->max_rx_cq_num); 3165 3166 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3167 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3168 } else { 3169 struct ena_admin_queue_feature_desc *max_queues = 3170 &get_feat_ctx->max_queues; 3171 io_tx_sq_num = max_queues->max_sq_num; 3172 io_tx_cq_num = max_queues->max_cq_num; 3173 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3174 } 3175 3176 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3177 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3178 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3179 3180 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3181 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3182 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3183 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3184 /* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */ 3185 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3186 if (unlikely(!max_num_io_queues)) { 3187 dev_err(&pdev->dev, "The device doesn't have io queues\n"); 3188 return -EFAULT; 3189 } 3190 3191 return max_num_io_queues; 3192 } 3193 3194 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3195 struct ena_com_dev *ena_dev, 3196 struct ena_admin_feature_llq_desc *llq, 3197 struct ena_llq_configurations *llq_default_configurations) 3198 { 3199 bool has_mem_bar; 3200 int rc; 3201 u32 llq_feature_mask; 3202 3203 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3204 if (!(ena_dev->supported_features & llq_feature_mask)) { 3205 dev_err(&pdev->dev, 3206 "LLQ is not supported Fallback to host mode policy.\n"); 3207 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3208 return 0; 3209 } 3210 3211 has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR); 3212 3213 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3214 if (unlikely(rc)) { 3215 dev_err(&pdev->dev, 3216 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3217 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3218 return 0; 3219 } 3220 3221 /* Nothing to config, exit */ 3222 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) 3223 return 0; 3224 3225 if (!has_mem_bar) { 3226 dev_err(&pdev->dev, 3227 "ENA device does not expose LLQ bar. Fallback to host mode policy.\n"); 3228 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3229 return 0; 3230 } 3231 3232 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3233 pci_resource_start(pdev, ENA_MEM_BAR), 3234 pci_resource_len(pdev, ENA_MEM_BAR)); 3235 3236 if (!ena_dev->mem_bar) 3237 return -EFAULT; 3238 3239 return 0; 3240 } 3241 3242 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3243 struct net_device *netdev) 3244 { 3245 netdev_features_t dev_features = 0; 3246 3247 /* Set offload features */ 3248 if (feat->offload.tx & 3249 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3250 dev_features |= NETIF_F_IP_CSUM; 3251 3252 if (feat->offload.tx & 3253 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3254 dev_features |= NETIF_F_IPV6_CSUM; 3255 3256 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3257 dev_features |= NETIF_F_TSO; 3258 3259 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3260 dev_features |= NETIF_F_TSO6; 3261 3262 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3263 dev_features |= NETIF_F_TSO_ECN; 3264 3265 if (feat->offload.rx_supported & 3266 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3267 dev_features |= NETIF_F_RXCSUM; 3268 3269 if (feat->offload.rx_supported & 3270 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3271 dev_features |= NETIF_F_RXCSUM; 3272 3273 netdev->features = 3274 dev_features | 3275 NETIF_F_SG | 3276 NETIF_F_RXHASH | 3277 NETIF_F_HIGHDMA; 3278 3279 netdev->hw_features |= netdev->features; 3280 netdev->vlan_features |= netdev->features; 3281 } 3282 3283 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3284 struct ena_com_dev_get_features_ctx *feat) 3285 { 3286 struct net_device *netdev = adapter->netdev; 3287 3288 /* Copy mac address */ 3289 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 3290 eth_hw_addr_random(netdev); 3291 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 3292 } else { 3293 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 3294 ether_addr_copy(netdev->dev_addr, adapter->mac_addr); 3295 } 3296 3297 /* Set offload features */ 3298 ena_set_dev_offloads(feat, netdev); 3299 3300 adapter->max_mtu = feat->dev_attr.max_mtu; 3301 netdev->max_mtu = adapter->max_mtu; 3302 netdev->min_mtu = ENA_MIN_MTU; 3303 } 3304 3305 static int ena_rss_init_default(struct ena_adapter *adapter) 3306 { 3307 struct ena_com_dev *ena_dev = adapter->ena_dev; 3308 struct device *dev = &adapter->pdev->dev; 3309 int rc, i; 3310 u32 val; 3311 3312 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 3313 if (unlikely(rc)) { 3314 dev_err(dev, "Cannot init indirect table\n"); 3315 goto err_rss_init; 3316 } 3317 3318 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 3319 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 3320 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 3321 ENA_IO_RXQ_IDX(val)); 3322 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3323 dev_err(dev, "Cannot fill indirect table\n"); 3324 goto err_fill_indir; 3325 } 3326 } 3327 3328 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, 3329 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 3330 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3331 dev_err(dev, "Cannot fill hash function\n"); 3332 goto err_fill_indir; 3333 } 3334 3335 rc = ena_com_set_default_hash_ctrl(ena_dev); 3336 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3337 dev_err(dev, "Cannot fill hash control\n"); 3338 goto err_fill_indir; 3339 } 3340 3341 return 0; 3342 3343 err_fill_indir: 3344 ena_com_rss_destroy(ena_dev); 3345 err_rss_init: 3346 3347 return rc; 3348 } 3349 3350 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3351 { 3352 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3353 3354 pci_release_selected_regions(pdev, release_bars); 3355 } 3356 3357 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config) 3358 { 3359 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 3360 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 3361 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 3362 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 3363 llq_config->llq_ring_entry_size_value = 128; 3364 } 3365 3366 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx) 3367 { 3368 struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq; 3369 struct ena_com_dev *ena_dev = ctx->ena_dev; 3370 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 3371 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 3372 u32 max_tx_queue_size; 3373 u32 max_rx_queue_size; 3374 3375 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3376 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3377 &ctx->get_feat_ctx->max_queue_ext.max_queue_ext; 3378 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 3379 max_queue_ext->max_rx_sq_depth); 3380 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 3381 3382 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3383 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3384 llq->max_llq_depth); 3385 else 3386 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3387 max_queue_ext->max_tx_sq_depth); 3388 3389 ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3390 max_queue_ext->max_per_packet_tx_descs); 3391 ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3392 max_queue_ext->max_per_packet_rx_descs); 3393 } else { 3394 struct ena_admin_queue_feature_desc *max_queues = 3395 &ctx->get_feat_ctx->max_queues; 3396 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 3397 max_queues->max_sq_depth); 3398 max_tx_queue_size = max_queues->max_cq_depth; 3399 3400 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3401 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3402 llq->max_llq_depth); 3403 else 3404 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3405 max_queues->max_sq_depth); 3406 3407 ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3408 max_queues->max_packet_tx_descs); 3409 ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3410 max_queues->max_packet_rx_descs); 3411 } 3412 3413 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 3414 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 3415 3416 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 3417 max_tx_queue_size); 3418 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 3419 max_rx_queue_size); 3420 3421 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 3422 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 3423 3424 ctx->max_tx_queue_size = max_tx_queue_size; 3425 ctx->max_rx_queue_size = max_rx_queue_size; 3426 ctx->tx_queue_size = tx_queue_size; 3427 ctx->rx_queue_size = rx_queue_size; 3428 3429 return 0; 3430 } 3431 3432 /* ena_probe - Device Initialization Routine 3433 * @pdev: PCI device information struct 3434 * @ent: entry in ena_pci_tbl 3435 * 3436 * Returns 0 on success, negative on failure 3437 * 3438 * ena_probe initializes an adapter identified by a pci_dev structure. 3439 * The OS initialization, configuring of the adapter private structure, 3440 * and a hardware reset occur. 3441 */ 3442 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3443 { 3444 struct ena_com_dev_get_features_ctx get_feat_ctx; 3445 struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 }; 3446 struct ena_llq_configurations llq_config; 3447 struct ena_com_dev *ena_dev = NULL; 3448 struct ena_adapter *adapter; 3449 struct net_device *netdev; 3450 static int adapters_found; 3451 u32 max_num_io_queues; 3452 char *queue_type_str; 3453 bool wd_state; 3454 int bars, rc; 3455 3456 dev_dbg(&pdev->dev, "%s\n", __func__); 3457 3458 dev_info_once(&pdev->dev, "%s", version); 3459 3460 rc = pci_enable_device_mem(pdev); 3461 if (rc) { 3462 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 3463 return rc; 3464 } 3465 3466 pci_set_master(pdev); 3467 3468 ena_dev = vzalloc(sizeof(*ena_dev)); 3469 if (!ena_dev) { 3470 rc = -ENOMEM; 3471 goto err_disable_device; 3472 } 3473 3474 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3475 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 3476 if (rc) { 3477 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 3478 rc); 3479 goto err_free_ena_dev; 3480 } 3481 3482 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 3483 pci_resource_start(pdev, ENA_REG_BAR), 3484 pci_resource_len(pdev, ENA_REG_BAR)); 3485 if (!ena_dev->reg_bar) { 3486 dev_err(&pdev->dev, "failed to remap regs bar\n"); 3487 rc = -EFAULT; 3488 goto err_free_region; 3489 } 3490 3491 ena_dev->dmadev = &pdev->dev; 3492 3493 rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state); 3494 if (rc) { 3495 dev_err(&pdev->dev, "ena device init failed\n"); 3496 if (rc == -ETIME) 3497 rc = -EPROBE_DEFER; 3498 goto err_free_region; 3499 } 3500 3501 set_default_llq_configurations(&llq_config); 3502 3503 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx.llq, 3504 &llq_config); 3505 if (rc) { 3506 dev_err(&pdev->dev, "ena device init failed\n"); 3507 goto err_device_destroy; 3508 } 3509 3510 calc_queue_ctx.ena_dev = ena_dev; 3511 calc_queue_ctx.get_feat_ctx = &get_feat_ctx; 3512 calc_queue_ctx.pdev = pdev; 3513 3514 /* Initial Tx and RX interrupt delay. Assumes 1 usec granularity. 3515 * Updated during device initialization with the real granularity 3516 */ 3517 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 3518 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 3519 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 3520 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 3521 rc = ena_calc_io_queue_size(&calc_queue_ctx); 3522 if (rc || !max_num_io_queues) { 3523 rc = -EFAULT; 3524 goto err_device_destroy; 3525 } 3526 3527 /* dev zeroed in init_etherdev */ 3528 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues); 3529 if (!netdev) { 3530 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 3531 rc = -ENOMEM; 3532 goto err_device_destroy; 3533 } 3534 3535 SET_NETDEV_DEV(netdev, &pdev->dev); 3536 3537 adapter = netdev_priv(netdev); 3538 pci_set_drvdata(pdev, adapter); 3539 3540 adapter->ena_dev = ena_dev; 3541 adapter->netdev = netdev; 3542 adapter->pdev = pdev; 3543 3544 ena_set_conf_feat_params(adapter, &get_feat_ctx); 3545 3546 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3547 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3548 3549 adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size; 3550 adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size; 3551 adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size; 3552 adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size; 3553 adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size; 3554 adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size; 3555 3556 adapter->num_io_queues = max_num_io_queues; 3557 adapter->max_num_io_queues = max_num_io_queues; 3558 3559 adapter->last_monitored_tx_qid = 0; 3560 3561 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 3562 adapter->wd_state = wd_state; 3563 3564 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 3565 3566 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 3567 if (rc) { 3568 dev_err(&pdev->dev, 3569 "Failed to query interrupt moderation feature\n"); 3570 goto err_netdev_destroy; 3571 } 3572 ena_init_io_rings(adapter); 3573 3574 netdev->netdev_ops = &ena_netdev_ops; 3575 netdev->watchdog_timeo = TX_TIMEOUT; 3576 ena_set_ethtool_ops(netdev); 3577 3578 netdev->priv_flags |= IFF_UNICAST_FLT; 3579 3580 u64_stats_init(&adapter->syncp); 3581 3582 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3583 if (rc) { 3584 dev_err(&pdev->dev, 3585 "Failed to enable and set the admin interrupts\n"); 3586 goto err_worker_destroy; 3587 } 3588 rc = ena_rss_init_default(adapter); 3589 if (rc && (rc != -EOPNOTSUPP)) { 3590 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 3591 goto err_free_msix; 3592 } 3593 3594 ena_config_debug_area(adapter); 3595 3596 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 3597 3598 netif_carrier_off(netdev); 3599 3600 rc = register_netdev(netdev); 3601 if (rc) { 3602 dev_err(&pdev->dev, "Cannot register net device\n"); 3603 goto err_rss; 3604 } 3605 3606 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 3607 3608 adapter->last_keep_alive_jiffies = jiffies; 3609 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 3610 adapter->missing_tx_completion_to = TX_TIMEOUT; 3611 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 3612 3613 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 3614 3615 timer_setup(&adapter->timer_service, ena_timer_service, 0); 3616 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3617 3618 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) 3619 queue_type_str = "Regular"; 3620 else 3621 queue_type_str = "Low Latency"; 3622 3623 dev_info(&pdev->dev, 3624 "%s found at mem %lx, mac addr %pM, Placement policy: %s\n", 3625 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 3626 netdev->dev_addr, queue_type_str); 3627 3628 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3629 3630 adapters_found++; 3631 3632 return 0; 3633 3634 err_rss: 3635 ena_com_delete_debug_area(ena_dev); 3636 ena_com_rss_destroy(ena_dev); 3637 err_free_msix: 3638 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 3639 /* stop submitting admin commands on a device that was reset */ 3640 ena_com_set_admin_running_state(ena_dev, false); 3641 ena_free_mgmnt_irq(adapter); 3642 ena_disable_msix(adapter); 3643 err_worker_destroy: 3644 del_timer(&adapter->timer_service); 3645 err_netdev_destroy: 3646 free_netdev(netdev); 3647 err_device_destroy: 3648 ena_com_delete_host_info(ena_dev); 3649 ena_com_admin_destroy(ena_dev); 3650 err_free_region: 3651 ena_release_bars(ena_dev, pdev); 3652 err_free_ena_dev: 3653 vfree(ena_dev); 3654 err_disable_device: 3655 pci_disable_device(pdev); 3656 return rc; 3657 } 3658 3659 /*****************************************************************************/ 3660 3661 /* ena_remove - Device Removal Routine 3662 * @pdev: PCI device information struct 3663 * 3664 * ena_remove is called by the PCI subsystem to alert the driver 3665 * that it should release a PCI device. 3666 */ 3667 static void ena_remove(struct pci_dev *pdev) 3668 { 3669 struct ena_adapter *adapter = pci_get_drvdata(pdev); 3670 struct ena_com_dev *ena_dev; 3671 struct net_device *netdev; 3672 3673 ena_dev = adapter->ena_dev; 3674 netdev = adapter->netdev; 3675 3676 #ifdef CONFIG_RFS_ACCEL 3677 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 3678 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 3679 netdev->rx_cpu_rmap = NULL; 3680 } 3681 #endif /* CONFIG_RFS_ACCEL */ 3682 del_timer_sync(&adapter->timer_service); 3683 3684 cancel_work_sync(&adapter->reset_task); 3685 3686 rtnl_lock(); 3687 ena_destroy_device(adapter, true); 3688 rtnl_unlock(); 3689 3690 unregister_netdev(netdev); 3691 3692 free_netdev(netdev); 3693 3694 ena_com_rss_destroy(ena_dev); 3695 3696 ena_com_delete_debug_area(ena_dev); 3697 3698 ena_com_delete_host_info(ena_dev); 3699 3700 ena_release_bars(ena_dev, pdev); 3701 3702 pci_disable_device(pdev); 3703 3704 vfree(ena_dev); 3705 } 3706 3707 #ifdef CONFIG_PM 3708 /* ena_suspend - PM suspend callback 3709 * @pdev: PCI device information struct 3710 * @state:power state 3711 */ 3712 static int ena_suspend(struct pci_dev *pdev, pm_message_t state) 3713 { 3714 struct ena_adapter *adapter = pci_get_drvdata(pdev); 3715 3716 u64_stats_update_begin(&adapter->syncp); 3717 adapter->dev_stats.suspend++; 3718 u64_stats_update_end(&adapter->syncp); 3719 3720 rtnl_lock(); 3721 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3722 dev_err(&pdev->dev, 3723 "ignoring device reset request as the device is being suspended\n"); 3724 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3725 } 3726 ena_destroy_device(adapter, true); 3727 rtnl_unlock(); 3728 return 0; 3729 } 3730 3731 /* ena_resume - PM resume callback 3732 * @pdev: PCI device information struct 3733 * 3734 */ 3735 static int ena_resume(struct pci_dev *pdev) 3736 { 3737 struct ena_adapter *adapter = pci_get_drvdata(pdev); 3738 int rc; 3739 3740 u64_stats_update_begin(&adapter->syncp); 3741 adapter->dev_stats.resume++; 3742 u64_stats_update_end(&adapter->syncp); 3743 3744 rtnl_lock(); 3745 rc = ena_restore_device(adapter); 3746 rtnl_unlock(); 3747 return rc; 3748 } 3749 #endif 3750 3751 static struct pci_driver ena_pci_driver = { 3752 .name = DRV_MODULE_NAME, 3753 .id_table = ena_pci_tbl, 3754 .probe = ena_probe, 3755 .remove = ena_remove, 3756 #ifdef CONFIG_PM 3757 .suspend = ena_suspend, 3758 .resume = ena_resume, 3759 #endif 3760 .sriov_configure = pci_sriov_configure_simple, 3761 }; 3762 3763 static int __init ena_init(void) 3764 { 3765 pr_info("%s", version); 3766 3767 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 3768 if (!ena_wq) { 3769 pr_err("Failed to create workqueue\n"); 3770 return -ENOMEM; 3771 } 3772 3773 return pci_register_driver(&ena_pci_driver); 3774 } 3775 3776 static void __exit ena_cleanup(void) 3777 { 3778 pci_unregister_driver(&ena_pci_driver); 3779 3780 if (ena_wq) { 3781 destroy_workqueue(ena_wq); 3782 ena_wq = NULL; 3783 } 3784 } 3785 3786 /****************************************************************************** 3787 ******************************** AENQ Handlers ******************************* 3788 *****************************************************************************/ 3789 /* ena_update_on_link_change: 3790 * Notify the network interface about the change in link status 3791 */ 3792 static void ena_update_on_link_change(void *adapter_data, 3793 struct ena_admin_aenq_entry *aenq_e) 3794 { 3795 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3796 struct ena_admin_aenq_link_change_desc *aenq_desc = 3797 (struct ena_admin_aenq_link_change_desc *)aenq_e; 3798 int status = aenq_desc->flags & 3799 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 3800 3801 if (status) { 3802 netdev_dbg(adapter->netdev, "%s\n", __func__); 3803 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 3804 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 3805 netif_carrier_on(adapter->netdev); 3806 } else { 3807 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 3808 netif_carrier_off(adapter->netdev); 3809 } 3810 } 3811 3812 static void ena_keep_alive_wd(void *adapter_data, 3813 struct ena_admin_aenq_entry *aenq_e) 3814 { 3815 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3816 struct ena_admin_aenq_keep_alive_desc *desc; 3817 u64 rx_drops; 3818 3819 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 3820 adapter->last_keep_alive_jiffies = jiffies; 3821 3822 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 3823 3824 u64_stats_update_begin(&adapter->syncp); 3825 adapter->dev_stats.rx_drops = rx_drops; 3826 u64_stats_update_end(&adapter->syncp); 3827 } 3828 3829 static void ena_notification(void *adapter_data, 3830 struct ena_admin_aenq_entry *aenq_e) 3831 { 3832 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3833 struct ena_admin_ena_hw_hints *hints; 3834 3835 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 3836 "Invalid group(%x) expected %x\n", 3837 aenq_e->aenq_common_desc.group, 3838 ENA_ADMIN_NOTIFICATION); 3839 3840 switch (aenq_e->aenq_common_desc.syndrom) { 3841 case ENA_ADMIN_UPDATE_HINTS: 3842 hints = (struct ena_admin_ena_hw_hints *) 3843 (&aenq_e->inline_data_w4); 3844 ena_update_hints(adapter, hints); 3845 break; 3846 default: 3847 netif_err(adapter, drv, adapter->netdev, 3848 "Invalid aenq notification link state %d\n", 3849 aenq_e->aenq_common_desc.syndrom); 3850 } 3851 } 3852 3853 /* This handler will called for unknown event group or unimplemented handlers*/ 3854 static void unimplemented_aenq_handler(void *data, 3855 struct ena_admin_aenq_entry *aenq_e) 3856 { 3857 struct ena_adapter *adapter = (struct ena_adapter *)data; 3858 3859 netif_err(adapter, drv, adapter->netdev, 3860 "Unknown event was received or event with unimplemented handler\n"); 3861 } 3862 3863 static struct ena_aenq_handlers aenq_handlers = { 3864 .handlers = { 3865 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 3866 [ENA_ADMIN_NOTIFICATION] = ena_notification, 3867 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 3868 }, 3869 .unimplemented_handler = unimplemented_aenq_handler 3870 }; 3871 3872 module_init(ena_init); 3873 module_exit(ena_cleanup); 3874