xref: /openbmc/linux/drivers/net/ethernet/amazon/ena/ena_netdev.c (revision c9fc538fc9460e36e5924c44a3b3e07600b20d4c)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #ifdef CONFIG_RFS_ACCEL
9 #include <linux/cpu_rmap.h>
10 #endif /* CONFIG_RFS_ACCEL */
11 #include <linux/ethtool.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/numa.h>
15 #include <linux/pci.h>
16 #include <linux/utsname.h>
17 #include <linux/version.h>
18 #include <linux/vmalloc.h>
19 #include <net/ip.h>
20 
21 #include "ena_netdev.h"
22 #include <linux/bpf_trace.h>
23 #include "ena_pci_id_tbl.h"
24 
25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
26 MODULE_DESCRIPTION(DEVICE_NAME);
27 MODULE_LICENSE("GPL");
28 
29 /* Time in jiffies before concluding the transmitter is hung. */
30 #define TX_TIMEOUT  (5 * HZ)
31 
32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus())
33 
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
35 		NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
36 
37 static struct ena_aenq_handlers aenq_handlers;
38 
39 static struct workqueue_struct *ena_wq;
40 
41 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
42 
43 static int ena_rss_init_default(struct ena_adapter *adapter);
44 static void check_for_admin_com_state(struct ena_adapter *adapter);
45 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
46 static int ena_restore_device(struct ena_adapter *adapter);
47 
48 static void ena_init_io_rings(struct ena_adapter *adapter,
49 			      int first_index, int count);
50 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index,
51 				   int count);
52 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index,
53 				  int count);
54 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid);
55 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
56 					   int first_index,
57 					   int count);
58 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid);
59 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid);
60 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget);
61 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter);
62 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter);
63 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
64 				      int first_index, int count);
65 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
66 				     int first_index, int count);
67 static int ena_up(struct ena_adapter *adapter);
68 static void ena_down(struct ena_adapter *adapter);
69 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
70 				 struct ena_ring *rx_ring);
71 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
72 				      struct ena_ring *rx_ring);
73 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
74 			      struct ena_tx_buffer *tx_info);
75 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
76 					    int first_index, int count);
77 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
78 						  int first_index, int count);
79 
80 /* Increase a stat by cnt while holding syncp seqlock on 32bit machines */
81 static void ena_increase_stat(u64 *statp, u64 cnt,
82 			      struct u64_stats_sync *syncp)
83 {
84 	u64_stats_update_begin(syncp);
85 	(*statp) += cnt;
86 	u64_stats_update_end(syncp);
87 }
88 
89 static void ena_ring_tx_doorbell(struct ena_ring *tx_ring)
90 {
91 	ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
92 	ena_increase_stat(&tx_ring->tx_stats.doorbells, 1, &tx_ring->syncp);
93 }
94 
95 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
96 {
97 	struct ena_adapter *adapter = netdev_priv(dev);
98 
99 	/* Change the state of the device to trigger reset
100 	 * Check that we are not in the middle or a trigger already
101 	 */
102 
103 	if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
104 		return;
105 
106 	ena_reset_device(adapter, ENA_REGS_RESET_OS_NETDEV_WD);
107 	ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp);
108 
109 	netif_err(adapter, tx_err, dev, "Transmit time out\n");
110 }
111 
112 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
113 {
114 	int i;
115 
116 	for (i = 0; i < adapter->num_io_queues; i++)
117 		adapter->rx_ring[i].mtu = mtu;
118 }
119 
120 static int ena_change_mtu(struct net_device *dev, int new_mtu)
121 {
122 	struct ena_adapter *adapter = netdev_priv(dev);
123 	int ret;
124 
125 	ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
126 	if (!ret) {
127 		netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu);
128 		update_rx_ring_mtu(adapter, new_mtu);
129 		dev->mtu = new_mtu;
130 	} else {
131 		netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
132 			  new_mtu);
133 	}
134 
135 	return ret;
136 }
137 
138 static int ena_xmit_common(struct net_device *dev,
139 			   struct ena_ring *ring,
140 			   struct ena_tx_buffer *tx_info,
141 			   struct ena_com_tx_ctx *ena_tx_ctx,
142 			   u16 next_to_use,
143 			   u32 bytes)
144 {
145 	struct ena_adapter *adapter = netdev_priv(dev);
146 	int rc, nb_hw_desc;
147 
148 	if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
149 						ena_tx_ctx))) {
150 		netif_dbg(adapter, tx_queued, dev,
151 			  "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
152 			  ring->qid);
153 		ena_ring_tx_doorbell(ring);
154 	}
155 
156 	/* prepare the packet's descriptors to dma engine */
157 	rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
158 				&nb_hw_desc);
159 
160 	/* In case there isn't enough space in the queue for the packet,
161 	 * we simply drop it. All other failure reasons of
162 	 * ena_com_prepare_tx() are fatal and therefore require a device reset.
163 	 */
164 	if (unlikely(rc)) {
165 		netif_err(adapter, tx_queued, dev,
166 			  "Failed to prepare tx bufs\n");
167 		ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1,
168 				  &ring->syncp);
169 		if (rc != -ENOMEM)
170 			ena_reset_device(adapter,
171 					 ENA_REGS_RESET_DRIVER_INVALID_STATE);
172 		return rc;
173 	}
174 
175 	u64_stats_update_begin(&ring->syncp);
176 	ring->tx_stats.cnt++;
177 	ring->tx_stats.bytes += bytes;
178 	u64_stats_update_end(&ring->syncp);
179 
180 	tx_info->tx_descs = nb_hw_desc;
181 	tx_info->last_jiffies = jiffies;
182 	tx_info->print_once = 0;
183 
184 	ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
185 						 ring->ring_size);
186 	return 0;
187 }
188 
189 /* This is the XDP napi callback. XDP queues use a separate napi callback
190  * than Rx/Tx queues.
191  */
192 static int ena_xdp_io_poll(struct napi_struct *napi, int budget)
193 {
194 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
195 	u32 xdp_work_done, xdp_budget;
196 	struct ena_ring *xdp_ring;
197 	int napi_comp_call = 0;
198 	int ret;
199 
200 	xdp_ring = ena_napi->xdp_ring;
201 
202 	xdp_budget = budget;
203 
204 	if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) ||
205 	    test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) {
206 		napi_complete_done(napi, 0);
207 		return 0;
208 	}
209 
210 	xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget);
211 
212 	/* If the device is about to reset or down, avoid unmask
213 	 * the interrupt and return 0 so NAPI won't reschedule
214 	 */
215 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) {
216 		napi_complete_done(napi, 0);
217 		ret = 0;
218 	} else if (xdp_budget > xdp_work_done) {
219 		napi_comp_call = 1;
220 		if (napi_complete_done(napi, xdp_work_done))
221 			ena_unmask_interrupt(xdp_ring, NULL);
222 		ena_update_ring_numa_node(xdp_ring, NULL);
223 		ret = xdp_work_done;
224 	} else {
225 		ret = xdp_budget;
226 	}
227 
228 	u64_stats_update_begin(&xdp_ring->syncp);
229 	xdp_ring->tx_stats.napi_comp += napi_comp_call;
230 	xdp_ring->tx_stats.tx_poll++;
231 	u64_stats_update_end(&xdp_ring->syncp);
232 	xdp_ring->tx_stats.last_napi_jiffies = jiffies;
233 
234 	return ret;
235 }
236 
237 static int ena_xdp_tx_map_frame(struct ena_ring *xdp_ring,
238 				struct ena_tx_buffer *tx_info,
239 				struct xdp_frame *xdpf,
240 				struct ena_com_tx_ctx *ena_tx_ctx)
241 {
242 	struct ena_adapter *adapter = xdp_ring->adapter;
243 	struct ena_com_buf *ena_buf;
244 	int push_len = 0;
245 	dma_addr_t dma;
246 	void *data;
247 	u32 size;
248 
249 	tx_info->xdpf = xdpf;
250 	data = tx_info->xdpf->data;
251 	size = tx_info->xdpf->len;
252 
253 	if (xdp_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
254 		/* Designate part of the packet for LLQ */
255 		push_len = min_t(u32, size, xdp_ring->tx_max_header_size);
256 
257 		ena_tx_ctx->push_header = data;
258 
259 		size -= push_len;
260 		data += push_len;
261 	}
262 
263 	ena_tx_ctx->header_len = push_len;
264 
265 	if (size > 0) {
266 		dma = dma_map_single(xdp_ring->dev,
267 				     data,
268 				     size,
269 				     DMA_TO_DEVICE);
270 		if (unlikely(dma_mapping_error(xdp_ring->dev, dma)))
271 			goto error_report_dma_error;
272 
273 		tx_info->map_linear_data = 0;
274 
275 		ena_buf = tx_info->bufs;
276 		ena_buf->paddr = dma;
277 		ena_buf->len = size;
278 
279 		ena_tx_ctx->ena_bufs = ena_buf;
280 		ena_tx_ctx->num_bufs = tx_info->num_of_bufs = 1;
281 	}
282 
283 	return 0;
284 
285 error_report_dma_error:
286 	ena_increase_stat(&xdp_ring->tx_stats.dma_mapping_err, 1,
287 			  &xdp_ring->syncp);
288 	netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map xdp buff\n");
289 
290 	return -EINVAL;
291 }
292 
293 static int ena_xdp_xmit_frame(struct ena_ring *xdp_ring,
294 			      struct net_device *dev,
295 			      struct xdp_frame *xdpf,
296 			      int flags)
297 {
298 	struct ena_com_tx_ctx ena_tx_ctx = {};
299 	struct ena_tx_buffer *tx_info;
300 	u16 next_to_use, req_id;
301 	int rc;
302 
303 	next_to_use = xdp_ring->next_to_use;
304 	req_id = xdp_ring->free_ids[next_to_use];
305 	tx_info = &xdp_ring->tx_buffer_info[req_id];
306 	tx_info->num_of_bufs = 0;
307 
308 	rc = ena_xdp_tx_map_frame(xdp_ring, tx_info, xdpf, &ena_tx_ctx);
309 	if (unlikely(rc))
310 		return rc;
311 
312 	ena_tx_ctx.req_id = req_id;
313 
314 	rc = ena_xmit_common(dev,
315 			     xdp_ring,
316 			     tx_info,
317 			     &ena_tx_ctx,
318 			     next_to_use,
319 			     xdpf->len);
320 	if (rc)
321 		goto error_unmap_dma;
322 
323 	/* trigger the dma engine. ena_ring_tx_doorbell()
324 	 * calls a memory barrier inside it.
325 	 */
326 	if (flags & XDP_XMIT_FLUSH)
327 		ena_ring_tx_doorbell(xdp_ring);
328 
329 	return rc;
330 
331 error_unmap_dma:
332 	ena_unmap_tx_buff(xdp_ring, tx_info);
333 	tx_info->xdpf = NULL;
334 	return rc;
335 }
336 
337 static int ena_xdp_xmit(struct net_device *dev, int n,
338 			struct xdp_frame **frames, u32 flags)
339 {
340 	struct ena_adapter *adapter = netdev_priv(dev);
341 	struct ena_ring *xdp_ring;
342 	int qid, i, nxmit = 0;
343 
344 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
345 		return -EINVAL;
346 
347 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
348 		return -ENETDOWN;
349 
350 	/* We assume that all rings have the same XDP program */
351 	if (!READ_ONCE(adapter->rx_ring->xdp_bpf_prog))
352 		return -ENXIO;
353 
354 	qid = smp_processor_id() % adapter->xdp_num_queues;
355 	qid += adapter->xdp_first_ring;
356 	xdp_ring = &adapter->tx_ring[qid];
357 
358 	/* Other CPU ids might try to send thorugh this queue */
359 	spin_lock(&xdp_ring->xdp_tx_lock);
360 
361 	for (i = 0; i < n; i++) {
362 		if (ena_xdp_xmit_frame(xdp_ring, dev, frames[i], 0))
363 			break;
364 		nxmit++;
365 	}
366 
367 	/* Ring doorbell to make device aware of the packets */
368 	if (flags & XDP_XMIT_FLUSH)
369 		ena_ring_tx_doorbell(xdp_ring);
370 
371 	spin_unlock(&xdp_ring->xdp_tx_lock);
372 
373 	/* Return number of packets sent */
374 	return nxmit;
375 }
376 
377 static int ena_xdp_execute(struct ena_ring *rx_ring, struct xdp_buff *xdp)
378 {
379 	u32 verdict = ENA_XDP_PASS;
380 	struct bpf_prog *xdp_prog;
381 	struct ena_ring *xdp_ring;
382 	struct xdp_frame *xdpf;
383 	u64 *xdp_stat;
384 
385 	xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog);
386 
387 	if (!xdp_prog)
388 		goto out;
389 
390 	verdict = bpf_prog_run_xdp(xdp_prog, xdp);
391 
392 	switch (verdict) {
393 	case XDP_TX:
394 		xdpf = xdp_convert_buff_to_frame(xdp);
395 		if (unlikely(!xdpf)) {
396 			trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
397 			xdp_stat = &rx_ring->rx_stats.xdp_aborted;
398 			verdict = ENA_XDP_DROP;
399 			break;
400 		}
401 
402 		/* Find xmit queue */
403 		xdp_ring = rx_ring->xdp_ring;
404 
405 		/* The XDP queues are shared between XDP_TX and XDP_REDIRECT */
406 		spin_lock(&xdp_ring->xdp_tx_lock);
407 
408 		if (ena_xdp_xmit_frame(xdp_ring, rx_ring->netdev, xdpf,
409 				       XDP_XMIT_FLUSH))
410 			xdp_return_frame(xdpf);
411 
412 		spin_unlock(&xdp_ring->xdp_tx_lock);
413 		xdp_stat = &rx_ring->rx_stats.xdp_tx;
414 		verdict = ENA_XDP_TX;
415 		break;
416 	case XDP_REDIRECT:
417 		if (likely(!xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))) {
418 			xdp_stat = &rx_ring->rx_stats.xdp_redirect;
419 			verdict = ENA_XDP_REDIRECT;
420 			break;
421 		}
422 		trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
423 		xdp_stat = &rx_ring->rx_stats.xdp_aborted;
424 		verdict = ENA_XDP_DROP;
425 		break;
426 	case XDP_ABORTED:
427 		trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
428 		xdp_stat = &rx_ring->rx_stats.xdp_aborted;
429 		verdict = ENA_XDP_DROP;
430 		break;
431 	case XDP_DROP:
432 		xdp_stat = &rx_ring->rx_stats.xdp_drop;
433 		verdict = ENA_XDP_DROP;
434 		break;
435 	case XDP_PASS:
436 		xdp_stat = &rx_ring->rx_stats.xdp_pass;
437 		verdict = ENA_XDP_PASS;
438 		break;
439 	default:
440 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, verdict);
441 		xdp_stat = &rx_ring->rx_stats.xdp_invalid;
442 		verdict = ENA_XDP_DROP;
443 	}
444 
445 	ena_increase_stat(xdp_stat, 1, &rx_ring->syncp);
446 out:
447 	return verdict;
448 }
449 
450 static void ena_init_all_xdp_queues(struct ena_adapter *adapter)
451 {
452 	adapter->xdp_first_ring = adapter->num_io_queues;
453 	adapter->xdp_num_queues = adapter->num_io_queues;
454 
455 	ena_init_io_rings(adapter,
456 			  adapter->xdp_first_ring,
457 			  adapter->xdp_num_queues);
458 }
459 
460 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter)
461 {
462 	u32 xdp_first_ring = adapter->xdp_first_ring;
463 	u32 xdp_num_queues = adapter->xdp_num_queues;
464 	int rc = 0;
465 
466 	rc = ena_setup_tx_resources_in_range(adapter, xdp_first_ring, xdp_num_queues);
467 	if (rc)
468 		goto setup_err;
469 
470 	rc = ena_create_io_tx_queues_in_range(adapter, xdp_first_ring, xdp_num_queues);
471 	if (rc)
472 		goto create_err;
473 
474 	return 0;
475 
476 create_err:
477 	ena_free_all_io_tx_resources_in_range(adapter, xdp_first_ring, xdp_num_queues);
478 setup_err:
479 	return rc;
480 }
481 
482 /* Provides a way for both kernel and bpf-prog to know
483  * more about the RX-queue a given XDP frame arrived on.
484  */
485 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring)
486 {
487 	int rc;
488 
489 	rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid, 0);
490 
491 	if (rc) {
492 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
493 			  "Failed to register xdp rx queue info. RX queue num %d rc: %d\n",
494 			  rx_ring->qid, rc);
495 		goto err;
496 	}
497 
498 	rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED,
499 					NULL);
500 
501 	if (rc) {
502 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
503 			  "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n",
504 			  rx_ring->qid, rc);
505 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
506 	}
507 
508 err:
509 	return rc;
510 }
511 
512 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring)
513 {
514 	xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq);
515 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
516 }
517 
518 static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter,
519 						 struct bpf_prog *prog,
520 						 int first, int count)
521 {
522 	struct bpf_prog *old_bpf_prog;
523 	struct ena_ring *rx_ring;
524 	int i = 0;
525 
526 	for (i = first; i < count; i++) {
527 		rx_ring = &adapter->rx_ring[i];
528 		old_bpf_prog = xchg(&rx_ring->xdp_bpf_prog, prog);
529 
530 		if (!old_bpf_prog && prog) {
531 			ena_xdp_register_rxq_info(rx_ring);
532 			rx_ring->rx_headroom = XDP_PACKET_HEADROOM;
533 		} else if (old_bpf_prog && !prog) {
534 			ena_xdp_unregister_rxq_info(rx_ring);
535 			rx_ring->rx_headroom = NET_SKB_PAD;
536 		}
537 	}
538 }
539 
540 static void ena_xdp_exchange_program(struct ena_adapter *adapter,
541 				     struct bpf_prog *prog)
542 {
543 	struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog);
544 
545 	ena_xdp_exchange_program_rx_in_range(adapter,
546 					     prog,
547 					     0,
548 					     adapter->num_io_queues);
549 
550 	if (old_bpf_prog)
551 		bpf_prog_put(old_bpf_prog);
552 }
553 
554 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter)
555 {
556 	bool was_up;
557 	int rc;
558 
559 	was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
560 
561 	if (was_up)
562 		ena_down(adapter);
563 
564 	adapter->xdp_first_ring = 0;
565 	adapter->xdp_num_queues = 0;
566 	ena_xdp_exchange_program(adapter, NULL);
567 	if (was_up) {
568 		rc = ena_up(adapter);
569 		if (rc)
570 			return rc;
571 	}
572 	return 0;
573 }
574 
575 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf)
576 {
577 	struct ena_adapter *adapter = netdev_priv(netdev);
578 	struct bpf_prog *prog = bpf->prog;
579 	struct bpf_prog *old_bpf_prog;
580 	int rc, prev_mtu;
581 	bool is_up;
582 
583 	is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
584 	rc = ena_xdp_allowed(adapter);
585 	if (rc == ENA_XDP_ALLOWED) {
586 		old_bpf_prog = adapter->xdp_bpf_prog;
587 		if (prog) {
588 			if (!is_up) {
589 				ena_init_all_xdp_queues(adapter);
590 			} else if (!old_bpf_prog) {
591 				ena_down(adapter);
592 				ena_init_all_xdp_queues(adapter);
593 			}
594 			ena_xdp_exchange_program(adapter, prog);
595 
596 			if (is_up && !old_bpf_prog) {
597 				rc = ena_up(adapter);
598 				if (rc)
599 					return rc;
600 			}
601 			xdp_features_set_redirect_target(netdev, false);
602 		} else if (old_bpf_prog) {
603 			xdp_features_clear_redirect_target(netdev);
604 			rc = ena_destroy_and_free_all_xdp_queues(adapter);
605 			if (rc)
606 				return rc;
607 		}
608 
609 		prev_mtu = netdev->max_mtu;
610 		netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu;
611 
612 		if (!old_bpf_prog)
613 			netif_info(adapter, drv, adapter->netdev,
614 				   "XDP program is set, changing the max_mtu from %d to %d",
615 				   prev_mtu, netdev->max_mtu);
616 
617 	} else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) {
618 		netif_err(adapter, drv, adapter->netdev,
619 			  "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on",
620 			  netdev->mtu, ENA_XDP_MAX_MTU);
621 		NL_SET_ERR_MSG_MOD(bpf->extack,
622 				   "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info");
623 		return -EINVAL;
624 	} else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) {
625 		netif_err(adapter, drv, adapter->netdev,
626 			  "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n",
627 			  adapter->num_io_queues, adapter->max_num_io_queues);
628 		NL_SET_ERR_MSG_MOD(bpf->extack,
629 				   "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info");
630 		return -EINVAL;
631 	}
632 
633 	return 0;
634 }
635 
636 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp
637  * program as well as to query the current xdp program id.
638  */
639 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf)
640 {
641 	switch (bpf->command) {
642 	case XDP_SETUP_PROG:
643 		return ena_xdp_set(netdev, bpf);
644 	default:
645 		return -EINVAL;
646 	}
647 	return 0;
648 }
649 
650 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
651 {
652 #ifdef CONFIG_RFS_ACCEL
653 	u32 i;
654 	int rc;
655 
656 	adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
657 	if (!adapter->netdev->rx_cpu_rmap)
658 		return -ENOMEM;
659 	for (i = 0; i < adapter->num_io_queues; i++) {
660 		int irq_idx = ENA_IO_IRQ_IDX(i);
661 
662 		rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
663 				      pci_irq_vector(adapter->pdev, irq_idx));
664 		if (rc) {
665 			free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
666 			adapter->netdev->rx_cpu_rmap = NULL;
667 			return rc;
668 		}
669 	}
670 #endif /* CONFIG_RFS_ACCEL */
671 	return 0;
672 }
673 
674 static void ena_init_io_rings_common(struct ena_adapter *adapter,
675 				     struct ena_ring *ring, u16 qid)
676 {
677 	ring->qid = qid;
678 	ring->pdev = adapter->pdev;
679 	ring->dev = &adapter->pdev->dev;
680 	ring->netdev = adapter->netdev;
681 	ring->napi = &adapter->ena_napi[qid].napi;
682 	ring->adapter = adapter;
683 	ring->ena_dev = adapter->ena_dev;
684 	ring->per_napi_packets = 0;
685 	ring->cpu = 0;
686 	ring->numa_node = 0;
687 	ring->no_interrupt_event_cnt = 0;
688 	u64_stats_init(&ring->syncp);
689 }
690 
691 static void ena_init_io_rings(struct ena_adapter *adapter,
692 			      int first_index, int count)
693 {
694 	struct ena_com_dev *ena_dev;
695 	struct ena_ring *txr, *rxr;
696 	int i;
697 
698 	ena_dev = adapter->ena_dev;
699 
700 	for (i = first_index; i < first_index + count; i++) {
701 		txr = &adapter->tx_ring[i];
702 		rxr = &adapter->rx_ring[i];
703 
704 		/* TX common ring state */
705 		ena_init_io_rings_common(adapter, txr, i);
706 
707 		/* TX specific ring state */
708 		txr->ring_size = adapter->requested_tx_ring_size;
709 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
710 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
711 		txr->sgl_size = adapter->max_tx_sgl_size;
712 		txr->smoothed_interval =
713 			ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
714 		txr->disable_meta_caching = adapter->disable_meta_caching;
715 		spin_lock_init(&txr->xdp_tx_lock);
716 
717 		/* Don't init RX queues for xdp queues */
718 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
719 			/* RX common ring state */
720 			ena_init_io_rings_common(adapter, rxr, i);
721 
722 			/* RX specific ring state */
723 			rxr->ring_size = adapter->requested_rx_ring_size;
724 			rxr->rx_copybreak = adapter->rx_copybreak;
725 			rxr->sgl_size = adapter->max_rx_sgl_size;
726 			rxr->smoothed_interval =
727 				ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
728 			rxr->empty_rx_queue = 0;
729 			rxr->rx_headroom = NET_SKB_PAD;
730 			adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
731 			rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues];
732 		}
733 	}
734 }
735 
736 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
737  * @adapter: network interface device structure
738  * @qid: queue index
739  *
740  * Return 0 on success, negative on failure
741  */
742 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
743 {
744 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
745 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
746 	int size, i, node;
747 
748 	if (tx_ring->tx_buffer_info) {
749 		netif_err(adapter, ifup,
750 			  adapter->netdev, "tx_buffer_info info is not NULL");
751 		return -EEXIST;
752 	}
753 
754 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
755 	node = cpu_to_node(ena_irq->cpu);
756 
757 	tx_ring->tx_buffer_info = vzalloc_node(size, node);
758 	if (!tx_ring->tx_buffer_info) {
759 		tx_ring->tx_buffer_info = vzalloc(size);
760 		if (!tx_ring->tx_buffer_info)
761 			goto err_tx_buffer_info;
762 	}
763 
764 	size = sizeof(u16) * tx_ring->ring_size;
765 	tx_ring->free_ids = vzalloc_node(size, node);
766 	if (!tx_ring->free_ids) {
767 		tx_ring->free_ids = vzalloc(size);
768 		if (!tx_ring->free_ids)
769 			goto err_tx_free_ids;
770 	}
771 
772 	size = tx_ring->tx_max_header_size;
773 	tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
774 	if (!tx_ring->push_buf_intermediate_buf) {
775 		tx_ring->push_buf_intermediate_buf = vzalloc(size);
776 		if (!tx_ring->push_buf_intermediate_buf)
777 			goto err_push_buf_intermediate_buf;
778 	}
779 
780 	/* Req id ring for TX out of order completions */
781 	for (i = 0; i < tx_ring->ring_size; i++)
782 		tx_ring->free_ids[i] = i;
783 
784 	/* Reset tx statistics */
785 	memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
786 
787 	tx_ring->next_to_use = 0;
788 	tx_ring->next_to_clean = 0;
789 	tx_ring->cpu = ena_irq->cpu;
790 	tx_ring->numa_node = node;
791 	return 0;
792 
793 err_push_buf_intermediate_buf:
794 	vfree(tx_ring->free_ids);
795 	tx_ring->free_ids = NULL;
796 err_tx_free_ids:
797 	vfree(tx_ring->tx_buffer_info);
798 	tx_ring->tx_buffer_info = NULL;
799 err_tx_buffer_info:
800 	return -ENOMEM;
801 }
802 
803 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
804  * @adapter: network interface device structure
805  * @qid: queue index
806  *
807  * Free all transmit software resources
808  */
809 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
810 {
811 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
812 
813 	vfree(tx_ring->tx_buffer_info);
814 	tx_ring->tx_buffer_info = NULL;
815 
816 	vfree(tx_ring->free_ids);
817 	tx_ring->free_ids = NULL;
818 
819 	vfree(tx_ring->push_buf_intermediate_buf);
820 	tx_ring->push_buf_intermediate_buf = NULL;
821 }
822 
823 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
824 					   int first_index,
825 					   int count)
826 {
827 	int i, rc = 0;
828 
829 	for (i = first_index; i < first_index + count; i++) {
830 		rc = ena_setup_tx_resources(adapter, i);
831 		if (rc)
832 			goto err_setup_tx;
833 	}
834 
835 	return 0;
836 
837 err_setup_tx:
838 
839 	netif_err(adapter, ifup, adapter->netdev,
840 		  "Tx queue %d: allocation failed\n", i);
841 
842 	/* rewind the index freeing the rings as we go */
843 	while (first_index < i--)
844 		ena_free_tx_resources(adapter, i);
845 	return rc;
846 }
847 
848 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
849 						  int first_index, int count)
850 {
851 	int i;
852 
853 	for (i = first_index; i < first_index + count; i++)
854 		ena_free_tx_resources(adapter, i);
855 }
856 
857 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
858  * @adapter: board private structure
859  *
860  * Free all transmit software resources
861  */
862 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
863 {
864 	ena_free_all_io_tx_resources_in_range(adapter,
865 					      0,
866 					      adapter->xdp_num_queues +
867 					      adapter->num_io_queues);
868 }
869 
870 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
871  * @adapter: network interface device structure
872  * @qid: queue index
873  *
874  * Returns 0 on success, negative on failure
875  */
876 static int ena_setup_rx_resources(struct ena_adapter *adapter,
877 				  u32 qid)
878 {
879 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
880 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
881 	int size, node, i;
882 
883 	if (rx_ring->rx_buffer_info) {
884 		netif_err(adapter, ifup, adapter->netdev,
885 			  "rx_buffer_info is not NULL");
886 		return -EEXIST;
887 	}
888 
889 	/* alloc extra element so in rx path
890 	 * we can always prefetch rx_info + 1
891 	 */
892 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
893 	node = cpu_to_node(ena_irq->cpu);
894 
895 	rx_ring->rx_buffer_info = vzalloc_node(size, node);
896 	if (!rx_ring->rx_buffer_info) {
897 		rx_ring->rx_buffer_info = vzalloc(size);
898 		if (!rx_ring->rx_buffer_info)
899 			return -ENOMEM;
900 	}
901 
902 	size = sizeof(u16) * rx_ring->ring_size;
903 	rx_ring->free_ids = vzalloc_node(size, node);
904 	if (!rx_ring->free_ids) {
905 		rx_ring->free_ids = vzalloc(size);
906 		if (!rx_ring->free_ids) {
907 			vfree(rx_ring->rx_buffer_info);
908 			rx_ring->rx_buffer_info = NULL;
909 			return -ENOMEM;
910 		}
911 	}
912 
913 	/* Req id ring for receiving RX pkts out of order */
914 	for (i = 0; i < rx_ring->ring_size; i++)
915 		rx_ring->free_ids[i] = i;
916 
917 	/* Reset rx statistics */
918 	memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
919 
920 	rx_ring->next_to_clean = 0;
921 	rx_ring->next_to_use = 0;
922 	rx_ring->cpu = ena_irq->cpu;
923 	rx_ring->numa_node = node;
924 
925 	return 0;
926 }
927 
928 /* ena_free_rx_resources - Free I/O Rx Resources
929  * @adapter: network interface device structure
930  * @qid: queue index
931  *
932  * Free all receive software resources
933  */
934 static void ena_free_rx_resources(struct ena_adapter *adapter,
935 				  u32 qid)
936 {
937 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
938 
939 	vfree(rx_ring->rx_buffer_info);
940 	rx_ring->rx_buffer_info = NULL;
941 
942 	vfree(rx_ring->free_ids);
943 	rx_ring->free_ids = NULL;
944 }
945 
946 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
947  * @adapter: board private structure
948  *
949  * Return 0 on success, negative on failure
950  */
951 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
952 {
953 	int i, rc = 0;
954 
955 	for (i = 0; i < adapter->num_io_queues; i++) {
956 		rc = ena_setup_rx_resources(adapter, i);
957 		if (rc)
958 			goto err_setup_rx;
959 	}
960 
961 	return 0;
962 
963 err_setup_rx:
964 
965 	netif_err(adapter, ifup, adapter->netdev,
966 		  "Rx queue %d: allocation failed\n", i);
967 
968 	/* rewind the index freeing the rings as we go */
969 	while (i--)
970 		ena_free_rx_resources(adapter, i);
971 	return rc;
972 }
973 
974 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
975  * @adapter: board private structure
976  *
977  * Free all receive software resources
978  */
979 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
980 {
981 	int i;
982 
983 	for (i = 0; i < adapter->num_io_queues; i++)
984 		ena_free_rx_resources(adapter, i);
985 }
986 
987 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring,
988 				       dma_addr_t *dma)
989 {
990 	struct page *page;
991 
992 	/* This would allocate the page on the same NUMA node the executing code
993 	 * is running on.
994 	 */
995 	page = dev_alloc_page();
996 	if (!page) {
997 		ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1,
998 				  &rx_ring->syncp);
999 		return ERR_PTR(-ENOSPC);
1000 	}
1001 
1002 	/* To enable NIC-side port-mirroring, AKA SPAN port,
1003 	 * we make the buffer readable from the nic as well
1004 	 */
1005 	*dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
1006 			    DMA_BIDIRECTIONAL);
1007 	if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) {
1008 		ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1,
1009 				  &rx_ring->syncp);
1010 		__free_page(page);
1011 		return ERR_PTR(-EIO);
1012 	}
1013 
1014 	return page;
1015 }
1016 
1017 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring,
1018 			       struct ena_rx_buffer *rx_info)
1019 {
1020 	int headroom = rx_ring->rx_headroom;
1021 	struct ena_com_buf *ena_buf;
1022 	struct page *page;
1023 	dma_addr_t dma;
1024 	int tailroom;
1025 
1026 	/* restore page offset value in case it has been changed by device */
1027 	rx_info->buf_offset = headroom;
1028 
1029 	/* if previous allocated page is not used */
1030 	if (unlikely(rx_info->page))
1031 		return 0;
1032 
1033 	/* We handle DMA here */
1034 	page = ena_alloc_map_page(rx_ring, &dma);
1035 	if (unlikely(IS_ERR(page)))
1036 		return PTR_ERR(page);
1037 
1038 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1039 		  "Allocate page %p, rx_info %p\n", page, rx_info);
1040 
1041 	tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1042 
1043 	rx_info->page = page;
1044 	rx_info->dma_addr = dma;
1045 	rx_info->page_offset = 0;
1046 	ena_buf = &rx_info->ena_buf;
1047 	ena_buf->paddr = dma + headroom;
1048 	ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom;
1049 
1050 	return 0;
1051 }
1052 
1053 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring,
1054 				    struct ena_rx_buffer *rx_info,
1055 				    unsigned long attrs)
1056 {
1057 	dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE,
1058 			     DMA_BIDIRECTIONAL, attrs);
1059 }
1060 
1061 static void ena_free_rx_page(struct ena_ring *rx_ring,
1062 			     struct ena_rx_buffer *rx_info)
1063 {
1064 	struct page *page = rx_info->page;
1065 
1066 	if (unlikely(!page)) {
1067 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1068 			   "Trying to free unallocated buffer\n");
1069 		return;
1070 	}
1071 
1072 	ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0);
1073 
1074 	__free_page(page);
1075 	rx_info->page = NULL;
1076 }
1077 
1078 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
1079 {
1080 	u16 next_to_use, req_id;
1081 	u32 i;
1082 	int rc;
1083 
1084 	next_to_use = rx_ring->next_to_use;
1085 
1086 	for (i = 0; i < num; i++) {
1087 		struct ena_rx_buffer *rx_info;
1088 
1089 		req_id = rx_ring->free_ids[next_to_use];
1090 
1091 		rx_info = &rx_ring->rx_buffer_info[req_id];
1092 
1093 		rc = ena_alloc_rx_buffer(rx_ring, rx_info);
1094 		if (unlikely(rc < 0)) {
1095 			netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1096 				   "Failed to allocate buffer for rx queue %d\n",
1097 				   rx_ring->qid);
1098 			break;
1099 		}
1100 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1101 						&rx_info->ena_buf,
1102 						req_id);
1103 		if (unlikely(rc)) {
1104 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1105 				   "Failed to add buffer for rx queue %d\n",
1106 				   rx_ring->qid);
1107 			break;
1108 		}
1109 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1110 						   rx_ring->ring_size);
1111 	}
1112 
1113 	if (unlikely(i < num)) {
1114 		ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1,
1115 				  &rx_ring->syncp);
1116 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1117 			   "Refilled rx qid %d with only %d buffers (from %d)\n",
1118 			   rx_ring->qid, i, num);
1119 	}
1120 
1121 	/* ena_com_write_sq_doorbell issues a wmb() */
1122 	if (likely(i))
1123 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1124 
1125 	rx_ring->next_to_use = next_to_use;
1126 
1127 	return i;
1128 }
1129 
1130 static void ena_free_rx_bufs(struct ena_adapter *adapter,
1131 			     u32 qid)
1132 {
1133 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1134 	u32 i;
1135 
1136 	for (i = 0; i < rx_ring->ring_size; i++) {
1137 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1138 
1139 		if (rx_info->page)
1140 			ena_free_rx_page(rx_ring, rx_info);
1141 	}
1142 }
1143 
1144 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
1145  * @adapter: board private structure
1146  */
1147 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1148 {
1149 	struct ena_ring *rx_ring;
1150 	int i, rc, bufs_num;
1151 
1152 	for (i = 0; i < adapter->num_io_queues; i++) {
1153 		rx_ring = &adapter->rx_ring[i];
1154 		bufs_num = rx_ring->ring_size - 1;
1155 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1156 
1157 		if (unlikely(rc != bufs_num))
1158 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1159 				   "Refilling Queue %d failed. allocated %d buffers from: %d\n",
1160 				   i, rc, bufs_num);
1161 	}
1162 }
1163 
1164 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
1165 {
1166 	int i;
1167 
1168 	for (i = 0; i < adapter->num_io_queues; i++)
1169 		ena_free_rx_bufs(adapter, i);
1170 }
1171 
1172 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
1173 			      struct ena_tx_buffer *tx_info)
1174 {
1175 	struct ena_com_buf *ena_buf;
1176 	u32 cnt;
1177 	int i;
1178 
1179 	ena_buf = tx_info->bufs;
1180 	cnt = tx_info->num_of_bufs;
1181 
1182 	if (unlikely(!cnt))
1183 		return;
1184 
1185 	if (tx_info->map_linear_data) {
1186 		dma_unmap_single(tx_ring->dev,
1187 				 dma_unmap_addr(ena_buf, paddr),
1188 				 dma_unmap_len(ena_buf, len),
1189 				 DMA_TO_DEVICE);
1190 		ena_buf++;
1191 		cnt--;
1192 	}
1193 
1194 	/* unmap remaining mapped pages */
1195 	for (i = 0; i < cnt; i++) {
1196 		dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
1197 			       dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
1198 		ena_buf++;
1199 	}
1200 }
1201 
1202 /* ena_free_tx_bufs - Free Tx Buffers per Queue
1203  * @tx_ring: TX ring for which buffers be freed
1204  */
1205 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
1206 {
1207 	bool print_once = true;
1208 	u32 i;
1209 
1210 	for (i = 0; i < tx_ring->ring_size; i++) {
1211 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1212 
1213 		if (!tx_info->skb)
1214 			continue;
1215 
1216 		if (print_once) {
1217 			netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev,
1218 				     "Free uncompleted tx skb qid %d idx 0x%x\n",
1219 				     tx_ring->qid, i);
1220 			print_once = false;
1221 		} else {
1222 			netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev,
1223 				  "Free uncompleted tx skb qid %d idx 0x%x\n",
1224 				  tx_ring->qid, i);
1225 		}
1226 
1227 		ena_unmap_tx_buff(tx_ring, tx_info);
1228 
1229 		dev_kfree_skb_any(tx_info->skb);
1230 	}
1231 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
1232 						  tx_ring->qid));
1233 }
1234 
1235 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
1236 {
1237 	struct ena_ring *tx_ring;
1238 	int i;
1239 
1240 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1241 		tx_ring = &adapter->tx_ring[i];
1242 		ena_free_tx_bufs(tx_ring);
1243 	}
1244 }
1245 
1246 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1247 {
1248 	u16 ena_qid;
1249 	int i;
1250 
1251 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1252 		ena_qid = ENA_IO_TXQ_IDX(i);
1253 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1254 	}
1255 }
1256 
1257 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1258 {
1259 	u16 ena_qid;
1260 	int i;
1261 
1262 	for (i = 0; i < adapter->num_io_queues; i++) {
1263 		ena_qid = ENA_IO_RXQ_IDX(i);
1264 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
1265 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1266 	}
1267 }
1268 
1269 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
1270 {
1271 	ena_destroy_all_tx_queues(adapter);
1272 	ena_destroy_all_rx_queues(adapter);
1273 }
1274 
1275 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
1276 				 struct ena_tx_buffer *tx_info, bool is_xdp)
1277 {
1278 	if (tx_info)
1279 		netif_err(ring->adapter,
1280 			  tx_done,
1281 			  ring->netdev,
1282 			  "tx_info doesn't have valid %s. qid %u req_id %u",
1283 			   is_xdp ? "xdp frame" : "skb", ring->qid, req_id);
1284 	else
1285 		netif_err(ring->adapter,
1286 			  tx_done,
1287 			  ring->netdev,
1288 			  "Invalid req_id %u in qid %u\n",
1289 			  req_id, ring->qid);
1290 
1291 	ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp);
1292 	ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
1293 
1294 	return -EFAULT;
1295 }
1296 
1297 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
1298 {
1299 	struct ena_tx_buffer *tx_info;
1300 
1301 	tx_info = &tx_ring->tx_buffer_info[req_id];
1302 	if (likely(tx_info->skb))
1303 		return 0;
1304 
1305 	return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
1306 }
1307 
1308 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id)
1309 {
1310 	struct ena_tx_buffer *tx_info;
1311 
1312 	tx_info = &xdp_ring->tx_buffer_info[req_id];
1313 	if (likely(tx_info->xdpf))
1314 		return 0;
1315 
1316 	return handle_invalid_req_id(xdp_ring, req_id, tx_info, true);
1317 }
1318 
1319 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
1320 {
1321 	struct netdev_queue *txq;
1322 	bool above_thresh;
1323 	u32 tx_bytes = 0;
1324 	u32 total_done = 0;
1325 	u16 next_to_clean;
1326 	u16 req_id;
1327 	int tx_pkts = 0;
1328 	int rc;
1329 
1330 	next_to_clean = tx_ring->next_to_clean;
1331 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
1332 
1333 	while (tx_pkts < budget) {
1334 		struct ena_tx_buffer *tx_info;
1335 		struct sk_buff *skb;
1336 
1337 		rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
1338 						&req_id);
1339 		if (rc) {
1340 			if (unlikely(rc == -EINVAL))
1341 				handle_invalid_req_id(tx_ring, req_id, NULL,
1342 						      false);
1343 			break;
1344 		}
1345 
1346 		/* validate that the request id points to a valid skb */
1347 		rc = validate_tx_req_id(tx_ring, req_id);
1348 		if (rc)
1349 			break;
1350 
1351 		tx_info = &tx_ring->tx_buffer_info[req_id];
1352 		skb = tx_info->skb;
1353 
1354 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
1355 		prefetch(&skb->end);
1356 
1357 		tx_info->skb = NULL;
1358 		tx_info->last_jiffies = 0;
1359 
1360 		ena_unmap_tx_buff(tx_ring, tx_info);
1361 
1362 		netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1363 			  "tx_poll: q %d skb %p completed\n", tx_ring->qid,
1364 			  skb);
1365 
1366 		tx_bytes += skb->len;
1367 		dev_kfree_skb(skb);
1368 		tx_pkts++;
1369 		total_done += tx_info->tx_descs;
1370 
1371 		tx_ring->free_ids[next_to_clean] = req_id;
1372 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1373 						     tx_ring->ring_size);
1374 	}
1375 
1376 	tx_ring->next_to_clean = next_to_clean;
1377 	ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
1378 	ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
1379 
1380 	netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1381 
1382 	netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1383 		  "tx_poll: q %d done. total pkts: %d\n",
1384 		  tx_ring->qid, tx_pkts);
1385 
1386 	/* need to make the rings circular update visible to
1387 	 * ena_start_xmit() before checking for netif_queue_stopped().
1388 	 */
1389 	smp_mb();
1390 
1391 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1392 						    ENA_TX_WAKEUP_THRESH);
1393 	if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
1394 		__netif_tx_lock(txq, smp_processor_id());
1395 		above_thresh =
1396 			ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1397 						     ENA_TX_WAKEUP_THRESH);
1398 		if (netif_tx_queue_stopped(txq) && above_thresh &&
1399 		    test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
1400 			netif_tx_wake_queue(txq);
1401 			ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
1402 					  &tx_ring->syncp);
1403 		}
1404 		__netif_tx_unlock(txq);
1405 	}
1406 
1407 	return tx_pkts;
1408 }
1409 
1410 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len)
1411 {
1412 	struct sk_buff *skb;
1413 
1414 	if (!first_frag)
1415 		skb = napi_alloc_skb(rx_ring->napi, len);
1416 	else
1417 		skb = napi_build_skb(first_frag, len);
1418 
1419 	if (unlikely(!skb)) {
1420 		ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1,
1421 				  &rx_ring->syncp);
1422 
1423 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1424 			  "Failed to allocate skb. first_frag %s\n",
1425 			  first_frag ? "provided" : "not provided");
1426 	}
1427 
1428 	return skb;
1429 }
1430 
1431 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len,
1432 				      u16 len, int pkt_offset)
1433 {
1434 	struct ena_com_buf *ena_buf = &rx_info->ena_buf;
1435 
1436 	/* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer
1437 	 * for data + headroom + tailroom.
1438 	 */
1439 	if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) {
1440 		page_ref_inc(rx_info->page);
1441 		rx_info->page_offset += buf_len;
1442 		ena_buf->paddr += buf_len;
1443 		ena_buf->len -= buf_len;
1444 		return true;
1445 	}
1446 
1447 	return false;
1448 }
1449 
1450 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
1451 				  struct ena_com_rx_buf_info *ena_bufs,
1452 				  u32 descs,
1453 				  u16 *next_to_clean)
1454 {
1455 	int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1456 	bool is_xdp_loaded = ena_xdp_present_ring(rx_ring);
1457 	struct ena_rx_buffer *rx_info;
1458 	struct ena_adapter *adapter;
1459 	int page_offset, pkt_offset;
1460 	dma_addr_t pre_reuse_paddr;
1461 	u16 len, req_id, buf = 0;
1462 	bool reuse_rx_buf_page;
1463 	struct sk_buff *skb;
1464 	void *buf_addr;
1465 	int buf_offset;
1466 	u16 buf_len;
1467 
1468 	len = ena_bufs[buf].len;
1469 	req_id = ena_bufs[buf].req_id;
1470 
1471 	rx_info = &rx_ring->rx_buffer_info[req_id];
1472 
1473 	if (unlikely(!rx_info->page)) {
1474 		adapter = rx_ring->adapter;
1475 		netif_err(adapter, rx_err, rx_ring->netdev,
1476 			  "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id);
1477 		ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp);
1478 		ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
1479 		return NULL;
1480 	}
1481 
1482 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1483 		  "rx_info %p page %p\n",
1484 		  rx_info, rx_info->page);
1485 
1486 	buf_offset = rx_info->buf_offset;
1487 	pkt_offset = buf_offset - rx_ring->rx_headroom;
1488 	page_offset = rx_info->page_offset;
1489 	buf_addr = page_address(rx_info->page) + page_offset;
1490 
1491 	if (len <= rx_ring->rx_copybreak) {
1492 		skb = ena_alloc_skb(rx_ring, NULL, len);
1493 		if (unlikely(!skb))
1494 			return NULL;
1495 
1496 		skb_copy_to_linear_data(skb, buf_addr + buf_offset, len);
1497 		dma_sync_single_for_device(rx_ring->dev,
1498 					   dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
1499 					   len,
1500 					   DMA_FROM_DEVICE);
1501 
1502 		skb_put(skb, len);
1503 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1504 			  "RX allocated small packet. len %d.\n", skb->len);
1505 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1506 		rx_ring->free_ids[*next_to_clean] = req_id;
1507 		*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
1508 						     rx_ring->ring_size);
1509 		return skb;
1510 	}
1511 
1512 	buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1513 
1514 	/* If XDP isn't loaded try to reuse part of the RX buffer */
1515 	reuse_rx_buf_page = !is_xdp_loaded &&
1516 			    ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1517 
1518 	if (!reuse_rx_buf_page)
1519 		ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC);
1520 
1521 	skb = ena_alloc_skb(rx_ring, buf_addr, buf_len);
1522 	if (unlikely(!skb))
1523 		return NULL;
1524 
1525 	/* Populate skb's linear part */
1526 	skb_reserve(skb, buf_offset);
1527 	skb_put(skb, len);
1528 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1529 
1530 	do {
1531 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1532 			  "RX skb updated. len %d. data_len %d\n",
1533 			  skb->len, skb->data_len);
1534 
1535 		if (!reuse_rx_buf_page)
1536 			rx_info->page = NULL;
1537 
1538 		rx_ring->free_ids[*next_to_clean] = req_id;
1539 		*next_to_clean =
1540 			ENA_RX_RING_IDX_NEXT(*next_to_clean,
1541 					     rx_ring->ring_size);
1542 		if (likely(--descs == 0))
1543 			break;
1544 
1545 		buf++;
1546 		len = ena_bufs[buf].len;
1547 		req_id = ena_bufs[buf].req_id;
1548 
1549 		rx_info = &rx_ring->rx_buffer_info[req_id];
1550 
1551 		/* rx_info->buf_offset includes rx_ring->rx_headroom */
1552 		buf_offset = rx_info->buf_offset;
1553 		pkt_offset = buf_offset - rx_ring->rx_headroom;
1554 		buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1555 		page_offset = rx_info->page_offset;
1556 
1557 		pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr);
1558 
1559 		reuse_rx_buf_page = !is_xdp_loaded &&
1560 				    ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1561 
1562 		dma_sync_single_for_cpu(rx_ring->dev,
1563 					pre_reuse_paddr + pkt_offset,
1564 					len,
1565 					DMA_FROM_DEVICE);
1566 
1567 		if (!reuse_rx_buf_page)
1568 			ena_unmap_rx_buff_attrs(rx_ring, rx_info,
1569 						DMA_ATTR_SKIP_CPU_SYNC);
1570 
1571 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1572 				page_offset + buf_offset, len, buf_len);
1573 
1574 	} while (1);
1575 
1576 	return skb;
1577 }
1578 
1579 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1580  * @adapter: structure containing adapter specific data
1581  * @ena_rx_ctx: received packet context/metadata
1582  * @skb: skb currently being received and modified
1583  */
1584 static void ena_rx_checksum(struct ena_ring *rx_ring,
1585 				   struct ena_com_rx_ctx *ena_rx_ctx,
1586 				   struct sk_buff *skb)
1587 {
1588 	/* Rx csum disabled */
1589 	if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1590 		skb->ip_summed = CHECKSUM_NONE;
1591 		return;
1592 	}
1593 
1594 	/* For fragmented packets the checksum isn't valid */
1595 	if (ena_rx_ctx->frag) {
1596 		skb->ip_summed = CHECKSUM_NONE;
1597 		return;
1598 	}
1599 
1600 	/* if IP and error */
1601 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1602 		     (ena_rx_ctx->l3_csum_err))) {
1603 		/* ipv4 checksum error */
1604 		skb->ip_summed = CHECKSUM_NONE;
1605 		ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1606 				  &rx_ring->syncp);
1607 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1608 			  "RX IPv4 header checksum error\n");
1609 		return;
1610 	}
1611 
1612 	/* if TCP/UDP */
1613 	if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1614 		   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1615 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
1616 			/* TCP/UDP checksum error */
1617 			ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1618 					  &rx_ring->syncp);
1619 			netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1620 				  "RX L4 checksum error\n");
1621 			skb->ip_summed = CHECKSUM_NONE;
1622 			return;
1623 		}
1624 
1625 		if (likely(ena_rx_ctx->l4_csum_checked)) {
1626 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1627 			ena_increase_stat(&rx_ring->rx_stats.csum_good, 1,
1628 					  &rx_ring->syncp);
1629 		} else {
1630 			ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1,
1631 					  &rx_ring->syncp);
1632 			skb->ip_summed = CHECKSUM_NONE;
1633 		}
1634 	} else {
1635 		skb->ip_summed = CHECKSUM_NONE;
1636 		return;
1637 	}
1638 
1639 }
1640 
1641 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1642 			    struct ena_com_rx_ctx *ena_rx_ctx,
1643 			    struct sk_buff *skb)
1644 {
1645 	enum pkt_hash_types hash_type;
1646 
1647 	if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1648 		if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1649 			   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1650 
1651 			hash_type = PKT_HASH_TYPE_L4;
1652 		else
1653 			hash_type = PKT_HASH_TYPE_NONE;
1654 
1655 		/* Override hash type if the packet is fragmented */
1656 		if (ena_rx_ctx->frag)
1657 			hash_type = PKT_HASH_TYPE_NONE;
1658 
1659 		skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1660 	}
1661 }
1662 
1663 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs)
1664 {
1665 	struct ena_rx_buffer *rx_info;
1666 	int ret;
1667 
1668 	/* XDP multi-buffer packets not supported */
1669 	if (unlikely(num_descs > 1)) {
1670 		netdev_err_once(rx_ring->adapter->netdev,
1671 				"xdp: dropped unsupported multi-buffer packets\n");
1672 		ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp);
1673 		return ENA_XDP_DROP;
1674 	}
1675 
1676 	rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1677 	xdp_prepare_buff(xdp, page_address(rx_info->page),
1678 			 rx_info->buf_offset,
1679 			 rx_ring->ena_bufs[0].len, false);
1680 
1681 	ret = ena_xdp_execute(rx_ring, xdp);
1682 
1683 	/* The xdp program might expand the headers */
1684 	if (ret == ENA_XDP_PASS) {
1685 		rx_info->buf_offset = xdp->data - xdp->data_hard_start;
1686 		rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1687 	}
1688 
1689 	return ret;
1690 }
1691 /* ena_clean_rx_irq - Cleanup RX irq
1692  * @rx_ring: RX ring to clean
1693  * @napi: napi handler
1694  * @budget: how many packets driver is allowed to clean
1695  *
1696  * Returns the number of cleaned buffers.
1697  */
1698 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1699 			    u32 budget)
1700 {
1701 	u16 next_to_clean = rx_ring->next_to_clean;
1702 	struct ena_com_rx_ctx ena_rx_ctx;
1703 	struct ena_rx_buffer *rx_info;
1704 	struct ena_adapter *adapter;
1705 	u32 res_budget, work_done;
1706 	int rx_copybreak_pkt = 0;
1707 	int refill_threshold;
1708 	struct sk_buff *skb;
1709 	int refill_required;
1710 	struct xdp_buff xdp;
1711 	int xdp_flags = 0;
1712 	int total_len = 0;
1713 	int xdp_verdict;
1714 	u8 pkt_offset;
1715 	int rc = 0;
1716 	int i;
1717 
1718 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1719 		  "%s qid %d\n", __func__, rx_ring->qid);
1720 	res_budget = budget;
1721 	xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq);
1722 
1723 	do {
1724 		xdp_verdict = ENA_XDP_PASS;
1725 		skb = NULL;
1726 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1727 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1728 		ena_rx_ctx.descs = 0;
1729 		ena_rx_ctx.pkt_offset = 0;
1730 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1731 				    rx_ring->ena_com_io_sq,
1732 				    &ena_rx_ctx);
1733 		if (unlikely(rc))
1734 			goto error;
1735 
1736 		if (unlikely(ena_rx_ctx.descs == 0))
1737 			break;
1738 
1739 		/* First descriptor might have an offset set by the device */
1740 		rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1741 		pkt_offset = ena_rx_ctx.pkt_offset;
1742 		rx_info->buf_offset += pkt_offset;
1743 
1744 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1745 			  "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1746 			  rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1747 			  ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1748 
1749 		dma_sync_single_for_cpu(rx_ring->dev,
1750 					dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
1751 					rx_ring->ena_bufs[0].len,
1752 					DMA_FROM_DEVICE);
1753 
1754 		if (ena_xdp_present_ring(rx_ring))
1755 			xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs);
1756 
1757 		/* allocate skb and fill it */
1758 		if (xdp_verdict == ENA_XDP_PASS)
1759 			skb = ena_rx_skb(rx_ring,
1760 					 rx_ring->ena_bufs,
1761 					 ena_rx_ctx.descs,
1762 					 &next_to_clean);
1763 
1764 		if (unlikely(!skb)) {
1765 			for (i = 0; i < ena_rx_ctx.descs; i++) {
1766 				int req_id = rx_ring->ena_bufs[i].req_id;
1767 
1768 				rx_ring->free_ids[next_to_clean] = req_id;
1769 				next_to_clean =
1770 					ENA_RX_RING_IDX_NEXT(next_to_clean,
1771 							     rx_ring->ring_size);
1772 
1773 				/* Packets was passed for transmission, unmap it
1774 				 * from RX side.
1775 				 */
1776 				if (xdp_verdict & ENA_XDP_FORWARDED) {
1777 					ena_unmap_rx_buff_attrs(rx_ring,
1778 								&rx_ring->rx_buffer_info[req_id],
1779 								DMA_ATTR_SKIP_CPU_SYNC);
1780 					rx_ring->rx_buffer_info[req_id].page = NULL;
1781 				}
1782 			}
1783 			if (xdp_verdict != ENA_XDP_PASS) {
1784 				xdp_flags |= xdp_verdict;
1785 				total_len += ena_rx_ctx.ena_bufs[0].len;
1786 				res_budget--;
1787 				continue;
1788 			}
1789 			break;
1790 		}
1791 
1792 		ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1793 
1794 		ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1795 
1796 		skb_record_rx_queue(skb, rx_ring->qid);
1797 
1798 		if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak)
1799 			rx_copybreak_pkt++;
1800 
1801 		total_len += skb->len;
1802 
1803 		napi_gro_receive(napi, skb);
1804 
1805 		res_budget--;
1806 	} while (likely(res_budget));
1807 
1808 	work_done = budget - res_budget;
1809 	rx_ring->per_napi_packets += work_done;
1810 	u64_stats_update_begin(&rx_ring->syncp);
1811 	rx_ring->rx_stats.bytes += total_len;
1812 	rx_ring->rx_stats.cnt += work_done;
1813 	rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1814 	u64_stats_update_end(&rx_ring->syncp);
1815 
1816 	rx_ring->next_to_clean = next_to_clean;
1817 
1818 	refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
1819 	refill_threshold =
1820 		min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1821 		      ENA_RX_REFILL_THRESH_PACKET);
1822 
1823 	/* Optimization, try to batch new rx buffers */
1824 	if (refill_required > refill_threshold) {
1825 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1826 		ena_refill_rx_bufs(rx_ring, refill_required);
1827 	}
1828 
1829 	if (xdp_flags & ENA_XDP_REDIRECT)
1830 		xdp_do_flush_map();
1831 
1832 	return work_done;
1833 
1834 error:
1835 	if (xdp_flags & ENA_XDP_REDIRECT)
1836 		xdp_do_flush();
1837 
1838 	adapter = netdev_priv(rx_ring->netdev);
1839 
1840 	if (rc == -ENOSPC) {
1841 		ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1,
1842 				  &rx_ring->syncp);
1843 		ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS);
1844 	} else {
1845 		ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1,
1846 				  &rx_ring->syncp);
1847 		ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
1848 	}
1849 	return 0;
1850 }
1851 
1852 static void ena_dim_work(struct work_struct *w)
1853 {
1854 	struct dim *dim = container_of(w, struct dim, work);
1855 	struct dim_cq_moder cur_moder =
1856 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1857 	struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1858 
1859 	ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1860 	dim->state = DIM_START_MEASURE;
1861 }
1862 
1863 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1864 {
1865 	struct dim_sample dim_sample;
1866 	struct ena_ring *rx_ring = ena_napi->rx_ring;
1867 
1868 	if (!rx_ring->per_napi_packets)
1869 		return;
1870 
1871 	rx_ring->non_empty_napi_events++;
1872 
1873 	dim_update_sample(rx_ring->non_empty_napi_events,
1874 			  rx_ring->rx_stats.cnt,
1875 			  rx_ring->rx_stats.bytes,
1876 			  &dim_sample);
1877 
1878 	net_dim(&ena_napi->dim, dim_sample);
1879 
1880 	rx_ring->per_napi_packets = 0;
1881 }
1882 
1883 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
1884 					struct ena_ring *rx_ring)
1885 {
1886 	u32 rx_interval = tx_ring->smoothed_interval;
1887 	struct ena_eth_io_intr_reg intr_reg;
1888 
1889 	/* Rx ring can be NULL when for XDP tx queues which don't have an
1890 	 * accompanying rx_ring pair.
1891 	 */
1892 	if (rx_ring)
1893 		rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1894 			rx_ring->smoothed_interval :
1895 			ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1896 
1897 	/* Update intr register: rx intr delay,
1898 	 * tx intr delay and interrupt unmask
1899 	 */
1900 	ena_com_update_intr_reg(&intr_reg,
1901 				rx_interval,
1902 				tx_ring->smoothed_interval,
1903 				true);
1904 
1905 	ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1,
1906 			  &tx_ring->syncp);
1907 
1908 	/* It is a shared MSI-X.
1909 	 * Tx and Rx CQ have pointer to it.
1910 	 * So we use one of them to reach the intr reg
1911 	 * The Tx ring is used because the rx_ring is NULL for XDP queues
1912 	 */
1913 	ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1914 }
1915 
1916 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1917 					     struct ena_ring *rx_ring)
1918 {
1919 	int cpu = get_cpu();
1920 	int numa_node;
1921 
1922 	/* Check only one ring since the 2 rings are running on the same cpu */
1923 	if (likely(tx_ring->cpu == cpu))
1924 		goto out;
1925 
1926 	tx_ring->cpu = cpu;
1927 	if (rx_ring)
1928 		rx_ring->cpu = cpu;
1929 
1930 	numa_node = cpu_to_node(cpu);
1931 
1932 	if (likely(tx_ring->numa_node == numa_node))
1933 		goto out;
1934 
1935 	put_cpu();
1936 
1937 	if (numa_node != NUMA_NO_NODE) {
1938 		ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1939 		tx_ring->numa_node = numa_node;
1940 		if (rx_ring) {
1941 			rx_ring->numa_node = numa_node;
1942 			ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1943 						 numa_node);
1944 		}
1945 	}
1946 
1947 	return;
1948 out:
1949 	put_cpu();
1950 }
1951 
1952 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget)
1953 {
1954 	u32 total_done = 0;
1955 	u16 next_to_clean;
1956 	int tx_pkts = 0;
1957 	u16 req_id;
1958 	int rc;
1959 
1960 	if (unlikely(!xdp_ring))
1961 		return 0;
1962 	next_to_clean = xdp_ring->next_to_clean;
1963 
1964 	while (tx_pkts < budget) {
1965 		struct ena_tx_buffer *tx_info;
1966 		struct xdp_frame *xdpf;
1967 
1968 		rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq,
1969 						&req_id);
1970 		if (rc) {
1971 			if (unlikely(rc == -EINVAL))
1972 				handle_invalid_req_id(xdp_ring, req_id, NULL,
1973 						      true);
1974 			break;
1975 		}
1976 
1977 		/* validate that the request id points to a valid xdp_frame */
1978 		rc = validate_xdp_req_id(xdp_ring, req_id);
1979 		if (rc)
1980 			break;
1981 
1982 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1983 		xdpf = tx_info->xdpf;
1984 
1985 		tx_info->xdpf = NULL;
1986 		tx_info->last_jiffies = 0;
1987 		ena_unmap_tx_buff(xdp_ring, tx_info);
1988 
1989 		netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1990 			  "tx_poll: q %d skb %p completed\n", xdp_ring->qid,
1991 			  xdpf);
1992 
1993 		tx_pkts++;
1994 		total_done += tx_info->tx_descs;
1995 
1996 		xdp_return_frame(xdpf);
1997 		xdp_ring->free_ids[next_to_clean] = req_id;
1998 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1999 						     xdp_ring->ring_size);
2000 	}
2001 
2002 	xdp_ring->next_to_clean = next_to_clean;
2003 	ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done);
2004 	ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq);
2005 
2006 	netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
2007 		  "tx_poll: q %d done. total pkts: %d\n",
2008 		  xdp_ring->qid, tx_pkts);
2009 
2010 	return tx_pkts;
2011 }
2012 
2013 static int ena_io_poll(struct napi_struct *napi, int budget)
2014 {
2015 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
2016 	struct ena_ring *tx_ring, *rx_ring;
2017 	int tx_work_done;
2018 	int rx_work_done = 0;
2019 	int tx_budget;
2020 	int napi_comp_call = 0;
2021 	int ret;
2022 
2023 	tx_ring = ena_napi->tx_ring;
2024 	rx_ring = ena_napi->rx_ring;
2025 
2026 	tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
2027 
2028 	if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
2029 	    test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
2030 		napi_complete_done(napi, 0);
2031 		return 0;
2032 	}
2033 
2034 	tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
2035 	/* On netpoll the budget is zero and the handler should only clean the
2036 	 * tx completions.
2037 	 */
2038 	if (likely(budget))
2039 		rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
2040 
2041 	/* If the device is about to reset or down, avoid unmask
2042 	 * the interrupt and return 0 so NAPI won't reschedule
2043 	 */
2044 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
2045 		     test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
2046 		napi_complete_done(napi, 0);
2047 		ret = 0;
2048 
2049 	} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
2050 		napi_comp_call = 1;
2051 
2052 		/* Update numa and unmask the interrupt only when schedule
2053 		 * from the interrupt context (vs from sk_busy_loop)
2054 		 */
2055 		if (napi_complete_done(napi, rx_work_done) &&
2056 		    READ_ONCE(ena_napi->interrupts_masked)) {
2057 			smp_rmb(); /* make sure interrupts_masked is read */
2058 			WRITE_ONCE(ena_napi->interrupts_masked, false);
2059 			/* We apply adaptive moderation on Rx path only.
2060 			 * Tx uses static interrupt moderation.
2061 			 */
2062 			if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
2063 				ena_adjust_adaptive_rx_intr_moderation(ena_napi);
2064 
2065 			ena_update_ring_numa_node(tx_ring, rx_ring);
2066 			ena_unmask_interrupt(tx_ring, rx_ring);
2067 		}
2068 
2069 		ret = rx_work_done;
2070 	} else {
2071 		ret = budget;
2072 	}
2073 
2074 	u64_stats_update_begin(&tx_ring->syncp);
2075 	tx_ring->tx_stats.napi_comp += napi_comp_call;
2076 	tx_ring->tx_stats.tx_poll++;
2077 	u64_stats_update_end(&tx_ring->syncp);
2078 
2079 	tx_ring->tx_stats.last_napi_jiffies = jiffies;
2080 
2081 	return ret;
2082 }
2083 
2084 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
2085 {
2086 	struct ena_adapter *adapter = (struct ena_adapter *)data;
2087 
2088 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
2089 
2090 	/* Don't call the aenq handler before probe is done */
2091 	if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
2092 		ena_com_aenq_intr_handler(adapter->ena_dev, data);
2093 
2094 	return IRQ_HANDLED;
2095 }
2096 
2097 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
2098  * @irq: interrupt number
2099  * @data: pointer to a network interface private napi device structure
2100  */
2101 static irqreturn_t ena_intr_msix_io(int irq, void *data)
2102 {
2103 	struct ena_napi *ena_napi = data;
2104 
2105 	/* Used to check HW health */
2106 	WRITE_ONCE(ena_napi->first_interrupt, true);
2107 
2108 	WRITE_ONCE(ena_napi->interrupts_masked, true);
2109 	smp_wmb(); /* write interrupts_masked before calling napi */
2110 
2111 	napi_schedule_irqoff(&ena_napi->napi);
2112 
2113 	return IRQ_HANDLED;
2114 }
2115 
2116 /* Reserve a single MSI-X vector for management (admin + aenq).
2117  * plus reserve one vector for each potential io queue.
2118  * the number of potential io queues is the minimum of what the device
2119  * supports and the number of vCPUs.
2120  */
2121 static int ena_enable_msix(struct ena_adapter *adapter)
2122 {
2123 	int msix_vecs, irq_cnt;
2124 
2125 	if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2126 		netif_err(adapter, probe, adapter->netdev,
2127 			  "Error, MSI-X is already enabled\n");
2128 		return -EPERM;
2129 	}
2130 
2131 	/* Reserved the max msix vectors we might need */
2132 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
2133 	netif_dbg(adapter, probe, adapter->netdev,
2134 		  "Trying to enable MSI-X, vectors %d\n", msix_vecs);
2135 
2136 	irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
2137 					msix_vecs, PCI_IRQ_MSIX);
2138 
2139 	if (irq_cnt < 0) {
2140 		netif_err(adapter, probe, adapter->netdev,
2141 			  "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
2142 		return -ENOSPC;
2143 	}
2144 
2145 	if (irq_cnt != msix_vecs) {
2146 		netif_notice(adapter, probe, adapter->netdev,
2147 			     "Enable only %d MSI-X (out of %d), reduce the number of queues\n",
2148 			     irq_cnt, msix_vecs);
2149 		adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
2150 	}
2151 
2152 	if (ena_init_rx_cpu_rmap(adapter))
2153 		netif_warn(adapter, probe, adapter->netdev,
2154 			   "Failed to map IRQs to CPUs\n");
2155 
2156 	adapter->msix_vecs = irq_cnt;
2157 	set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
2158 
2159 	return 0;
2160 }
2161 
2162 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
2163 {
2164 	u32 cpu;
2165 
2166 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
2167 		 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
2168 		 pci_name(adapter->pdev));
2169 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
2170 		ena_intr_msix_mgmnt;
2171 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
2172 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
2173 		pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
2174 	cpu = cpumask_first(cpu_online_mask);
2175 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
2176 	cpumask_set_cpu(cpu,
2177 			&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
2178 }
2179 
2180 static void ena_setup_io_intr(struct ena_adapter *adapter)
2181 {
2182 	struct net_device *netdev;
2183 	int irq_idx, i, cpu;
2184 	int io_queue_count;
2185 
2186 	netdev = adapter->netdev;
2187 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2188 
2189 	for (i = 0; i < io_queue_count; i++) {
2190 		irq_idx = ENA_IO_IRQ_IDX(i);
2191 		cpu = i % num_online_cpus();
2192 
2193 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
2194 			 "%s-Tx-Rx-%d", netdev->name, i);
2195 		adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
2196 		adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
2197 		adapter->irq_tbl[irq_idx].vector =
2198 			pci_irq_vector(adapter->pdev, irq_idx);
2199 		adapter->irq_tbl[irq_idx].cpu = cpu;
2200 
2201 		cpumask_set_cpu(cpu,
2202 				&adapter->irq_tbl[irq_idx].affinity_hint_mask);
2203 	}
2204 }
2205 
2206 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
2207 {
2208 	unsigned long flags = 0;
2209 	struct ena_irq *irq;
2210 	int rc;
2211 
2212 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2213 	rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2214 			 irq->data);
2215 	if (rc) {
2216 		netif_err(adapter, probe, adapter->netdev,
2217 			  "Failed to request admin irq\n");
2218 		return rc;
2219 	}
2220 
2221 	netif_dbg(adapter, probe, adapter->netdev,
2222 		  "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
2223 		  irq->affinity_hint_mask.bits[0], irq->vector);
2224 
2225 	irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2226 
2227 	return rc;
2228 }
2229 
2230 static int ena_request_io_irq(struct ena_adapter *adapter)
2231 {
2232 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2233 	unsigned long flags = 0;
2234 	struct ena_irq *irq;
2235 	int rc = 0, i, k;
2236 
2237 	if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2238 		netif_err(adapter, ifup, adapter->netdev,
2239 			  "Failed to request I/O IRQ: MSI-X is not enabled\n");
2240 		return -EINVAL;
2241 	}
2242 
2243 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2244 		irq = &adapter->irq_tbl[i];
2245 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2246 				 irq->data);
2247 		if (rc) {
2248 			netif_err(adapter, ifup, adapter->netdev,
2249 				  "Failed to request I/O IRQ. index %d rc %d\n",
2250 				   i, rc);
2251 			goto err;
2252 		}
2253 
2254 		netif_dbg(adapter, ifup, adapter->netdev,
2255 			  "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
2256 			  i, irq->affinity_hint_mask.bits[0], irq->vector);
2257 
2258 		irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2259 	}
2260 
2261 	return rc;
2262 
2263 err:
2264 	for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
2265 		irq = &adapter->irq_tbl[k];
2266 		free_irq(irq->vector, irq->data);
2267 	}
2268 
2269 	return rc;
2270 }
2271 
2272 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
2273 {
2274 	struct ena_irq *irq;
2275 
2276 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2277 	synchronize_irq(irq->vector);
2278 	irq_set_affinity_hint(irq->vector, NULL);
2279 	free_irq(irq->vector, irq->data);
2280 }
2281 
2282 static void ena_free_io_irq(struct ena_adapter *adapter)
2283 {
2284 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2285 	struct ena_irq *irq;
2286 	int i;
2287 
2288 #ifdef CONFIG_RFS_ACCEL
2289 	if (adapter->msix_vecs >= 1) {
2290 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2291 		adapter->netdev->rx_cpu_rmap = NULL;
2292 	}
2293 #endif /* CONFIG_RFS_ACCEL */
2294 
2295 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2296 		irq = &adapter->irq_tbl[i];
2297 		irq_set_affinity_hint(irq->vector, NULL);
2298 		free_irq(irq->vector, irq->data);
2299 	}
2300 }
2301 
2302 static void ena_disable_msix(struct ena_adapter *adapter)
2303 {
2304 	if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
2305 		pci_free_irq_vectors(adapter->pdev);
2306 }
2307 
2308 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
2309 {
2310 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2311 	int i;
2312 
2313 	if (!netif_running(adapter->netdev))
2314 		return;
2315 
2316 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++)
2317 		synchronize_irq(adapter->irq_tbl[i].vector);
2318 }
2319 
2320 static void ena_del_napi_in_range(struct ena_adapter *adapter,
2321 				  int first_index,
2322 				  int count)
2323 {
2324 	int i;
2325 
2326 	for (i = first_index; i < first_index + count; i++) {
2327 		netif_napi_del(&adapter->ena_napi[i].napi);
2328 
2329 		WARN_ON(!ENA_IS_XDP_INDEX(adapter, i) &&
2330 			adapter->ena_napi[i].xdp_ring);
2331 	}
2332 }
2333 
2334 static void ena_init_napi_in_range(struct ena_adapter *adapter,
2335 				   int first_index, int count)
2336 {
2337 	int i;
2338 
2339 	for (i = first_index; i < first_index + count; i++) {
2340 		struct ena_napi *napi = &adapter->ena_napi[i];
2341 
2342 		netif_napi_add(adapter->netdev, &napi->napi,
2343 			       ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll);
2344 
2345 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
2346 			napi->rx_ring = &adapter->rx_ring[i];
2347 			napi->tx_ring = &adapter->tx_ring[i];
2348 		} else {
2349 			napi->xdp_ring = &adapter->tx_ring[i];
2350 		}
2351 		napi->qid = i;
2352 	}
2353 }
2354 
2355 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
2356 				      int first_index,
2357 				      int count)
2358 {
2359 	int i;
2360 
2361 	for (i = first_index; i < first_index + count; i++)
2362 		napi_disable(&adapter->ena_napi[i].napi);
2363 }
2364 
2365 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
2366 				     int first_index,
2367 				     int count)
2368 {
2369 	int i;
2370 
2371 	for (i = first_index; i < first_index + count; i++)
2372 		napi_enable(&adapter->ena_napi[i].napi);
2373 }
2374 
2375 /* Configure the Rx forwarding */
2376 static int ena_rss_configure(struct ena_adapter *adapter)
2377 {
2378 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2379 	int rc;
2380 
2381 	/* In case the RSS table wasn't initialized by probe */
2382 	if (!ena_dev->rss.tbl_log_size) {
2383 		rc = ena_rss_init_default(adapter);
2384 		if (rc && (rc != -EOPNOTSUPP)) {
2385 			netif_err(adapter, ifup, adapter->netdev,
2386 				  "Failed to init RSS rc: %d\n", rc);
2387 			return rc;
2388 		}
2389 	}
2390 
2391 	/* Set indirect table */
2392 	rc = ena_com_indirect_table_set(ena_dev);
2393 	if (unlikely(rc && rc != -EOPNOTSUPP))
2394 		return rc;
2395 
2396 	/* Configure hash function (if supported) */
2397 	rc = ena_com_set_hash_function(ena_dev);
2398 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2399 		return rc;
2400 
2401 	/* Configure hash inputs (if supported) */
2402 	rc = ena_com_set_hash_ctrl(ena_dev);
2403 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2404 		return rc;
2405 
2406 	return 0;
2407 }
2408 
2409 static int ena_up_complete(struct ena_adapter *adapter)
2410 {
2411 	int rc;
2412 
2413 	rc = ena_rss_configure(adapter);
2414 	if (rc)
2415 		return rc;
2416 
2417 	ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
2418 
2419 	ena_refill_all_rx_bufs(adapter);
2420 
2421 	/* enable transmits */
2422 	netif_tx_start_all_queues(adapter->netdev);
2423 
2424 	ena_napi_enable_in_range(adapter,
2425 				 0,
2426 				 adapter->xdp_num_queues + adapter->num_io_queues);
2427 
2428 	return 0;
2429 }
2430 
2431 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
2432 {
2433 	struct ena_com_create_io_ctx ctx;
2434 	struct ena_com_dev *ena_dev;
2435 	struct ena_ring *tx_ring;
2436 	u32 msix_vector;
2437 	u16 ena_qid;
2438 	int rc;
2439 
2440 	ena_dev = adapter->ena_dev;
2441 
2442 	tx_ring = &adapter->tx_ring[qid];
2443 	msix_vector = ENA_IO_IRQ_IDX(qid);
2444 	ena_qid = ENA_IO_TXQ_IDX(qid);
2445 
2446 	memset(&ctx, 0x0, sizeof(ctx));
2447 
2448 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
2449 	ctx.qid = ena_qid;
2450 	ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
2451 	ctx.msix_vector = msix_vector;
2452 	ctx.queue_size = tx_ring->ring_size;
2453 	ctx.numa_node = tx_ring->numa_node;
2454 
2455 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2456 	if (rc) {
2457 		netif_err(adapter, ifup, adapter->netdev,
2458 			  "Failed to create I/O TX queue num %d rc: %d\n",
2459 			  qid, rc);
2460 		return rc;
2461 	}
2462 
2463 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2464 				     &tx_ring->ena_com_io_sq,
2465 				     &tx_ring->ena_com_io_cq);
2466 	if (rc) {
2467 		netif_err(adapter, ifup, adapter->netdev,
2468 			  "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
2469 			  qid, rc);
2470 		ena_com_destroy_io_queue(ena_dev, ena_qid);
2471 		return rc;
2472 	}
2473 
2474 	ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
2475 	return rc;
2476 }
2477 
2478 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
2479 					    int first_index, int count)
2480 {
2481 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2482 	int rc, i;
2483 
2484 	for (i = first_index; i < first_index + count; i++) {
2485 		rc = ena_create_io_tx_queue(adapter, i);
2486 		if (rc)
2487 			goto create_err;
2488 	}
2489 
2490 	return 0;
2491 
2492 create_err:
2493 	while (i-- > first_index)
2494 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
2495 
2496 	return rc;
2497 }
2498 
2499 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
2500 {
2501 	struct ena_com_dev *ena_dev;
2502 	struct ena_com_create_io_ctx ctx;
2503 	struct ena_ring *rx_ring;
2504 	u32 msix_vector;
2505 	u16 ena_qid;
2506 	int rc;
2507 
2508 	ena_dev = adapter->ena_dev;
2509 
2510 	rx_ring = &adapter->rx_ring[qid];
2511 	msix_vector = ENA_IO_IRQ_IDX(qid);
2512 	ena_qid = ENA_IO_RXQ_IDX(qid);
2513 
2514 	memset(&ctx, 0x0, sizeof(ctx));
2515 
2516 	ctx.qid = ena_qid;
2517 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
2518 	ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2519 	ctx.msix_vector = msix_vector;
2520 	ctx.queue_size = rx_ring->ring_size;
2521 	ctx.numa_node = rx_ring->numa_node;
2522 
2523 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2524 	if (rc) {
2525 		netif_err(adapter, ifup, adapter->netdev,
2526 			  "Failed to create I/O RX queue num %d rc: %d\n",
2527 			  qid, rc);
2528 		return rc;
2529 	}
2530 
2531 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2532 				     &rx_ring->ena_com_io_sq,
2533 				     &rx_ring->ena_com_io_cq);
2534 	if (rc) {
2535 		netif_err(adapter, ifup, adapter->netdev,
2536 			  "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
2537 			  qid, rc);
2538 		goto err;
2539 	}
2540 
2541 	ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
2542 
2543 	return rc;
2544 err:
2545 	ena_com_destroy_io_queue(ena_dev, ena_qid);
2546 	return rc;
2547 }
2548 
2549 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
2550 {
2551 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2552 	int rc, i;
2553 
2554 	for (i = 0; i < adapter->num_io_queues; i++) {
2555 		rc = ena_create_io_rx_queue(adapter, i);
2556 		if (rc)
2557 			goto create_err;
2558 		INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
2559 	}
2560 
2561 	return 0;
2562 
2563 create_err:
2564 	while (i--) {
2565 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
2566 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
2567 	}
2568 
2569 	return rc;
2570 }
2571 
2572 static void set_io_rings_size(struct ena_adapter *adapter,
2573 			      int new_tx_size,
2574 			      int new_rx_size)
2575 {
2576 	int i;
2577 
2578 	for (i = 0; i < adapter->num_io_queues; i++) {
2579 		adapter->tx_ring[i].ring_size = new_tx_size;
2580 		adapter->rx_ring[i].ring_size = new_rx_size;
2581 	}
2582 }
2583 
2584 /* This function allows queue allocation to backoff when the system is
2585  * low on memory. If there is not enough memory to allocate io queues
2586  * the driver will try to allocate smaller queues.
2587  *
2588  * The backoff algorithm is as follows:
2589  *  1. Try to allocate TX and RX and if successful.
2590  *  1.1. return success
2591  *
2592  *  2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2593  *
2594  *  3. If TX or RX is smaller than 256
2595  *  3.1. return failure.
2596  *  4. else
2597  *  4.1. go back to 1.
2598  */
2599 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2600 {
2601 	int rc, cur_rx_ring_size, cur_tx_ring_size;
2602 	int new_rx_ring_size, new_tx_ring_size;
2603 
2604 	/* current queue sizes might be set to smaller than the requested
2605 	 * ones due to past queue allocation failures.
2606 	 */
2607 	set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2608 			  adapter->requested_rx_ring_size);
2609 
2610 	while (1) {
2611 		if (ena_xdp_present(adapter)) {
2612 			rc = ena_setup_and_create_all_xdp_queues(adapter);
2613 
2614 			if (rc)
2615 				goto err_setup_tx;
2616 		}
2617 		rc = ena_setup_tx_resources_in_range(adapter,
2618 						     0,
2619 						     adapter->num_io_queues);
2620 		if (rc)
2621 			goto err_setup_tx;
2622 
2623 		rc = ena_create_io_tx_queues_in_range(adapter,
2624 						      0,
2625 						      adapter->num_io_queues);
2626 		if (rc)
2627 			goto err_create_tx_queues;
2628 
2629 		rc = ena_setup_all_rx_resources(adapter);
2630 		if (rc)
2631 			goto err_setup_rx;
2632 
2633 		rc = ena_create_all_io_rx_queues(adapter);
2634 		if (rc)
2635 			goto err_create_rx_queues;
2636 
2637 		return 0;
2638 
2639 err_create_rx_queues:
2640 		ena_free_all_io_rx_resources(adapter);
2641 err_setup_rx:
2642 		ena_destroy_all_tx_queues(adapter);
2643 err_create_tx_queues:
2644 		ena_free_all_io_tx_resources(adapter);
2645 err_setup_tx:
2646 		if (rc != -ENOMEM) {
2647 			netif_err(adapter, ifup, adapter->netdev,
2648 				  "Queue creation failed with error code %d\n",
2649 				  rc);
2650 			return rc;
2651 		}
2652 
2653 		cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2654 		cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2655 
2656 		netif_err(adapter, ifup, adapter->netdev,
2657 			  "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2658 			  cur_tx_ring_size, cur_rx_ring_size);
2659 
2660 		new_tx_ring_size = cur_tx_ring_size;
2661 		new_rx_ring_size = cur_rx_ring_size;
2662 
2663 		/* Decrease the size of the larger queue, or
2664 		 * decrease both if they are the same size.
2665 		 */
2666 		if (cur_rx_ring_size <= cur_tx_ring_size)
2667 			new_tx_ring_size = cur_tx_ring_size / 2;
2668 		if (cur_rx_ring_size >= cur_tx_ring_size)
2669 			new_rx_ring_size = cur_rx_ring_size / 2;
2670 
2671 		if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2672 		    new_rx_ring_size < ENA_MIN_RING_SIZE) {
2673 			netif_err(adapter, ifup, adapter->netdev,
2674 				  "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2675 				  ENA_MIN_RING_SIZE);
2676 			return rc;
2677 		}
2678 
2679 		netif_err(adapter, ifup, adapter->netdev,
2680 			  "Retrying queue creation with sizes TX=%d, RX=%d\n",
2681 			  new_tx_ring_size,
2682 			  new_rx_ring_size);
2683 
2684 		set_io_rings_size(adapter, new_tx_ring_size,
2685 				  new_rx_ring_size);
2686 	}
2687 }
2688 
2689 static int ena_up(struct ena_adapter *adapter)
2690 {
2691 	int io_queue_count, rc, i;
2692 
2693 	netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
2694 
2695 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2696 	ena_setup_io_intr(adapter);
2697 
2698 	/* napi poll functions should be initialized before running
2699 	 * request_irq(), to handle a rare condition where there is a pending
2700 	 * interrupt, causing the ISR to fire immediately while the poll
2701 	 * function wasn't set yet, causing a null dereference
2702 	 */
2703 	ena_init_napi_in_range(adapter, 0, io_queue_count);
2704 
2705 	rc = ena_request_io_irq(adapter);
2706 	if (rc)
2707 		goto err_req_irq;
2708 
2709 	rc = create_queues_with_size_backoff(adapter);
2710 	if (rc)
2711 		goto err_create_queues_with_backoff;
2712 
2713 	rc = ena_up_complete(adapter);
2714 	if (rc)
2715 		goto err_up;
2716 
2717 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2718 		netif_carrier_on(adapter->netdev);
2719 
2720 	ena_increase_stat(&adapter->dev_stats.interface_up, 1,
2721 			  &adapter->syncp);
2722 
2723 	set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2724 
2725 	/* Enable completion queues interrupt */
2726 	for (i = 0; i < adapter->num_io_queues; i++)
2727 		ena_unmask_interrupt(&adapter->tx_ring[i],
2728 				     &adapter->rx_ring[i]);
2729 
2730 	/* schedule napi in case we had pending packets
2731 	 * from the last time we disable napi
2732 	 */
2733 	for (i = 0; i < io_queue_count; i++)
2734 		napi_schedule(&adapter->ena_napi[i].napi);
2735 
2736 	return rc;
2737 
2738 err_up:
2739 	ena_destroy_all_tx_queues(adapter);
2740 	ena_free_all_io_tx_resources(adapter);
2741 	ena_destroy_all_rx_queues(adapter);
2742 	ena_free_all_io_rx_resources(adapter);
2743 err_create_queues_with_backoff:
2744 	ena_free_io_irq(adapter);
2745 err_req_irq:
2746 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2747 
2748 	return rc;
2749 }
2750 
2751 static void ena_down(struct ena_adapter *adapter)
2752 {
2753 	int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2754 
2755 	netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2756 
2757 	clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2758 
2759 	ena_increase_stat(&adapter->dev_stats.interface_down, 1,
2760 			  &adapter->syncp);
2761 
2762 	netif_carrier_off(adapter->netdev);
2763 	netif_tx_disable(adapter->netdev);
2764 
2765 	/* After this point the napi handler won't enable the tx queue */
2766 	ena_napi_disable_in_range(adapter, 0, io_queue_count);
2767 
2768 	/* After destroy the queue there won't be any new interrupts */
2769 
2770 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2771 		int rc;
2772 
2773 		rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2774 		if (rc)
2775 			netif_err(adapter, ifdown, adapter->netdev,
2776 				  "Device reset failed\n");
2777 		/* stop submitting admin commands on a device that was reset */
2778 		ena_com_set_admin_running_state(adapter->ena_dev, false);
2779 	}
2780 
2781 	ena_destroy_all_io_queues(adapter);
2782 
2783 	ena_disable_io_intr_sync(adapter);
2784 	ena_free_io_irq(adapter);
2785 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2786 
2787 	ena_free_all_tx_bufs(adapter);
2788 	ena_free_all_rx_bufs(adapter);
2789 	ena_free_all_io_tx_resources(adapter);
2790 	ena_free_all_io_rx_resources(adapter);
2791 }
2792 
2793 /* ena_open - Called when a network interface is made active
2794  * @netdev: network interface device structure
2795  *
2796  * Returns 0 on success, negative value on failure
2797  *
2798  * The open entry point is called when a network interface is made
2799  * active by the system (IFF_UP).  At this point all resources needed
2800  * for transmit and receive operations are allocated, the interrupt
2801  * handler is registered with the OS, the watchdog timer is started,
2802  * and the stack is notified that the interface is ready.
2803  */
2804 static int ena_open(struct net_device *netdev)
2805 {
2806 	struct ena_adapter *adapter = netdev_priv(netdev);
2807 	int rc;
2808 
2809 	/* Notify the stack of the actual queue counts. */
2810 	rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2811 	if (rc) {
2812 		netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2813 		return rc;
2814 	}
2815 
2816 	rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2817 	if (rc) {
2818 		netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2819 		return rc;
2820 	}
2821 
2822 	rc = ena_up(adapter);
2823 	if (rc)
2824 		return rc;
2825 
2826 	return rc;
2827 }
2828 
2829 /* ena_close - Disables a network interface
2830  * @netdev: network interface device structure
2831  *
2832  * Returns 0, this is not allowed to fail
2833  *
2834  * The close entry point is called when an interface is de-activated
2835  * by the OS.  The hardware is still under the drivers control, but
2836  * needs to be disabled.  A global MAC reset is issued to stop the
2837  * hardware, and all transmit and receive resources are freed.
2838  */
2839 static int ena_close(struct net_device *netdev)
2840 {
2841 	struct ena_adapter *adapter = netdev_priv(netdev);
2842 
2843 	netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2844 
2845 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2846 		return 0;
2847 
2848 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2849 		ena_down(adapter);
2850 
2851 	/* Check for device status and issue reset if needed*/
2852 	check_for_admin_com_state(adapter);
2853 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2854 		netif_err(adapter, ifdown, adapter->netdev,
2855 			  "Destroy failure, restarting device\n");
2856 		ena_dump_stats_to_dmesg(adapter);
2857 		/* rtnl lock already obtained in dev_ioctl() layer */
2858 		ena_destroy_device(adapter, false);
2859 		ena_restore_device(adapter);
2860 	}
2861 
2862 	return 0;
2863 }
2864 
2865 int ena_update_queue_params(struct ena_adapter *adapter,
2866 			    u32 new_tx_size,
2867 			    u32 new_rx_size,
2868 			    u32 new_llq_header_len)
2869 {
2870 	bool dev_was_up, large_llq_changed = false;
2871 	int rc = 0;
2872 
2873 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2874 	ena_close(adapter->netdev);
2875 	adapter->requested_tx_ring_size = new_tx_size;
2876 	adapter->requested_rx_ring_size = new_rx_size;
2877 	ena_init_io_rings(adapter,
2878 			  0,
2879 			  adapter->xdp_num_queues +
2880 			  adapter->num_io_queues);
2881 
2882 	large_llq_changed = adapter->ena_dev->tx_mem_queue_type ==
2883 			    ENA_ADMIN_PLACEMENT_POLICY_DEV;
2884 	large_llq_changed &=
2885 		new_llq_header_len != adapter->ena_dev->tx_max_header_size;
2886 
2887 	/* a check that the configuration is valid is done by caller */
2888 	if (large_llq_changed) {
2889 		adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled;
2890 
2891 		ena_destroy_device(adapter, false);
2892 		rc = ena_restore_device(adapter);
2893 	}
2894 
2895 	return dev_was_up && !rc ? ena_up(adapter) : rc;
2896 }
2897 
2898 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak)
2899 {
2900 	struct ena_ring *rx_ring;
2901 	int i;
2902 
2903 	if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE))
2904 		return -EINVAL;
2905 
2906 	adapter->rx_copybreak = rx_copybreak;
2907 
2908 	for (i = 0; i < adapter->num_io_queues; i++) {
2909 		rx_ring = &adapter->rx_ring[i];
2910 		rx_ring->rx_copybreak = rx_copybreak;
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2917 {
2918 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2919 	int prev_channel_count;
2920 	bool dev_was_up;
2921 
2922 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2923 	ena_close(adapter->netdev);
2924 	prev_channel_count = adapter->num_io_queues;
2925 	adapter->num_io_queues = new_channel_count;
2926 	if (ena_xdp_present(adapter) &&
2927 	    ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2928 		adapter->xdp_first_ring = new_channel_count;
2929 		adapter->xdp_num_queues = new_channel_count;
2930 		if (prev_channel_count > new_channel_count)
2931 			ena_xdp_exchange_program_rx_in_range(adapter,
2932 							     NULL,
2933 							     new_channel_count,
2934 							     prev_channel_count);
2935 		else
2936 			ena_xdp_exchange_program_rx_in_range(adapter,
2937 							     adapter->xdp_bpf_prog,
2938 							     prev_channel_count,
2939 							     new_channel_count);
2940 	}
2941 
2942 	/* We need to destroy the rss table so that the indirection
2943 	 * table will be reinitialized by ena_up()
2944 	 */
2945 	ena_com_rss_destroy(ena_dev);
2946 	ena_init_io_rings(adapter,
2947 			  0,
2948 			  adapter->xdp_num_queues +
2949 			  adapter->num_io_queues);
2950 	return dev_was_up ? ena_open(adapter->netdev) : 0;
2951 }
2952 
2953 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx,
2954 			struct sk_buff *skb,
2955 			bool disable_meta_caching)
2956 {
2957 	u32 mss = skb_shinfo(skb)->gso_size;
2958 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2959 	u8 l4_protocol = 0;
2960 
2961 	if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2962 		ena_tx_ctx->l4_csum_enable = 1;
2963 		if (mss) {
2964 			ena_tx_ctx->tso_enable = 1;
2965 			ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2966 			ena_tx_ctx->l4_csum_partial = 0;
2967 		} else {
2968 			ena_tx_ctx->tso_enable = 0;
2969 			ena_meta->l4_hdr_len = 0;
2970 			ena_tx_ctx->l4_csum_partial = 1;
2971 		}
2972 
2973 		switch (ip_hdr(skb)->version) {
2974 		case IPVERSION:
2975 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2976 			if (ip_hdr(skb)->frag_off & htons(IP_DF))
2977 				ena_tx_ctx->df = 1;
2978 			if (mss)
2979 				ena_tx_ctx->l3_csum_enable = 1;
2980 			l4_protocol = ip_hdr(skb)->protocol;
2981 			break;
2982 		case 6:
2983 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2984 			l4_protocol = ipv6_hdr(skb)->nexthdr;
2985 			break;
2986 		default:
2987 			break;
2988 		}
2989 
2990 		if (l4_protocol == IPPROTO_TCP)
2991 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2992 		else
2993 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2994 
2995 		ena_meta->mss = mss;
2996 		ena_meta->l3_hdr_len = skb_network_header_len(skb);
2997 		ena_meta->l3_hdr_offset = skb_network_offset(skb);
2998 		ena_tx_ctx->meta_valid = 1;
2999 	} else if (disable_meta_caching) {
3000 		memset(ena_meta, 0, sizeof(*ena_meta));
3001 		ena_tx_ctx->meta_valid = 1;
3002 	} else {
3003 		ena_tx_ctx->meta_valid = 0;
3004 	}
3005 }
3006 
3007 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
3008 				       struct sk_buff *skb)
3009 {
3010 	int num_frags, header_len, rc;
3011 
3012 	num_frags = skb_shinfo(skb)->nr_frags;
3013 	header_len = skb_headlen(skb);
3014 
3015 	if (num_frags < tx_ring->sgl_size)
3016 		return 0;
3017 
3018 	if ((num_frags == tx_ring->sgl_size) &&
3019 	    (header_len < tx_ring->tx_max_header_size))
3020 		return 0;
3021 
3022 	ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp);
3023 
3024 	rc = skb_linearize(skb);
3025 	if (unlikely(rc)) {
3026 		ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1,
3027 				  &tx_ring->syncp);
3028 	}
3029 
3030 	return rc;
3031 }
3032 
3033 static int ena_tx_map_skb(struct ena_ring *tx_ring,
3034 			  struct ena_tx_buffer *tx_info,
3035 			  struct sk_buff *skb,
3036 			  void **push_hdr,
3037 			  u16 *header_len)
3038 {
3039 	struct ena_adapter *adapter = tx_ring->adapter;
3040 	struct ena_com_buf *ena_buf;
3041 	dma_addr_t dma;
3042 	u32 skb_head_len, frag_len, last_frag;
3043 	u16 push_len = 0;
3044 	u16 delta = 0;
3045 	int i = 0;
3046 
3047 	skb_head_len = skb_headlen(skb);
3048 	tx_info->skb = skb;
3049 	ena_buf = tx_info->bufs;
3050 
3051 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3052 		/* When the device is LLQ mode, the driver will copy
3053 		 * the header into the device memory space.
3054 		 * the ena_com layer assume the header is in a linear
3055 		 * memory space.
3056 		 * This assumption might be wrong since part of the header
3057 		 * can be in the fragmented buffers.
3058 		 * Use skb_header_pointer to make sure the header is in a
3059 		 * linear memory space.
3060 		 */
3061 
3062 		push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
3063 		*push_hdr = skb_header_pointer(skb, 0, push_len,
3064 					       tx_ring->push_buf_intermediate_buf);
3065 		*header_len = push_len;
3066 		if (unlikely(skb->data != *push_hdr)) {
3067 			ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1,
3068 					  &tx_ring->syncp);
3069 
3070 			delta = push_len - skb_head_len;
3071 		}
3072 	} else {
3073 		*push_hdr = NULL;
3074 		*header_len = min_t(u32, skb_head_len,
3075 				    tx_ring->tx_max_header_size);
3076 	}
3077 
3078 	netif_dbg(adapter, tx_queued, adapter->netdev,
3079 		  "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
3080 		  *push_hdr, push_len);
3081 
3082 	if (skb_head_len > push_len) {
3083 		dma = dma_map_single(tx_ring->dev, skb->data + push_len,
3084 				     skb_head_len - push_len, DMA_TO_DEVICE);
3085 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
3086 			goto error_report_dma_error;
3087 
3088 		ena_buf->paddr = dma;
3089 		ena_buf->len = skb_head_len - push_len;
3090 
3091 		ena_buf++;
3092 		tx_info->num_of_bufs++;
3093 		tx_info->map_linear_data = 1;
3094 	} else {
3095 		tx_info->map_linear_data = 0;
3096 	}
3097 
3098 	last_frag = skb_shinfo(skb)->nr_frags;
3099 
3100 	for (i = 0; i < last_frag; i++) {
3101 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3102 
3103 		frag_len = skb_frag_size(frag);
3104 
3105 		if (unlikely(delta >= frag_len)) {
3106 			delta -= frag_len;
3107 			continue;
3108 		}
3109 
3110 		dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
3111 				       frag_len - delta, DMA_TO_DEVICE);
3112 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
3113 			goto error_report_dma_error;
3114 
3115 		ena_buf->paddr = dma;
3116 		ena_buf->len = frag_len - delta;
3117 		ena_buf++;
3118 		tx_info->num_of_bufs++;
3119 		delta = 0;
3120 	}
3121 
3122 	return 0;
3123 
3124 error_report_dma_error:
3125 	ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1,
3126 			  &tx_ring->syncp);
3127 	netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n");
3128 
3129 	tx_info->skb = NULL;
3130 
3131 	tx_info->num_of_bufs += i;
3132 	ena_unmap_tx_buff(tx_ring, tx_info);
3133 
3134 	return -EINVAL;
3135 }
3136 
3137 /* Called with netif_tx_lock. */
3138 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
3139 {
3140 	struct ena_adapter *adapter = netdev_priv(dev);
3141 	struct ena_tx_buffer *tx_info;
3142 	struct ena_com_tx_ctx ena_tx_ctx;
3143 	struct ena_ring *tx_ring;
3144 	struct netdev_queue *txq;
3145 	void *push_hdr;
3146 	u16 next_to_use, req_id, header_len;
3147 	int qid, rc;
3148 
3149 	netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
3150 	/*  Determine which tx ring we will be placed on */
3151 	qid = skb_get_queue_mapping(skb);
3152 	tx_ring = &adapter->tx_ring[qid];
3153 	txq = netdev_get_tx_queue(dev, qid);
3154 
3155 	rc = ena_check_and_linearize_skb(tx_ring, skb);
3156 	if (unlikely(rc))
3157 		goto error_drop_packet;
3158 
3159 	skb_tx_timestamp(skb);
3160 
3161 	next_to_use = tx_ring->next_to_use;
3162 	req_id = tx_ring->free_ids[next_to_use];
3163 	tx_info = &tx_ring->tx_buffer_info[req_id];
3164 	tx_info->num_of_bufs = 0;
3165 
3166 	WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
3167 
3168 	rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
3169 	if (unlikely(rc))
3170 		goto error_drop_packet;
3171 
3172 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
3173 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3174 	ena_tx_ctx.push_header = push_hdr;
3175 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3176 	ena_tx_ctx.req_id = req_id;
3177 	ena_tx_ctx.header_len = header_len;
3178 
3179 	/* set flags and meta data */
3180 	ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching);
3181 
3182 	rc = ena_xmit_common(dev,
3183 			     tx_ring,
3184 			     tx_info,
3185 			     &ena_tx_ctx,
3186 			     next_to_use,
3187 			     skb->len);
3188 	if (rc)
3189 		goto error_unmap_dma;
3190 
3191 	netdev_tx_sent_queue(txq, skb->len);
3192 
3193 	/* stop the queue when no more space available, the packet can have up
3194 	 * to sgl_size + 2. one for the meta descriptor and one for header
3195 	 * (if the header is larger than tx_max_header_size).
3196 	 */
3197 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3198 						   tx_ring->sgl_size + 2))) {
3199 		netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
3200 			  __func__, qid);
3201 
3202 		netif_tx_stop_queue(txq);
3203 		ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1,
3204 				  &tx_ring->syncp);
3205 
3206 		/* There is a rare condition where this function decide to
3207 		 * stop the queue but meanwhile clean_tx_irq updates
3208 		 * next_to_completion and terminates.
3209 		 * The queue will remain stopped forever.
3210 		 * To solve this issue add a mb() to make sure that
3211 		 * netif_tx_stop_queue() write is vissible before checking if
3212 		 * there is additional space in the queue.
3213 		 */
3214 		smp_mb();
3215 
3216 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3217 						 ENA_TX_WAKEUP_THRESH)) {
3218 			netif_tx_wake_queue(txq);
3219 			ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
3220 					  &tx_ring->syncp);
3221 		}
3222 	}
3223 
3224 	if (netif_xmit_stopped(txq) || !netdev_xmit_more())
3225 		/* trigger the dma engine. ena_ring_tx_doorbell()
3226 		 * calls a memory barrier inside it.
3227 		 */
3228 		ena_ring_tx_doorbell(tx_ring);
3229 
3230 	return NETDEV_TX_OK;
3231 
3232 error_unmap_dma:
3233 	ena_unmap_tx_buff(tx_ring, tx_info);
3234 	tx_info->skb = NULL;
3235 
3236 error_drop_packet:
3237 	dev_kfree_skb(skb);
3238 	return NETDEV_TX_OK;
3239 }
3240 
3241 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3242 {
3243 	struct device *dev = &pdev->dev;
3244 	struct ena_admin_host_info *host_info;
3245 	int rc;
3246 
3247 	/* Allocate only the host info */
3248 	rc = ena_com_allocate_host_info(ena_dev);
3249 	if (rc) {
3250 		dev_err(dev, "Cannot allocate host info\n");
3251 		return;
3252 	}
3253 
3254 	host_info = ena_dev->host_attr.host_info;
3255 
3256 	host_info->bdf = pci_dev_id(pdev);
3257 	host_info->os_type = ENA_ADMIN_OS_LINUX;
3258 	host_info->kernel_ver = LINUX_VERSION_CODE;
3259 	strscpy(host_info->kernel_ver_str, utsname()->version,
3260 		sizeof(host_info->kernel_ver_str) - 1);
3261 	host_info->os_dist = 0;
3262 	strncpy(host_info->os_dist_str, utsname()->release,
3263 		sizeof(host_info->os_dist_str) - 1);
3264 	host_info->driver_version =
3265 		(DRV_MODULE_GEN_MAJOR) |
3266 		(DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3267 		(DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
3268 		("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
3269 	host_info->num_cpus = num_online_cpus();
3270 
3271 	host_info->driver_supported_features =
3272 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
3273 		ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK |
3274 		ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK |
3275 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK |
3276 		ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK;
3277 
3278 	rc = ena_com_set_host_attributes(ena_dev);
3279 	if (rc) {
3280 		if (rc == -EOPNOTSUPP)
3281 			dev_warn(dev, "Cannot set host attributes\n");
3282 		else
3283 			dev_err(dev, "Cannot set host attributes\n");
3284 
3285 		goto err;
3286 	}
3287 
3288 	return;
3289 
3290 err:
3291 	ena_com_delete_host_info(ena_dev);
3292 }
3293 
3294 static void ena_config_debug_area(struct ena_adapter *adapter)
3295 {
3296 	u32 debug_area_size;
3297 	int rc, ss_count;
3298 
3299 	ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
3300 	if (ss_count <= 0) {
3301 		netif_err(adapter, drv, adapter->netdev,
3302 			  "SS count is negative\n");
3303 		return;
3304 	}
3305 
3306 	/* allocate 32 bytes for each string and 64bit for the value */
3307 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
3308 
3309 	rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
3310 	if (rc) {
3311 		netif_err(adapter, drv, adapter->netdev,
3312 			  "Cannot allocate debug area\n");
3313 		return;
3314 	}
3315 
3316 	rc = ena_com_set_host_attributes(adapter->ena_dev);
3317 	if (rc) {
3318 		if (rc == -EOPNOTSUPP)
3319 			netif_warn(adapter, drv, adapter->netdev,
3320 				   "Cannot set host attributes\n");
3321 		else
3322 			netif_err(adapter, drv, adapter->netdev,
3323 				  "Cannot set host attributes\n");
3324 		goto err;
3325 	}
3326 
3327 	return;
3328 err:
3329 	ena_com_delete_debug_area(adapter->ena_dev);
3330 }
3331 
3332 int ena_update_hw_stats(struct ena_adapter *adapter)
3333 {
3334 	int rc;
3335 
3336 	rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats);
3337 	if (rc) {
3338 		netdev_err(adapter->netdev, "Failed to get ENI stats\n");
3339 		return rc;
3340 	}
3341 
3342 	return 0;
3343 }
3344 
3345 static void ena_get_stats64(struct net_device *netdev,
3346 			    struct rtnl_link_stats64 *stats)
3347 {
3348 	struct ena_adapter *adapter = netdev_priv(netdev);
3349 	struct ena_ring *rx_ring, *tx_ring;
3350 	unsigned int start;
3351 	u64 rx_drops;
3352 	u64 tx_drops;
3353 	int i;
3354 
3355 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3356 		return;
3357 
3358 	for (i = 0; i < adapter->num_io_queues; i++) {
3359 		u64 bytes, packets;
3360 
3361 		tx_ring = &adapter->tx_ring[i];
3362 
3363 		do {
3364 			start = u64_stats_fetch_begin(&tx_ring->syncp);
3365 			packets = tx_ring->tx_stats.cnt;
3366 			bytes = tx_ring->tx_stats.bytes;
3367 		} while (u64_stats_fetch_retry(&tx_ring->syncp, start));
3368 
3369 		stats->tx_packets += packets;
3370 		stats->tx_bytes += bytes;
3371 
3372 		rx_ring = &adapter->rx_ring[i];
3373 
3374 		do {
3375 			start = u64_stats_fetch_begin(&rx_ring->syncp);
3376 			packets = rx_ring->rx_stats.cnt;
3377 			bytes = rx_ring->rx_stats.bytes;
3378 		} while (u64_stats_fetch_retry(&rx_ring->syncp, start));
3379 
3380 		stats->rx_packets += packets;
3381 		stats->rx_bytes += bytes;
3382 	}
3383 
3384 	do {
3385 		start = u64_stats_fetch_begin(&adapter->syncp);
3386 		rx_drops = adapter->dev_stats.rx_drops;
3387 		tx_drops = adapter->dev_stats.tx_drops;
3388 	} while (u64_stats_fetch_retry(&adapter->syncp, start));
3389 
3390 	stats->rx_dropped = rx_drops;
3391 	stats->tx_dropped = tx_drops;
3392 
3393 	stats->multicast = 0;
3394 	stats->collisions = 0;
3395 
3396 	stats->rx_length_errors = 0;
3397 	stats->rx_crc_errors = 0;
3398 	stats->rx_frame_errors = 0;
3399 	stats->rx_fifo_errors = 0;
3400 	stats->rx_missed_errors = 0;
3401 	stats->tx_window_errors = 0;
3402 
3403 	stats->rx_errors = 0;
3404 	stats->tx_errors = 0;
3405 }
3406 
3407 static const struct net_device_ops ena_netdev_ops = {
3408 	.ndo_open		= ena_open,
3409 	.ndo_stop		= ena_close,
3410 	.ndo_start_xmit		= ena_start_xmit,
3411 	.ndo_get_stats64	= ena_get_stats64,
3412 	.ndo_tx_timeout		= ena_tx_timeout,
3413 	.ndo_change_mtu		= ena_change_mtu,
3414 	.ndo_set_mac_address	= NULL,
3415 	.ndo_validate_addr	= eth_validate_addr,
3416 	.ndo_bpf		= ena_xdp,
3417 	.ndo_xdp_xmit		= ena_xdp_xmit,
3418 };
3419 
3420 static void ena_calc_io_queue_size(struct ena_adapter *adapter,
3421 				   struct ena_com_dev_get_features_ctx *get_feat_ctx)
3422 {
3423 	struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq;
3424 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3425 	u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
3426 	u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
3427 	u32 max_tx_queue_size;
3428 	u32 max_rx_queue_size;
3429 
3430 	/* If this function is called after driver load, the ring sizes have already
3431 	 * been configured. Take it into account when recalculating ring size.
3432 	 */
3433 	if (adapter->tx_ring->ring_size)
3434 		tx_queue_size = adapter->tx_ring->ring_size;
3435 
3436 	if (adapter->rx_ring->ring_size)
3437 		rx_queue_size = adapter->rx_ring->ring_size;
3438 
3439 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3440 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3441 			&get_feat_ctx->max_queue_ext.max_queue_ext;
3442 		max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
3443 					  max_queue_ext->max_rx_sq_depth);
3444 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
3445 
3446 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3447 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3448 						  llq->max_llq_depth);
3449 		else
3450 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3451 						  max_queue_ext->max_tx_sq_depth);
3452 
3453 		adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3454 						 max_queue_ext->max_per_packet_tx_descs);
3455 		adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3456 						 max_queue_ext->max_per_packet_rx_descs);
3457 	} else {
3458 		struct ena_admin_queue_feature_desc *max_queues =
3459 			&get_feat_ctx->max_queues;
3460 		max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
3461 					  max_queues->max_sq_depth);
3462 		max_tx_queue_size = max_queues->max_cq_depth;
3463 
3464 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3465 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3466 						  llq->max_llq_depth);
3467 		else
3468 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3469 						  max_queues->max_sq_depth);
3470 
3471 		adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3472 						 max_queues->max_packet_tx_descs);
3473 		adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3474 						 max_queues->max_packet_rx_descs);
3475 	}
3476 
3477 	max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
3478 	max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
3479 
3480 	/* When forcing large headers, we multiply the entry size by 2, and therefore divide
3481 	 * the queue size by 2, leaving the amount of memory used by the queues unchanged.
3482 	 */
3483 	if (adapter->large_llq_header_enabled) {
3484 		if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
3485 		    ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3486 			max_tx_queue_size /= 2;
3487 			dev_info(&adapter->pdev->dev,
3488 				 "Forcing large headers and decreasing maximum TX queue size to %d\n",
3489 				 max_tx_queue_size);
3490 		} else {
3491 			dev_err(&adapter->pdev->dev,
3492 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
3493 
3494 			adapter->large_llq_header_enabled = false;
3495 		}
3496 	}
3497 
3498 	tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
3499 				  max_tx_queue_size);
3500 	rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
3501 				  max_rx_queue_size);
3502 
3503 	tx_queue_size = rounddown_pow_of_two(tx_queue_size);
3504 	rx_queue_size = rounddown_pow_of_two(rx_queue_size);
3505 
3506 	adapter->max_tx_ring_size  = max_tx_queue_size;
3507 	adapter->max_rx_ring_size = max_rx_queue_size;
3508 	adapter->requested_tx_ring_size = tx_queue_size;
3509 	adapter->requested_rx_ring_size = rx_queue_size;
3510 }
3511 
3512 static int ena_device_validate_params(struct ena_adapter *adapter,
3513 				      struct ena_com_dev_get_features_ctx *get_feat_ctx)
3514 {
3515 	struct net_device *netdev = adapter->netdev;
3516 	int rc;
3517 
3518 	rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
3519 			      adapter->mac_addr);
3520 	if (!rc) {
3521 		netif_err(adapter, drv, netdev,
3522 			  "Error, mac address are different\n");
3523 		return -EINVAL;
3524 	}
3525 
3526 	if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
3527 		netif_err(adapter, drv, netdev,
3528 			  "Error, device max mtu is smaller than netdev MTU\n");
3529 		return -EINVAL;
3530 	}
3531 
3532 	return 0;
3533 }
3534 
3535 static void set_default_llq_configurations(struct ena_adapter *adapter,
3536 					   struct ena_llq_configurations *llq_config,
3537 					   struct ena_admin_feature_llq_desc *llq)
3538 {
3539 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3540 
3541 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
3542 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
3543 	llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
3544 
3545 	adapter->large_llq_header_supported =
3546 		!!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ));
3547 	adapter->large_llq_header_supported &=
3548 		!!(llq->entry_size_ctrl_supported &
3549 			ENA_ADMIN_LIST_ENTRY_SIZE_256B);
3550 
3551 	if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
3552 	    adapter->large_llq_header_enabled) {
3553 		llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B;
3554 		llq_config->llq_ring_entry_size_value = 256;
3555 	} else {
3556 		llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
3557 		llq_config->llq_ring_entry_size_value = 128;
3558 	}
3559 }
3560 
3561 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3562 					   struct ena_com_dev *ena_dev,
3563 					   struct ena_admin_feature_llq_desc *llq,
3564 					   struct ena_llq_configurations *llq_default_configurations)
3565 {
3566 	int rc;
3567 	u32 llq_feature_mask;
3568 
3569 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3570 	if (!(ena_dev->supported_features & llq_feature_mask)) {
3571 		dev_warn(&pdev->dev,
3572 			"LLQ is not supported Fallback to host mode policy.\n");
3573 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3574 		return 0;
3575 	}
3576 
3577 	if (!ena_dev->mem_bar) {
3578 		netdev_err(ena_dev->net_device,
3579 			   "LLQ is advertised as supported but device doesn't expose mem bar\n");
3580 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3581 		return 0;
3582 	}
3583 
3584 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3585 	if (unlikely(rc)) {
3586 		dev_err(&pdev->dev,
3587 			"Failed to configure the device mode.  Fallback to host mode policy.\n");
3588 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3589 	}
3590 
3591 	return 0;
3592 }
3593 
3594 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
3595 			       int bars)
3596 {
3597 	bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR));
3598 
3599 	if (!has_mem_bar)
3600 		return 0;
3601 
3602 	ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3603 					   pci_resource_start(pdev, ENA_MEM_BAR),
3604 					   pci_resource_len(pdev, ENA_MEM_BAR));
3605 
3606 	if (!ena_dev->mem_bar)
3607 		return -EFAULT;
3608 
3609 	return 0;
3610 }
3611 
3612 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev,
3613 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
3614 			   bool *wd_state)
3615 {
3616 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3617 	struct ena_llq_configurations llq_config;
3618 	struct device *dev = &pdev->dev;
3619 	bool readless_supported;
3620 	u32 aenq_groups;
3621 	int dma_width;
3622 	int rc;
3623 
3624 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3625 	if (rc) {
3626 		dev_err(dev, "Failed to init mmio read less\n");
3627 		return rc;
3628 	}
3629 
3630 	/* The PCIe configuration space revision id indicate if mmio reg
3631 	 * read is disabled
3632 	 */
3633 	readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3634 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3635 
3636 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3637 	if (rc) {
3638 		dev_err(dev, "Can not reset device\n");
3639 		goto err_mmio_read_less;
3640 	}
3641 
3642 	rc = ena_com_validate_version(ena_dev);
3643 	if (rc) {
3644 		dev_err(dev, "Device version is too low\n");
3645 		goto err_mmio_read_less;
3646 	}
3647 
3648 	dma_width = ena_com_get_dma_width(ena_dev);
3649 	if (dma_width < 0) {
3650 		dev_err(dev, "Invalid dma width value %d", dma_width);
3651 		rc = dma_width;
3652 		goto err_mmio_read_less;
3653 	}
3654 
3655 	rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width));
3656 	if (rc) {
3657 		dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc);
3658 		goto err_mmio_read_less;
3659 	}
3660 
3661 	/* ENA admin level init */
3662 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3663 	if (rc) {
3664 		dev_err(dev,
3665 			"Can not initialize ena admin queue with device\n");
3666 		goto err_mmio_read_less;
3667 	}
3668 
3669 	/* To enable the msix interrupts the driver needs to know the number
3670 	 * of queues. So the driver uses polling mode to retrieve this
3671 	 * information
3672 	 */
3673 	ena_com_set_admin_polling_mode(ena_dev, true);
3674 
3675 	ena_config_host_info(ena_dev, pdev);
3676 
3677 	/* Get Device Attributes*/
3678 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3679 	if (rc) {
3680 		dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3681 		goto err_admin_init;
3682 	}
3683 
3684 	/* Try to turn all the available aenq groups */
3685 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3686 		BIT(ENA_ADMIN_FATAL_ERROR) |
3687 		BIT(ENA_ADMIN_WARNING) |
3688 		BIT(ENA_ADMIN_NOTIFICATION) |
3689 		BIT(ENA_ADMIN_KEEP_ALIVE);
3690 
3691 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3692 
3693 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3694 	if (rc) {
3695 		dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3696 		goto err_admin_init;
3697 	}
3698 
3699 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3700 
3701 	set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq);
3702 
3703 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq,
3704 					     &llq_config);
3705 	if (rc) {
3706 		dev_err(dev, "ENA device init failed\n");
3707 		goto err_admin_init;
3708 	}
3709 
3710 	ena_calc_io_queue_size(adapter, get_feat_ctx);
3711 
3712 	return 0;
3713 
3714 err_admin_init:
3715 	ena_com_delete_host_info(ena_dev);
3716 	ena_com_admin_destroy(ena_dev);
3717 err_mmio_read_less:
3718 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3719 
3720 	return rc;
3721 }
3722 
3723 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3724 {
3725 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3726 	struct device *dev = &adapter->pdev->dev;
3727 	int rc;
3728 
3729 	rc = ena_enable_msix(adapter);
3730 	if (rc) {
3731 		dev_err(dev, "Can not reserve msix vectors\n");
3732 		return rc;
3733 	}
3734 
3735 	ena_setup_mgmnt_intr(adapter);
3736 
3737 	rc = ena_request_mgmnt_irq(adapter);
3738 	if (rc) {
3739 		dev_err(dev, "Can not setup management interrupts\n");
3740 		goto err_disable_msix;
3741 	}
3742 
3743 	ena_com_set_admin_polling_mode(ena_dev, false);
3744 
3745 	ena_com_admin_aenq_enable(ena_dev);
3746 
3747 	return 0;
3748 
3749 err_disable_msix:
3750 	ena_disable_msix(adapter);
3751 
3752 	return rc;
3753 }
3754 
3755 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3756 {
3757 	struct net_device *netdev = adapter->netdev;
3758 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3759 	bool dev_up;
3760 
3761 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3762 		return;
3763 
3764 	netif_carrier_off(netdev);
3765 
3766 	del_timer_sync(&adapter->timer_service);
3767 
3768 	dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3769 	adapter->dev_up_before_reset = dev_up;
3770 	if (!graceful)
3771 		ena_com_set_admin_running_state(ena_dev, false);
3772 
3773 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3774 		ena_down(adapter);
3775 
3776 	/* Stop the device from sending AENQ events (in case reset flag is set
3777 	 *  and device is up, ena_down() already reset the device.
3778 	 */
3779 	if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3780 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3781 
3782 	ena_free_mgmnt_irq(adapter);
3783 
3784 	ena_disable_msix(adapter);
3785 
3786 	ena_com_abort_admin_commands(ena_dev);
3787 
3788 	ena_com_wait_for_abort_completion(ena_dev);
3789 
3790 	ena_com_admin_destroy(ena_dev);
3791 
3792 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3793 
3794 	/* return reset reason to default value */
3795 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3796 
3797 	clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3798 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3799 }
3800 
3801 static int ena_restore_device(struct ena_adapter *adapter)
3802 {
3803 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3804 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3805 	struct pci_dev *pdev = adapter->pdev;
3806 	struct ena_ring *txr;
3807 	int rc, count, i;
3808 	bool wd_state;
3809 
3810 	set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3811 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state);
3812 	if (rc) {
3813 		dev_err(&pdev->dev, "Can not initialize device\n");
3814 		goto err;
3815 	}
3816 	adapter->wd_state = wd_state;
3817 
3818 	count =  adapter->xdp_num_queues + adapter->num_io_queues;
3819 	for (i = 0 ; i < count; i++) {
3820 		txr = &adapter->tx_ring[i];
3821 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
3822 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
3823 	}
3824 
3825 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
3826 	if (rc) {
3827 		dev_err(&pdev->dev, "Validation of device parameters failed\n");
3828 		goto err_device_destroy;
3829 	}
3830 
3831 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3832 	if (rc) {
3833 		dev_err(&pdev->dev, "Enable MSI-X failed\n");
3834 		goto err_device_destroy;
3835 	}
3836 	/* If the interface was up before the reset bring it up */
3837 	if (adapter->dev_up_before_reset) {
3838 		rc = ena_up(adapter);
3839 		if (rc) {
3840 			dev_err(&pdev->dev, "Failed to create I/O queues\n");
3841 			goto err_disable_msix;
3842 		}
3843 	}
3844 
3845 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3846 
3847 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3848 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3849 		netif_carrier_on(adapter->netdev);
3850 
3851 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3852 	adapter->last_keep_alive_jiffies = jiffies;
3853 
3854 	return rc;
3855 err_disable_msix:
3856 	ena_free_mgmnt_irq(adapter);
3857 	ena_disable_msix(adapter);
3858 err_device_destroy:
3859 	ena_com_abort_admin_commands(ena_dev);
3860 	ena_com_wait_for_abort_completion(ena_dev);
3861 	ena_com_admin_destroy(ena_dev);
3862 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3863 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3864 err:
3865 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3866 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3867 	dev_err(&pdev->dev,
3868 		"Reset attempt failed. Can not reset the device\n");
3869 
3870 	return rc;
3871 }
3872 
3873 static void ena_fw_reset_device(struct work_struct *work)
3874 {
3875 	struct ena_adapter *adapter =
3876 		container_of(work, struct ena_adapter, reset_task);
3877 
3878 	rtnl_lock();
3879 
3880 	if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3881 		ena_destroy_device(adapter, false);
3882 		ena_restore_device(adapter);
3883 
3884 		dev_err(&adapter->pdev->dev, "Device reset completed successfully\n");
3885 	}
3886 
3887 	rtnl_unlock();
3888 }
3889 
3890 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3891 					struct ena_ring *rx_ring)
3892 {
3893 	struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi);
3894 
3895 	if (likely(READ_ONCE(ena_napi->first_interrupt)))
3896 		return 0;
3897 
3898 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3899 		return 0;
3900 
3901 	rx_ring->no_interrupt_event_cnt++;
3902 
3903 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3904 		netif_err(adapter, rx_err, adapter->netdev,
3905 			  "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3906 			  rx_ring->qid);
3907 
3908 		ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3909 		return -EIO;
3910 	}
3911 
3912 	return 0;
3913 }
3914 
3915 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3916 					  struct ena_ring *tx_ring)
3917 {
3918 	struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi);
3919 	unsigned int time_since_last_napi;
3920 	unsigned int missing_tx_comp_to;
3921 	bool is_tx_comp_time_expired;
3922 	struct ena_tx_buffer *tx_buf;
3923 	unsigned long last_jiffies;
3924 	u32 missed_tx = 0;
3925 	int i, rc = 0;
3926 
3927 	for (i = 0; i < tx_ring->ring_size; i++) {
3928 		tx_buf = &tx_ring->tx_buffer_info[i];
3929 		last_jiffies = tx_buf->last_jiffies;
3930 
3931 		if (last_jiffies == 0)
3932 			/* no pending Tx at this location */
3933 			continue;
3934 
3935 		is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3936 			 2 * adapter->missing_tx_completion_to);
3937 
3938 		if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) {
3939 			/* If after graceful period interrupt is still not
3940 			 * received, we schedule a reset
3941 			 */
3942 			netif_err(adapter, tx_err, adapter->netdev,
3943 				  "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3944 				  tx_ring->qid);
3945 			ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3946 			return -EIO;
3947 		}
3948 
3949 		is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3950 			adapter->missing_tx_completion_to);
3951 
3952 		if (unlikely(is_tx_comp_time_expired)) {
3953 			if (!tx_buf->print_once) {
3954 				time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies);
3955 				missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to);
3956 				netif_notice(adapter, tx_err, adapter->netdev,
3957 					     "Found a Tx that wasn't completed on time, qid %d, index %d. %u usecs have passed since last napi execution. Missing Tx timeout value %u msecs\n",
3958 					     tx_ring->qid, i, time_since_last_napi, missing_tx_comp_to);
3959 			}
3960 
3961 			tx_buf->print_once = 1;
3962 			missed_tx++;
3963 		}
3964 	}
3965 
3966 	if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3967 		netif_err(adapter, tx_err, adapter->netdev,
3968 			  "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
3969 			  missed_tx,
3970 			  adapter->missing_tx_completion_threshold);
3971 		ena_reset_device(adapter, ENA_REGS_RESET_MISS_TX_CMPL);
3972 		rc = -EIO;
3973 	}
3974 
3975 	ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx,
3976 			  &tx_ring->syncp);
3977 
3978 	return rc;
3979 }
3980 
3981 static void check_for_missing_completions(struct ena_adapter *adapter)
3982 {
3983 	struct ena_ring *tx_ring;
3984 	struct ena_ring *rx_ring;
3985 	int i, budget, rc;
3986 	int io_queue_count;
3987 
3988 	io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
3989 	/* Make sure the driver doesn't turn the device in other process */
3990 	smp_rmb();
3991 
3992 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3993 		return;
3994 
3995 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3996 		return;
3997 
3998 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
3999 		return;
4000 
4001 	budget = ENA_MONITORED_TX_QUEUES;
4002 
4003 	for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) {
4004 		tx_ring = &adapter->tx_ring[i];
4005 		rx_ring = &adapter->rx_ring[i];
4006 
4007 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
4008 		if (unlikely(rc))
4009 			return;
4010 
4011 		rc =  !ENA_IS_XDP_INDEX(adapter, i) ?
4012 			check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
4013 		if (unlikely(rc))
4014 			return;
4015 
4016 		budget--;
4017 		if (!budget)
4018 			break;
4019 	}
4020 
4021 	adapter->last_monitored_tx_qid = i % io_queue_count;
4022 }
4023 
4024 /* trigger napi schedule after 2 consecutive detections */
4025 #define EMPTY_RX_REFILL 2
4026 /* For the rare case where the device runs out of Rx descriptors and the
4027  * napi handler failed to refill new Rx descriptors (due to a lack of memory
4028  * for example).
4029  * This case will lead to a deadlock:
4030  * The device won't send interrupts since all the new Rx packets will be dropped
4031  * The napi handler won't allocate new Rx descriptors so the device will be
4032  * able to send new packets.
4033  *
4034  * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
4035  * It is recommended to have at least 512MB, with a minimum of 128MB for
4036  * constrained environment).
4037  *
4038  * When such a situation is detected - Reschedule napi
4039  */
4040 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
4041 {
4042 	struct ena_ring *rx_ring;
4043 	int i, refill_required;
4044 
4045 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
4046 		return;
4047 
4048 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
4049 		return;
4050 
4051 	for (i = 0; i < adapter->num_io_queues; i++) {
4052 		rx_ring = &adapter->rx_ring[i];
4053 
4054 		refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
4055 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
4056 			rx_ring->empty_rx_queue++;
4057 
4058 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
4059 				ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1,
4060 						  &rx_ring->syncp);
4061 
4062 				netif_err(adapter, drv, adapter->netdev,
4063 					  "Trigger refill for ring %d\n", i);
4064 
4065 				napi_schedule(rx_ring->napi);
4066 				rx_ring->empty_rx_queue = 0;
4067 			}
4068 		} else {
4069 			rx_ring->empty_rx_queue = 0;
4070 		}
4071 	}
4072 }
4073 
4074 /* Check for keep alive expiration */
4075 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
4076 {
4077 	unsigned long keep_alive_expired;
4078 
4079 	if (!adapter->wd_state)
4080 		return;
4081 
4082 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
4083 		return;
4084 
4085 	keep_alive_expired = adapter->last_keep_alive_jiffies +
4086 			     adapter->keep_alive_timeout;
4087 	if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
4088 		netif_err(adapter, drv, adapter->netdev,
4089 			  "Keep alive watchdog timeout.\n");
4090 		ena_increase_stat(&adapter->dev_stats.wd_expired, 1,
4091 				  &adapter->syncp);
4092 		ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
4093 	}
4094 }
4095 
4096 static void check_for_admin_com_state(struct ena_adapter *adapter)
4097 {
4098 	if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
4099 		netif_err(adapter, drv, adapter->netdev,
4100 			  "ENA admin queue is not in running state!\n");
4101 		ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1,
4102 				  &adapter->syncp);
4103 		ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO);
4104 	}
4105 }
4106 
4107 static void ena_update_hints(struct ena_adapter *adapter,
4108 			     struct ena_admin_ena_hw_hints *hints)
4109 {
4110 	struct net_device *netdev = adapter->netdev;
4111 
4112 	if (hints->admin_completion_tx_timeout)
4113 		adapter->ena_dev->admin_queue.completion_timeout =
4114 			hints->admin_completion_tx_timeout * 1000;
4115 
4116 	if (hints->mmio_read_timeout)
4117 		/* convert to usec */
4118 		adapter->ena_dev->mmio_read.reg_read_to =
4119 			hints->mmio_read_timeout * 1000;
4120 
4121 	if (hints->missed_tx_completion_count_threshold_to_reset)
4122 		adapter->missing_tx_completion_threshold =
4123 			hints->missed_tx_completion_count_threshold_to_reset;
4124 
4125 	if (hints->missing_tx_completion_timeout) {
4126 		if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
4127 			adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
4128 		else
4129 			adapter->missing_tx_completion_to =
4130 				msecs_to_jiffies(hints->missing_tx_completion_timeout);
4131 	}
4132 
4133 	if (hints->netdev_wd_timeout)
4134 		netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
4135 
4136 	if (hints->driver_watchdog_timeout) {
4137 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
4138 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
4139 		else
4140 			adapter->keep_alive_timeout =
4141 				msecs_to_jiffies(hints->driver_watchdog_timeout);
4142 	}
4143 }
4144 
4145 static void ena_update_host_info(struct ena_admin_host_info *host_info,
4146 				 struct net_device *netdev)
4147 {
4148 	host_info->supported_network_features[0] =
4149 		netdev->features & GENMASK_ULL(31, 0);
4150 	host_info->supported_network_features[1] =
4151 		(netdev->features & GENMASK_ULL(63, 32)) >> 32;
4152 }
4153 
4154 static void ena_timer_service(struct timer_list *t)
4155 {
4156 	struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
4157 	u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
4158 	struct ena_admin_host_info *host_info =
4159 		adapter->ena_dev->host_attr.host_info;
4160 
4161 	check_for_missing_keep_alive(adapter);
4162 
4163 	check_for_admin_com_state(adapter);
4164 
4165 	check_for_missing_completions(adapter);
4166 
4167 	check_for_empty_rx_ring(adapter);
4168 
4169 	if (debug_area)
4170 		ena_dump_stats_to_buf(adapter, debug_area);
4171 
4172 	if (host_info)
4173 		ena_update_host_info(host_info, adapter->netdev);
4174 
4175 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4176 		netif_err(adapter, drv, adapter->netdev,
4177 			  "Trigger reset is on\n");
4178 		ena_dump_stats_to_dmesg(adapter);
4179 		queue_work(ena_wq, &adapter->reset_task);
4180 		return;
4181 	}
4182 
4183 	/* Reset the timer */
4184 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4185 }
4186 
4187 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev,
4188 				     struct ena_com_dev *ena_dev,
4189 				     struct ena_com_dev_get_features_ctx *get_feat_ctx)
4190 {
4191 	u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
4192 
4193 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
4194 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
4195 			&get_feat_ctx->max_queue_ext.max_queue_ext;
4196 		io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
4197 				  max_queue_ext->max_rx_cq_num);
4198 
4199 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
4200 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
4201 	} else {
4202 		struct ena_admin_queue_feature_desc *max_queues =
4203 			&get_feat_ctx->max_queues;
4204 		io_tx_sq_num = max_queues->max_sq_num;
4205 		io_tx_cq_num = max_queues->max_cq_num;
4206 		io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
4207 	}
4208 
4209 	/* In case of LLQ use the llq fields for the tx SQ/CQ */
4210 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4211 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
4212 
4213 	max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
4214 	max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
4215 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
4216 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
4217 	/* 1 IRQ for mgmnt and 1 IRQs for each IO direction */
4218 	max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
4219 
4220 	return max_num_io_queues;
4221 }
4222 
4223 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
4224 				 struct net_device *netdev)
4225 {
4226 	netdev_features_t dev_features = 0;
4227 
4228 	/* Set offload features */
4229 	if (feat->offload.tx &
4230 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
4231 		dev_features |= NETIF_F_IP_CSUM;
4232 
4233 	if (feat->offload.tx &
4234 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
4235 		dev_features |= NETIF_F_IPV6_CSUM;
4236 
4237 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
4238 		dev_features |= NETIF_F_TSO;
4239 
4240 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
4241 		dev_features |= NETIF_F_TSO6;
4242 
4243 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
4244 		dev_features |= NETIF_F_TSO_ECN;
4245 
4246 	if (feat->offload.rx_supported &
4247 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
4248 		dev_features |= NETIF_F_RXCSUM;
4249 
4250 	if (feat->offload.rx_supported &
4251 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
4252 		dev_features |= NETIF_F_RXCSUM;
4253 
4254 	netdev->features =
4255 		dev_features |
4256 		NETIF_F_SG |
4257 		NETIF_F_RXHASH |
4258 		NETIF_F_HIGHDMA;
4259 
4260 	netdev->hw_features |= netdev->features;
4261 	netdev->vlan_features |= netdev->features;
4262 }
4263 
4264 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
4265 				     struct ena_com_dev_get_features_ctx *feat)
4266 {
4267 	struct net_device *netdev = adapter->netdev;
4268 
4269 	/* Copy mac address */
4270 	if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
4271 		eth_hw_addr_random(netdev);
4272 		ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
4273 	} else {
4274 		ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
4275 		eth_hw_addr_set(netdev, adapter->mac_addr);
4276 	}
4277 
4278 	/* Set offload features */
4279 	ena_set_dev_offloads(feat, netdev);
4280 
4281 	adapter->max_mtu = feat->dev_attr.max_mtu;
4282 	netdev->max_mtu = adapter->max_mtu;
4283 	netdev->min_mtu = ENA_MIN_MTU;
4284 }
4285 
4286 static int ena_rss_init_default(struct ena_adapter *adapter)
4287 {
4288 	struct ena_com_dev *ena_dev = adapter->ena_dev;
4289 	struct device *dev = &adapter->pdev->dev;
4290 	int rc, i;
4291 	u32 val;
4292 
4293 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
4294 	if (unlikely(rc)) {
4295 		dev_err(dev, "Cannot init indirect table\n");
4296 		goto err_rss_init;
4297 	}
4298 
4299 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
4300 		val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
4301 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
4302 						       ENA_IO_RXQ_IDX(val));
4303 		if (unlikely(rc)) {
4304 			dev_err(dev, "Cannot fill indirect table\n");
4305 			goto err_fill_indir;
4306 		}
4307 	}
4308 
4309 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL,
4310 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
4311 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4312 		dev_err(dev, "Cannot fill hash function\n");
4313 		goto err_fill_indir;
4314 	}
4315 
4316 	rc = ena_com_set_default_hash_ctrl(ena_dev);
4317 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4318 		dev_err(dev, "Cannot fill hash control\n");
4319 		goto err_fill_indir;
4320 	}
4321 
4322 	return 0;
4323 
4324 err_fill_indir:
4325 	ena_com_rss_destroy(ena_dev);
4326 err_rss_init:
4327 
4328 	return rc;
4329 }
4330 
4331 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
4332 {
4333 	int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4334 
4335 	pci_release_selected_regions(pdev, release_bars);
4336 }
4337 
4338 /* ena_probe - Device Initialization Routine
4339  * @pdev: PCI device information struct
4340  * @ent: entry in ena_pci_tbl
4341  *
4342  * Returns 0 on success, negative on failure
4343  *
4344  * ena_probe initializes an adapter identified by a pci_dev structure.
4345  * The OS initialization, configuring of the adapter private structure,
4346  * and a hardware reset occur.
4347  */
4348 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4349 {
4350 	struct ena_com_dev_get_features_ctx get_feat_ctx;
4351 	struct ena_com_dev *ena_dev = NULL;
4352 	struct ena_adapter *adapter;
4353 	struct net_device *netdev;
4354 	static int adapters_found;
4355 	u32 max_num_io_queues;
4356 	bool wd_state;
4357 	int bars, rc;
4358 
4359 	dev_dbg(&pdev->dev, "%s\n", __func__);
4360 
4361 	rc = pci_enable_device_mem(pdev);
4362 	if (rc) {
4363 		dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
4364 		return rc;
4365 	}
4366 
4367 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS));
4368 	if (rc) {
4369 		dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc);
4370 		goto err_disable_device;
4371 	}
4372 
4373 	pci_set_master(pdev);
4374 
4375 	ena_dev = vzalloc(sizeof(*ena_dev));
4376 	if (!ena_dev) {
4377 		rc = -ENOMEM;
4378 		goto err_disable_device;
4379 	}
4380 
4381 	bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4382 	rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
4383 	if (rc) {
4384 		dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
4385 			rc);
4386 		goto err_free_ena_dev;
4387 	}
4388 
4389 	ena_dev->reg_bar = devm_ioremap(&pdev->dev,
4390 					pci_resource_start(pdev, ENA_REG_BAR),
4391 					pci_resource_len(pdev, ENA_REG_BAR));
4392 	if (!ena_dev->reg_bar) {
4393 		dev_err(&pdev->dev, "Failed to remap regs bar\n");
4394 		rc = -EFAULT;
4395 		goto err_free_region;
4396 	}
4397 
4398 	ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US;
4399 
4400 	ena_dev->dmadev = &pdev->dev;
4401 
4402 	netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS);
4403 	if (!netdev) {
4404 		dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
4405 		rc = -ENOMEM;
4406 		goto err_free_region;
4407 	}
4408 
4409 	SET_NETDEV_DEV(netdev, &pdev->dev);
4410 	adapter = netdev_priv(netdev);
4411 	adapter->ena_dev = ena_dev;
4412 	adapter->netdev = netdev;
4413 	adapter->pdev = pdev;
4414 	adapter->msg_enable = DEFAULT_MSG_ENABLE;
4415 
4416 	ena_dev->net_device = netdev;
4417 
4418 	pci_set_drvdata(pdev, adapter);
4419 
4420 	rc = ena_map_llq_mem_bar(pdev, ena_dev, bars);
4421 	if (rc) {
4422 		dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n");
4423 		goto err_netdev_destroy;
4424 	}
4425 
4426 	rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state);
4427 	if (rc) {
4428 		dev_err(&pdev->dev, "ENA device init failed\n");
4429 		if (rc == -ETIME)
4430 			rc = -EPROBE_DEFER;
4431 		goto err_netdev_destroy;
4432 	}
4433 
4434 	/* Initial TX and RX interrupt delay. Assumes 1 usec granularity.
4435 	 * Updated during device initialization with the real granularity
4436 	 */
4437 	ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
4438 	ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
4439 	ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
4440 	max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
4441 	if (unlikely(!max_num_io_queues)) {
4442 		rc = -EFAULT;
4443 		goto err_device_destroy;
4444 	}
4445 
4446 	ena_set_conf_feat_params(adapter, &get_feat_ctx);
4447 
4448 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
4449 
4450 	adapter->num_io_queues = max_num_io_queues;
4451 	adapter->max_num_io_queues = max_num_io_queues;
4452 	adapter->last_monitored_tx_qid = 0;
4453 
4454 	adapter->xdp_first_ring = 0;
4455 	adapter->xdp_num_queues = 0;
4456 
4457 	adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
4458 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4459 		adapter->disable_meta_caching =
4460 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
4461 			   BIT(ENA_ADMIN_DISABLE_META_CACHING));
4462 
4463 	adapter->wd_state = wd_state;
4464 
4465 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
4466 
4467 	rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
4468 	if (rc) {
4469 		dev_err(&pdev->dev,
4470 			"Failed to query interrupt moderation feature\n");
4471 		goto err_device_destroy;
4472 	}
4473 
4474 	ena_init_io_rings(adapter,
4475 			  0,
4476 			  adapter->xdp_num_queues +
4477 			  adapter->num_io_queues);
4478 
4479 	netdev->netdev_ops = &ena_netdev_ops;
4480 	netdev->watchdog_timeo = TX_TIMEOUT;
4481 	ena_set_ethtool_ops(netdev);
4482 
4483 	netdev->priv_flags |= IFF_UNICAST_FLT;
4484 
4485 	u64_stats_init(&adapter->syncp);
4486 
4487 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
4488 	if (rc) {
4489 		dev_err(&pdev->dev,
4490 			"Failed to enable and set the admin interrupts\n");
4491 		goto err_worker_destroy;
4492 	}
4493 	rc = ena_rss_init_default(adapter);
4494 	if (rc && (rc != -EOPNOTSUPP)) {
4495 		dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
4496 		goto err_free_msix;
4497 	}
4498 
4499 	ena_config_debug_area(adapter);
4500 
4501 	if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues))
4502 		netdev->xdp_features = NETDEV_XDP_ACT_BASIC |
4503 				       NETDEV_XDP_ACT_REDIRECT;
4504 
4505 	memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
4506 
4507 	netif_carrier_off(netdev);
4508 
4509 	rc = register_netdev(netdev);
4510 	if (rc) {
4511 		dev_err(&pdev->dev, "Cannot register net device\n");
4512 		goto err_rss;
4513 	}
4514 
4515 	INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
4516 
4517 	adapter->last_keep_alive_jiffies = jiffies;
4518 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
4519 	adapter->missing_tx_completion_to = TX_TIMEOUT;
4520 	adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
4521 
4522 	ena_update_hints(adapter, &get_feat_ctx.hw_hints);
4523 
4524 	timer_setup(&adapter->timer_service, ena_timer_service, 0);
4525 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4526 
4527 	dev_info(&pdev->dev,
4528 		 "%s found at mem %lx, mac addr %pM\n",
4529 		 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
4530 		 netdev->dev_addr);
4531 
4532 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
4533 
4534 	adapters_found++;
4535 
4536 	return 0;
4537 
4538 err_rss:
4539 	ena_com_delete_debug_area(ena_dev);
4540 	ena_com_rss_destroy(ena_dev);
4541 err_free_msix:
4542 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
4543 	/* stop submitting admin commands on a device that was reset */
4544 	ena_com_set_admin_running_state(ena_dev, false);
4545 	ena_free_mgmnt_irq(adapter);
4546 	ena_disable_msix(adapter);
4547 err_worker_destroy:
4548 	del_timer(&adapter->timer_service);
4549 err_device_destroy:
4550 	ena_com_delete_host_info(ena_dev);
4551 	ena_com_admin_destroy(ena_dev);
4552 err_netdev_destroy:
4553 	free_netdev(netdev);
4554 err_free_region:
4555 	ena_release_bars(ena_dev, pdev);
4556 err_free_ena_dev:
4557 	vfree(ena_dev);
4558 err_disable_device:
4559 	pci_disable_device(pdev);
4560 	return rc;
4561 }
4562 
4563 /*****************************************************************************/
4564 
4565 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines
4566  * @pdev: PCI device information struct
4567  * @shutdown: Is it a shutdown operation? If false, means it is a removal
4568  *
4569  * __ena_shutoff is a helper routine that does the real work on shutdown and
4570  * removal paths; the difference between those paths is with regards to whether
4571  * dettach or unregister the netdevice.
4572  */
4573 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown)
4574 {
4575 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4576 	struct ena_com_dev *ena_dev;
4577 	struct net_device *netdev;
4578 
4579 	ena_dev = adapter->ena_dev;
4580 	netdev = adapter->netdev;
4581 
4582 #ifdef CONFIG_RFS_ACCEL
4583 	if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
4584 		free_irq_cpu_rmap(netdev->rx_cpu_rmap);
4585 		netdev->rx_cpu_rmap = NULL;
4586 	}
4587 #endif /* CONFIG_RFS_ACCEL */
4588 
4589 	/* Make sure timer and reset routine won't be called after
4590 	 * freeing device resources.
4591 	 */
4592 	del_timer_sync(&adapter->timer_service);
4593 	cancel_work_sync(&adapter->reset_task);
4594 
4595 	rtnl_lock(); /* lock released inside the below if-else block */
4596 	adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN;
4597 	ena_destroy_device(adapter, true);
4598 
4599 	if (shutdown) {
4600 		netif_device_detach(netdev);
4601 		dev_close(netdev);
4602 		rtnl_unlock();
4603 	} else {
4604 		rtnl_unlock();
4605 		unregister_netdev(netdev);
4606 		free_netdev(netdev);
4607 	}
4608 
4609 	ena_com_rss_destroy(ena_dev);
4610 
4611 	ena_com_delete_debug_area(ena_dev);
4612 
4613 	ena_com_delete_host_info(ena_dev);
4614 
4615 	ena_release_bars(ena_dev, pdev);
4616 
4617 	pci_disable_device(pdev);
4618 
4619 	vfree(ena_dev);
4620 }
4621 
4622 /* ena_remove - Device Removal Routine
4623  * @pdev: PCI device information struct
4624  *
4625  * ena_remove is called by the PCI subsystem to alert the driver
4626  * that it should release a PCI device.
4627  */
4628 
4629 static void ena_remove(struct pci_dev *pdev)
4630 {
4631 	__ena_shutoff(pdev, false);
4632 }
4633 
4634 /* ena_shutdown - Device Shutdown Routine
4635  * @pdev: PCI device information struct
4636  *
4637  * ena_shutdown is called by the PCI subsystem to alert the driver that
4638  * a shutdown/reboot (or kexec) is happening and device must be disabled.
4639  */
4640 
4641 static void ena_shutdown(struct pci_dev *pdev)
4642 {
4643 	__ena_shutoff(pdev, true);
4644 }
4645 
4646 /* ena_suspend - PM suspend callback
4647  * @dev_d: Device information struct
4648  */
4649 static int __maybe_unused ena_suspend(struct device *dev_d)
4650 {
4651 	struct pci_dev *pdev = to_pci_dev(dev_d);
4652 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4653 
4654 	ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp);
4655 
4656 	rtnl_lock();
4657 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4658 		dev_err(&pdev->dev,
4659 			"Ignoring device reset request as the device is being suspended\n");
4660 		clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4661 	}
4662 	ena_destroy_device(adapter, true);
4663 	rtnl_unlock();
4664 	return 0;
4665 }
4666 
4667 /* ena_resume - PM resume callback
4668  * @dev_d: Device information struct
4669  */
4670 static int __maybe_unused ena_resume(struct device *dev_d)
4671 {
4672 	struct ena_adapter *adapter = dev_get_drvdata(dev_d);
4673 	int rc;
4674 
4675 	ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp);
4676 
4677 	rtnl_lock();
4678 	rc = ena_restore_device(adapter);
4679 	rtnl_unlock();
4680 	return rc;
4681 }
4682 
4683 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume);
4684 
4685 static struct pci_driver ena_pci_driver = {
4686 	.name		= DRV_MODULE_NAME,
4687 	.id_table	= ena_pci_tbl,
4688 	.probe		= ena_probe,
4689 	.remove		= ena_remove,
4690 	.shutdown	= ena_shutdown,
4691 	.driver.pm	= &ena_pm_ops,
4692 	.sriov_configure = pci_sriov_configure_simple,
4693 };
4694 
4695 static int __init ena_init(void)
4696 {
4697 	int ret;
4698 
4699 	ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4700 	if (!ena_wq) {
4701 		pr_err("Failed to create workqueue\n");
4702 		return -ENOMEM;
4703 	}
4704 
4705 	ret = pci_register_driver(&ena_pci_driver);
4706 	if (ret)
4707 		destroy_workqueue(ena_wq);
4708 
4709 	return ret;
4710 }
4711 
4712 static void __exit ena_cleanup(void)
4713 {
4714 	pci_unregister_driver(&ena_pci_driver);
4715 
4716 	if (ena_wq) {
4717 		destroy_workqueue(ena_wq);
4718 		ena_wq = NULL;
4719 	}
4720 }
4721 
4722 /******************************************************************************
4723  ******************************** AENQ Handlers *******************************
4724  *****************************************************************************/
4725 /* ena_update_on_link_change:
4726  * Notify the network interface about the change in link status
4727  */
4728 static void ena_update_on_link_change(void *adapter_data,
4729 				      struct ena_admin_aenq_entry *aenq_e)
4730 {
4731 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4732 	struct ena_admin_aenq_link_change_desc *aenq_desc =
4733 		(struct ena_admin_aenq_link_change_desc *)aenq_e;
4734 	int status = aenq_desc->flags &
4735 		ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4736 
4737 	if (status) {
4738 		netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
4739 		set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4740 		if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4741 			netif_carrier_on(adapter->netdev);
4742 	} else {
4743 		clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4744 		netif_carrier_off(adapter->netdev);
4745 	}
4746 }
4747 
4748 static void ena_keep_alive_wd(void *adapter_data,
4749 			      struct ena_admin_aenq_entry *aenq_e)
4750 {
4751 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4752 	struct ena_admin_aenq_keep_alive_desc *desc;
4753 	u64 rx_drops;
4754 	u64 tx_drops;
4755 
4756 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4757 	adapter->last_keep_alive_jiffies = jiffies;
4758 
4759 	rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4760 	tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low;
4761 
4762 	u64_stats_update_begin(&adapter->syncp);
4763 	/* These stats are accumulated by the device, so the counters indicate
4764 	 * all drops since last reset.
4765 	 */
4766 	adapter->dev_stats.rx_drops = rx_drops;
4767 	adapter->dev_stats.tx_drops = tx_drops;
4768 	u64_stats_update_end(&adapter->syncp);
4769 }
4770 
4771 static void ena_notification(void *adapter_data,
4772 			     struct ena_admin_aenq_entry *aenq_e)
4773 {
4774 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4775 	struct ena_admin_ena_hw_hints *hints;
4776 
4777 	WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4778 	     "Invalid group(%x) expected %x\n",
4779 	     aenq_e->aenq_common_desc.group,
4780 	     ENA_ADMIN_NOTIFICATION);
4781 
4782 	switch (aenq_e->aenq_common_desc.syndrome) {
4783 	case ENA_ADMIN_UPDATE_HINTS:
4784 		hints = (struct ena_admin_ena_hw_hints *)
4785 			(&aenq_e->inline_data_w4);
4786 		ena_update_hints(adapter, hints);
4787 		break;
4788 	default:
4789 		netif_err(adapter, drv, adapter->netdev,
4790 			  "Invalid aenq notification link state %d\n",
4791 			  aenq_e->aenq_common_desc.syndrome);
4792 	}
4793 }
4794 
4795 /* This handler will called for unknown event group or unimplemented handlers*/
4796 static void unimplemented_aenq_handler(void *data,
4797 				       struct ena_admin_aenq_entry *aenq_e)
4798 {
4799 	struct ena_adapter *adapter = (struct ena_adapter *)data;
4800 
4801 	netif_err(adapter, drv, adapter->netdev,
4802 		  "Unknown event was received or event with unimplemented handler\n");
4803 }
4804 
4805 static struct ena_aenq_handlers aenq_handlers = {
4806 	.handlers = {
4807 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4808 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4809 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4810 	},
4811 	.unimplemented_handler = unimplemented_aenq_handler
4812 };
4813 
4814 module_init(ena_init);
4815 module_exit(ena_cleanup);
4816