1 /*
2  * Copyright 2015 Amazon.com, Inc. or its affiliates.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #ifdef CONFIG_RFS_ACCEL
36 #include <linux/cpu_rmap.h>
37 #endif /* CONFIG_RFS_ACCEL */
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/numa.h>
43 #include <linux/pci.h>
44 #include <linux/utsname.h>
45 #include <linux/version.h>
46 #include <linux/vmalloc.h>
47 #include <net/ip.h>
48 
49 #include "ena_netdev.h"
50 #include "ena_pci_id_tbl.h"
51 
52 static char version[] = DEVICE_NAME " v" DRV_MODULE_VERSION "\n";
53 
54 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
55 MODULE_DESCRIPTION(DEVICE_NAME);
56 MODULE_LICENSE("GPL");
57 MODULE_VERSION(DRV_MODULE_VERSION);
58 
59 /* Time in jiffies before concluding the transmitter is hung. */
60 #define TX_TIMEOUT  (5 * HZ)
61 
62 #define ENA_NAPI_BUDGET 64
63 
64 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
65 		NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
66 static int debug = -1;
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69 
70 static struct ena_aenq_handlers aenq_handlers;
71 
72 static struct workqueue_struct *ena_wq;
73 
74 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
75 
76 static int ena_rss_init_default(struct ena_adapter *adapter);
77 static void check_for_admin_com_state(struct ena_adapter *adapter);
78 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
79 static int ena_restore_device(struct ena_adapter *adapter);
80 
81 static void ena_tx_timeout(struct net_device *dev)
82 {
83 	struct ena_adapter *adapter = netdev_priv(dev);
84 
85 	/* Change the state of the device to trigger reset
86 	 * Check that we are not in the middle or a trigger already
87 	 */
88 
89 	if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
90 		return;
91 
92 	adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD;
93 	u64_stats_update_begin(&adapter->syncp);
94 	adapter->dev_stats.tx_timeout++;
95 	u64_stats_update_end(&adapter->syncp);
96 
97 	netif_err(adapter, tx_err, dev, "Transmit time out\n");
98 }
99 
100 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
101 {
102 	int i;
103 
104 	for (i = 0; i < adapter->num_queues; i++)
105 		adapter->rx_ring[i].mtu = mtu;
106 }
107 
108 static int ena_change_mtu(struct net_device *dev, int new_mtu)
109 {
110 	struct ena_adapter *adapter = netdev_priv(dev);
111 	int ret;
112 
113 	ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
114 	if (!ret) {
115 		netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu);
116 		update_rx_ring_mtu(adapter, new_mtu);
117 		dev->mtu = new_mtu;
118 	} else {
119 		netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
120 			  new_mtu);
121 	}
122 
123 	return ret;
124 }
125 
126 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
127 {
128 #ifdef CONFIG_RFS_ACCEL
129 	u32 i;
130 	int rc;
131 
132 	adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_queues);
133 	if (!adapter->netdev->rx_cpu_rmap)
134 		return -ENOMEM;
135 	for (i = 0; i < adapter->num_queues; i++) {
136 		int irq_idx = ENA_IO_IRQ_IDX(i);
137 
138 		rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
139 				      pci_irq_vector(adapter->pdev, irq_idx));
140 		if (rc) {
141 			free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
142 			adapter->netdev->rx_cpu_rmap = NULL;
143 			return rc;
144 		}
145 	}
146 #endif /* CONFIG_RFS_ACCEL */
147 	return 0;
148 }
149 
150 static void ena_init_io_rings_common(struct ena_adapter *adapter,
151 				     struct ena_ring *ring, u16 qid)
152 {
153 	ring->qid = qid;
154 	ring->pdev = adapter->pdev;
155 	ring->dev = &adapter->pdev->dev;
156 	ring->netdev = adapter->netdev;
157 	ring->napi = &adapter->ena_napi[qid].napi;
158 	ring->adapter = adapter;
159 	ring->ena_dev = adapter->ena_dev;
160 	ring->per_napi_packets = 0;
161 	ring->per_napi_bytes = 0;
162 	ring->cpu = 0;
163 	ring->first_interrupt = false;
164 	ring->no_interrupt_event_cnt = 0;
165 	u64_stats_init(&ring->syncp);
166 }
167 
168 static void ena_init_io_rings(struct ena_adapter *adapter)
169 {
170 	struct ena_com_dev *ena_dev;
171 	struct ena_ring *txr, *rxr;
172 	int i;
173 
174 	ena_dev = adapter->ena_dev;
175 
176 	for (i = 0; i < adapter->num_queues; i++) {
177 		txr = &adapter->tx_ring[i];
178 		rxr = &adapter->rx_ring[i];
179 
180 		/* TX/RX common ring state */
181 		ena_init_io_rings_common(adapter, txr, i);
182 		ena_init_io_rings_common(adapter, rxr, i);
183 
184 		/* TX specific ring state */
185 		txr->ring_size = adapter->tx_ring_size;
186 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
187 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
188 		txr->sgl_size = adapter->max_tx_sgl_size;
189 		txr->smoothed_interval =
190 			ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
191 
192 		/* RX specific ring state */
193 		rxr->ring_size = adapter->rx_ring_size;
194 		rxr->rx_copybreak = adapter->rx_copybreak;
195 		rxr->sgl_size = adapter->max_rx_sgl_size;
196 		rxr->smoothed_interval =
197 			ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
198 		rxr->empty_rx_queue = 0;
199 	}
200 }
201 
202 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
203  * @adapter: network interface device structure
204  * @qid: queue index
205  *
206  * Return 0 on success, negative on failure
207  */
208 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
209 {
210 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
211 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
212 	int size, i, node;
213 
214 	if (tx_ring->tx_buffer_info) {
215 		netif_err(adapter, ifup,
216 			  adapter->netdev, "tx_buffer_info info is not NULL");
217 		return -EEXIST;
218 	}
219 
220 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
221 	node = cpu_to_node(ena_irq->cpu);
222 
223 	tx_ring->tx_buffer_info = vzalloc_node(size, node);
224 	if (!tx_ring->tx_buffer_info) {
225 		tx_ring->tx_buffer_info = vzalloc(size);
226 		if (!tx_ring->tx_buffer_info)
227 			return -ENOMEM;
228 	}
229 
230 	size = sizeof(u16) * tx_ring->ring_size;
231 	tx_ring->free_tx_ids = vzalloc_node(size, node);
232 	if (!tx_ring->free_tx_ids) {
233 		tx_ring->free_tx_ids = vzalloc(size);
234 		if (!tx_ring->free_tx_ids) {
235 			vfree(tx_ring->tx_buffer_info);
236 			return -ENOMEM;
237 		}
238 	}
239 
240 	size = tx_ring->tx_max_header_size;
241 	tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
242 	if (!tx_ring->push_buf_intermediate_buf) {
243 		tx_ring->push_buf_intermediate_buf = vzalloc(size);
244 		if (!tx_ring->push_buf_intermediate_buf) {
245 			vfree(tx_ring->tx_buffer_info);
246 			vfree(tx_ring->free_tx_ids);
247 			return -ENOMEM;
248 		}
249 	}
250 
251 	/* Req id ring for TX out of order completions */
252 	for (i = 0; i < tx_ring->ring_size; i++)
253 		tx_ring->free_tx_ids[i] = i;
254 
255 	/* Reset tx statistics */
256 	memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
257 
258 	tx_ring->next_to_use = 0;
259 	tx_ring->next_to_clean = 0;
260 	tx_ring->cpu = ena_irq->cpu;
261 	return 0;
262 }
263 
264 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
265  * @adapter: network interface device structure
266  * @qid: queue index
267  *
268  * Free all transmit software resources
269  */
270 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
271 {
272 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
273 
274 	vfree(tx_ring->tx_buffer_info);
275 	tx_ring->tx_buffer_info = NULL;
276 
277 	vfree(tx_ring->free_tx_ids);
278 	tx_ring->free_tx_ids = NULL;
279 
280 	vfree(tx_ring->push_buf_intermediate_buf);
281 	tx_ring->push_buf_intermediate_buf = NULL;
282 }
283 
284 /* ena_setup_all_tx_resources - allocate I/O Tx queues resources for All queues
285  * @adapter: private structure
286  *
287  * Return 0 on success, negative on failure
288  */
289 static int ena_setup_all_tx_resources(struct ena_adapter *adapter)
290 {
291 	int i, rc = 0;
292 
293 	for (i = 0; i < adapter->num_queues; i++) {
294 		rc = ena_setup_tx_resources(adapter, i);
295 		if (rc)
296 			goto err_setup_tx;
297 	}
298 
299 	return 0;
300 
301 err_setup_tx:
302 
303 	netif_err(adapter, ifup, adapter->netdev,
304 		  "Tx queue %d: allocation failed\n", i);
305 
306 	/* rewind the index freeing the rings as we go */
307 	while (i--)
308 		ena_free_tx_resources(adapter, i);
309 	return rc;
310 }
311 
312 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
313  * @adapter: board private structure
314  *
315  * Free all transmit software resources
316  */
317 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
318 {
319 	int i;
320 
321 	for (i = 0; i < adapter->num_queues; i++)
322 		ena_free_tx_resources(adapter, i);
323 }
324 
325 static inline int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id)
326 {
327 	if (likely(req_id < rx_ring->ring_size))
328 		return 0;
329 
330 	netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
331 		  "Invalid rx req_id: %hu\n", req_id);
332 
333 	u64_stats_update_begin(&rx_ring->syncp);
334 	rx_ring->rx_stats.bad_req_id++;
335 	u64_stats_update_end(&rx_ring->syncp);
336 
337 	/* Trigger device reset */
338 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
339 	set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags);
340 	return -EFAULT;
341 }
342 
343 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
344  * @adapter: network interface device structure
345  * @qid: queue index
346  *
347  * Returns 0 on success, negative on failure
348  */
349 static int ena_setup_rx_resources(struct ena_adapter *adapter,
350 				  u32 qid)
351 {
352 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
353 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
354 	int size, node, i;
355 
356 	if (rx_ring->rx_buffer_info) {
357 		netif_err(adapter, ifup, adapter->netdev,
358 			  "rx_buffer_info is not NULL");
359 		return -EEXIST;
360 	}
361 
362 	/* alloc extra element so in rx path
363 	 * we can always prefetch rx_info + 1
364 	 */
365 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
366 	node = cpu_to_node(ena_irq->cpu);
367 
368 	rx_ring->rx_buffer_info = vzalloc_node(size, node);
369 	if (!rx_ring->rx_buffer_info) {
370 		rx_ring->rx_buffer_info = vzalloc(size);
371 		if (!rx_ring->rx_buffer_info)
372 			return -ENOMEM;
373 	}
374 
375 	size = sizeof(u16) * rx_ring->ring_size;
376 	rx_ring->free_rx_ids = vzalloc_node(size, node);
377 	if (!rx_ring->free_rx_ids) {
378 		rx_ring->free_rx_ids = vzalloc(size);
379 		if (!rx_ring->free_rx_ids) {
380 			vfree(rx_ring->rx_buffer_info);
381 			return -ENOMEM;
382 		}
383 	}
384 
385 	/* Req id ring for receiving RX pkts out of order */
386 	for (i = 0; i < rx_ring->ring_size; i++)
387 		rx_ring->free_rx_ids[i] = i;
388 
389 	/* Reset rx statistics */
390 	memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
391 
392 	rx_ring->next_to_clean = 0;
393 	rx_ring->next_to_use = 0;
394 	rx_ring->cpu = ena_irq->cpu;
395 
396 	return 0;
397 }
398 
399 /* ena_free_rx_resources - Free I/O Rx Resources
400  * @adapter: network interface device structure
401  * @qid: queue index
402  *
403  * Free all receive software resources
404  */
405 static void ena_free_rx_resources(struct ena_adapter *adapter,
406 				  u32 qid)
407 {
408 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
409 
410 	vfree(rx_ring->rx_buffer_info);
411 	rx_ring->rx_buffer_info = NULL;
412 
413 	vfree(rx_ring->free_rx_ids);
414 	rx_ring->free_rx_ids = NULL;
415 }
416 
417 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
418  * @adapter: board private structure
419  *
420  * Return 0 on success, negative on failure
421  */
422 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
423 {
424 	int i, rc = 0;
425 
426 	for (i = 0; i < adapter->num_queues; i++) {
427 		rc = ena_setup_rx_resources(adapter, i);
428 		if (rc)
429 			goto err_setup_rx;
430 	}
431 
432 	return 0;
433 
434 err_setup_rx:
435 
436 	netif_err(adapter, ifup, adapter->netdev,
437 		  "Rx queue %d: allocation failed\n", i);
438 
439 	/* rewind the index freeing the rings as we go */
440 	while (i--)
441 		ena_free_rx_resources(adapter, i);
442 	return rc;
443 }
444 
445 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
446  * @adapter: board private structure
447  *
448  * Free all receive software resources
449  */
450 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
451 {
452 	int i;
453 
454 	for (i = 0; i < adapter->num_queues; i++)
455 		ena_free_rx_resources(adapter, i);
456 }
457 
458 static inline int ena_alloc_rx_page(struct ena_ring *rx_ring,
459 				    struct ena_rx_buffer *rx_info, gfp_t gfp)
460 {
461 	struct ena_com_buf *ena_buf;
462 	struct page *page;
463 	dma_addr_t dma;
464 
465 	/* if previous allocated page is not used */
466 	if (unlikely(rx_info->page))
467 		return 0;
468 
469 	page = alloc_page(gfp);
470 	if (unlikely(!page)) {
471 		u64_stats_update_begin(&rx_ring->syncp);
472 		rx_ring->rx_stats.page_alloc_fail++;
473 		u64_stats_update_end(&rx_ring->syncp);
474 		return -ENOMEM;
475 	}
476 
477 	dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
478 			   DMA_FROM_DEVICE);
479 	if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
480 		u64_stats_update_begin(&rx_ring->syncp);
481 		rx_ring->rx_stats.dma_mapping_err++;
482 		u64_stats_update_end(&rx_ring->syncp);
483 
484 		__free_page(page);
485 		return -EIO;
486 	}
487 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
488 		  "alloc page %p, rx_info %p\n", page, rx_info);
489 
490 	rx_info->page = page;
491 	rx_info->page_offset = 0;
492 	ena_buf = &rx_info->ena_buf;
493 	ena_buf->paddr = dma;
494 	ena_buf->len = ENA_PAGE_SIZE;
495 
496 	return 0;
497 }
498 
499 static void ena_free_rx_page(struct ena_ring *rx_ring,
500 			     struct ena_rx_buffer *rx_info)
501 {
502 	struct page *page = rx_info->page;
503 	struct ena_com_buf *ena_buf = &rx_info->ena_buf;
504 
505 	if (unlikely(!page)) {
506 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
507 			   "Trying to free unallocated buffer\n");
508 		return;
509 	}
510 
511 	dma_unmap_page(rx_ring->dev, ena_buf->paddr, ENA_PAGE_SIZE,
512 		       DMA_FROM_DEVICE);
513 
514 	__free_page(page);
515 	rx_info->page = NULL;
516 }
517 
518 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
519 {
520 	u16 next_to_use, req_id;
521 	u32 i;
522 	int rc;
523 
524 	next_to_use = rx_ring->next_to_use;
525 
526 	for (i = 0; i < num; i++) {
527 		struct ena_rx_buffer *rx_info;
528 
529 		req_id = rx_ring->free_rx_ids[next_to_use];
530 		rc = validate_rx_req_id(rx_ring, req_id);
531 		if (unlikely(rc < 0))
532 			break;
533 
534 		rx_info = &rx_ring->rx_buffer_info[req_id];
535 
536 
537 		rc = ena_alloc_rx_page(rx_ring, rx_info,
538 				       GFP_ATOMIC | __GFP_COMP);
539 		if (unlikely(rc < 0)) {
540 			netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
541 				   "failed to alloc buffer for rx queue %d\n",
542 				   rx_ring->qid);
543 			break;
544 		}
545 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
546 						&rx_info->ena_buf,
547 						req_id);
548 		if (unlikely(rc)) {
549 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
550 				   "failed to add buffer for rx queue %d\n",
551 				   rx_ring->qid);
552 			break;
553 		}
554 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
555 						   rx_ring->ring_size);
556 	}
557 
558 	if (unlikely(i < num)) {
559 		u64_stats_update_begin(&rx_ring->syncp);
560 		rx_ring->rx_stats.refil_partial++;
561 		u64_stats_update_end(&rx_ring->syncp);
562 		netdev_warn(rx_ring->netdev,
563 			    "refilled rx qid %d with only %d buffers (from %d)\n",
564 			    rx_ring->qid, i, num);
565 	}
566 
567 	/* ena_com_write_sq_doorbell issues a wmb() */
568 	if (likely(i))
569 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
570 
571 	rx_ring->next_to_use = next_to_use;
572 
573 	return i;
574 }
575 
576 static void ena_free_rx_bufs(struct ena_adapter *adapter,
577 			     u32 qid)
578 {
579 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
580 	u32 i;
581 
582 	for (i = 0; i < rx_ring->ring_size; i++) {
583 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
584 
585 		if (rx_info->page)
586 			ena_free_rx_page(rx_ring, rx_info);
587 	}
588 }
589 
590 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
591  * @adapter: board private structure
592  *
593  */
594 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
595 {
596 	struct ena_ring *rx_ring;
597 	int i, rc, bufs_num;
598 
599 	for (i = 0; i < adapter->num_queues; i++) {
600 		rx_ring = &adapter->rx_ring[i];
601 		bufs_num = rx_ring->ring_size - 1;
602 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
603 
604 		if (unlikely(rc != bufs_num))
605 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
606 				   "refilling Queue %d failed. allocated %d buffers from: %d\n",
607 				   i, rc, bufs_num);
608 	}
609 }
610 
611 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
612 {
613 	int i;
614 
615 	for (i = 0; i < adapter->num_queues; i++)
616 		ena_free_rx_bufs(adapter, i);
617 }
618 
619 static inline void ena_unmap_tx_skb(struct ena_ring *tx_ring,
620 				    struct ena_tx_buffer *tx_info)
621 {
622 	struct ena_com_buf *ena_buf;
623 	u32 cnt;
624 	int i;
625 
626 	ena_buf = tx_info->bufs;
627 	cnt = tx_info->num_of_bufs;
628 
629 	if (unlikely(!cnt))
630 		return;
631 
632 	if (tx_info->map_linear_data) {
633 		dma_unmap_single(tx_ring->dev,
634 				 dma_unmap_addr(ena_buf, paddr),
635 				 dma_unmap_len(ena_buf, len),
636 				 DMA_TO_DEVICE);
637 		ena_buf++;
638 		cnt--;
639 	}
640 
641 	/* unmap remaining mapped pages */
642 	for (i = 0; i < cnt; i++) {
643 		dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
644 			       dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
645 		ena_buf++;
646 	}
647 }
648 
649 /* ena_free_tx_bufs - Free Tx Buffers per Queue
650  * @tx_ring: TX ring for which buffers be freed
651  */
652 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
653 {
654 	bool print_once = true;
655 	u32 i;
656 
657 	for (i = 0; i < tx_ring->ring_size; i++) {
658 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
659 
660 		if (!tx_info->skb)
661 			continue;
662 
663 		if (print_once) {
664 			netdev_notice(tx_ring->netdev,
665 				      "free uncompleted tx skb qid %d idx 0x%x\n",
666 				      tx_ring->qid, i);
667 			print_once = false;
668 		} else {
669 			netdev_dbg(tx_ring->netdev,
670 				   "free uncompleted tx skb qid %d idx 0x%x\n",
671 				   tx_ring->qid, i);
672 		}
673 
674 		ena_unmap_tx_skb(tx_ring, tx_info);
675 
676 		dev_kfree_skb_any(tx_info->skb);
677 	}
678 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
679 						  tx_ring->qid));
680 }
681 
682 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
683 {
684 	struct ena_ring *tx_ring;
685 	int i;
686 
687 	for (i = 0; i < adapter->num_queues; i++) {
688 		tx_ring = &adapter->tx_ring[i];
689 		ena_free_tx_bufs(tx_ring);
690 	}
691 }
692 
693 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
694 {
695 	u16 ena_qid;
696 	int i;
697 
698 	for (i = 0; i < adapter->num_queues; i++) {
699 		ena_qid = ENA_IO_TXQ_IDX(i);
700 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
701 	}
702 }
703 
704 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
705 {
706 	u16 ena_qid;
707 	int i;
708 
709 	for (i = 0; i < adapter->num_queues; i++) {
710 		ena_qid = ENA_IO_RXQ_IDX(i);
711 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
712 	}
713 }
714 
715 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
716 {
717 	ena_destroy_all_tx_queues(adapter);
718 	ena_destroy_all_rx_queues(adapter);
719 }
720 
721 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
722 {
723 	struct ena_tx_buffer *tx_info = NULL;
724 
725 	if (likely(req_id < tx_ring->ring_size)) {
726 		tx_info = &tx_ring->tx_buffer_info[req_id];
727 		if (likely(tx_info->skb))
728 			return 0;
729 	}
730 
731 	if (tx_info)
732 		netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
733 			  "tx_info doesn't have valid skb\n");
734 	else
735 		netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
736 			  "Invalid req_id: %hu\n", req_id);
737 
738 	u64_stats_update_begin(&tx_ring->syncp);
739 	tx_ring->tx_stats.bad_req_id++;
740 	u64_stats_update_end(&tx_ring->syncp);
741 
742 	/* Trigger device reset */
743 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
744 	set_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags);
745 	return -EFAULT;
746 }
747 
748 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
749 {
750 	struct netdev_queue *txq;
751 	bool above_thresh;
752 	u32 tx_bytes = 0;
753 	u32 total_done = 0;
754 	u16 next_to_clean;
755 	u16 req_id;
756 	int tx_pkts = 0;
757 	int rc;
758 
759 	next_to_clean = tx_ring->next_to_clean;
760 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
761 
762 	while (tx_pkts < budget) {
763 		struct ena_tx_buffer *tx_info;
764 		struct sk_buff *skb;
765 
766 		rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
767 						&req_id);
768 		if (rc)
769 			break;
770 
771 		rc = validate_tx_req_id(tx_ring, req_id);
772 		if (rc)
773 			break;
774 
775 		tx_info = &tx_ring->tx_buffer_info[req_id];
776 		skb = tx_info->skb;
777 
778 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
779 		prefetch(&skb->end);
780 
781 		tx_info->skb = NULL;
782 		tx_info->last_jiffies = 0;
783 
784 		ena_unmap_tx_skb(tx_ring, tx_info);
785 
786 		netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
787 			  "tx_poll: q %d skb %p completed\n", tx_ring->qid,
788 			  skb);
789 
790 		tx_bytes += skb->len;
791 		dev_kfree_skb(skb);
792 		tx_pkts++;
793 		total_done += tx_info->tx_descs;
794 
795 		tx_ring->free_tx_ids[next_to_clean] = req_id;
796 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
797 						     tx_ring->ring_size);
798 	}
799 
800 	tx_ring->next_to_clean = next_to_clean;
801 	ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
802 	ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
803 
804 	netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
805 
806 	netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
807 		  "tx_poll: q %d done. total pkts: %d\n",
808 		  tx_ring->qid, tx_pkts);
809 
810 	/* need to make the rings circular update visible to
811 	 * ena_start_xmit() before checking for netif_queue_stopped().
812 	 */
813 	smp_mb();
814 
815 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
816 						    ENA_TX_WAKEUP_THRESH);
817 	if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
818 		__netif_tx_lock(txq, smp_processor_id());
819 		above_thresh =
820 			ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
821 						     ENA_TX_WAKEUP_THRESH);
822 		if (netif_tx_queue_stopped(txq) && above_thresh) {
823 			netif_tx_wake_queue(txq);
824 			u64_stats_update_begin(&tx_ring->syncp);
825 			tx_ring->tx_stats.queue_wakeup++;
826 			u64_stats_update_end(&tx_ring->syncp);
827 		}
828 		__netif_tx_unlock(txq);
829 	}
830 
831 	tx_ring->per_napi_bytes += tx_bytes;
832 	tx_ring->per_napi_packets += tx_pkts;
833 
834 	return tx_pkts;
835 }
836 
837 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags)
838 {
839 	struct sk_buff *skb;
840 
841 	if (frags)
842 		skb = napi_get_frags(rx_ring->napi);
843 	else
844 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
845 						rx_ring->rx_copybreak);
846 
847 	if (unlikely(!skb)) {
848 		u64_stats_update_begin(&rx_ring->syncp);
849 		rx_ring->rx_stats.skb_alloc_fail++;
850 		u64_stats_update_end(&rx_ring->syncp);
851 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
852 			  "Failed to allocate skb. frags: %d\n", frags);
853 		return NULL;
854 	}
855 
856 	return skb;
857 }
858 
859 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
860 				  struct ena_com_rx_buf_info *ena_bufs,
861 				  u32 descs,
862 				  u16 *next_to_clean)
863 {
864 	struct sk_buff *skb;
865 	struct ena_rx_buffer *rx_info;
866 	u16 len, req_id, buf = 0;
867 	void *va;
868 
869 	len = ena_bufs[buf].len;
870 	req_id = ena_bufs[buf].req_id;
871 	rx_info = &rx_ring->rx_buffer_info[req_id];
872 
873 	if (unlikely(!rx_info->page)) {
874 		netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
875 			  "Page is NULL\n");
876 		return NULL;
877 	}
878 
879 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
880 		  "rx_info %p page %p\n",
881 		  rx_info, rx_info->page);
882 
883 	/* save virt address of first buffer */
884 	va = page_address(rx_info->page) + rx_info->page_offset;
885 	prefetch(va + NET_IP_ALIGN);
886 
887 	if (len <= rx_ring->rx_copybreak) {
888 		skb = ena_alloc_skb(rx_ring, false);
889 		if (unlikely(!skb))
890 			return NULL;
891 
892 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
893 			  "rx allocated small packet. len %d. data_len %d\n",
894 			  skb->len, skb->data_len);
895 
896 		/* sync this buffer for CPU use */
897 		dma_sync_single_for_cpu(rx_ring->dev,
898 					dma_unmap_addr(&rx_info->ena_buf, paddr),
899 					len,
900 					DMA_FROM_DEVICE);
901 		skb_copy_to_linear_data(skb, va, len);
902 		dma_sync_single_for_device(rx_ring->dev,
903 					   dma_unmap_addr(&rx_info->ena_buf, paddr),
904 					   len,
905 					   DMA_FROM_DEVICE);
906 
907 		skb_put(skb, len);
908 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
909 		rx_ring->free_rx_ids[*next_to_clean] = req_id;
910 		*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
911 						     rx_ring->ring_size);
912 		return skb;
913 	}
914 
915 	skb = ena_alloc_skb(rx_ring, true);
916 	if (unlikely(!skb))
917 		return NULL;
918 
919 	do {
920 		dma_unmap_page(rx_ring->dev,
921 			       dma_unmap_addr(&rx_info->ena_buf, paddr),
922 			       ENA_PAGE_SIZE, DMA_FROM_DEVICE);
923 
924 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
925 				rx_info->page_offset, len, ENA_PAGE_SIZE);
926 
927 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
928 			  "rx skb updated. len %d. data_len %d\n",
929 			  skb->len, skb->data_len);
930 
931 		rx_info->page = NULL;
932 
933 		rx_ring->free_rx_ids[*next_to_clean] = req_id;
934 		*next_to_clean =
935 			ENA_RX_RING_IDX_NEXT(*next_to_clean,
936 					     rx_ring->ring_size);
937 		if (likely(--descs == 0))
938 			break;
939 
940 		buf++;
941 		len = ena_bufs[buf].len;
942 		req_id = ena_bufs[buf].req_id;
943 		rx_info = &rx_ring->rx_buffer_info[req_id];
944 	} while (1);
945 
946 	return skb;
947 }
948 
949 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
950  * @adapter: structure containing adapter specific data
951  * @ena_rx_ctx: received packet context/metadata
952  * @skb: skb currently being received and modified
953  */
954 static inline void ena_rx_checksum(struct ena_ring *rx_ring,
955 				   struct ena_com_rx_ctx *ena_rx_ctx,
956 				   struct sk_buff *skb)
957 {
958 	/* Rx csum disabled */
959 	if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
960 		skb->ip_summed = CHECKSUM_NONE;
961 		return;
962 	}
963 
964 	/* For fragmented packets the checksum isn't valid */
965 	if (ena_rx_ctx->frag) {
966 		skb->ip_summed = CHECKSUM_NONE;
967 		return;
968 	}
969 
970 	/* if IP and error */
971 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
972 		     (ena_rx_ctx->l3_csum_err))) {
973 		/* ipv4 checksum error */
974 		skb->ip_summed = CHECKSUM_NONE;
975 		u64_stats_update_begin(&rx_ring->syncp);
976 		rx_ring->rx_stats.bad_csum++;
977 		u64_stats_update_end(&rx_ring->syncp);
978 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
979 			  "RX IPv4 header checksum error\n");
980 		return;
981 	}
982 
983 	/* if TCP/UDP */
984 	if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
985 		   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
986 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
987 			/* TCP/UDP checksum error */
988 			u64_stats_update_begin(&rx_ring->syncp);
989 			rx_ring->rx_stats.bad_csum++;
990 			u64_stats_update_end(&rx_ring->syncp);
991 			netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
992 				  "RX L4 checksum error\n");
993 			skb->ip_summed = CHECKSUM_NONE;
994 			return;
995 		}
996 
997 		if (likely(ena_rx_ctx->l4_csum_checked)) {
998 			skb->ip_summed = CHECKSUM_UNNECESSARY;
999 		} else {
1000 			u64_stats_update_begin(&rx_ring->syncp);
1001 			rx_ring->rx_stats.csum_unchecked++;
1002 			u64_stats_update_end(&rx_ring->syncp);
1003 			skb->ip_summed = CHECKSUM_NONE;
1004 		}
1005 	} else {
1006 		skb->ip_summed = CHECKSUM_NONE;
1007 		return;
1008 	}
1009 
1010 }
1011 
1012 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1013 			    struct ena_com_rx_ctx *ena_rx_ctx,
1014 			    struct sk_buff *skb)
1015 {
1016 	enum pkt_hash_types hash_type;
1017 
1018 	if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1019 		if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1020 			   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1021 
1022 			hash_type = PKT_HASH_TYPE_L4;
1023 		else
1024 			hash_type = PKT_HASH_TYPE_NONE;
1025 
1026 		/* Override hash type if the packet is fragmented */
1027 		if (ena_rx_ctx->frag)
1028 			hash_type = PKT_HASH_TYPE_NONE;
1029 
1030 		skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1031 	}
1032 }
1033 
1034 /* ena_clean_rx_irq - Cleanup RX irq
1035  * @rx_ring: RX ring to clean
1036  * @napi: napi handler
1037  * @budget: how many packets driver is allowed to clean
1038  *
1039  * Returns the number of cleaned buffers.
1040  */
1041 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1042 			    u32 budget)
1043 {
1044 	u16 next_to_clean = rx_ring->next_to_clean;
1045 	u32 res_budget, work_done;
1046 
1047 	struct ena_com_rx_ctx ena_rx_ctx;
1048 	struct ena_adapter *adapter;
1049 	struct sk_buff *skb;
1050 	int refill_required;
1051 	int refill_threshold;
1052 	int rc = 0;
1053 	int total_len = 0;
1054 	int rx_copybreak_pkt = 0;
1055 	int i;
1056 
1057 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1058 		  "%s qid %d\n", __func__, rx_ring->qid);
1059 	res_budget = budget;
1060 
1061 	do {
1062 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1063 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1064 		ena_rx_ctx.descs = 0;
1065 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1066 				    rx_ring->ena_com_io_sq,
1067 				    &ena_rx_ctx);
1068 		if (unlikely(rc))
1069 			goto error;
1070 
1071 		if (unlikely(ena_rx_ctx.descs == 0))
1072 			break;
1073 
1074 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1075 			  "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1076 			  rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1077 			  ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1078 
1079 		/* allocate skb and fill it */
1080 		skb = ena_rx_skb(rx_ring, rx_ring->ena_bufs, ena_rx_ctx.descs,
1081 				 &next_to_clean);
1082 
1083 		/* exit if we failed to retrieve a buffer */
1084 		if (unlikely(!skb)) {
1085 			for (i = 0; i < ena_rx_ctx.descs; i++) {
1086 				rx_ring->free_tx_ids[next_to_clean] =
1087 					rx_ring->ena_bufs[i].req_id;
1088 				next_to_clean =
1089 					ENA_RX_RING_IDX_NEXT(next_to_clean,
1090 							     rx_ring->ring_size);
1091 			}
1092 			break;
1093 		}
1094 
1095 		ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1096 
1097 		ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1098 
1099 		skb_record_rx_queue(skb, rx_ring->qid);
1100 
1101 		if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
1102 			total_len += rx_ring->ena_bufs[0].len;
1103 			rx_copybreak_pkt++;
1104 			napi_gro_receive(napi, skb);
1105 		} else {
1106 			total_len += skb->len;
1107 			napi_gro_frags(napi);
1108 		}
1109 
1110 		res_budget--;
1111 	} while (likely(res_budget));
1112 
1113 	work_done = budget - res_budget;
1114 	rx_ring->per_napi_bytes += total_len;
1115 	rx_ring->per_napi_packets += work_done;
1116 	u64_stats_update_begin(&rx_ring->syncp);
1117 	rx_ring->rx_stats.bytes += total_len;
1118 	rx_ring->rx_stats.cnt += work_done;
1119 	rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1120 	u64_stats_update_end(&rx_ring->syncp);
1121 
1122 	rx_ring->next_to_clean = next_to_clean;
1123 
1124 	refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
1125 	refill_threshold =
1126 		min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1127 		      ENA_RX_REFILL_THRESH_PACKET);
1128 
1129 	/* Optimization, try to batch new rx buffers */
1130 	if (refill_required > refill_threshold) {
1131 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1132 		ena_refill_rx_bufs(rx_ring, refill_required);
1133 	}
1134 
1135 	return work_done;
1136 
1137 error:
1138 	adapter = netdev_priv(rx_ring->netdev);
1139 
1140 	u64_stats_update_begin(&rx_ring->syncp);
1141 	rx_ring->rx_stats.bad_desc_num++;
1142 	u64_stats_update_end(&rx_ring->syncp);
1143 
1144 	/* Too many desc from the device. Trigger reset */
1145 	adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
1146 	set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
1147 
1148 	return 0;
1149 }
1150 
1151 inline void ena_adjust_intr_moderation(struct ena_ring *rx_ring,
1152 				       struct ena_ring *tx_ring)
1153 {
1154 	/* We apply adaptive moderation on Rx path only.
1155 	 * Tx uses static interrupt moderation.
1156 	 */
1157 	ena_com_calculate_interrupt_delay(rx_ring->ena_dev,
1158 					  rx_ring->per_napi_packets,
1159 					  rx_ring->per_napi_bytes,
1160 					  &rx_ring->smoothed_interval,
1161 					  &rx_ring->moder_tbl_idx);
1162 
1163 	/* Reset per napi packets/bytes */
1164 	tx_ring->per_napi_packets = 0;
1165 	tx_ring->per_napi_bytes = 0;
1166 	rx_ring->per_napi_packets = 0;
1167 	rx_ring->per_napi_bytes = 0;
1168 }
1169 
1170 static inline void ena_unmask_interrupt(struct ena_ring *tx_ring,
1171 					struct ena_ring *rx_ring)
1172 {
1173 	struct ena_eth_io_intr_reg intr_reg;
1174 
1175 	/* Update intr register: rx intr delay,
1176 	 * tx intr delay and interrupt unmask
1177 	 */
1178 	ena_com_update_intr_reg(&intr_reg,
1179 				rx_ring->smoothed_interval,
1180 				tx_ring->smoothed_interval,
1181 				true);
1182 
1183 	/* It is a shared MSI-X.
1184 	 * Tx and Rx CQ have pointer to it.
1185 	 * So we use one of them to reach the intr reg
1186 	 */
1187 	ena_com_unmask_intr(rx_ring->ena_com_io_cq, &intr_reg);
1188 }
1189 
1190 static inline void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1191 					     struct ena_ring *rx_ring)
1192 {
1193 	int cpu = get_cpu();
1194 	int numa_node;
1195 
1196 	/* Check only one ring since the 2 rings are running on the same cpu */
1197 	if (likely(tx_ring->cpu == cpu))
1198 		goto out;
1199 
1200 	numa_node = cpu_to_node(cpu);
1201 	put_cpu();
1202 
1203 	if (numa_node != NUMA_NO_NODE) {
1204 		ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1205 		ena_com_update_numa_node(rx_ring->ena_com_io_cq, numa_node);
1206 	}
1207 
1208 	tx_ring->cpu = cpu;
1209 	rx_ring->cpu = cpu;
1210 
1211 	return;
1212 out:
1213 	put_cpu();
1214 }
1215 
1216 static int ena_io_poll(struct napi_struct *napi, int budget)
1217 {
1218 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1219 	struct ena_ring *tx_ring, *rx_ring;
1220 
1221 	u32 tx_work_done;
1222 	u32 rx_work_done;
1223 	int tx_budget;
1224 	int napi_comp_call = 0;
1225 	int ret;
1226 
1227 	tx_ring = ena_napi->tx_ring;
1228 	rx_ring = ena_napi->rx_ring;
1229 
1230 	tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1231 
1232 	if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1233 	    test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1234 		napi_complete_done(napi, 0);
1235 		return 0;
1236 	}
1237 
1238 	tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1239 	rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1240 
1241 	/* If the device is about to reset or down, avoid unmask
1242 	 * the interrupt and return 0 so NAPI won't reschedule
1243 	 */
1244 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1245 		     test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1246 		napi_complete_done(napi, 0);
1247 		ret = 0;
1248 
1249 	} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1250 		napi_comp_call = 1;
1251 
1252 		/* Update numa and unmask the interrupt only when schedule
1253 		 * from the interrupt context (vs from sk_busy_loop)
1254 		 */
1255 		if (napi_complete_done(napi, rx_work_done)) {
1256 			/* Tx and Rx share the same interrupt vector */
1257 			if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1258 				ena_adjust_intr_moderation(rx_ring, tx_ring);
1259 
1260 			ena_unmask_interrupt(tx_ring, rx_ring);
1261 		}
1262 
1263 		ena_update_ring_numa_node(tx_ring, rx_ring);
1264 
1265 		ret = rx_work_done;
1266 	} else {
1267 		ret = budget;
1268 	}
1269 
1270 	u64_stats_update_begin(&tx_ring->syncp);
1271 	tx_ring->tx_stats.napi_comp += napi_comp_call;
1272 	tx_ring->tx_stats.tx_poll++;
1273 	u64_stats_update_end(&tx_ring->syncp);
1274 
1275 	return ret;
1276 }
1277 
1278 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1279 {
1280 	struct ena_adapter *adapter = (struct ena_adapter *)data;
1281 
1282 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1283 
1284 	/* Don't call the aenq handler before probe is done */
1285 	if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1286 		ena_com_aenq_intr_handler(adapter->ena_dev, data);
1287 
1288 	return IRQ_HANDLED;
1289 }
1290 
1291 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1292  * @irq: interrupt number
1293  * @data: pointer to a network interface private napi device structure
1294  */
1295 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1296 {
1297 	struct ena_napi *ena_napi = data;
1298 
1299 	ena_napi->tx_ring->first_interrupt = true;
1300 	ena_napi->rx_ring->first_interrupt = true;
1301 
1302 	napi_schedule_irqoff(&ena_napi->napi);
1303 
1304 	return IRQ_HANDLED;
1305 }
1306 
1307 /* Reserve a single MSI-X vector for management (admin + aenq).
1308  * plus reserve one vector for each potential io queue.
1309  * the number of potential io queues is the minimum of what the device
1310  * supports and the number of vCPUs.
1311  */
1312 static int ena_enable_msix(struct ena_adapter *adapter, int num_queues)
1313 {
1314 	int msix_vecs, irq_cnt;
1315 
1316 	if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1317 		netif_err(adapter, probe, adapter->netdev,
1318 			  "Error, MSI-X is already enabled\n");
1319 		return -EPERM;
1320 	}
1321 
1322 	/* Reserved the max msix vectors we might need */
1323 	msix_vecs = ENA_MAX_MSIX_VEC(num_queues);
1324 	netif_dbg(adapter, probe, adapter->netdev,
1325 		  "trying to enable MSI-X, vectors %d\n", msix_vecs);
1326 
1327 	irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
1328 					msix_vecs, PCI_IRQ_MSIX);
1329 
1330 	if (irq_cnt < 0) {
1331 		netif_err(adapter, probe, adapter->netdev,
1332 			  "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
1333 		return -ENOSPC;
1334 	}
1335 
1336 	if (irq_cnt != msix_vecs) {
1337 		netif_notice(adapter, probe, adapter->netdev,
1338 			     "enable only %d MSI-X (out of %d), reduce the number of queues\n",
1339 			     irq_cnt, msix_vecs);
1340 		adapter->num_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
1341 	}
1342 
1343 	if (ena_init_rx_cpu_rmap(adapter))
1344 		netif_warn(adapter, probe, adapter->netdev,
1345 			   "Failed to map IRQs to CPUs\n");
1346 
1347 	adapter->msix_vecs = irq_cnt;
1348 	set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
1349 
1350 	return 0;
1351 }
1352 
1353 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
1354 {
1355 	u32 cpu;
1356 
1357 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
1358 		 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
1359 		 pci_name(adapter->pdev));
1360 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
1361 		ena_intr_msix_mgmnt;
1362 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
1363 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
1364 		pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
1365 	cpu = cpumask_first(cpu_online_mask);
1366 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
1367 	cpumask_set_cpu(cpu,
1368 			&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
1369 }
1370 
1371 static void ena_setup_io_intr(struct ena_adapter *adapter)
1372 {
1373 	struct net_device *netdev;
1374 	int irq_idx, i, cpu;
1375 
1376 	netdev = adapter->netdev;
1377 
1378 	for (i = 0; i < adapter->num_queues; i++) {
1379 		irq_idx = ENA_IO_IRQ_IDX(i);
1380 		cpu = i % num_online_cpus();
1381 
1382 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1383 			 "%s-Tx-Rx-%d", netdev->name, i);
1384 		adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
1385 		adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
1386 		adapter->irq_tbl[irq_idx].vector =
1387 			pci_irq_vector(adapter->pdev, irq_idx);
1388 		adapter->irq_tbl[irq_idx].cpu = cpu;
1389 
1390 		cpumask_set_cpu(cpu,
1391 				&adapter->irq_tbl[irq_idx].affinity_hint_mask);
1392 	}
1393 }
1394 
1395 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
1396 {
1397 	unsigned long flags = 0;
1398 	struct ena_irq *irq;
1399 	int rc;
1400 
1401 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1402 	rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1403 			 irq->data);
1404 	if (rc) {
1405 		netif_err(adapter, probe, adapter->netdev,
1406 			  "failed to request admin irq\n");
1407 		return rc;
1408 	}
1409 
1410 	netif_dbg(adapter, probe, adapter->netdev,
1411 		  "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
1412 		  irq->affinity_hint_mask.bits[0], irq->vector);
1413 
1414 	irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1415 
1416 	return rc;
1417 }
1418 
1419 static int ena_request_io_irq(struct ena_adapter *adapter)
1420 {
1421 	unsigned long flags = 0;
1422 	struct ena_irq *irq;
1423 	int rc = 0, i, k;
1424 
1425 	if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1426 		netif_err(adapter, ifup, adapter->netdev,
1427 			  "Failed to request I/O IRQ: MSI-X is not enabled\n");
1428 		return -EINVAL;
1429 	}
1430 
1431 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
1432 		irq = &adapter->irq_tbl[i];
1433 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1434 				 irq->data);
1435 		if (rc) {
1436 			netif_err(adapter, ifup, adapter->netdev,
1437 				  "Failed to request I/O IRQ. index %d rc %d\n",
1438 				   i, rc);
1439 			goto err;
1440 		}
1441 
1442 		netif_dbg(adapter, ifup, adapter->netdev,
1443 			  "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
1444 			  i, irq->affinity_hint_mask.bits[0], irq->vector);
1445 
1446 		irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1447 	}
1448 
1449 	return rc;
1450 
1451 err:
1452 	for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
1453 		irq = &adapter->irq_tbl[k];
1454 		free_irq(irq->vector, irq->data);
1455 	}
1456 
1457 	return rc;
1458 }
1459 
1460 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
1461 {
1462 	struct ena_irq *irq;
1463 
1464 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1465 	synchronize_irq(irq->vector);
1466 	irq_set_affinity_hint(irq->vector, NULL);
1467 	free_irq(irq->vector, irq->data);
1468 }
1469 
1470 static void ena_free_io_irq(struct ena_adapter *adapter)
1471 {
1472 	struct ena_irq *irq;
1473 	int i;
1474 
1475 #ifdef CONFIG_RFS_ACCEL
1476 	if (adapter->msix_vecs >= 1) {
1477 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
1478 		adapter->netdev->rx_cpu_rmap = NULL;
1479 	}
1480 #endif /* CONFIG_RFS_ACCEL */
1481 
1482 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
1483 		irq = &adapter->irq_tbl[i];
1484 		irq_set_affinity_hint(irq->vector, NULL);
1485 		free_irq(irq->vector, irq->data);
1486 	}
1487 }
1488 
1489 static void ena_disable_msix(struct ena_adapter *adapter)
1490 {
1491 	if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
1492 		pci_free_irq_vectors(adapter->pdev);
1493 }
1494 
1495 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
1496 {
1497 	int i;
1498 
1499 	if (!netif_running(adapter->netdev))
1500 		return;
1501 
1502 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++)
1503 		synchronize_irq(adapter->irq_tbl[i].vector);
1504 }
1505 
1506 static void ena_del_napi(struct ena_adapter *adapter)
1507 {
1508 	int i;
1509 
1510 	for (i = 0; i < adapter->num_queues; i++)
1511 		netif_napi_del(&adapter->ena_napi[i].napi);
1512 }
1513 
1514 static void ena_init_napi(struct ena_adapter *adapter)
1515 {
1516 	struct ena_napi *napi;
1517 	int i;
1518 
1519 	for (i = 0; i < adapter->num_queues; i++) {
1520 		napi = &adapter->ena_napi[i];
1521 
1522 		netif_napi_add(adapter->netdev,
1523 			       &adapter->ena_napi[i].napi,
1524 			       ena_io_poll,
1525 			       ENA_NAPI_BUDGET);
1526 		napi->rx_ring = &adapter->rx_ring[i];
1527 		napi->tx_ring = &adapter->tx_ring[i];
1528 		napi->qid = i;
1529 	}
1530 }
1531 
1532 static void ena_napi_disable_all(struct ena_adapter *adapter)
1533 {
1534 	int i;
1535 
1536 	for (i = 0; i < adapter->num_queues; i++)
1537 		napi_disable(&adapter->ena_napi[i].napi);
1538 }
1539 
1540 static void ena_napi_enable_all(struct ena_adapter *adapter)
1541 {
1542 	int i;
1543 
1544 	for (i = 0; i < adapter->num_queues; i++)
1545 		napi_enable(&adapter->ena_napi[i].napi);
1546 }
1547 
1548 static void ena_restore_ethtool_params(struct ena_adapter *adapter)
1549 {
1550 	adapter->tx_usecs = 0;
1551 	adapter->rx_usecs = 0;
1552 	adapter->tx_frames = 1;
1553 	adapter->rx_frames = 1;
1554 }
1555 
1556 /* Configure the Rx forwarding */
1557 static int ena_rss_configure(struct ena_adapter *adapter)
1558 {
1559 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1560 	int rc;
1561 
1562 	/* In case the RSS table wasn't initialized by probe */
1563 	if (!ena_dev->rss.tbl_log_size) {
1564 		rc = ena_rss_init_default(adapter);
1565 		if (rc && (rc != -EOPNOTSUPP)) {
1566 			netif_err(adapter, ifup, adapter->netdev,
1567 				  "Failed to init RSS rc: %d\n", rc);
1568 			return rc;
1569 		}
1570 	}
1571 
1572 	/* Set indirect table */
1573 	rc = ena_com_indirect_table_set(ena_dev);
1574 	if (unlikely(rc && rc != -EOPNOTSUPP))
1575 		return rc;
1576 
1577 	/* Configure hash function (if supported) */
1578 	rc = ena_com_set_hash_function(ena_dev);
1579 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
1580 		return rc;
1581 
1582 	/* Configure hash inputs (if supported) */
1583 	rc = ena_com_set_hash_ctrl(ena_dev);
1584 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
1585 		return rc;
1586 
1587 	return 0;
1588 }
1589 
1590 static int ena_up_complete(struct ena_adapter *adapter)
1591 {
1592 	int rc;
1593 
1594 	rc = ena_rss_configure(adapter);
1595 	if (rc)
1596 		return rc;
1597 
1598 	ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
1599 
1600 	ena_refill_all_rx_bufs(adapter);
1601 
1602 	/* enable transmits */
1603 	netif_tx_start_all_queues(adapter->netdev);
1604 
1605 	ena_restore_ethtool_params(adapter);
1606 
1607 	ena_napi_enable_all(adapter);
1608 
1609 	return 0;
1610 }
1611 
1612 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
1613 {
1614 	struct ena_com_create_io_ctx ctx;
1615 	struct ena_com_dev *ena_dev;
1616 	struct ena_ring *tx_ring;
1617 	u32 msix_vector;
1618 	u16 ena_qid;
1619 	int rc;
1620 
1621 	ena_dev = adapter->ena_dev;
1622 
1623 	tx_ring = &adapter->tx_ring[qid];
1624 	msix_vector = ENA_IO_IRQ_IDX(qid);
1625 	ena_qid = ENA_IO_TXQ_IDX(qid);
1626 
1627 	memset(&ctx, 0x0, sizeof(ctx));
1628 
1629 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1630 	ctx.qid = ena_qid;
1631 	ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1632 	ctx.msix_vector = msix_vector;
1633 	ctx.queue_size = adapter->tx_ring_size;
1634 	ctx.numa_node = cpu_to_node(tx_ring->cpu);
1635 
1636 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1637 	if (rc) {
1638 		netif_err(adapter, ifup, adapter->netdev,
1639 			  "Failed to create I/O TX queue num %d rc: %d\n",
1640 			  qid, rc);
1641 		return rc;
1642 	}
1643 
1644 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1645 				     &tx_ring->ena_com_io_sq,
1646 				     &tx_ring->ena_com_io_cq);
1647 	if (rc) {
1648 		netif_err(adapter, ifup, adapter->netdev,
1649 			  "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
1650 			  qid, rc);
1651 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1652 		return rc;
1653 	}
1654 
1655 	ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
1656 	return rc;
1657 }
1658 
1659 static int ena_create_all_io_tx_queues(struct ena_adapter *adapter)
1660 {
1661 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1662 	int rc, i;
1663 
1664 	for (i = 0; i < adapter->num_queues; i++) {
1665 		rc = ena_create_io_tx_queue(adapter, i);
1666 		if (rc)
1667 			goto create_err;
1668 	}
1669 
1670 	return 0;
1671 
1672 create_err:
1673 	while (i--)
1674 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1675 
1676 	return rc;
1677 }
1678 
1679 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
1680 {
1681 	struct ena_com_dev *ena_dev;
1682 	struct ena_com_create_io_ctx ctx;
1683 	struct ena_ring *rx_ring;
1684 	u32 msix_vector;
1685 	u16 ena_qid;
1686 	int rc;
1687 
1688 	ena_dev = adapter->ena_dev;
1689 
1690 	rx_ring = &adapter->rx_ring[qid];
1691 	msix_vector = ENA_IO_IRQ_IDX(qid);
1692 	ena_qid = ENA_IO_RXQ_IDX(qid);
1693 
1694 	memset(&ctx, 0x0, sizeof(ctx));
1695 
1696 	ctx.qid = ena_qid;
1697 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1698 	ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1699 	ctx.msix_vector = msix_vector;
1700 	ctx.queue_size = adapter->rx_ring_size;
1701 	ctx.numa_node = cpu_to_node(rx_ring->cpu);
1702 
1703 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1704 	if (rc) {
1705 		netif_err(adapter, ifup, adapter->netdev,
1706 			  "Failed to create I/O RX queue num %d rc: %d\n",
1707 			  qid, rc);
1708 		return rc;
1709 	}
1710 
1711 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1712 				     &rx_ring->ena_com_io_sq,
1713 				     &rx_ring->ena_com_io_cq);
1714 	if (rc) {
1715 		netif_err(adapter, ifup, adapter->netdev,
1716 			  "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
1717 			  qid, rc);
1718 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1719 		return rc;
1720 	}
1721 
1722 	ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
1723 
1724 	return rc;
1725 }
1726 
1727 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
1728 {
1729 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1730 	int rc, i;
1731 
1732 	for (i = 0; i < adapter->num_queues; i++) {
1733 		rc = ena_create_io_rx_queue(adapter, i);
1734 		if (rc)
1735 			goto create_err;
1736 	}
1737 
1738 	return 0;
1739 
1740 create_err:
1741 	while (i--)
1742 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1743 
1744 	return rc;
1745 }
1746 
1747 static int ena_up(struct ena_adapter *adapter)
1748 {
1749 	int rc, i;
1750 
1751 	netdev_dbg(adapter->netdev, "%s\n", __func__);
1752 
1753 	ena_setup_io_intr(adapter);
1754 
1755 	/* napi poll functions should be initialized before running
1756 	 * request_irq(), to handle a rare condition where there is a pending
1757 	 * interrupt, causing the ISR to fire immediately while the poll
1758 	 * function wasn't set yet, causing a null dereference
1759 	 */
1760 	ena_init_napi(adapter);
1761 
1762 	rc = ena_request_io_irq(adapter);
1763 	if (rc)
1764 		goto err_req_irq;
1765 
1766 	/* allocate transmit descriptors */
1767 	rc = ena_setup_all_tx_resources(adapter);
1768 	if (rc)
1769 		goto err_setup_tx;
1770 
1771 	/* allocate receive descriptors */
1772 	rc = ena_setup_all_rx_resources(adapter);
1773 	if (rc)
1774 		goto err_setup_rx;
1775 
1776 	/* Create TX queues */
1777 	rc = ena_create_all_io_tx_queues(adapter);
1778 	if (rc)
1779 		goto err_create_tx_queues;
1780 
1781 	/* Create RX queues */
1782 	rc = ena_create_all_io_rx_queues(adapter);
1783 	if (rc)
1784 		goto err_create_rx_queues;
1785 
1786 	rc = ena_up_complete(adapter);
1787 	if (rc)
1788 		goto err_up;
1789 
1790 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
1791 		netif_carrier_on(adapter->netdev);
1792 
1793 	u64_stats_update_begin(&adapter->syncp);
1794 	adapter->dev_stats.interface_up++;
1795 	u64_stats_update_end(&adapter->syncp);
1796 
1797 	set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
1798 
1799 	/* Enable completion queues interrupt */
1800 	for (i = 0; i < adapter->num_queues; i++)
1801 		ena_unmask_interrupt(&adapter->tx_ring[i],
1802 				     &adapter->rx_ring[i]);
1803 
1804 	/* schedule napi in case we had pending packets
1805 	 * from the last time we disable napi
1806 	 */
1807 	for (i = 0; i < adapter->num_queues; i++)
1808 		napi_schedule(&adapter->ena_napi[i].napi);
1809 
1810 	return rc;
1811 
1812 err_up:
1813 	ena_destroy_all_rx_queues(adapter);
1814 err_create_rx_queues:
1815 	ena_destroy_all_tx_queues(adapter);
1816 err_create_tx_queues:
1817 	ena_free_all_io_rx_resources(adapter);
1818 err_setup_rx:
1819 	ena_free_all_io_tx_resources(adapter);
1820 err_setup_tx:
1821 	ena_free_io_irq(adapter);
1822 err_req_irq:
1823 
1824 	return rc;
1825 }
1826 
1827 static void ena_down(struct ena_adapter *adapter)
1828 {
1829 	netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
1830 
1831 	clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
1832 
1833 	u64_stats_update_begin(&adapter->syncp);
1834 	adapter->dev_stats.interface_down++;
1835 	u64_stats_update_end(&adapter->syncp);
1836 
1837 	netif_carrier_off(adapter->netdev);
1838 	netif_tx_disable(adapter->netdev);
1839 
1840 	/* After this point the napi handler won't enable the tx queue */
1841 	ena_napi_disable_all(adapter);
1842 
1843 	/* After destroy the queue there won't be any new interrupts */
1844 
1845 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
1846 		int rc;
1847 
1848 		rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
1849 		if (rc)
1850 			dev_err(&adapter->pdev->dev, "Device reset failed\n");
1851 		/* stop submitting admin commands on a device that was reset */
1852 		ena_com_set_admin_running_state(adapter->ena_dev, false);
1853 	}
1854 
1855 	ena_destroy_all_io_queues(adapter);
1856 
1857 	ena_disable_io_intr_sync(adapter);
1858 	ena_free_io_irq(adapter);
1859 	ena_del_napi(adapter);
1860 
1861 	ena_free_all_tx_bufs(adapter);
1862 	ena_free_all_rx_bufs(adapter);
1863 	ena_free_all_io_tx_resources(adapter);
1864 	ena_free_all_io_rx_resources(adapter);
1865 }
1866 
1867 /* ena_open - Called when a network interface is made active
1868  * @netdev: network interface device structure
1869  *
1870  * Returns 0 on success, negative value on failure
1871  *
1872  * The open entry point is called when a network interface is made
1873  * active by the system (IFF_UP).  At this point all resources needed
1874  * for transmit and receive operations are allocated, the interrupt
1875  * handler is registered with the OS, the watchdog timer is started,
1876  * and the stack is notified that the interface is ready.
1877  */
1878 static int ena_open(struct net_device *netdev)
1879 {
1880 	struct ena_adapter *adapter = netdev_priv(netdev);
1881 	int rc;
1882 
1883 	/* Notify the stack of the actual queue counts. */
1884 	rc = netif_set_real_num_tx_queues(netdev, adapter->num_queues);
1885 	if (rc) {
1886 		netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
1887 		return rc;
1888 	}
1889 
1890 	rc = netif_set_real_num_rx_queues(netdev, adapter->num_queues);
1891 	if (rc) {
1892 		netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
1893 		return rc;
1894 	}
1895 
1896 	rc = ena_up(adapter);
1897 	if (rc)
1898 		return rc;
1899 
1900 	return rc;
1901 }
1902 
1903 /* ena_close - Disables a network interface
1904  * @netdev: network interface device structure
1905  *
1906  * Returns 0, this is not allowed to fail
1907  *
1908  * The close entry point is called when an interface is de-activated
1909  * by the OS.  The hardware is still under the drivers control, but
1910  * needs to be disabled.  A global MAC reset is issued to stop the
1911  * hardware, and all transmit and receive resources are freed.
1912  */
1913 static int ena_close(struct net_device *netdev)
1914 {
1915 	struct ena_adapter *adapter = netdev_priv(netdev);
1916 
1917 	netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
1918 
1919 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
1920 		return 0;
1921 
1922 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
1923 		ena_down(adapter);
1924 
1925 	/* Check for device status and issue reset if needed*/
1926 	check_for_admin_com_state(adapter);
1927 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
1928 		netif_err(adapter, ifdown, adapter->netdev,
1929 			  "Destroy failure, restarting device\n");
1930 		ena_dump_stats_to_dmesg(adapter);
1931 		/* rtnl lock already obtained in dev_ioctl() layer */
1932 		ena_destroy_device(adapter, false);
1933 		ena_restore_device(adapter);
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb)
1940 {
1941 	u32 mss = skb_shinfo(skb)->gso_size;
1942 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
1943 	u8 l4_protocol = 0;
1944 
1945 	if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
1946 		ena_tx_ctx->l4_csum_enable = 1;
1947 		if (mss) {
1948 			ena_tx_ctx->tso_enable = 1;
1949 			ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
1950 			ena_tx_ctx->l4_csum_partial = 0;
1951 		} else {
1952 			ena_tx_ctx->tso_enable = 0;
1953 			ena_meta->l4_hdr_len = 0;
1954 			ena_tx_ctx->l4_csum_partial = 1;
1955 		}
1956 
1957 		switch (ip_hdr(skb)->version) {
1958 		case IPVERSION:
1959 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
1960 			if (ip_hdr(skb)->frag_off & htons(IP_DF))
1961 				ena_tx_ctx->df = 1;
1962 			if (mss)
1963 				ena_tx_ctx->l3_csum_enable = 1;
1964 			l4_protocol = ip_hdr(skb)->protocol;
1965 			break;
1966 		case 6:
1967 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
1968 			l4_protocol = ipv6_hdr(skb)->nexthdr;
1969 			break;
1970 		default:
1971 			break;
1972 		}
1973 
1974 		if (l4_protocol == IPPROTO_TCP)
1975 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
1976 		else
1977 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
1978 
1979 		ena_meta->mss = mss;
1980 		ena_meta->l3_hdr_len = skb_network_header_len(skb);
1981 		ena_meta->l3_hdr_offset = skb_network_offset(skb);
1982 		ena_tx_ctx->meta_valid = 1;
1983 
1984 	} else {
1985 		ena_tx_ctx->meta_valid = 0;
1986 	}
1987 }
1988 
1989 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
1990 				       struct sk_buff *skb)
1991 {
1992 	int num_frags, header_len, rc;
1993 
1994 	num_frags = skb_shinfo(skb)->nr_frags;
1995 	header_len = skb_headlen(skb);
1996 
1997 	if (num_frags < tx_ring->sgl_size)
1998 		return 0;
1999 
2000 	if ((num_frags == tx_ring->sgl_size) &&
2001 	    (header_len < tx_ring->tx_max_header_size))
2002 		return 0;
2003 
2004 	u64_stats_update_begin(&tx_ring->syncp);
2005 	tx_ring->tx_stats.linearize++;
2006 	u64_stats_update_end(&tx_ring->syncp);
2007 
2008 	rc = skb_linearize(skb);
2009 	if (unlikely(rc)) {
2010 		u64_stats_update_begin(&tx_ring->syncp);
2011 		tx_ring->tx_stats.linearize_failed++;
2012 		u64_stats_update_end(&tx_ring->syncp);
2013 	}
2014 
2015 	return rc;
2016 }
2017 
2018 static int ena_tx_map_skb(struct ena_ring *tx_ring,
2019 			  struct ena_tx_buffer *tx_info,
2020 			  struct sk_buff *skb,
2021 			  void **push_hdr,
2022 			  u16 *header_len)
2023 {
2024 	struct ena_adapter *adapter = tx_ring->adapter;
2025 	struct ena_com_buf *ena_buf;
2026 	dma_addr_t dma;
2027 	u32 skb_head_len, frag_len, last_frag;
2028 	u16 push_len = 0;
2029 	u16 delta = 0;
2030 	int i = 0;
2031 
2032 	skb_head_len = skb_headlen(skb);
2033 	tx_info->skb = skb;
2034 	ena_buf = tx_info->bufs;
2035 
2036 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2037 		/* When the device is LLQ mode, the driver will copy
2038 		 * the header into the device memory space.
2039 		 * the ena_com layer assume the header is in a linear
2040 		 * memory space.
2041 		 * This assumption might be wrong since part of the header
2042 		 * can be in the fragmented buffers.
2043 		 * Use skb_header_pointer to make sure the header is in a
2044 		 * linear memory space.
2045 		 */
2046 
2047 		push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
2048 		*push_hdr = skb_header_pointer(skb, 0, push_len,
2049 					       tx_ring->push_buf_intermediate_buf);
2050 		*header_len = push_len;
2051 		if (unlikely(skb->data != *push_hdr)) {
2052 			u64_stats_update_begin(&tx_ring->syncp);
2053 			tx_ring->tx_stats.llq_buffer_copy++;
2054 			u64_stats_update_end(&tx_ring->syncp);
2055 
2056 			delta = push_len - skb_head_len;
2057 		}
2058 	} else {
2059 		*push_hdr = NULL;
2060 		*header_len = min_t(u32, skb_head_len,
2061 				    tx_ring->tx_max_header_size);
2062 	}
2063 
2064 	netif_dbg(adapter, tx_queued, adapter->netdev,
2065 		  "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
2066 		  *push_hdr, push_len);
2067 
2068 	if (skb_head_len > push_len) {
2069 		dma = dma_map_single(tx_ring->dev, skb->data + push_len,
2070 				     skb_head_len - push_len, DMA_TO_DEVICE);
2071 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2072 			goto error_report_dma_error;
2073 
2074 		ena_buf->paddr = dma;
2075 		ena_buf->len = skb_head_len - push_len;
2076 
2077 		ena_buf++;
2078 		tx_info->num_of_bufs++;
2079 		tx_info->map_linear_data = 1;
2080 	} else {
2081 		tx_info->map_linear_data = 0;
2082 	}
2083 
2084 	last_frag = skb_shinfo(skb)->nr_frags;
2085 
2086 	for (i = 0; i < last_frag; i++) {
2087 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2088 
2089 		frag_len = skb_frag_size(frag);
2090 
2091 		if (unlikely(delta >= frag_len)) {
2092 			delta -= frag_len;
2093 			continue;
2094 		}
2095 
2096 		dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
2097 				       frag_len - delta, DMA_TO_DEVICE);
2098 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2099 			goto error_report_dma_error;
2100 
2101 		ena_buf->paddr = dma;
2102 		ena_buf->len = frag_len - delta;
2103 		ena_buf++;
2104 		tx_info->num_of_bufs++;
2105 		delta = 0;
2106 	}
2107 
2108 	return 0;
2109 
2110 error_report_dma_error:
2111 	u64_stats_update_begin(&tx_ring->syncp);
2112 	tx_ring->tx_stats.dma_mapping_err++;
2113 	u64_stats_update_end(&tx_ring->syncp);
2114 	netdev_warn(adapter->netdev, "failed to map skb\n");
2115 
2116 	tx_info->skb = NULL;
2117 
2118 	tx_info->num_of_bufs += i;
2119 	ena_unmap_tx_skb(tx_ring, tx_info);
2120 
2121 	return -EINVAL;
2122 }
2123 
2124 /* Called with netif_tx_lock. */
2125 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
2126 {
2127 	struct ena_adapter *adapter = netdev_priv(dev);
2128 	struct ena_tx_buffer *tx_info;
2129 	struct ena_com_tx_ctx ena_tx_ctx;
2130 	struct ena_ring *tx_ring;
2131 	struct netdev_queue *txq;
2132 	void *push_hdr;
2133 	u16 next_to_use, req_id, header_len;
2134 	int qid, rc, nb_hw_desc;
2135 
2136 	netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
2137 	/*  Determine which tx ring we will be placed on */
2138 	qid = skb_get_queue_mapping(skb);
2139 	tx_ring = &adapter->tx_ring[qid];
2140 	txq = netdev_get_tx_queue(dev, qid);
2141 
2142 	rc = ena_check_and_linearize_skb(tx_ring, skb);
2143 	if (unlikely(rc))
2144 		goto error_drop_packet;
2145 
2146 	skb_tx_timestamp(skb);
2147 
2148 	next_to_use = tx_ring->next_to_use;
2149 	req_id = tx_ring->free_tx_ids[next_to_use];
2150 	tx_info = &tx_ring->tx_buffer_info[req_id];
2151 	tx_info->num_of_bufs = 0;
2152 
2153 	WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
2154 
2155 	rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
2156 	if (unlikely(rc))
2157 		goto error_drop_packet;
2158 
2159 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2160 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2161 	ena_tx_ctx.push_header = push_hdr;
2162 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2163 	ena_tx_ctx.req_id = req_id;
2164 	ena_tx_ctx.header_len = header_len;
2165 
2166 	/* set flags and meta data */
2167 	ena_tx_csum(&ena_tx_ctx, skb);
2168 
2169 	/* prepare the packet's descriptors to dma engine */
2170 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2171 				&nb_hw_desc);
2172 
2173 	/* ena_com_prepare_tx() can't fail due to overflow of tx queue,
2174 	 * since the number of free descriptors in the queue is checked
2175 	 * after sending the previous packet. In case there isn't enough
2176 	 * space in the queue for the next packet, it is stopped
2177 	 * until there is again enough available space in the queue.
2178 	 * All other failure reasons of ena_com_prepare_tx() are fatal
2179 	 * and therefore require a device reset.
2180 	 */
2181 	if (unlikely(rc)) {
2182 		netif_err(adapter, tx_queued, dev,
2183 			  "failed to prepare tx bufs\n");
2184 		u64_stats_update_begin(&tx_ring->syncp);
2185 		tx_ring->tx_stats.prepare_ctx_err++;
2186 		u64_stats_update_end(&tx_ring->syncp);
2187 		adapter->reset_reason = ENA_REGS_RESET_DRIVER_INVALID_STATE;
2188 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2189 		goto error_unmap_dma;
2190 	}
2191 
2192 	netdev_tx_sent_queue(txq, skb->len);
2193 
2194 	u64_stats_update_begin(&tx_ring->syncp);
2195 	tx_ring->tx_stats.cnt++;
2196 	tx_ring->tx_stats.bytes += skb->len;
2197 	u64_stats_update_end(&tx_ring->syncp);
2198 
2199 	tx_info->tx_descs = nb_hw_desc;
2200 	tx_info->last_jiffies = jiffies;
2201 	tx_info->print_once = 0;
2202 
2203 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2204 		tx_ring->ring_size);
2205 
2206 	/* stop the queue when no more space available, the packet can have up
2207 	 * to sgl_size + 2. one for the meta descriptor and one for header
2208 	 * (if the header is larger than tx_max_header_size).
2209 	 */
2210 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2211 						   tx_ring->sgl_size + 2))) {
2212 		netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
2213 			  __func__, qid);
2214 
2215 		netif_tx_stop_queue(txq);
2216 		u64_stats_update_begin(&tx_ring->syncp);
2217 		tx_ring->tx_stats.queue_stop++;
2218 		u64_stats_update_end(&tx_ring->syncp);
2219 
2220 		/* There is a rare condition where this function decide to
2221 		 * stop the queue but meanwhile clean_tx_irq updates
2222 		 * next_to_completion and terminates.
2223 		 * The queue will remain stopped forever.
2224 		 * To solve this issue add a mb() to make sure that
2225 		 * netif_tx_stop_queue() write is vissible before checking if
2226 		 * there is additional space in the queue.
2227 		 */
2228 		smp_mb();
2229 
2230 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2231 						 ENA_TX_WAKEUP_THRESH)) {
2232 			netif_tx_wake_queue(txq);
2233 			u64_stats_update_begin(&tx_ring->syncp);
2234 			tx_ring->tx_stats.queue_wakeup++;
2235 			u64_stats_update_end(&tx_ring->syncp);
2236 		}
2237 	}
2238 
2239 	if (netif_xmit_stopped(txq) || !skb->xmit_more) {
2240 		/* trigger the dma engine. ena_com_write_sq_doorbell()
2241 		 * has a mb
2242 		 */
2243 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2244 		u64_stats_update_begin(&tx_ring->syncp);
2245 		tx_ring->tx_stats.doorbells++;
2246 		u64_stats_update_end(&tx_ring->syncp);
2247 	}
2248 
2249 	return NETDEV_TX_OK;
2250 
2251 error_unmap_dma:
2252 	ena_unmap_tx_skb(tx_ring, tx_info);
2253 	tx_info->skb = NULL;
2254 
2255 error_drop_packet:
2256 	dev_kfree_skb(skb);
2257 	return NETDEV_TX_OK;
2258 }
2259 
2260 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
2261 			    struct net_device *sb_dev,
2262 			    select_queue_fallback_t fallback)
2263 {
2264 	u16 qid;
2265 	/* we suspect that this is good for in--kernel network services that
2266 	 * want to loop incoming skb rx to tx in normal user generated traffic,
2267 	 * most probably we will not get to this
2268 	 */
2269 	if (skb_rx_queue_recorded(skb))
2270 		qid = skb_get_rx_queue(skb);
2271 	else
2272 		qid = fallback(dev, skb, NULL);
2273 
2274 	return qid;
2275 }
2276 
2277 static void ena_config_host_info(struct ena_com_dev *ena_dev,
2278 				 struct pci_dev *pdev)
2279 {
2280 	struct ena_admin_host_info *host_info;
2281 	int rc;
2282 
2283 	/* Allocate only the host info */
2284 	rc = ena_com_allocate_host_info(ena_dev);
2285 	if (rc) {
2286 		pr_err("Cannot allocate host info\n");
2287 		return;
2288 	}
2289 
2290 	host_info = ena_dev->host_attr.host_info;
2291 
2292 	host_info->bdf = (pdev->bus->number << 8) | pdev->devfn;
2293 	host_info->os_type = ENA_ADMIN_OS_LINUX;
2294 	host_info->kernel_ver = LINUX_VERSION_CODE;
2295 	strncpy(host_info->kernel_ver_str, utsname()->version,
2296 		sizeof(host_info->kernel_ver_str) - 1);
2297 	host_info->os_dist = 0;
2298 	strncpy(host_info->os_dist_str, utsname()->release,
2299 		sizeof(host_info->os_dist_str) - 1);
2300 	host_info->driver_version =
2301 		(DRV_MODULE_VER_MAJOR) |
2302 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
2303 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
2304 		("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
2305 	host_info->num_cpus = num_online_cpus();
2306 
2307 	rc = ena_com_set_host_attributes(ena_dev);
2308 	if (rc) {
2309 		if (rc == -EOPNOTSUPP)
2310 			pr_warn("Cannot set host attributes\n");
2311 		else
2312 			pr_err("Cannot set host attributes\n");
2313 
2314 		goto err;
2315 	}
2316 
2317 	return;
2318 
2319 err:
2320 	ena_com_delete_host_info(ena_dev);
2321 }
2322 
2323 static void ena_config_debug_area(struct ena_adapter *adapter)
2324 {
2325 	u32 debug_area_size;
2326 	int rc, ss_count;
2327 
2328 	ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
2329 	if (ss_count <= 0) {
2330 		netif_err(adapter, drv, adapter->netdev,
2331 			  "SS count is negative\n");
2332 		return;
2333 	}
2334 
2335 	/* allocate 32 bytes for each string and 64bit for the value */
2336 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
2337 
2338 	rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
2339 	if (rc) {
2340 		pr_err("Cannot allocate debug area\n");
2341 		return;
2342 	}
2343 
2344 	rc = ena_com_set_host_attributes(adapter->ena_dev);
2345 	if (rc) {
2346 		if (rc == -EOPNOTSUPP)
2347 			netif_warn(adapter, drv, adapter->netdev,
2348 				   "Cannot set host attributes\n");
2349 		else
2350 			netif_err(adapter, drv, adapter->netdev,
2351 				  "Cannot set host attributes\n");
2352 		goto err;
2353 	}
2354 
2355 	return;
2356 err:
2357 	ena_com_delete_debug_area(adapter->ena_dev);
2358 }
2359 
2360 static void ena_get_stats64(struct net_device *netdev,
2361 			    struct rtnl_link_stats64 *stats)
2362 {
2363 	struct ena_adapter *adapter = netdev_priv(netdev);
2364 	struct ena_ring *rx_ring, *tx_ring;
2365 	unsigned int start;
2366 	u64 rx_drops;
2367 	int i;
2368 
2369 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2370 		return;
2371 
2372 	for (i = 0; i < adapter->num_queues; i++) {
2373 		u64 bytes, packets;
2374 
2375 		tx_ring = &adapter->tx_ring[i];
2376 
2377 		do {
2378 			start = u64_stats_fetch_begin_irq(&tx_ring->syncp);
2379 			packets = tx_ring->tx_stats.cnt;
2380 			bytes = tx_ring->tx_stats.bytes;
2381 		} while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start));
2382 
2383 		stats->tx_packets += packets;
2384 		stats->tx_bytes += bytes;
2385 
2386 		rx_ring = &adapter->rx_ring[i];
2387 
2388 		do {
2389 			start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
2390 			packets = rx_ring->rx_stats.cnt;
2391 			bytes = rx_ring->rx_stats.bytes;
2392 		} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
2393 
2394 		stats->rx_packets += packets;
2395 		stats->rx_bytes += bytes;
2396 	}
2397 
2398 	do {
2399 		start = u64_stats_fetch_begin_irq(&adapter->syncp);
2400 		rx_drops = adapter->dev_stats.rx_drops;
2401 	} while (u64_stats_fetch_retry_irq(&adapter->syncp, start));
2402 
2403 	stats->rx_dropped = rx_drops;
2404 
2405 	stats->multicast = 0;
2406 	stats->collisions = 0;
2407 
2408 	stats->rx_length_errors = 0;
2409 	stats->rx_crc_errors = 0;
2410 	stats->rx_frame_errors = 0;
2411 	stats->rx_fifo_errors = 0;
2412 	stats->rx_missed_errors = 0;
2413 	stats->tx_window_errors = 0;
2414 
2415 	stats->rx_errors = 0;
2416 	stats->tx_errors = 0;
2417 }
2418 
2419 static const struct net_device_ops ena_netdev_ops = {
2420 	.ndo_open		= ena_open,
2421 	.ndo_stop		= ena_close,
2422 	.ndo_start_xmit		= ena_start_xmit,
2423 	.ndo_select_queue	= ena_select_queue,
2424 	.ndo_get_stats64	= ena_get_stats64,
2425 	.ndo_tx_timeout		= ena_tx_timeout,
2426 	.ndo_change_mtu		= ena_change_mtu,
2427 	.ndo_set_mac_address	= NULL,
2428 	.ndo_validate_addr	= eth_validate_addr,
2429 };
2430 
2431 static int ena_device_validate_params(struct ena_adapter *adapter,
2432 				      struct ena_com_dev_get_features_ctx *get_feat_ctx)
2433 {
2434 	struct net_device *netdev = adapter->netdev;
2435 	int rc;
2436 
2437 	rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
2438 			      adapter->mac_addr);
2439 	if (!rc) {
2440 		netif_err(adapter, drv, netdev,
2441 			  "Error, mac address are different\n");
2442 		return -EINVAL;
2443 	}
2444 
2445 	if ((get_feat_ctx->max_queues.max_cq_num < adapter->num_queues) ||
2446 	    (get_feat_ctx->max_queues.max_sq_num < adapter->num_queues)) {
2447 		netif_err(adapter, drv, netdev,
2448 			  "Error, device doesn't support enough queues\n");
2449 		return -EINVAL;
2450 	}
2451 
2452 	if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
2453 		netif_err(adapter, drv, netdev,
2454 			  "Error, device max mtu is smaller than netdev MTU\n");
2455 		return -EINVAL;
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
2462 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
2463 			   bool *wd_state)
2464 {
2465 	struct device *dev = &pdev->dev;
2466 	bool readless_supported;
2467 	u32 aenq_groups;
2468 	int dma_width;
2469 	int rc;
2470 
2471 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
2472 	if (rc) {
2473 		dev_err(dev, "failed to init mmio read less\n");
2474 		return rc;
2475 	}
2476 
2477 	/* The PCIe configuration space revision id indicate if mmio reg
2478 	 * read is disabled
2479 	 */
2480 	readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
2481 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
2482 
2483 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
2484 	if (rc) {
2485 		dev_err(dev, "Can not reset device\n");
2486 		goto err_mmio_read_less;
2487 	}
2488 
2489 	rc = ena_com_validate_version(ena_dev);
2490 	if (rc) {
2491 		dev_err(dev, "device version is too low\n");
2492 		goto err_mmio_read_less;
2493 	}
2494 
2495 	dma_width = ena_com_get_dma_width(ena_dev);
2496 	if (dma_width < 0) {
2497 		dev_err(dev, "Invalid dma width value %d", dma_width);
2498 		rc = dma_width;
2499 		goto err_mmio_read_less;
2500 	}
2501 
2502 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width));
2503 	if (rc) {
2504 		dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc);
2505 		goto err_mmio_read_less;
2506 	}
2507 
2508 	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width));
2509 	if (rc) {
2510 		dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n",
2511 			rc);
2512 		goto err_mmio_read_less;
2513 	}
2514 
2515 	/* ENA admin level init */
2516 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
2517 	if (rc) {
2518 		dev_err(dev,
2519 			"Can not initialize ena admin queue with device\n");
2520 		goto err_mmio_read_less;
2521 	}
2522 
2523 	/* To enable the msix interrupts the driver needs to know the number
2524 	 * of queues. So the driver uses polling mode to retrieve this
2525 	 * information
2526 	 */
2527 	ena_com_set_admin_polling_mode(ena_dev, true);
2528 
2529 	ena_config_host_info(ena_dev, pdev);
2530 
2531 	/* Get Device Attributes*/
2532 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
2533 	if (rc) {
2534 		dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
2535 		goto err_admin_init;
2536 	}
2537 
2538 	/* Try to turn all the available aenq groups */
2539 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
2540 		BIT(ENA_ADMIN_FATAL_ERROR) |
2541 		BIT(ENA_ADMIN_WARNING) |
2542 		BIT(ENA_ADMIN_NOTIFICATION) |
2543 		BIT(ENA_ADMIN_KEEP_ALIVE);
2544 
2545 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
2546 
2547 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
2548 	if (rc) {
2549 		dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
2550 		goto err_admin_init;
2551 	}
2552 
2553 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
2554 
2555 	return 0;
2556 
2557 err_admin_init:
2558 	ena_com_delete_host_info(ena_dev);
2559 	ena_com_admin_destroy(ena_dev);
2560 err_mmio_read_less:
2561 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2562 
2563 	return rc;
2564 }
2565 
2566 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
2567 						    int io_vectors)
2568 {
2569 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2570 	struct device *dev = &adapter->pdev->dev;
2571 	int rc;
2572 
2573 	rc = ena_enable_msix(adapter, io_vectors);
2574 	if (rc) {
2575 		dev_err(dev, "Can not reserve msix vectors\n");
2576 		return rc;
2577 	}
2578 
2579 	ena_setup_mgmnt_intr(adapter);
2580 
2581 	rc = ena_request_mgmnt_irq(adapter);
2582 	if (rc) {
2583 		dev_err(dev, "Can not setup management interrupts\n");
2584 		goto err_disable_msix;
2585 	}
2586 
2587 	ena_com_set_admin_polling_mode(ena_dev, false);
2588 
2589 	ena_com_admin_aenq_enable(ena_dev);
2590 
2591 	return 0;
2592 
2593 err_disable_msix:
2594 	ena_disable_msix(adapter);
2595 
2596 	return rc;
2597 }
2598 
2599 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
2600 {
2601 	struct net_device *netdev = adapter->netdev;
2602 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2603 	bool dev_up;
2604 
2605 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2606 		return;
2607 
2608 	netif_carrier_off(netdev);
2609 
2610 	del_timer_sync(&adapter->timer_service);
2611 
2612 	dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2613 	adapter->dev_up_before_reset = dev_up;
2614 	if (!graceful)
2615 		ena_com_set_admin_running_state(ena_dev, false);
2616 
2617 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2618 		ena_down(adapter);
2619 
2620 	/* Stop the device from sending AENQ events (in case reset flag is set
2621 	 *  and device is up, ena_down() already reset the device.
2622 	 */
2623 	if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
2624 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2625 
2626 	ena_free_mgmnt_irq(adapter);
2627 
2628 	ena_disable_msix(adapter);
2629 
2630 	ena_com_abort_admin_commands(ena_dev);
2631 
2632 	ena_com_wait_for_abort_completion(ena_dev);
2633 
2634 	ena_com_admin_destroy(ena_dev);
2635 
2636 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2637 
2638 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
2639 
2640 	clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2641 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
2642 }
2643 
2644 static int ena_restore_device(struct ena_adapter *adapter)
2645 {
2646 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2647 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2648 	struct pci_dev *pdev = adapter->pdev;
2649 	bool wd_state;
2650 	int rc;
2651 
2652 	set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
2653 	rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
2654 	if (rc) {
2655 		dev_err(&pdev->dev, "Can not initialize device\n");
2656 		goto err;
2657 	}
2658 	adapter->wd_state = wd_state;
2659 
2660 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
2661 	if (rc) {
2662 		dev_err(&pdev->dev, "Validation of device parameters failed\n");
2663 		goto err_device_destroy;
2664 	}
2665 
2666 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
2667 						      adapter->num_queues);
2668 	if (rc) {
2669 		dev_err(&pdev->dev, "Enable MSI-X failed\n");
2670 		goto err_device_destroy;
2671 	}
2672 	/* If the interface was up before the reset bring it up */
2673 	if (adapter->dev_up_before_reset) {
2674 		rc = ena_up(adapter);
2675 		if (rc) {
2676 			dev_err(&pdev->dev, "Failed to create I/O queues\n");
2677 			goto err_disable_msix;
2678 		}
2679 	}
2680 
2681 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
2682 
2683 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
2684 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2685 		netif_carrier_on(adapter->netdev);
2686 
2687 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
2688 	dev_err(&pdev->dev,
2689 		"Device reset completed successfully, Driver info: %s\n",
2690 		version);
2691 
2692 	return rc;
2693 err_disable_msix:
2694 	ena_free_mgmnt_irq(adapter);
2695 	ena_disable_msix(adapter);
2696 err_device_destroy:
2697 	ena_com_abort_admin_commands(ena_dev);
2698 	ena_com_wait_for_abort_completion(ena_dev);
2699 	ena_com_admin_destroy(ena_dev);
2700 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
2701 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2702 err:
2703 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
2704 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
2705 	dev_err(&pdev->dev,
2706 		"Reset attempt failed. Can not reset the device\n");
2707 
2708 	return rc;
2709 }
2710 
2711 static void ena_fw_reset_device(struct work_struct *work)
2712 {
2713 	struct ena_adapter *adapter =
2714 		container_of(work, struct ena_adapter, reset_task);
2715 	struct pci_dev *pdev = adapter->pdev;
2716 
2717 	if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2718 		dev_err(&pdev->dev,
2719 			"device reset schedule while reset bit is off\n");
2720 		return;
2721 	}
2722 	rtnl_lock();
2723 	ena_destroy_device(adapter, false);
2724 	ena_restore_device(adapter);
2725 	rtnl_unlock();
2726 }
2727 
2728 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
2729 					struct ena_ring *rx_ring)
2730 {
2731 	if (likely(rx_ring->first_interrupt))
2732 		return 0;
2733 
2734 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
2735 		return 0;
2736 
2737 	rx_ring->no_interrupt_event_cnt++;
2738 
2739 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
2740 		netif_err(adapter, rx_err, adapter->netdev,
2741 			  "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
2742 			  rx_ring->qid);
2743 		adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
2744 		smp_mb__before_atomic();
2745 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2746 		return -EIO;
2747 	}
2748 
2749 	return 0;
2750 }
2751 
2752 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
2753 					  struct ena_ring *tx_ring)
2754 {
2755 	struct ena_tx_buffer *tx_buf;
2756 	unsigned long last_jiffies;
2757 	u32 missed_tx = 0;
2758 	int i, rc = 0;
2759 
2760 	for (i = 0; i < tx_ring->ring_size; i++) {
2761 		tx_buf = &tx_ring->tx_buffer_info[i];
2762 		last_jiffies = tx_buf->last_jiffies;
2763 
2764 		if (last_jiffies == 0)
2765 			/* no pending Tx at this location */
2766 			continue;
2767 
2768 		if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies +
2769 			     2 * adapter->missing_tx_completion_to))) {
2770 			/* If after graceful period interrupt is still not
2771 			 * received, we schedule a reset
2772 			 */
2773 			netif_err(adapter, tx_err, adapter->netdev,
2774 				  "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
2775 				  tx_ring->qid);
2776 			adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
2777 			smp_mb__before_atomic();
2778 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2779 			return -EIO;
2780 		}
2781 
2782 		if (unlikely(time_is_before_jiffies(last_jiffies +
2783 				adapter->missing_tx_completion_to))) {
2784 			if (!tx_buf->print_once)
2785 				netif_notice(adapter, tx_err, adapter->netdev,
2786 					     "Found a Tx that wasn't completed on time, qid %d, index %d.\n",
2787 					     tx_ring->qid, i);
2788 
2789 			tx_buf->print_once = 1;
2790 			missed_tx++;
2791 		}
2792 	}
2793 
2794 	if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
2795 		netif_err(adapter, tx_err, adapter->netdev,
2796 			  "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
2797 			  missed_tx,
2798 			  adapter->missing_tx_completion_threshold);
2799 		adapter->reset_reason =
2800 			ENA_REGS_RESET_MISS_TX_CMPL;
2801 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2802 		rc = -EIO;
2803 	}
2804 
2805 	u64_stats_update_begin(&tx_ring->syncp);
2806 	tx_ring->tx_stats.missed_tx = missed_tx;
2807 	u64_stats_update_end(&tx_ring->syncp);
2808 
2809 	return rc;
2810 }
2811 
2812 static void check_for_missing_completions(struct ena_adapter *adapter)
2813 {
2814 	struct ena_ring *tx_ring;
2815 	struct ena_ring *rx_ring;
2816 	int i, budget, rc;
2817 
2818 	/* Make sure the driver doesn't turn the device in other process */
2819 	smp_rmb();
2820 
2821 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2822 		return;
2823 
2824 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
2825 		return;
2826 
2827 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
2828 		return;
2829 
2830 	budget = ENA_MONITORED_TX_QUEUES;
2831 
2832 	for (i = adapter->last_monitored_tx_qid; i < adapter->num_queues; i++) {
2833 		tx_ring = &adapter->tx_ring[i];
2834 		rx_ring = &adapter->rx_ring[i];
2835 
2836 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
2837 		if (unlikely(rc))
2838 			return;
2839 
2840 		rc = check_for_rx_interrupt_queue(adapter, rx_ring);
2841 		if (unlikely(rc))
2842 			return;
2843 
2844 		budget--;
2845 		if (!budget)
2846 			break;
2847 	}
2848 
2849 	adapter->last_monitored_tx_qid = i % adapter->num_queues;
2850 }
2851 
2852 /* trigger napi schedule after 2 consecutive detections */
2853 #define EMPTY_RX_REFILL 2
2854 /* For the rare case where the device runs out of Rx descriptors and the
2855  * napi handler failed to refill new Rx descriptors (due to a lack of memory
2856  * for example).
2857  * This case will lead to a deadlock:
2858  * The device won't send interrupts since all the new Rx packets will be dropped
2859  * The napi handler won't allocate new Rx descriptors so the device will be
2860  * able to send new packets.
2861  *
2862  * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
2863  * It is recommended to have at least 512MB, with a minimum of 128MB for
2864  * constrained environment).
2865  *
2866  * When such a situation is detected - Reschedule napi
2867  */
2868 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
2869 {
2870 	struct ena_ring *rx_ring;
2871 	int i, refill_required;
2872 
2873 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2874 		return;
2875 
2876 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
2877 		return;
2878 
2879 	for (i = 0; i < adapter->num_queues; i++) {
2880 		rx_ring = &adapter->rx_ring[i];
2881 
2882 		refill_required =
2883 			ena_com_free_desc(rx_ring->ena_com_io_sq);
2884 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
2885 			rx_ring->empty_rx_queue++;
2886 
2887 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
2888 				u64_stats_update_begin(&rx_ring->syncp);
2889 				rx_ring->rx_stats.empty_rx_ring++;
2890 				u64_stats_update_end(&rx_ring->syncp);
2891 
2892 				netif_err(adapter, drv, adapter->netdev,
2893 					  "trigger refill for ring %d\n", i);
2894 
2895 				napi_schedule(rx_ring->napi);
2896 				rx_ring->empty_rx_queue = 0;
2897 			}
2898 		} else {
2899 			rx_ring->empty_rx_queue = 0;
2900 		}
2901 	}
2902 }
2903 
2904 /* Check for keep alive expiration */
2905 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
2906 {
2907 	unsigned long keep_alive_expired;
2908 
2909 	if (!adapter->wd_state)
2910 		return;
2911 
2912 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2913 		return;
2914 
2915 	keep_alive_expired = round_jiffies(adapter->last_keep_alive_jiffies +
2916 					   adapter->keep_alive_timeout);
2917 	if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
2918 		netif_err(adapter, drv, adapter->netdev,
2919 			  "Keep alive watchdog timeout.\n");
2920 		u64_stats_update_begin(&adapter->syncp);
2921 		adapter->dev_stats.wd_expired++;
2922 		u64_stats_update_end(&adapter->syncp);
2923 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
2924 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2925 	}
2926 }
2927 
2928 static void check_for_admin_com_state(struct ena_adapter *adapter)
2929 {
2930 	if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
2931 		netif_err(adapter, drv, adapter->netdev,
2932 			  "ENA admin queue is not in running state!\n");
2933 		u64_stats_update_begin(&adapter->syncp);
2934 		adapter->dev_stats.admin_q_pause++;
2935 		u64_stats_update_end(&adapter->syncp);
2936 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
2937 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2938 	}
2939 }
2940 
2941 static void ena_update_hints(struct ena_adapter *adapter,
2942 			     struct ena_admin_ena_hw_hints *hints)
2943 {
2944 	struct net_device *netdev = adapter->netdev;
2945 
2946 	if (hints->admin_completion_tx_timeout)
2947 		adapter->ena_dev->admin_queue.completion_timeout =
2948 			hints->admin_completion_tx_timeout * 1000;
2949 
2950 	if (hints->mmio_read_timeout)
2951 		/* convert to usec */
2952 		adapter->ena_dev->mmio_read.reg_read_to =
2953 			hints->mmio_read_timeout * 1000;
2954 
2955 	if (hints->missed_tx_completion_count_threshold_to_reset)
2956 		adapter->missing_tx_completion_threshold =
2957 			hints->missed_tx_completion_count_threshold_to_reset;
2958 
2959 	if (hints->missing_tx_completion_timeout) {
2960 		if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2961 			adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
2962 		else
2963 			adapter->missing_tx_completion_to =
2964 				msecs_to_jiffies(hints->missing_tx_completion_timeout);
2965 	}
2966 
2967 	if (hints->netdev_wd_timeout)
2968 		netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
2969 
2970 	if (hints->driver_watchdog_timeout) {
2971 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2972 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2973 		else
2974 			adapter->keep_alive_timeout =
2975 				msecs_to_jiffies(hints->driver_watchdog_timeout);
2976 	}
2977 }
2978 
2979 static void ena_update_host_info(struct ena_admin_host_info *host_info,
2980 				 struct net_device *netdev)
2981 {
2982 	host_info->supported_network_features[0] =
2983 		netdev->features & GENMASK_ULL(31, 0);
2984 	host_info->supported_network_features[1] =
2985 		(netdev->features & GENMASK_ULL(63, 32)) >> 32;
2986 }
2987 
2988 static void ena_timer_service(struct timer_list *t)
2989 {
2990 	struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
2991 	u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
2992 	struct ena_admin_host_info *host_info =
2993 		adapter->ena_dev->host_attr.host_info;
2994 
2995 	check_for_missing_keep_alive(adapter);
2996 
2997 	check_for_admin_com_state(adapter);
2998 
2999 	check_for_missing_completions(adapter);
3000 
3001 	check_for_empty_rx_ring(adapter);
3002 
3003 	if (debug_area)
3004 		ena_dump_stats_to_buf(adapter, debug_area);
3005 
3006 	if (host_info)
3007 		ena_update_host_info(host_info, adapter->netdev);
3008 
3009 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3010 		netif_err(adapter, drv, adapter->netdev,
3011 			  "Trigger reset is on\n");
3012 		ena_dump_stats_to_dmesg(adapter);
3013 		queue_work(ena_wq, &adapter->reset_task);
3014 		return;
3015 	}
3016 
3017 	/* Reset the timer */
3018 	mod_timer(&adapter->timer_service, jiffies + HZ);
3019 }
3020 
3021 static int ena_calc_io_queue_num(struct pci_dev *pdev,
3022 				 struct ena_com_dev *ena_dev,
3023 				 struct ena_com_dev_get_features_ctx *get_feat_ctx)
3024 {
3025 	int io_sq_num, io_queue_num;
3026 
3027 	/* In case of LLQ use the llq number in the get feature cmd */
3028 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3029 		io_sq_num = get_feat_ctx->llq.max_llq_num;
3030 	else
3031 		io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3032 
3033 	io_queue_num = min_t(int, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
3034 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
3035 	io_queue_num = min_t(int, io_queue_num,
3036 			     get_feat_ctx->max_queues.max_cq_num);
3037 	/* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */
3038 	io_queue_num = min_t(int, io_queue_num, pci_msix_vec_count(pdev) - 1);
3039 	if (unlikely(!io_queue_num)) {
3040 		dev_err(&pdev->dev, "The device doesn't have io queues\n");
3041 		return -EFAULT;
3042 	}
3043 
3044 	return io_queue_num;
3045 }
3046 
3047 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3048 					   struct ena_com_dev *ena_dev,
3049 					   struct ena_admin_feature_llq_desc *llq,
3050 					   struct ena_llq_configurations *llq_default_configurations)
3051 {
3052 	bool has_mem_bar;
3053 	int rc;
3054 	u32 llq_feature_mask;
3055 
3056 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3057 	if (!(ena_dev->supported_features & llq_feature_mask)) {
3058 		dev_err(&pdev->dev,
3059 			"LLQ is not supported Fallback to host mode policy.\n");
3060 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3061 		return 0;
3062 	}
3063 
3064 	has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR);
3065 
3066 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3067 	if (unlikely(rc)) {
3068 		dev_err(&pdev->dev,
3069 			"Failed to configure the device mode.  Fallback to host mode policy.\n");
3070 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3071 		return 0;
3072 	}
3073 
3074 	/* Nothing to config, exit */
3075 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
3076 		return 0;
3077 
3078 	if (!has_mem_bar) {
3079 		dev_err(&pdev->dev,
3080 			"ENA device does not expose LLQ bar. Fallback to host mode policy.\n");
3081 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3082 		return 0;
3083 	}
3084 
3085 	ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3086 					   pci_resource_start(pdev, ENA_MEM_BAR),
3087 					   pci_resource_len(pdev, ENA_MEM_BAR));
3088 
3089 	if (!ena_dev->mem_bar)
3090 		return -EFAULT;
3091 
3092 	return 0;
3093 }
3094 
3095 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
3096 				 struct net_device *netdev)
3097 {
3098 	netdev_features_t dev_features = 0;
3099 
3100 	/* Set offload features */
3101 	if (feat->offload.tx &
3102 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
3103 		dev_features |= NETIF_F_IP_CSUM;
3104 
3105 	if (feat->offload.tx &
3106 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
3107 		dev_features |= NETIF_F_IPV6_CSUM;
3108 
3109 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
3110 		dev_features |= NETIF_F_TSO;
3111 
3112 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
3113 		dev_features |= NETIF_F_TSO6;
3114 
3115 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
3116 		dev_features |= NETIF_F_TSO_ECN;
3117 
3118 	if (feat->offload.rx_supported &
3119 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
3120 		dev_features |= NETIF_F_RXCSUM;
3121 
3122 	if (feat->offload.rx_supported &
3123 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
3124 		dev_features |= NETIF_F_RXCSUM;
3125 
3126 	netdev->features =
3127 		dev_features |
3128 		NETIF_F_SG |
3129 		NETIF_F_RXHASH |
3130 		NETIF_F_HIGHDMA;
3131 
3132 	netdev->hw_features |= netdev->features;
3133 	netdev->vlan_features |= netdev->features;
3134 }
3135 
3136 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
3137 				     struct ena_com_dev_get_features_ctx *feat)
3138 {
3139 	struct net_device *netdev = adapter->netdev;
3140 
3141 	/* Copy mac address */
3142 	if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
3143 		eth_hw_addr_random(netdev);
3144 		ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
3145 	} else {
3146 		ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
3147 		ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
3148 	}
3149 
3150 	/* Set offload features */
3151 	ena_set_dev_offloads(feat, netdev);
3152 
3153 	adapter->max_mtu = feat->dev_attr.max_mtu;
3154 	netdev->max_mtu = adapter->max_mtu;
3155 	netdev->min_mtu = ENA_MIN_MTU;
3156 }
3157 
3158 static int ena_rss_init_default(struct ena_adapter *adapter)
3159 {
3160 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3161 	struct device *dev = &adapter->pdev->dev;
3162 	int rc, i;
3163 	u32 val;
3164 
3165 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3166 	if (unlikely(rc)) {
3167 		dev_err(dev, "Cannot init indirect table\n");
3168 		goto err_rss_init;
3169 	}
3170 
3171 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3172 		val = ethtool_rxfh_indir_default(i, adapter->num_queues);
3173 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3174 						       ENA_IO_RXQ_IDX(val));
3175 		if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3176 			dev_err(dev, "Cannot fill indirect table\n");
3177 			goto err_fill_indir;
3178 		}
3179 	}
3180 
3181 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3182 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3183 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3184 		dev_err(dev, "Cannot fill hash function\n");
3185 		goto err_fill_indir;
3186 	}
3187 
3188 	rc = ena_com_set_default_hash_ctrl(ena_dev);
3189 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3190 		dev_err(dev, "Cannot fill hash control\n");
3191 		goto err_fill_indir;
3192 	}
3193 
3194 	return 0;
3195 
3196 err_fill_indir:
3197 	ena_com_rss_destroy(ena_dev);
3198 err_rss_init:
3199 
3200 	return rc;
3201 }
3202 
3203 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3204 {
3205 	int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
3206 
3207 	pci_release_selected_regions(pdev, release_bars);
3208 }
3209 
3210 static inline void set_default_llq_configurations(struct ena_llq_configurations *llq_config)
3211 {
3212 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
3213 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
3214 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
3215 	llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
3216 	llq_config->llq_ring_entry_size_value = 128;
3217 }
3218 
3219 static int ena_calc_queue_size(struct pci_dev *pdev,
3220 			       struct ena_com_dev *ena_dev,
3221 			       u16 *max_tx_sgl_size,
3222 			       u16 *max_rx_sgl_size,
3223 			       struct ena_com_dev_get_features_ctx *get_feat_ctx)
3224 {
3225 	u32 queue_size = ENA_DEFAULT_RING_SIZE;
3226 
3227 	queue_size = min_t(u32, queue_size,
3228 			   get_feat_ctx->max_queues.max_cq_depth);
3229 	queue_size = min_t(u32, queue_size,
3230 			   get_feat_ctx->max_queues.max_sq_depth);
3231 
3232 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3233 		queue_size = min_t(u32, queue_size,
3234 				   get_feat_ctx->llq.max_llq_depth);
3235 
3236 	queue_size = rounddown_pow_of_two(queue_size);
3237 
3238 	if (unlikely(!queue_size)) {
3239 		dev_err(&pdev->dev, "Invalid queue size\n");
3240 		return -EFAULT;
3241 	}
3242 
3243 	*max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3244 				 get_feat_ctx->max_queues.max_packet_tx_descs);
3245 	*max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3246 				 get_feat_ctx->max_queues.max_packet_rx_descs);
3247 
3248 	return queue_size;
3249 }
3250 
3251 /* ena_probe - Device Initialization Routine
3252  * @pdev: PCI device information struct
3253  * @ent: entry in ena_pci_tbl
3254  *
3255  * Returns 0 on success, negative on failure
3256  *
3257  * ena_probe initializes an adapter identified by a pci_dev structure.
3258  * The OS initialization, configuring of the adapter private structure,
3259  * and a hardware reset occur.
3260  */
3261 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3262 {
3263 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3264 	static int version_printed;
3265 	struct net_device *netdev;
3266 	struct ena_adapter *adapter;
3267 	struct ena_llq_configurations llq_config;
3268 	struct ena_com_dev *ena_dev = NULL;
3269 	char *queue_type_str;
3270 	static int adapters_found;
3271 	int io_queue_num, bars, rc;
3272 	int queue_size;
3273 	u16 tx_sgl_size = 0;
3274 	u16 rx_sgl_size = 0;
3275 	bool wd_state;
3276 
3277 	dev_dbg(&pdev->dev, "%s\n", __func__);
3278 
3279 	if (version_printed++ == 0)
3280 		dev_info(&pdev->dev, "%s", version);
3281 
3282 	rc = pci_enable_device_mem(pdev);
3283 	if (rc) {
3284 		dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
3285 		return rc;
3286 	}
3287 
3288 	pci_set_master(pdev);
3289 
3290 	ena_dev = vzalloc(sizeof(*ena_dev));
3291 	if (!ena_dev) {
3292 		rc = -ENOMEM;
3293 		goto err_disable_device;
3294 	}
3295 
3296 	bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
3297 	rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
3298 	if (rc) {
3299 		dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
3300 			rc);
3301 		goto err_free_ena_dev;
3302 	}
3303 
3304 	ena_dev->reg_bar = devm_ioremap(&pdev->dev,
3305 					pci_resource_start(pdev, ENA_REG_BAR),
3306 					pci_resource_len(pdev, ENA_REG_BAR));
3307 	if (!ena_dev->reg_bar) {
3308 		dev_err(&pdev->dev, "failed to remap regs bar\n");
3309 		rc = -EFAULT;
3310 		goto err_free_region;
3311 	}
3312 
3313 	ena_dev->dmadev = &pdev->dev;
3314 
3315 	rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
3316 	if (rc) {
3317 		dev_err(&pdev->dev, "ena device init failed\n");
3318 		if (rc == -ETIME)
3319 			rc = -EPROBE_DEFER;
3320 		goto err_free_region;
3321 	}
3322 
3323 	set_default_llq_configurations(&llq_config);
3324 
3325 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx.llq,
3326 					     &llq_config);
3327 	if (rc) {
3328 		dev_err(&pdev->dev, "ena device init failed\n");
3329 		goto err_device_destroy;
3330 	}
3331 
3332 	/* initial Tx interrupt delay, Assumes 1 usec granularity.
3333 	* Updated during device initialization with the real granularity
3334 	*/
3335 	ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
3336 	io_queue_num = ena_calc_io_queue_num(pdev, ena_dev, &get_feat_ctx);
3337 	queue_size = ena_calc_queue_size(pdev, ena_dev, &tx_sgl_size,
3338 					 &rx_sgl_size, &get_feat_ctx);
3339 	if ((queue_size <= 0) || (io_queue_num <= 0)) {
3340 		rc = -EFAULT;
3341 		goto err_device_destroy;
3342 	}
3343 
3344 	dev_info(&pdev->dev, "creating %d io queues. queue size: %d. LLQ is %s\n",
3345 		 io_queue_num, queue_size,
3346 		 (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) ?
3347 		 "ENABLED" : "DISABLED");
3348 
3349 	/* dev zeroed in init_etherdev */
3350 	netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), io_queue_num);
3351 	if (!netdev) {
3352 		dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
3353 		rc = -ENOMEM;
3354 		goto err_device_destroy;
3355 	}
3356 
3357 	SET_NETDEV_DEV(netdev, &pdev->dev);
3358 
3359 	adapter = netdev_priv(netdev);
3360 	pci_set_drvdata(pdev, adapter);
3361 
3362 	adapter->ena_dev = ena_dev;
3363 	adapter->netdev = netdev;
3364 	adapter->pdev = pdev;
3365 
3366 	ena_set_conf_feat_params(adapter, &get_feat_ctx);
3367 
3368 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3369 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3370 
3371 	adapter->tx_ring_size = queue_size;
3372 	adapter->rx_ring_size = queue_size;
3373 
3374 	adapter->max_tx_sgl_size = tx_sgl_size;
3375 	adapter->max_rx_sgl_size = rx_sgl_size;
3376 
3377 	adapter->num_queues = io_queue_num;
3378 	adapter->last_monitored_tx_qid = 0;
3379 
3380 	adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
3381 	adapter->wd_state = wd_state;
3382 
3383 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
3384 
3385 	rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
3386 	if (rc) {
3387 		dev_err(&pdev->dev,
3388 			"Failed to query interrupt moderation feature\n");
3389 		goto err_netdev_destroy;
3390 	}
3391 	ena_init_io_rings(adapter);
3392 
3393 	netdev->netdev_ops = &ena_netdev_ops;
3394 	netdev->watchdog_timeo = TX_TIMEOUT;
3395 	ena_set_ethtool_ops(netdev);
3396 
3397 	netdev->priv_flags |= IFF_UNICAST_FLT;
3398 
3399 	u64_stats_init(&adapter->syncp);
3400 
3401 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3402 	if (rc) {
3403 		dev_err(&pdev->dev,
3404 			"Failed to enable and set the admin interrupts\n");
3405 		goto err_worker_destroy;
3406 	}
3407 	rc = ena_rss_init_default(adapter);
3408 	if (rc && (rc != -EOPNOTSUPP)) {
3409 		dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
3410 		goto err_free_msix;
3411 	}
3412 
3413 	ena_config_debug_area(adapter);
3414 
3415 	memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
3416 
3417 	netif_carrier_off(netdev);
3418 
3419 	rc = register_netdev(netdev);
3420 	if (rc) {
3421 		dev_err(&pdev->dev, "Cannot register net device\n");
3422 		goto err_rss;
3423 	}
3424 
3425 	INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
3426 
3427 	adapter->last_keep_alive_jiffies = jiffies;
3428 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
3429 	adapter->missing_tx_completion_to = TX_TIMEOUT;
3430 	adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
3431 
3432 	ena_update_hints(adapter, &get_feat_ctx.hw_hints);
3433 
3434 	timer_setup(&adapter->timer_service, ena_timer_service, 0);
3435 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3436 
3437 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
3438 		queue_type_str = "Regular";
3439 	else
3440 		queue_type_str = "Low Latency";
3441 
3442 	dev_info(&pdev->dev,
3443 		 "%s found at mem %lx, mac addr %pM Queues %d, Placement policy: %s\n",
3444 		 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
3445 		 netdev->dev_addr, io_queue_num, queue_type_str);
3446 
3447 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3448 
3449 	adapters_found++;
3450 
3451 	return 0;
3452 
3453 err_rss:
3454 	ena_com_delete_debug_area(ena_dev);
3455 	ena_com_rss_destroy(ena_dev);
3456 err_free_msix:
3457 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
3458 	/* stop submitting admin commands on a device that was reset */
3459 	ena_com_set_admin_running_state(ena_dev, false);
3460 	ena_free_mgmnt_irq(adapter);
3461 	ena_disable_msix(adapter);
3462 err_worker_destroy:
3463 	ena_com_destroy_interrupt_moderation(ena_dev);
3464 	del_timer(&adapter->timer_service);
3465 err_netdev_destroy:
3466 	free_netdev(netdev);
3467 err_device_destroy:
3468 	ena_com_delete_host_info(ena_dev);
3469 	ena_com_admin_destroy(ena_dev);
3470 err_free_region:
3471 	ena_release_bars(ena_dev, pdev);
3472 err_free_ena_dev:
3473 	vfree(ena_dev);
3474 err_disable_device:
3475 	pci_disable_device(pdev);
3476 	return rc;
3477 }
3478 
3479 /*****************************************************************************/
3480 
3481 /* ena_remove - Device Removal Routine
3482  * @pdev: PCI device information struct
3483  *
3484  * ena_remove is called by the PCI subsystem to alert the driver
3485  * that it should release a PCI device.
3486  */
3487 static void ena_remove(struct pci_dev *pdev)
3488 {
3489 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
3490 	struct ena_com_dev *ena_dev;
3491 	struct net_device *netdev;
3492 
3493 	ena_dev = adapter->ena_dev;
3494 	netdev = adapter->netdev;
3495 
3496 #ifdef CONFIG_RFS_ACCEL
3497 	if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
3498 		free_irq_cpu_rmap(netdev->rx_cpu_rmap);
3499 		netdev->rx_cpu_rmap = NULL;
3500 	}
3501 #endif /* CONFIG_RFS_ACCEL */
3502 	del_timer_sync(&adapter->timer_service);
3503 
3504 	cancel_work_sync(&adapter->reset_task);
3505 
3506 	rtnl_lock();
3507 	ena_destroy_device(adapter, true);
3508 	rtnl_unlock();
3509 
3510 	unregister_netdev(netdev);
3511 
3512 	free_netdev(netdev);
3513 
3514 	ena_com_rss_destroy(ena_dev);
3515 
3516 	ena_com_delete_debug_area(ena_dev);
3517 
3518 	ena_com_delete_host_info(ena_dev);
3519 
3520 	ena_release_bars(ena_dev, pdev);
3521 
3522 	pci_disable_device(pdev);
3523 
3524 	ena_com_destroy_interrupt_moderation(ena_dev);
3525 
3526 	vfree(ena_dev);
3527 }
3528 
3529 #ifdef CONFIG_PM
3530 /* ena_suspend - PM suspend callback
3531  * @pdev: PCI device information struct
3532  * @state:power state
3533  */
3534 static int ena_suspend(struct pci_dev *pdev,  pm_message_t state)
3535 {
3536 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
3537 
3538 	u64_stats_update_begin(&adapter->syncp);
3539 	adapter->dev_stats.suspend++;
3540 	u64_stats_update_end(&adapter->syncp);
3541 
3542 	rtnl_lock();
3543 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3544 		dev_err(&pdev->dev,
3545 			"ignoring device reset request as the device is being suspended\n");
3546 		clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3547 	}
3548 	ena_destroy_device(adapter, true);
3549 	rtnl_unlock();
3550 	return 0;
3551 }
3552 
3553 /* ena_resume - PM resume callback
3554  * @pdev: PCI device information struct
3555  *
3556  */
3557 static int ena_resume(struct pci_dev *pdev)
3558 {
3559 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
3560 	int rc;
3561 
3562 	u64_stats_update_begin(&adapter->syncp);
3563 	adapter->dev_stats.resume++;
3564 	u64_stats_update_end(&adapter->syncp);
3565 
3566 	rtnl_lock();
3567 	rc = ena_restore_device(adapter);
3568 	rtnl_unlock();
3569 	return rc;
3570 }
3571 #endif
3572 
3573 static struct pci_driver ena_pci_driver = {
3574 	.name		= DRV_MODULE_NAME,
3575 	.id_table	= ena_pci_tbl,
3576 	.probe		= ena_probe,
3577 	.remove		= ena_remove,
3578 #ifdef CONFIG_PM
3579 	.suspend    = ena_suspend,
3580 	.resume     = ena_resume,
3581 #endif
3582 	.sriov_configure = pci_sriov_configure_simple,
3583 };
3584 
3585 static int __init ena_init(void)
3586 {
3587 	pr_info("%s", version);
3588 
3589 	ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
3590 	if (!ena_wq) {
3591 		pr_err("Failed to create workqueue\n");
3592 		return -ENOMEM;
3593 	}
3594 
3595 	return pci_register_driver(&ena_pci_driver);
3596 }
3597 
3598 static void __exit ena_cleanup(void)
3599 {
3600 	pci_unregister_driver(&ena_pci_driver);
3601 
3602 	if (ena_wq) {
3603 		destroy_workqueue(ena_wq);
3604 		ena_wq = NULL;
3605 	}
3606 }
3607 
3608 /******************************************************************************
3609  ******************************** AENQ Handlers *******************************
3610  *****************************************************************************/
3611 /* ena_update_on_link_change:
3612  * Notify the network interface about the change in link status
3613  */
3614 static void ena_update_on_link_change(void *adapter_data,
3615 				      struct ena_admin_aenq_entry *aenq_e)
3616 {
3617 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3618 	struct ena_admin_aenq_link_change_desc *aenq_desc =
3619 		(struct ena_admin_aenq_link_change_desc *)aenq_e;
3620 	int status = aenq_desc->flags &
3621 		ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3622 
3623 	if (status) {
3624 		netdev_dbg(adapter->netdev, "%s\n", __func__);
3625 		set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
3626 		if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
3627 			netif_carrier_on(adapter->netdev);
3628 	} else {
3629 		clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
3630 		netif_carrier_off(adapter->netdev);
3631 	}
3632 }
3633 
3634 static void ena_keep_alive_wd(void *adapter_data,
3635 			      struct ena_admin_aenq_entry *aenq_e)
3636 {
3637 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3638 	struct ena_admin_aenq_keep_alive_desc *desc;
3639 	u64 rx_drops;
3640 
3641 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3642 	adapter->last_keep_alive_jiffies = jiffies;
3643 
3644 	rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
3645 
3646 	u64_stats_update_begin(&adapter->syncp);
3647 	adapter->dev_stats.rx_drops = rx_drops;
3648 	u64_stats_update_end(&adapter->syncp);
3649 }
3650 
3651 static void ena_notification(void *adapter_data,
3652 			     struct ena_admin_aenq_entry *aenq_e)
3653 {
3654 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3655 	struct ena_admin_ena_hw_hints *hints;
3656 
3657 	WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
3658 	     "Invalid group(%x) expected %x\n",
3659 	     aenq_e->aenq_common_desc.group,
3660 	     ENA_ADMIN_NOTIFICATION);
3661 
3662 	switch (aenq_e->aenq_common_desc.syndrom) {
3663 	case ENA_ADMIN_UPDATE_HINTS:
3664 		hints = (struct ena_admin_ena_hw_hints *)
3665 			(&aenq_e->inline_data_w4);
3666 		ena_update_hints(adapter, hints);
3667 		break;
3668 	default:
3669 		netif_err(adapter, drv, adapter->netdev,
3670 			  "Invalid aenq notification link state %d\n",
3671 			  aenq_e->aenq_common_desc.syndrom);
3672 	}
3673 }
3674 
3675 /* This handler will called for unknown event group or unimplemented handlers*/
3676 static void unimplemented_aenq_handler(void *data,
3677 				       struct ena_admin_aenq_entry *aenq_e)
3678 {
3679 	struct ena_adapter *adapter = (struct ena_adapter *)data;
3680 
3681 	netif_err(adapter, drv, adapter->netdev,
3682 		  "Unknown event was received or event with unimplemented handler\n");
3683 }
3684 
3685 static struct ena_aenq_handlers aenq_handlers = {
3686 	.handlers = {
3687 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3688 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3689 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3690 	},
3691 	.unimplemented_handler = unimplemented_aenq_handler
3692 };
3693 
3694 module_init(ena_init);
3695 module_exit(ena_cleanup);
3696