xref: /openbmc/linux/drivers/net/ethernet/amazon/ena/ena_netdev.c (revision bd1f88a12843e0b876eabecd042e307941643ed9)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #ifdef CONFIG_RFS_ACCEL
9 #include <linux/cpu_rmap.h>
10 #endif /* CONFIG_RFS_ACCEL */
11 #include <linux/ethtool.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/numa.h>
15 #include <linux/pci.h>
16 #include <linux/utsname.h>
17 #include <linux/version.h>
18 #include <linux/vmalloc.h>
19 #include <net/ip.h>
20 
21 #include "ena_netdev.h"
22 #include <linux/bpf_trace.h>
23 #include "ena_pci_id_tbl.h"
24 
25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
26 MODULE_DESCRIPTION(DEVICE_NAME);
27 MODULE_LICENSE("GPL");
28 
29 /* Time in jiffies before concluding the transmitter is hung. */
30 #define TX_TIMEOUT  (5 * HZ)
31 
32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus())
33 
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
35 		NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
36 
37 static struct ena_aenq_handlers aenq_handlers;
38 
39 static struct workqueue_struct *ena_wq;
40 
41 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
42 
43 static int ena_rss_init_default(struct ena_adapter *adapter);
44 static void check_for_admin_com_state(struct ena_adapter *adapter);
45 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
46 static int ena_restore_device(struct ena_adapter *adapter);
47 
48 static void ena_init_io_rings(struct ena_adapter *adapter,
49 			      int first_index, int count);
50 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index,
51 				   int count);
52 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index,
53 				  int count);
54 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid);
55 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
56 					   int first_index,
57 					   int count);
58 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid);
59 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid);
60 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget);
61 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter);
62 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter);
63 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
64 				      int first_index, int count);
65 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
66 				     int first_index, int count);
67 static int ena_up(struct ena_adapter *adapter);
68 static void ena_down(struct ena_adapter *adapter);
69 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
70 				 struct ena_ring *rx_ring);
71 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
72 				      struct ena_ring *rx_ring);
73 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
74 			      struct ena_tx_buffer *tx_info);
75 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
76 					    int first_index, int count);
77 
78 /* Increase a stat by cnt while holding syncp seqlock on 32bit machines */
79 static void ena_increase_stat(u64 *statp, u64 cnt,
80 			      struct u64_stats_sync *syncp)
81 {
82 	u64_stats_update_begin(syncp);
83 	(*statp) += cnt;
84 	u64_stats_update_end(syncp);
85 }
86 
87 static void ena_ring_tx_doorbell(struct ena_ring *tx_ring)
88 {
89 	ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
90 	ena_increase_stat(&tx_ring->tx_stats.doorbells, 1, &tx_ring->syncp);
91 }
92 
93 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
94 {
95 	struct ena_adapter *adapter = netdev_priv(dev);
96 
97 	/* Change the state of the device to trigger reset
98 	 * Check that we are not in the middle or a trigger already
99 	 */
100 
101 	if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
102 		return;
103 
104 	ena_reset_device(adapter, ENA_REGS_RESET_OS_NETDEV_WD);
105 	ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp);
106 
107 	netif_err(adapter, tx_err, dev, "Transmit time out\n");
108 }
109 
110 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
111 {
112 	int i;
113 
114 	for (i = 0; i < adapter->num_io_queues; i++)
115 		adapter->rx_ring[i].mtu = mtu;
116 }
117 
118 static int ena_change_mtu(struct net_device *dev, int new_mtu)
119 {
120 	struct ena_adapter *adapter = netdev_priv(dev);
121 	int ret;
122 
123 	ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
124 	if (!ret) {
125 		netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu);
126 		update_rx_ring_mtu(adapter, new_mtu);
127 		dev->mtu = new_mtu;
128 	} else {
129 		netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
130 			  new_mtu);
131 	}
132 
133 	return ret;
134 }
135 
136 static int ena_xmit_common(struct net_device *dev,
137 			   struct ena_ring *ring,
138 			   struct ena_tx_buffer *tx_info,
139 			   struct ena_com_tx_ctx *ena_tx_ctx,
140 			   u16 next_to_use,
141 			   u32 bytes)
142 {
143 	struct ena_adapter *adapter = netdev_priv(dev);
144 	int rc, nb_hw_desc;
145 
146 	if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
147 						ena_tx_ctx))) {
148 		netif_dbg(adapter, tx_queued, dev,
149 			  "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
150 			  ring->qid);
151 		ena_ring_tx_doorbell(ring);
152 	}
153 
154 	/* prepare the packet's descriptors to dma engine */
155 	rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
156 				&nb_hw_desc);
157 
158 	/* In case there isn't enough space in the queue for the packet,
159 	 * we simply drop it. All other failure reasons of
160 	 * ena_com_prepare_tx() are fatal and therefore require a device reset.
161 	 */
162 	if (unlikely(rc)) {
163 		netif_err(adapter, tx_queued, dev,
164 			  "Failed to prepare tx bufs\n");
165 		ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1,
166 				  &ring->syncp);
167 		if (rc != -ENOMEM)
168 			ena_reset_device(adapter,
169 					 ENA_REGS_RESET_DRIVER_INVALID_STATE);
170 		return rc;
171 	}
172 
173 	u64_stats_update_begin(&ring->syncp);
174 	ring->tx_stats.cnt++;
175 	ring->tx_stats.bytes += bytes;
176 	u64_stats_update_end(&ring->syncp);
177 
178 	tx_info->tx_descs = nb_hw_desc;
179 	tx_info->last_jiffies = jiffies;
180 	tx_info->print_once = 0;
181 
182 	ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
183 						 ring->ring_size);
184 	return 0;
185 }
186 
187 /* This is the XDP napi callback. XDP queues use a separate napi callback
188  * than Rx/Tx queues.
189  */
190 static int ena_xdp_io_poll(struct napi_struct *napi, int budget)
191 {
192 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
193 	u32 xdp_work_done, xdp_budget;
194 	struct ena_ring *xdp_ring;
195 	int napi_comp_call = 0;
196 	int ret;
197 
198 	xdp_ring = ena_napi->xdp_ring;
199 
200 	xdp_budget = budget;
201 
202 	if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) ||
203 	    test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) {
204 		napi_complete_done(napi, 0);
205 		return 0;
206 	}
207 
208 	xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget);
209 
210 	/* If the device is about to reset or down, avoid unmask
211 	 * the interrupt and return 0 so NAPI won't reschedule
212 	 */
213 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) {
214 		napi_complete_done(napi, 0);
215 		ret = 0;
216 	} else if (xdp_budget > xdp_work_done) {
217 		napi_comp_call = 1;
218 		if (napi_complete_done(napi, xdp_work_done))
219 			ena_unmask_interrupt(xdp_ring, NULL);
220 		ena_update_ring_numa_node(xdp_ring, NULL);
221 		ret = xdp_work_done;
222 	} else {
223 		ret = xdp_budget;
224 	}
225 
226 	u64_stats_update_begin(&xdp_ring->syncp);
227 	xdp_ring->tx_stats.napi_comp += napi_comp_call;
228 	xdp_ring->tx_stats.tx_poll++;
229 	u64_stats_update_end(&xdp_ring->syncp);
230 	xdp_ring->tx_stats.last_napi_jiffies = jiffies;
231 
232 	return ret;
233 }
234 
235 static int ena_xdp_tx_map_frame(struct ena_ring *xdp_ring,
236 				struct ena_tx_buffer *tx_info,
237 				struct xdp_frame *xdpf,
238 				struct ena_com_tx_ctx *ena_tx_ctx)
239 {
240 	struct ena_adapter *adapter = xdp_ring->adapter;
241 	struct ena_com_buf *ena_buf;
242 	int push_len = 0;
243 	dma_addr_t dma;
244 	void *data;
245 	u32 size;
246 
247 	tx_info->xdpf = xdpf;
248 	data = tx_info->xdpf->data;
249 	size = tx_info->xdpf->len;
250 
251 	if (xdp_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
252 		/* Designate part of the packet for LLQ */
253 		push_len = min_t(u32, size, xdp_ring->tx_max_header_size);
254 
255 		ena_tx_ctx->push_header = data;
256 
257 		size -= push_len;
258 		data += push_len;
259 	}
260 
261 	ena_tx_ctx->header_len = push_len;
262 
263 	if (size > 0) {
264 		dma = dma_map_single(xdp_ring->dev,
265 				     data,
266 				     size,
267 				     DMA_TO_DEVICE);
268 		if (unlikely(dma_mapping_error(xdp_ring->dev, dma)))
269 			goto error_report_dma_error;
270 
271 		tx_info->map_linear_data = 0;
272 
273 		ena_buf = tx_info->bufs;
274 		ena_buf->paddr = dma;
275 		ena_buf->len = size;
276 
277 		ena_tx_ctx->ena_bufs = ena_buf;
278 		ena_tx_ctx->num_bufs = tx_info->num_of_bufs = 1;
279 	}
280 
281 	return 0;
282 
283 error_report_dma_error:
284 	ena_increase_stat(&xdp_ring->tx_stats.dma_mapping_err, 1,
285 			  &xdp_ring->syncp);
286 	netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map xdp buff\n");
287 
288 	return -EINVAL;
289 }
290 
291 static int ena_xdp_xmit_frame(struct ena_ring *xdp_ring,
292 			      struct net_device *dev,
293 			      struct xdp_frame *xdpf,
294 			      int flags)
295 {
296 	struct ena_com_tx_ctx ena_tx_ctx = {};
297 	struct ena_tx_buffer *tx_info;
298 	u16 next_to_use, req_id;
299 	int rc;
300 
301 	next_to_use = xdp_ring->next_to_use;
302 	req_id = xdp_ring->free_ids[next_to_use];
303 	tx_info = &xdp_ring->tx_buffer_info[req_id];
304 	tx_info->num_of_bufs = 0;
305 
306 	rc = ena_xdp_tx_map_frame(xdp_ring, tx_info, xdpf, &ena_tx_ctx);
307 	if (unlikely(rc))
308 		return rc;
309 
310 	ena_tx_ctx.req_id = req_id;
311 
312 	rc = ena_xmit_common(dev,
313 			     xdp_ring,
314 			     tx_info,
315 			     &ena_tx_ctx,
316 			     next_to_use,
317 			     xdpf->len);
318 	if (rc)
319 		goto error_unmap_dma;
320 
321 	/* trigger the dma engine. ena_ring_tx_doorbell()
322 	 * calls a memory barrier inside it.
323 	 */
324 	if (flags & XDP_XMIT_FLUSH)
325 		ena_ring_tx_doorbell(xdp_ring);
326 
327 	return rc;
328 
329 error_unmap_dma:
330 	ena_unmap_tx_buff(xdp_ring, tx_info);
331 	tx_info->xdpf = NULL;
332 	return rc;
333 }
334 
335 static int ena_xdp_xmit(struct net_device *dev, int n,
336 			struct xdp_frame **frames, u32 flags)
337 {
338 	struct ena_adapter *adapter = netdev_priv(dev);
339 	struct ena_ring *xdp_ring;
340 	int qid, i, nxmit = 0;
341 
342 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
343 		return -EINVAL;
344 
345 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
346 		return -ENETDOWN;
347 
348 	/* We assume that all rings have the same XDP program */
349 	if (!READ_ONCE(adapter->rx_ring->xdp_bpf_prog))
350 		return -ENXIO;
351 
352 	qid = smp_processor_id() % adapter->xdp_num_queues;
353 	qid += adapter->xdp_first_ring;
354 	xdp_ring = &adapter->tx_ring[qid];
355 
356 	/* Other CPU ids might try to send thorugh this queue */
357 	spin_lock(&xdp_ring->xdp_tx_lock);
358 
359 	for (i = 0; i < n; i++) {
360 		if (ena_xdp_xmit_frame(xdp_ring, dev, frames[i], 0))
361 			break;
362 		nxmit++;
363 	}
364 
365 	/* Ring doorbell to make device aware of the packets */
366 	if (flags & XDP_XMIT_FLUSH)
367 		ena_ring_tx_doorbell(xdp_ring);
368 
369 	spin_unlock(&xdp_ring->xdp_tx_lock);
370 
371 	/* Return number of packets sent */
372 	return nxmit;
373 }
374 
375 static int ena_xdp_execute(struct ena_ring *rx_ring, struct xdp_buff *xdp)
376 {
377 	u32 verdict = ENA_XDP_PASS;
378 	struct bpf_prog *xdp_prog;
379 	struct ena_ring *xdp_ring;
380 	struct xdp_frame *xdpf;
381 	u64 *xdp_stat;
382 
383 	xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog);
384 
385 	if (!xdp_prog)
386 		goto out;
387 
388 	verdict = bpf_prog_run_xdp(xdp_prog, xdp);
389 
390 	switch (verdict) {
391 	case XDP_TX:
392 		xdpf = xdp_convert_buff_to_frame(xdp);
393 		if (unlikely(!xdpf)) {
394 			trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
395 			xdp_stat = &rx_ring->rx_stats.xdp_aborted;
396 			verdict = ENA_XDP_DROP;
397 			break;
398 		}
399 
400 		/* Find xmit queue */
401 		xdp_ring = rx_ring->xdp_ring;
402 
403 		/* The XDP queues are shared between XDP_TX and XDP_REDIRECT */
404 		spin_lock(&xdp_ring->xdp_tx_lock);
405 
406 		if (ena_xdp_xmit_frame(xdp_ring, rx_ring->netdev, xdpf,
407 				       XDP_XMIT_FLUSH))
408 			xdp_return_frame(xdpf);
409 
410 		spin_unlock(&xdp_ring->xdp_tx_lock);
411 		xdp_stat = &rx_ring->rx_stats.xdp_tx;
412 		verdict = ENA_XDP_TX;
413 		break;
414 	case XDP_REDIRECT:
415 		if (likely(!xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))) {
416 			xdp_stat = &rx_ring->rx_stats.xdp_redirect;
417 			verdict = ENA_XDP_REDIRECT;
418 			break;
419 		}
420 		trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
421 		xdp_stat = &rx_ring->rx_stats.xdp_aborted;
422 		verdict = ENA_XDP_DROP;
423 		break;
424 	case XDP_ABORTED:
425 		trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
426 		xdp_stat = &rx_ring->rx_stats.xdp_aborted;
427 		verdict = ENA_XDP_DROP;
428 		break;
429 	case XDP_DROP:
430 		xdp_stat = &rx_ring->rx_stats.xdp_drop;
431 		verdict = ENA_XDP_DROP;
432 		break;
433 	case XDP_PASS:
434 		xdp_stat = &rx_ring->rx_stats.xdp_pass;
435 		verdict = ENA_XDP_PASS;
436 		break;
437 	default:
438 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, verdict);
439 		xdp_stat = &rx_ring->rx_stats.xdp_invalid;
440 		verdict = ENA_XDP_DROP;
441 	}
442 
443 	ena_increase_stat(xdp_stat, 1, &rx_ring->syncp);
444 out:
445 	return verdict;
446 }
447 
448 static void ena_init_all_xdp_queues(struct ena_adapter *adapter)
449 {
450 	adapter->xdp_first_ring = adapter->num_io_queues;
451 	adapter->xdp_num_queues = adapter->num_io_queues;
452 
453 	ena_init_io_rings(adapter,
454 			  adapter->xdp_first_ring,
455 			  adapter->xdp_num_queues);
456 }
457 
458 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter)
459 {
460 	int rc = 0;
461 
462 	rc = ena_setup_tx_resources_in_range(adapter, adapter->xdp_first_ring,
463 					     adapter->xdp_num_queues);
464 	if (rc)
465 		goto setup_err;
466 
467 	rc = ena_create_io_tx_queues_in_range(adapter,
468 					      adapter->xdp_first_ring,
469 					      adapter->xdp_num_queues);
470 	if (rc)
471 		goto create_err;
472 
473 	return 0;
474 
475 create_err:
476 	ena_free_all_io_tx_resources(adapter);
477 setup_err:
478 	return rc;
479 }
480 
481 /* Provides a way for both kernel and bpf-prog to know
482  * more about the RX-queue a given XDP frame arrived on.
483  */
484 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring)
485 {
486 	int rc;
487 
488 	rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid, 0);
489 
490 	if (rc) {
491 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
492 			  "Failed to register xdp rx queue info. RX queue num %d rc: %d\n",
493 			  rx_ring->qid, rc);
494 		goto err;
495 	}
496 
497 	rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED,
498 					NULL);
499 
500 	if (rc) {
501 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
502 			  "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n",
503 			  rx_ring->qid, rc);
504 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
505 	}
506 
507 err:
508 	return rc;
509 }
510 
511 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring)
512 {
513 	xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq);
514 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
515 }
516 
517 static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter,
518 						 struct bpf_prog *prog,
519 						 int first, int count)
520 {
521 	struct bpf_prog *old_bpf_prog;
522 	struct ena_ring *rx_ring;
523 	int i = 0;
524 
525 	for (i = first; i < count; i++) {
526 		rx_ring = &adapter->rx_ring[i];
527 		old_bpf_prog = xchg(&rx_ring->xdp_bpf_prog, prog);
528 
529 		if (!old_bpf_prog && prog) {
530 			ena_xdp_register_rxq_info(rx_ring);
531 			rx_ring->rx_headroom = XDP_PACKET_HEADROOM;
532 		} else if (old_bpf_prog && !prog) {
533 			ena_xdp_unregister_rxq_info(rx_ring);
534 			rx_ring->rx_headroom = NET_SKB_PAD;
535 		}
536 	}
537 }
538 
539 static void ena_xdp_exchange_program(struct ena_adapter *adapter,
540 				     struct bpf_prog *prog)
541 {
542 	struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog);
543 
544 	ena_xdp_exchange_program_rx_in_range(adapter,
545 					     prog,
546 					     0,
547 					     adapter->num_io_queues);
548 
549 	if (old_bpf_prog)
550 		bpf_prog_put(old_bpf_prog);
551 }
552 
553 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter)
554 {
555 	bool was_up;
556 	int rc;
557 
558 	was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
559 
560 	if (was_up)
561 		ena_down(adapter);
562 
563 	adapter->xdp_first_ring = 0;
564 	adapter->xdp_num_queues = 0;
565 	ena_xdp_exchange_program(adapter, NULL);
566 	if (was_up) {
567 		rc = ena_up(adapter);
568 		if (rc)
569 			return rc;
570 	}
571 	return 0;
572 }
573 
574 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf)
575 {
576 	struct ena_adapter *adapter = netdev_priv(netdev);
577 	struct bpf_prog *prog = bpf->prog;
578 	struct bpf_prog *old_bpf_prog;
579 	int rc, prev_mtu;
580 	bool is_up;
581 
582 	is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
583 	rc = ena_xdp_allowed(adapter);
584 	if (rc == ENA_XDP_ALLOWED) {
585 		old_bpf_prog = adapter->xdp_bpf_prog;
586 		if (prog) {
587 			if (!is_up) {
588 				ena_init_all_xdp_queues(adapter);
589 			} else if (!old_bpf_prog) {
590 				ena_down(adapter);
591 				ena_init_all_xdp_queues(adapter);
592 			}
593 			ena_xdp_exchange_program(adapter, prog);
594 
595 			if (is_up && !old_bpf_prog) {
596 				rc = ena_up(adapter);
597 				if (rc)
598 					return rc;
599 			}
600 			xdp_features_set_redirect_target(netdev, false);
601 		} else if (old_bpf_prog) {
602 			xdp_features_clear_redirect_target(netdev);
603 			rc = ena_destroy_and_free_all_xdp_queues(adapter);
604 			if (rc)
605 				return rc;
606 		}
607 
608 		prev_mtu = netdev->max_mtu;
609 		netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu;
610 
611 		if (!old_bpf_prog)
612 			netif_info(adapter, drv, adapter->netdev,
613 				   "XDP program is set, changing the max_mtu from %d to %d",
614 				   prev_mtu, netdev->max_mtu);
615 
616 	} else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) {
617 		netif_err(adapter, drv, adapter->netdev,
618 			  "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on",
619 			  netdev->mtu, ENA_XDP_MAX_MTU);
620 		NL_SET_ERR_MSG_MOD(bpf->extack,
621 				   "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info");
622 		return -EINVAL;
623 	} else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) {
624 		netif_err(adapter, drv, adapter->netdev,
625 			  "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n",
626 			  adapter->num_io_queues, adapter->max_num_io_queues);
627 		NL_SET_ERR_MSG_MOD(bpf->extack,
628 				   "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info");
629 		return -EINVAL;
630 	}
631 
632 	return 0;
633 }
634 
635 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp
636  * program as well as to query the current xdp program id.
637  */
638 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf)
639 {
640 	switch (bpf->command) {
641 	case XDP_SETUP_PROG:
642 		return ena_xdp_set(netdev, bpf);
643 	default:
644 		return -EINVAL;
645 	}
646 	return 0;
647 }
648 
649 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
650 {
651 #ifdef CONFIG_RFS_ACCEL
652 	u32 i;
653 	int rc;
654 
655 	adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
656 	if (!adapter->netdev->rx_cpu_rmap)
657 		return -ENOMEM;
658 	for (i = 0; i < adapter->num_io_queues; i++) {
659 		int irq_idx = ENA_IO_IRQ_IDX(i);
660 
661 		rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
662 				      pci_irq_vector(adapter->pdev, irq_idx));
663 		if (rc) {
664 			free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
665 			adapter->netdev->rx_cpu_rmap = NULL;
666 			return rc;
667 		}
668 	}
669 #endif /* CONFIG_RFS_ACCEL */
670 	return 0;
671 }
672 
673 static void ena_init_io_rings_common(struct ena_adapter *adapter,
674 				     struct ena_ring *ring, u16 qid)
675 {
676 	ring->qid = qid;
677 	ring->pdev = adapter->pdev;
678 	ring->dev = &adapter->pdev->dev;
679 	ring->netdev = adapter->netdev;
680 	ring->napi = &adapter->ena_napi[qid].napi;
681 	ring->adapter = adapter;
682 	ring->ena_dev = adapter->ena_dev;
683 	ring->per_napi_packets = 0;
684 	ring->cpu = 0;
685 	ring->numa_node = 0;
686 	ring->no_interrupt_event_cnt = 0;
687 	u64_stats_init(&ring->syncp);
688 }
689 
690 static void ena_init_io_rings(struct ena_adapter *adapter,
691 			      int first_index, int count)
692 {
693 	struct ena_com_dev *ena_dev;
694 	struct ena_ring *txr, *rxr;
695 	int i;
696 
697 	ena_dev = adapter->ena_dev;
698 
699 	for (i = first_index; i < first_index + count; i++) {
700 		txr = &adapter->tx_ring[i];
701 		rxr = &adapter->rx_ring[i];
702 
703 		/* TX common ring state */
704 		ena_init_io_rings_common(adapter, txr, i);
705 
706 		/* TX specific ring state */
707 		txr->ring_size = adapter->requested_tx_ring_size;
708 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
709 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
710 		txr->sgl_size = adapter->max_tx_sgl_size;
711 		txr->smoothed_interval =
712 			ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
713 		txr->disable_meta_caching = adapter->disable_meta_caching;
714 		spin_lock_init(&txr->xdp_tx_lock);
715 
716 		/* Don't init RX queues for xdp queues */
717 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
718 			/* RX common ring state */
719 			ena_init_io_rings_common(adapter, rxr, i);
720 
721 			/* RX specific ring state */
722 			rxr->ring_size = adapter->requested_rx_ring_size;
723 			rxr->rx_copybreak = adapter->rx_copybreak;
724 			rxr->sgl_size = adapter->max_rx_sgl_size;
725 			rxr->smoothed_interval =
726 				ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
727 			rxr->empty_rx_queue = 0;
728 			rxr->rx_headroom = NET_SKB_PAD;
729 			adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
730 			rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues];
731 		}
732 	}
733 }
734 
735 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
736  * @adapter: network interface device structure
737  * @qid: queue index
738  *
739  * Return 0 on success, negative on failure
740  */
741 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
742 {
743 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
744 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
745 	int size, i, node;
746 
747 	if (tx_ring->tx_buffer_info) {
748 		netif_err(adapter, ifup,
749 			  adapter->netdev, "tx_buffer_info info is not NULL");
750 		return -EEXIST;
751 	}
752 
753 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
754 	node = cpu_to_node(ena_irq->cpu);
755 
756 	tx_ring->tx_buffer_info = vzalloc_node(size, node);
757 	if (!tx_ring->tx_buffer_info) {
758 		tx_ring->tx_buffer_info = vzalloc(size);
759 		if (!tx_ring->tx_buffer_info)
760 			goto err_tx_buffer_info;
761 	}
762 
763 	size = sizeof(u16) * tx_ring->ring_size;
764 	tx_ring->free_ids = vzalloc_node(size, node);
765 	if (!tx_ring->free_ids) {
766 		tx_ring->free_ids = vzalloc(size);
767 		if (!tx_ring->free_ids)
768 			goto err_tx_free_ids;
769 	}
770 
771 	size = tx_ring->tx_max_header_size;
772 	tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
773 	if (!tx_ring->push_buf_intermediate_buf) {
774 		tx_ring->push_buf_intermediate_buf = vzalloc(size);
775 		if (!tx_ring->push_buf_intermediate_buf)
776 			goto err_push_buf_intermediate_buf;
777 	}
778 
779 	/* Req id ring for TX out of order completions */
780 	for (i = 0; i < tx_ring->ring_size; i++)
781 		tx_ring->free_ids[i] = i;
782 
783 	/* Reset tx statistics */
784 	memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
785 
786 	tx_ring->next_to_use = 0;
787 	tx_ring->next_to_clean = 0;
788 	tx_ring->cpu = ena_irq->cpu;
789 	tx_ring->numa_node = node;
790 	return 0;
791 
792 err_push_buf_intermediate_buf:
793 	vfree(tx_ring->free_ids);
794 	tx_ring->free_ids = NULL;
795 err_tx_free_ids:
796 	vfree(tx_ring->tx_buffer_info);
797 	tx_ring->tx_buffer_info = NULL;
798 err_tx_buffer_info:
799 	return -ENOMEM;
800 }
801 
802 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
803  * @adapter: network interface device structure
804  * @qid: queue index
805  *
806  * Free all transmit software resources
807  */
808 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
809 {
810 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
811 
812 	vfree(tx_ring->tx_buffer_info);
813 	tx_ring->tx_buffer_info = NULL;
814 
815 	vfree(tx_ring->free_ids);
816 	tx_ring->free_ids = NULL;
817 
818 	vfree(tx_ring->push_buf_intermediate_buf);
819 	tx_ring->push_buf_intermediate_buf = NULL;
820 }
821 
822 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
823 					   int first_index,
824 					   int count)
825 {
826 	int i, rc = 0;
827 
828 	for (i = first_index; i < first_index + count; i++) {
829 		rc = ena_setup_tx_resources(adapter, i);
830 		if (rc)
831 			goto err_setup_tx;
832 	}
833 
834 	return 0;
835 
836 err_setup_tx:
837 
838 	netif_err(adapter, ifup, adapter->netdev,
839 		  "Tx queue %d: allocation failed\n", i);
840 
841 	/* rewind the index freeing the rings as we go */
842 	while (first_index < i--)
843 		ena_free_tx_resources(adapter, i);
844 	return rc;
845 }
846 
847 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
848 						  int first_index, int count)
849 {
850 	int i;
851 
852 	for (i = first_index; i < first_index + count; i++)
853 		ena_free_tx_resources(adapter, i);
854 }
855 
856 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
857  * @adapter: board private structure
858  *
859  * Free all transmit software resources
860  */
861 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
862 {
863 	ena_free_all_io_tx_resources_in_range(adapter,
864 					      0,
865 					      adapter->xdp_num_queues +
866 					      adapter->num_io_queues);
867 }
868 
869 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
870  * @adapter: network interface device structure
871  * @qid: queue index
872  *
873  * Returns 0 on success, negative on failure
874  */
875 static int ena_setup_rx_resources(struct ena_adapter *adapter,
876 				  u32 qid)
877 {
878 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
879 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
880 	int size, node, i;
881 
882 	if (rx_ring->rx_buffer_info) {
883 		netif_err(adapter, ifup, adapter->netdev,
884 			  "rx_buffer_info is not NULL");
885 		return -EEXIST;
886 	}
887 
888 	/* alloc extra element so in rx path
889 	 * we can always prefetch rx_info + 1
890 	 */
891 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
892 	node = cpu_to_node(ena_irq->cpu);
893 
894 	rx_ring->rx_buffer_info = vzalloc_node(size, node);
895 	if (!rx_ring->rx_buffer_info) {
896 		rx_ring->rx_buffer_info = vzalloc(size);
897 		if (!rx_ring->rx_buffer_info)
898 			return -ENOMEM;
899 	}
900 
901 	size = sizeof(u16) * rx_ring->ring_size;
902 	rx_ring->free_ids = vzalloc_node(size, node);
903 	if (!rx_ring->free_ids) {
904 		rx_ring->free_ids = vzalloc(size);
905 		if (!rx_ring->free_ids) {
906 			vfree(rx_ring->rx_buffer_info);
907 			rx_ring->rx_buffer_info = NULL;
908 			return -ENOMEM;
909 		}
910 	}
911 
912 	/* Req id ring for receiving RX pkts out of order */
913 	for (i = 0; i < rx_ring->ring_size; i++)
914 		rx_ring->free_ids[i] = i;
915 
916 	/* Reset rx statistics */
917 	memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
918 
919 	rx_ring->next_to_clean = 0;
920 	rx_ring->next_to_use = 0;
921 	rx_ring->cpu = ena_irq->cpu;
922 	rx_ring->numa_node = node;
923 
924 	return 0;
925 }
926 
927 /* ena_free_rx_resources - Free I/O Rx Resources
928  * @adapter: network interface device structure
929  * @qid: queue index
930  *
931  * Free all receive software resources
932  */
933 static void ena_free_rx_resources(struct ena_adapter *adapter,
934 				  u32 qid)
935 {
936 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
937 
938 	vfree(rx_ring->rx_buffer_info);
939 	rx_ring->rx_buffer_info = NULL;
940 
941 	vfree(rx_ring->free_ids);
942 	rx_ring->free_ids = NULL;
943 }
944 
945 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
946  * @adapter: board private structure
947  *
948  * Return 0 on success, negative on failure
949  */
950 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
951 {
952 	int i, rc = 0;
953 
954 	for (i = 0; i < adapter->num_io_queues; i++) {
955 		rc = ena_setup_rx_resources(adapter, i);
956 		if (rc)
957 			goto err_setup_rx;
958 	}
959 
960 	return 0;
961 
962 err_setup_rx:
963 
964 	netif_err(adapter, ifup, adapter->netdev,
965 		  "Rx queue %d: allocation failed\n", i);
966 
967 	/* rewind the index freeing the rings as we go */
968 	while (i--)
969 		ena_free_rx_resources(adapter, i);
970 	return rc;
971 }
972 
973 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
974  * @adapter: board private structure
975  *
976  * Free all receive software resources
977  */
978 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
979 {
980 	int i;
981 
982 	for (i = 0; i < adapter->num_io_queues; i++)
983 		ena_free_rx_resources(adapter, i);
984 }
985 
986 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring,
987 				       dma_addr_t *dma)
988 {
989 	struct page *page;
990 
991 	/* This would allocate the page on the same NUMA node the executing code
992 	 * is running on.
993 	 */
994 	page = dev_alloc_page();
995 	if (!page) {
996 		ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1,
997 				  &rx_ring->syncp);
998 		return ERR_PTR(-ENOSPC);
999 	}
1000 
1001 	/* To enable NIC-side port-mirroring, AKA SPAN port,
1002 	 * we make the buffer readable from the nic as well
1003 	 */
1004 	*dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
1005 			    DMA_BIDIRECTIONAL);
1006 	if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) {
1007 		ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1,
1008 				  &rx_ring->syncp);
1009 		__free_page(page);
1010 		return ERR_PTR(-EIO);
1011 	}
1012 
1013 	return page;
1014 }
1015 
1016 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring,
1017 			       struct ena_rx_buffer *rx_info)
1018 {
1019 	int headroom = rx_ring->rx_headroom;
1020 	struct ena_com_buf *ena_buf;
1021 	struct page *page;
1022 	dma_addr_t dma;
1023 	int tailroom;
1024 
1025 	/* restore page offset value in case it has been changed by device */
1026 	rx_info->buf_offset = headroom;
1027 
1028 	/* if previous allocated page is not used */
1029 	if (unlikely(rx_info->page))
1030 		return 0;
1031 
1032 	/* We handle DMA here */
1033 	page = ena_alloc_map_page(rx_ring, &dma);
1034 	if (unlikely(IS_ERR(page)))
1035 		return PTR_ERR(page);
1036 
1037 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1038 		  "Allocate page %p, rx_info %p\n", page, rx_info);
1039 
1040 	tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1041 
1042 	rx_info->page = page;
1043 	rx_info->dma_addr = dma;
1044 	rx_info->page_offset = 0;
1045 	ena_buf = &rx_info->ena_buf;
1046 	ena_buf->paddr = dma + headroom;
1047 	ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom;
1048 
1049 	return 0;
1050 }
1051 
1052 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring,
1053 				    struct ena_rx_buffer *rx_info,
1054 				    unsigned long attrs)
1055 {
1056 	dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE,
1057 			     DMA_BIDIRECTIONAL, attrs);
1058 }
1059 
1060 static void ena_free_rx_page(struct ena_ring *rx_ring,
1061 			     struct ena_rx_buffer *rx_info)
1062 {
1063 	struct page *page = rx_info->page;
1064 
1065 	if (unlikely(!page)) {
1066 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1067 			   "Trying to free unallocated buffer\n");
1068 		return;
1069 	}
1070 
1071 	ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0);
1072 
1073 	__free_page(page);
1074 	rx_info->page = NULL;
1075 }
1076 
1077 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
1078 {
1079 	u16 next_to_use, req_id;
1080 	u32 i;
1081 	int rc;
1082 
1083 	next_to_use = rx_ring->next_to_use;
1084 
1085 	for (i = 0; i < num; i++) {
1086 		struct ena_rx_buffer *rx_info;
1087 
1088 		req_id = rx_ring->free_ids[next_to_use];
1089 
1090 		rx_info = &rx_ring->rx_buffer_info[req_id];
1091 
1092 		rc = ena_alloc_rx_buffer(rx_ring, rx_info);
1093 		if (unlikely(rc < 0)) {
1094 			netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1095 				   "Failed to allocate buffer for rx queue %d\n",
1096 				   rx_ring->qid);
1097 			break;
1098 		}
1099 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1100 						&rx_info->ena_buf,
1101 						req_id);
1102 		if (unlikely(rc)) {
1103 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1104 				   "Failed to add buffer for rx queue %d\n",
1105 				   rx_ring->qid);
1106 			break;
1107 		}
1108 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1109 						   rx_ring->ring_size);
1110 	}
1111 
1112 	if (unlikely(i < num)) {
1113 		ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1,
1114 				  &rx_ring->syncp);
1115 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1116 			   "Refilled rx qid %d with only %d buffers (from %d)\n",
1117 			   rx_ring->qid, i, num);
1118 	}
1119 
1120 	/* ena_com_write_sq_doorbell issues a wmb() */
1121 	if (likely(i))
1122 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1123 
1124 	rx_ring->next_to_use = next_to_use;
1125 
1126 	return i;
1127 }
1128 
1129 static void ena_free_rx_bufs(struct ena_adapter *adapter,
1130 			     u32 qid)
1131 {
1132 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1133 	u32 i;
1134 
1135 	for (i = 0; i < rx_ring->ring_size; i++) {
1136 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1137 
1138 		if (rx_info->page)
1139 			ena_free_rx_page(rx_ring, rx_info);
1140 	}
1141 }
1142 
1143 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
1144  * @adapter: board private structure
1145  */
1146 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1147 {
1148 	struct ena_ring *rx_ring;
1149 	int i, rc, bufs_num;
1150 
1151 	for (i = 0; i < adapter->num_io_queues; i++) {
1152 		rx_ring = &adapter->rx_ring[i];
1153 		bufs_num = rx_ring->ring_size - 1;
1154 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1155 
1156 		if (unlikely(rc != bufs_num))
1157 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1158 				   "Refilling Queue %d failed. allocated %d buffers from: %d\n",
1159 				   i, rc, bufs_num);
1160 	}
1161 }
1162 
1163 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
1164 {
1165 	int i;
1166 
1167 	for (i = 0; i < adapter->num_io_queues; i++)
1168 		ena_free_rx_bufs(adapter, i);
1169 }
1170 
1171 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
1172 			      struct ena_tx_buffer *tx_info)
1173 {
1174 	struct ena_com_buf *ena_buf;
1175 	u32 cnt;
1176 	int i;
1177 
1178 	ena_buf = tx_info->bufs;
1179 	cnt = tx_info->num_of_bufs;
1180 
1181 	if (unlikely(!cnt))
1182 		return;
1183 
1184 	if (tx_info->map_linear_data) {
1185 		dma_unmap_single(tx_ring->dev,
1186 				 dma_unmap_addr(ena_buf, paddr),
1187 				 dma_unmap_len(ena_buf, len),
1188 				 DMA_TO_DEVICE);
1189 		ena_buf++;
1190 		cnt--;
1191 	}
1192 
1193 	/* unmap remaining mapped pages */
1194 	for (i = 0; i < cnt; i++) {
1195 		dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
1196 			       dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
1197 		ena_buf++;
1198 	}
1199 }
1200 
1201 /* ena_free_tx_bufs - Free Tx Buffers per Queue
1202  * @tx_ring: TX ring for which buffers be freed
1203  */
1204 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
1205 {
1206 	bool print_once = true;
1207 	u32 i;
1208 
1209 	for (i = 0; i < tx_ring->ring_size; i++) {
1210 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1211 
1212 		if (!tx_info->skb)
1213 			continue;
1214 
1215 		if (print_once) {
1216 			netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev,
1217 				     "Free uncompleted tx skb qid %d idx 0x%x\n",
1218 				     tx_ring->qid, i);
1219 			print_once = false;
1220 		} else {
1221 			netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev,
1222 				  "Free uncompleted tx skb qid %d idx 0x%x\n",
1223 				  tx_ring->qid, i);
1224 		}
1225 
1226 		ena_unmap_tx_buff(tx_ring, tx_info);
1227 
1228 		dev_kfree_skb_any(tx_info->skb);
1229 	}
1230 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
1231 						  tx_ring->qid));
1232 }
1233 
1234 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
1235 {
1236 	struct ena_ring *tx_ring;
1237 	int i;
1238 
1239 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1240 		tx_ring = &adapter->tx_ring[i];
1241 		ena_free_tx_bufs(tx_ring);
1242 	}
1243 }
1244 
1245 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1246 {
1247 	u16 ena_qid;
1248 	int i;
1249 
1250 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1251 		ena_qid = ENA_IO_TXQ_IDX(i);
1252 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1253 	}
1254 }
1255 
1256 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1257 {
1258 	u16 ena_qid;
1259 	int i;
1260 
1261 	for (i = 0; i < adapter->num_io_queues; i++) {
1262 		ena_qid = ENA_IO_RXQ_IDX(i);
1263 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
1264 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1265 	}
1266 }
1267 
1268 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
1269 {
1270 	ena_destroy_all_tx_queues(adapter);
1271 	ena_destroy_all_rx_queues(adapter);
1272 }
1273 
1274 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
1275 				 struct ena_tx_buffer *tx_info, bool is_xdp)
1276 {
1277 	if (tx_info)
1278 		netif_err(ring->adapter,
1279 			  tx_done,
1280 			  ring->netdev,
1281 			  "tx_info doesn't have valid %s. qid %u req_id %u",
1282 			   is_xdp ? "xdp frame" : "skb", ring->qid, req_id);
1283 	else
1284 		netif_err(ring->adapter,
1285 			  tx_done,
1286 			  ring->netdev,
1287 			  "Invalid req_id %u in qid %u\n",
1288 			  req_id, ring->qid);
1289 
1290 	ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp);
1291 	ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
1292 
1293 	return -EFAULT;
1294 }
1295 
1296 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
1297 {
1298 	struct ena_tx_buffer *tx_info;
1299 
1300 	tx_info = &tx_ring->tx_buffer_info[req_id];
1301 	if (likely(tx_info->skb))
1302 		return 0;
1303 
1304 	return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
1305 }
1306 
1307 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id)
1308 {
1309 	struct ena_tx_buffer *tx_info;
1310 
1311 	tx_info = &xdp_ring->tx_buffer_info[req_id];
1312 	if (likely(tx_info->xdpf))
1313 		return 0;
1314 
1315 	return handle_invalid_req_id(xdp_ring, req_id, tx_info, true);
1316 }
1317 
1318 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
1319 {
1320 	struct netdev_queue *txq;
1321 	bool above_thresh;
1322 	u32 tx_bytes = 0;
1323 	u32 total_done = 0;
1324 	u16 next_to_clean;
1325 	u16 req_id;
1326 	int tx_pkts = 0;
1327 	int rc;
1328 
1329 	next_to_clean = tx_ring->next_to_clean;
1330 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
1331 
1332 	while (tx_pkts < budget) {
1333 		struct ena_tx_buffer *tx_info;
1334 		struct sk_buff *skb;
1335 
1336 		rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
1337 						&req_id);
1338 		if (rc) {
1339 			if (unlikely(rc == -EINVAL))
1340 				handle_invalid_req_id(tx_ring, req_id, NULL,
1341 						      false);
1342 			break;
1343 		}
1344 
1345 		/* validate that the request id points to a valid skb */
1346 		rc = validate_tx_req_id(tx_ring, req_id);
1347 		if (rc)
1348 			break;
1349 
1350 		tx_info = &tx_ring->tx_buffer_info[req_id];
1351 		skb = tx_info->skb;
1352 
1353 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
1354 		prefetch(&skb->end);
1355 
1356 		tx_info->skb = NULL;
1357 		tx_info->last_jiffies = 0;
1358 
1359 		ena_unmap_tx_buff(tx_ring, tx_info);
1360 
1361 		netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1362 			  "tx_poll: q %d skb %p completed\n", tx_ring->qid,
1363 			  skb);
1364 
1365 		tx_bytes += skb->len;
1366 		dev_kfree_skb(skb);
1367 		tx_pkts++;
1368 		total_done += tx_info->tx_descs;
1369 
1370 		tx_ring->free_ids[next_to_clean] = req_id;
1371 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1372 						     tx_ring->ring_size);
1373 	}
1374 
1375 	tx_ring->next_to_clean = next_to_clean;
1376 	ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
1377 	ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
1378 
1379 	netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1380 
1381 	netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1382 		  "tx_poll: q %d done. total pkts: %d\n",
1383 		  tx_ring->qid, tx_pkts);
1384 
1385 	/* need to make the rings circular update visible to
1386 	 * ena_start_xmit() before checking for netif_queue_stopped().
1387 	 */
1388 	smp_mb();
1389 
1390 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1391 						    ENA_TX_WAKEUP_THRESH);
1392 	if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
1393 		__netif_tx_lock(txq, smp_processor_id());
1394 		above_thresh =
1395 			ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1396 						     ENA_TX_WAKEUP_THRESH);
1397 		if (netif_tx_queue_stopped(txq) && above_thresh &&
1398 		    test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
1399 			netif_tx_wake_queue(txq);
1400 			ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
1401 					  &tx_ring->syncp);
1402 		}
1403 		__netif_tx_unlock(txq);
1404 	}
1405 
1406 	return tx_pkts;
1407 }
1408 
1409 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len)
1410 {
1411 	struct sk_buff *skb;
1412 
1413 	if (!first_frag)
1414 		skb = napi_alloc_skb(rx_ring->napi, len);
1415 	else
1416 		skb = napi_build_skb(first_frag, len);
1417 
1418 	if (unlikely(!skb)) {
1419 		ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1,
1420 				  &rx_ring->syncp);
1421 
1422 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1423 			  "Failed to allocate skb. first_frag %s\n",
1424 			  first_frag ? "provided" : "not provided");
1425 	}
1426 
1427 	return skb;
1428 }
1429 
1430 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len,
1431 				      u16 len, int pkt_offset)
1432 {
1433 	struct ena_com_buf *ena_buf = &rx_info->ena_buf;
1434 
1435 	/* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer
1436 	 * for data + headroom + tailroom.
1437 	 */
1438 	if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) {
1439 		page_ref_inc(rx_info->page);
1440 		rx_info->page_offset += buf_len;
1441 		ena_buf->paddr += buf_len;
1442 		ena_buf->len -= buf_len;
1443 		return true;
1444 	}
1445 
1446 	return false;
1447 }
1448 
1449 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
1450 				  struct ena_com_rx_buf_info *ena_bufs,
1451 				  u32 descs,
1452 				  u16 *next_to_clean)
1453 {
1454 	int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1455 	bool is_xdp_loaded = ena_xdp_present_ring(rx_ring);
1456 	struct ena_rx_buffer *rx_info;
1457 	struct ena_adapter *adapter;
1458 	int page_offset, pkt_offset;
1459 	dma_addr_t pre_reuse_paddr;
1460 	u16 len, req_id, buf = 0;
1461 	bool reuse_rx_buf_page;
1462 	struct sk_buff *skb;
1463 	void *buf_addr;
1464 	int buf_offset;
1465 	u16 buf_len;
1466 
1467 	len = ena_bufs[buf].len;
1468 	req_id = ena_bufs[buf].req_id;
1469 
1470 	rx_info = &rx_ring->rx_buffer_info[req_id];
1471 
1472 	if (unlikely(!rx_info->page)) {
1473 		adapter = rx_ring->adapter;
1474 		netif_err(adapter, rx_err, rx_ring->netdev,
1475 			  "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id);
1476 		ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp);
1477 		ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
1478 		return NULL;
1479 	}
1480 
1481 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1482 		  "rx_info %p page %p\n",
1483 		  rx_info, rx_info->page);
1484 
1485 	buf_offset = rx_info->buf_offset;
1486 	pkt_offset = buf_offset - rx_ring->rx_headroom;
1487 	page_offset = rx_info->page_offset;
1488 	buf_addr = page_address(rx_info->page) + page_offset;
1489 
1490 	if (len <= rx_ring->rx_copybreak) {
1491 		skb = ena_alloc_skb(rx_ring, NULL, len);
1492 		if (unlikely(!skb))
1493 			return NULL;
1494 
1495 		/* sync this buffer for CPU use */
1496 		dma_sync_single_for_cpu(rx_ring->dev,
1497 					dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
1498 					len,
1499 					DMA_FROM_DEVICE);
1500 		skb_copy_to_linear_data(skb, buf_addr + buf_offset, len);
1501 		dma_sync_single_for_device(rx_ring->dev,
1502 					   dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
1503 					   len,
1504 					   DMA_FROM_DEVICE);
1505 
1506 		skb_put(skb, len);
1507 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1508 			  "RX allocated small packet. len %d.\n", skb->len);
1509 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1510 		rx_ring->free_ids[*next_to_clean] = req_id;
1511 		*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
1512 						     rx_ring->ring_size);
1513 		return skb;
1514 	}
1515 
1516 	buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1517 
1518 	pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr);
1519 
1520 	/* If XDP isn't loaded try to reuse part of the RX buffer */
1521 	reuse_rx_buf_page = !is_xdp_loaded &&
1522 			    ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1523 
1524 	dma_sync_single_for_cpu(rx_ring->dev,
1525 				pre_reuse_paddr + pkt_offset,
1526 				len,
1527 				DMA_FROM_DEVICE);
1528 
1529 	if (!reuse_rx_buf_page)
1530 		ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC);
1531 
1532 	skb = ena_alloc_skb(rx_ring, buf_addr, buf_len);
1533 	if (unlikely(!skb))
1534 		return NULL;
1535 
1536 	/* Populate skb's linear part */
1537 	skb_reserve(skb, buf_offset);
1538 	skb_put(skb, len);
1539 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1540 
1541 	do {
1542 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1543 			  "RX skb updated. len %d. data_len %d\n",
1544 			  skb->len, skb->data_len);
1545 
1546 		if (!reuse_rx_buf_page)
1547 			rx_info->page = NULL;
1548 
1549 		rx_ring->free_ids[*next_to_clean] = req_id;
1550 		*next_to_clean =
1551 			ENA_RX_RING_IDX_NEXT(*next_to_clean,
1552 					     rx_ring->ring_size);
1553 		if (likely(--descs == 0))
1554 			break;
1555 
1556 		buf++;
1557 		len = ena_bufs[buf].len;
1558 		req_id = ena_bufs[buf].req_id;
1559 
1560 		rx_info = &rx_ring->rx_buffer_info[req_id];
1561 
1562 		/* rx_info->buf_offset includes rx_ring->rx_headroom */
1563 		buf_offset = rx_info->buf_offset;
1564 		pkt_offset = buf_offset - rx_ring->rx_headroom;
1565 		buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1566 		page_offset = rx_info->page_offset;
1567 
1568 		pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr);
1569 
1570 		reuse_rx_buf_page = !is_xdp_loaded &&
1571 				    ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1572 
1573 		dma_sync_single_for_cpu(rx_ring->dev,
1574 					pre_reuse_paddr + pkt_offset,
1575 					len,
1576 					DMA_FROM_DEVICE);
1577 
1578 		if (!reuse_rx_buf_page)
1579 			ena_unmap_rx_buff_attrs(rx_ring, rx_info,
1580 						DMA_ATTR_SKIP_CPU_SYNC);
1581 
1582 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1583 				page_offset + buf_offset, len, buf_len);
1584 
1585 	} while (1);
1586 
1587 	return skb;
1588 }
1589 
1590 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1591  * @adapter: structure containing adapter specific data
1592  * @ena_rx_ctx: received packet context/metadata
1593  * @skb: skb currently being received and modified
1594  */
1595 static void ena_rx_checksum(struct ena_ring *rx_ring,
1596 				   struct ena_com_rx_ctx *ena_rx_ctx,
1597 				   struct sk_buff *skb)
1598 {
1599 	/* Rx csum disabled */
1600 	if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1601 		skb->ip_summed = CHECKSUM_NONE;
1602 		return;
1603 	}
1604 
1605 	/* For fragmented packets the checksum isn't valid */
1606 	if (ena_rx_ctx->frag) {
1607 		skb->ip_summed = CHECKSUM_NONE;
1608 		return;
1609 	}
1610 
1611 	/* if IP and error */
1612 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1613 		     (ena_rx_ctx->l3_csum_err))) {
1614 		/* ipv4 checksum error */
1615 		skb->ip_summed = CHECKSUM_NONE;
1616 		ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1617 				  &rx_ring->syncp);
1618 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1619 			  "RX IPv4 header checksum error\n");
1620 		return;
1621 	}
1622 
1623 	/* if TCP/UDP */
1624 	if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1625 		   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1626 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
1627 			/* TCP/UDP checksum error */
1628 			ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1629 					  &rx_ring->syncp);
1630 			netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1631 				  "RX L4 checksum error\n");
1632 			skb->ip_summed = CHECKSUM_NONE;
1633 			return;
1634 		}
1635 
1636 		if (likely(ena_rx_ctx->l4_csum_checked)) {
1637 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1638 			ena_increase_stat(&rx_ring->rx_stats.csum_good, 1,
1639 					  &rx_ring->syncp);
1640 		} else {
1641 			ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1,
1642 					  &rx_ring->syncp);
1643 			skb->ip_summed = CHECKSUM_NONE;
1644 		}
1645 	} else {
1646 		skb->ip_summed = CHECKSUM_NONE;
1647 		return;
1648 	}
1649 
1650 }
1651 
1652 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1653 			    struct ena_com_rx_ctx *ena_rx_ctx,
1654 			    struct sk_buff *skb)
1655 {
1656 	enum pkt_hash_types hash_type;
1657 
1658 	if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1659 		if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1660 			   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1661 
1662 			hash_type = PKT_HASH_TYPE_L4;
1663 		else
1664 			hash_type = PKT_HASH_TYPE_NONE;
1665 
1666 		/* Override hash type if the packet is fragmented */
1667 		if (ena_rx_ctx->frag)
1668 			hash_type = PKT_HASH_TYPE_NONE;
1669 
1670 		skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1671 	}
1672 }
1673 
1674 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp)
1675 {
1676 	struct ena_rx_buffer *rx_info;
1677 	int ret;
1678 
1679 	rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1680 	xdp_prepare_buff(xdp, page_address(rx_info->page),
1681 			 rx_info->buf_offset,
1682 			 rx_ring->ena_bufs[0].len, false);
1683 	/* If for some reason we received a bigger packet than
1684 	 * we expect, then we simply drop it
1685 	 */
1686 	if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU))
1687 		return ENA_XDP_DROP;
1688 
1689 	ret = ena_xdp_execute(rx_ring, xdp);
1690 
1691 	/* The xdp program might expand the headers */
1692 	if (ret == ENA_XDP_PASS) {
1693 		rx_info->buf_offset = xdp->data - xdp->data_hard_start;
1694 		rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1695 	}
1696 
1697 	return ret;
1698 }
1699 /* ena_clean_rx_irq - Cleanup RX irq
1700  * @rx_ring: RX ring to clean
1701  * @napi: napi handler
1702  * @budget: how many packets driver is allowed to clean
1703  *
1704  * Returns the number of cleaned buffers.
1705  */
1706 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1707 			    u32 budget)
1708 {
1709 	u16 next_to_clean = rx_ring->next_to_clean;
1710 	struct ena_com_rx_ctx ena_rx_ctx;
1711 	struct ena_rx_buffer *rx_info;
1712 	struct ena_adapter *adapter;
1713 	u32 res_budget, work_done;
1714 	int rx_copybreak_pkt = 0;
1715 	int refill_threshold;
1716 	struct sk_buff *skb;
1717 	int refill_required;
1718 	struct xdp_buff xdp;
1719 	int xdp_flags = 0;
1720 	int total_len = 0;
1721 	int xdp_verdict;
1722 	int rc = 0;
1723 	int i;
1724 
1725 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1726 		  "%s qid %d\n", __func__, rx_ring->qid);
1727 	res_budget = budget;
1728 	xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq);
1729 
1730 	do {
1731 		xdp_verdict = ENA_XDP_PASS;
1732 		skb = NULL;
1733 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1734 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1735 		ena_rx_ctx.descs = 0;
1736 		ena_rx_ctx.pkt_offset = 0;
1737 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1738 				    rx_ring->ena_com_io_sq,
1739 				    &ena_rx_ctx);
1740 		if (unlikely(rc))
1741 			goto error;
1742 
1743 		if (unlikely(ena_rx_ctx.descs == 0))
1744 			break;
1745 
1746 		/* First descriptor might have an offset set by the device */
1747 		rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1748 		rx_info->buf_offset += ena_rx_ctx.pkt_offset;
1749 
1750 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1751 			  "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1752 			  rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1753 			  ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1754 
1755 		if (ena_xdp_present_ring(rx_ring))
1756 			xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp);
1757 
1758 		/* allocate skb and fill it */
1759 		if (xdp_verdict == ENA_XDP_PASS)
1760 			skb = ena_rx_skb(rx_ring,
1761 					 rx_ring->ena_bufs,
1762 					 ena_rx_ctx.descs,
1763 					 &next_to_clean);
1764 
1765 		if (unlikely(!skb)) {
1766 			for (i = 0; i < ena_rx_ctx.descs; i++) {
1767 				int req_id = rx_ring->ena_bufs[i].req_id;
1768 
1769 				rx_ring->free_ids[next_to_clean] = req_id;
1770 				next_to_clean =
1771 					ENA_RX_RING_IDX_NEXT(next_to_clean,
1772 							     rx_ring->ring_size);
1773 
1774 				/* Packets was passed for transmission, unmap it
1775 				 * from RX side.
1776 				 */
1777 				if (xdp_verdict & ENA_XDP_FORWARDED) {
1778 					ena_unmap_rx_buff_attrs(rx_ring,
1779 								&rx_ring->rx_buffer_info[req_id],
1780 								0);
1781 					rx_ring->rx_buffer_info[req_id].page = NULL;
1782 				}
1783 			}
1784 			if (xdp_verdict != ENA_XDP_PASS) {
1785 				xdp_flags |= xdp_verdict;
1786 				total_len += ena_rx_ctx.ena_bufs[0].len;
1787 				res_budget--;
1788 				continue;
1789 			}
1790 			break;
1791 		}
1792 
1793 		ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1794 
1795 		ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1796 
1797 		skb_record_rx_queue(skb, rx_ring->qid);
1798 
1799 		if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak)
1800 			rx_copybreak_pkt++;
1801 
1802 		total_len += skb->len;
1803 
1804 		napi_gro_receive(napi, skb);
1805 
1806 		res_budget--;
1807 	} while (likely(res_budget));
1808 
1809 	work_done = budget - res_budget;
1810 	rx_ring->per_napi_packets += work_done;
1811 	u64_stats_update_begin(&rx_ring->syncp);
1812 	rx_ring->rx_stats.bytes += total_len;
1813 	rx_ring->rx_stats.cnt += work_done;
1814 	rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1815 	u64_stats_update_end(&rx_ring->syncp);
1816 
1817 	rx_ring->next_to_clean = next_to_clean;
1818 
1819 	refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
1820 	refill_threshold =
1821 		min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1822 		      ENA_RX_REFILL_THRESH_PACKET);
1823 
1824 	/* Optimization, try to batch new rx buffers */
1825 	if (refill_required > refill_threshold) {
1826 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1827 		ena_refill_rx_bufs(rx_ring, refill_required);
1828 	}
1829 
1830 	if (xdp_flags & ENA_XDP_REDIRECT)
1831 		xdp_do_flush_map();
1832 
1833 	return work_done;
1834 
1835 error:
1836 	if (xdp_flags & ENA_XDP_REDIRECT)
1837 		xdp_do_flush();
1838 
1839 	adapter = netdev_priv(rx_ring->netdev);
1840 
1841 	if (rc == -ENOSPC) {
1842 		ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1,
1843 				  &rx_ring->syncp);
1844 		ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS);
1845 	} else {
1846 		ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1,
1847 				  &rx_ring->syncp);
1848 		ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
1849 	}
1850 	return 0;
1851 }
1852 
1853 static void ena_dim_work(struct work_struct *w)
1854 {
1855 	struct dim *dim = container_of(w, struct dim, work);
1856 	struct dim_cq_moder cur_moder =
1857 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1858 	struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1859 
1860 	ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1861 	dim->state = DIM_START_MEASURE;
1862 }
1863 
1864 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1865 {
1866 	struct dim_sample dim_sample;
1867 	struct ena_ring *rx_ring = ena_napi->rx_ring;
1868 
1869 	if (!rx_ring->per_napi_packets)
1870 		return;
1871 
1872 	rx_ring->non_empty_napi_events++;
1873 
1874 	dim_update_sample(rx_ring->non_empty_napi_events,
1875 			  rx_ring->rx_stats.cnt,
1876 			  rx_ring->rx_stats.bytes,
1877 			  &dim_sample);
1878 
1879 	net_dim(&ena_napi->dim, dim_sample);
1880 
1881 	rx_ring->per_napi_packets = 0;
1882 }
1883 
1884 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
1885 					struct ena_ring *rx_ring)
1886 {
1887 	u32 rx_interval = tx_ring->smoothed_interval;
1888 	struct ena_eth_io_intr_reg intr_reg;
1889 
1890 	/* Rx ring can be NULL when for XDP tx queues which don't have an
1891 	 * accompanying rx_ring pair.
1892 	 */
1893 	if (rx_ring)
1894 		rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1895 			rx_ring->smoothed_interval :
1896 			ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1897 
1898 	/* Update intr register: rx intr delay,
1899 	 * tx intr delay and interrupt unmask
1900 	 */
1901 	ena_com_update_intr_reg(&intr_reg,
1902 				rx_interval,
1903 				tx_ring->smoothed_interval,
1904 				true);
1905 
1906 	ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1,
1907 			  &tx_ring->syncp);
1908 
1909 	/* It is a shared MSI-X.
1910 	 * Tx and Rx CQ have pointer to it.
1911 	 * So we use one of them to reach the intr reg
1912 	 * The Tx ring is used because the rx_ring is NULL for XDP queues
1913 	 */
1914 	ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1915 }
1916 
1917 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1918 					     struct ena_ring *rx_ring)
1919 {
1920 	int cpu = get_cpu();
1921 	int numa_node;
1922 
1923 	/* Check only one ring since the 2 rings are running on the same cpu */
1924 	if (likely(tx_ring->cpu == cpu))
1925 		goto out;
1926 
1927 	tx_ring->cpu = cpu;
1928 	if (rx_ring)
1929 		rx_ring->cpu = cpu;
1930 
1931 	numa_node = cpu_to_node(cpu);
1932 
1933 	if (likely(tx_ring->numa_node == numa_node))
1934 		goto out;
1935 
1936 	put_cpu();
1937 
1938 	if (numa_node != NUMA_NO_NODE) {
1939 		ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1940 		tx_ring->numa_node = numa_node;
1941 		if (rx_ring) {
1942 			rx_ring->numa_node = numa_node;
1943 			ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1944 						 numa_node);
1945 		}
1946 	}
1947 
1948 	return;
1949 out:
1950 	put_cpu();
1951 }
1952 
1953 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget)
1954 {
1955 	u32 total_done = 0;
1956 	u16 next_to_clean;
1957 	int tx_pkts = 0;
1958 	u16 req_id;
1959 	int rc;
1960 
1961 	if (unlikely(!xdp_ring))
1962 		return 0;
1963 	next_to_clean = xdp_ring->next_to_clean;
1964 
1965 	while (tx_pkts < budget) {
1966 		struct ena_tx_buffer *tx_info;
1967 		struct xdp_frame *xdpf;
1968 
1969 		rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq,
1970 						&req_id);
1971 		if (rc) {
1972 			if (unlikely(rc == -EINVAL))
1973 				handle_invalid_req_id(xdp_ring, req_id, NULL,
1974 						      true);
1975 			break;
1976 		}
1977 
1978 		/* validate that the request id points to a valid xdp_frame */
1979 		rc = validate_xdp_req_id(xdp_ring, req_id);
1980 		if (rc)
1981 			break;
1982 
1983 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1984 		xdpf = tx_info->xdpf;
1985 
1986 		tx_info->xdpf = NULL;
1987 		tx_info->last_jiffies = 0;
1988 		ena_unmap_tx_buff(xdp_ring, tx_info);
1989 
1990 		netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1991 			  "tx_poll: q %d skb %p completed\n", xdp_ring->qid,
1992 			  xdpf);
1993 
1994 		tx_pkts++;
1995 		total_done += tx_info->tx_descs;
1996 
1997 		xdp_return_frame(xdpf);
1998 		xdp_ring->free_ids[next_to_clean] = req_id;
1999 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
2000 						     xdp_ring->ring_size);
2001 	}
2002 
2003 	xdp_ring->next_to_clean = next_to_clean;
2004 	ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done);
2005 	ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq);
2006 
2007 	netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
2008 		  "tx_poll: q %d done. total pkts: %d\n",
2009 		  xdp_ring->qid, tx_pkts);
2010 
2011 	return tx_pkts;
2012 }
2013 
2014 static int ena_io_poll(struct napi_struct *napi, int budget)
2015 {
2016 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
2017 	struct ena_ring *tx_ring, *rx_ring;
2018 	int tx_work_done;
2019 	int rx_work_done = 0;
2020 	int tx_budget;
2021 	int napi_comp_call = 0;
2022 	int ret;
2023 
2024 	tx_ring = ena_napi->tx_ring;
2025 	rx_ring = ena_napi->rx_ring;
2026 
2027 	tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
2028 
2029 	if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
2030 	    test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
2031 		napi_complete_done(napi, 0);
2032 		return 0;
2033 	}
2034 
2035 	tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
2036 	/* On netpoll the budget is zero and the handler should only clean the
2037 	 * tx completions.
2038 	 */
2039 	if (likely(budget))
2040 		rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
2041 
2042 	/* If the device is about to reset or down, avoid unmask
2043 	 * the interrupt and return 0 so NAPI won't reschedule
2044 	 */
2045 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
2046 		     test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
2047 		napi_complete_done(napi, 0);
2048 		ret = 0;
2049 
2050 	} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
2051 		napi_comp_call = 1;
2052 
2053 		/* Update numa and unmask the interrupt only when schedule
2054 		 * from the interrupt context (vs from sk_busy_loop)
2055 		 */
2056 		if (napi_complete_done(napi, rx_work_done) &&
2057 		    READ_ONCE(ena_napi->interrupts_masked)) {
2058 			smp_rmb(); /* make sure interrupts_masked is read */
2059 			WRITE_ONCE(ena_napi->interrupts_masked, false);
2060 			/* We apply adaptive moderation on Rx path only.
2061 			 * Tx uses static interrupt moderation.
2062 			 */
2063 			if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
2064 				ena_adjust_adaptive_rx_intr_moderation(ena_napi);
2065 
2066 			ena_update_ring_numa_node(tx_ring, rx_ring);
2067 			ena_unmask_interrupt(tx_ring, rx_ring);
2068 		}
2069 
2070 		ret = rx_work_done;
2071 	} else {
2072 		ret = budget;
2073 	}
2074 
2075 	u64_stats_update_begin(&tx_ring->syncp);
2076 	tx_ring->tx_stats.napi_comp += napi_comp_call;
2077 	tx_ring->tx_stats.tx_poll++;
2078 	u64_stats_update_end(&tx_ring->syncp);
2079 
2080 	tx_ring->tx_stats.last_napi_jiffies = jiffies;
2081 
2082 	return ret;
2083 }
2084 
2085 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
2086 {
2087 	struct ena_adapter *adapter = (struct ena_adapter *)data;
2088 
2089 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
2090 
2091 	/* Don't call the aenq handler before probe is done */
2092 	if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
2093 		ena_com_aenq_intr_handler(adapter->ena_dev, data);
2094 
2095 	return IRQ_HANDLED;
2096 }
2097 
2098 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
2099  * @irq: interrupt number
2100  * @data: pointer to a network interface private napi device structure
2101  */
2102 static irqreturn_t ena_intr_msix_io(int irq, void *data)
2103 {
2104 	struct ena_napi *ena_napi = data;
2105 
2106 	/* Used to check HW health */
2107 	WRITE_ONCE(ena_napi->first_interrupt, true);
2108 
2109 	WRITE_ONCE(ena_napi->interrupts_masked, true);
2110 	smp_wmb(); /* write interrupts_masked before calling napi */
2111 
2112 	napi_schedule_irqoff(&ena_napi->napi);
2113 
2114 	return IRQ_HANDLED;
2115 }
2116 
2117 /* Reserve a single MSI-X vector for management (admin + aenq).
2118  * plus reserve one vector for each potential io queue.
2119  * the number of potential io queues is the minimum of what the device
2120  * supports and the number of vCPUs.
2121  */
2122 static int ena_enable_msix(struct ena_adapter *adapter)
2123 {
2124 	int msix_vecs, irq_cnt;
2125 
2126 	if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2127 		netif_err(adapter, probe, adapter->netdev,
2128 			  "Error, MSI-X is already enabled\n");
2129 		return -EPERM;
2130 	}
2131 
2132 	/* Reserved the max msix vectors we might need */
2133 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
2134 	netif_dbg(adapter, probe, adapter->netdev,
2135 		  "Trying to enable MSI-X, vectors %d\n", msix_vecs);
2136 
2137 	irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
2138 					msix_vecs, PCI_IRQ_MSIX);
2139 
2140 	if (irq_cnt < 0) {
2141 		netif_err(adapter, probe, adapter->netdev,
2142 			  "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
2143 		return -ENOSPC;
2144 	}
2145 
2146 	if (irq_cnt != msix_vecs) {
2147 		netif_notice(adapter, probe, adapter->netdev,
2148 			     "Enable only %d MSI-X (out of %d), reduce the number of queues\n",
2149 			     irq_cnt, msix_vecs);
2150 		adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
2151 	}
2152 
2153 	if (ena_init_rx_cpu_rmap(adapter))
2154 		netif_warn(adapter, probe, adapter->netdev,
2155 			   "Failed to map IRQs to CPUs\n");
2156 
2157 	adapter->msix_vecs = irq_cnt;
2158 	set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
2159 
2160 	return 0;
2161 }
2162 
2163 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
2164 {
2165 	u32 cpu;
2166 
2167 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
2168 		 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
2169 		 pci_name(adapter->pdev));
2170 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
2171 		ena_intr_msix_mgmnt;
2172 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
2173 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
2174 		pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
2175 	cpu = cpumask_first(cpu_online_mask);
2176 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
2177 	cpumask_set_cpu(cpu,
2178 			&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
2179 }
2180 
2181 static void ena_setup_io_intr(struct ena_adapter *adapter)
2182 {
2183 	struct net_device *netdev;
2184 	int irq_idx, i, cpu;
2185 	int io_queue_count;
2186 
2187 	netdev = adapter->netdev;
2188 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2189 
2190 	for (i = 0; i < io_queue_count; i++) {
2191 		irq_idx = ENA_IO_IRQ_IDX(i);
2192 		cpu = i % num_online_cpus();
2193 
2194 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
2195 			 "%s-Tx-Rx-%d", netdev->name, i);
2196 		adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
2197 		adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
2198 		adapter->irq_tbl[irq_idx].vector =
2199 			pci_irq_vector(adapter->pdev, irq_idx);
2200 		adapter->irq_tbl[irq_idx].cpu = cpu;
2201 
2202 		cpumask_set_cpu(cpu,
2203 				&adapter->irq_tbl[irq_idx].affinity_hint_mask);
2204 	}
2205 }
2206 
2207 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
2208 {
2209 	unsigned long flags = 0;
2210 	struct ena_irq *irq;
2211 	int rc;
2212 
2213 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2214 	rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2215 			 irq->data);
2216 	if (rc) {
2217 		netif_err(adapter, probe, adapter->netdev,
2218 			  "Failed to request admin irq\n");
2219 		return rc;
2220 	}
2221 
2222 	netif_dbg(adapter, probe, adapter->netdev,
2223 		  "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
2224 		  irq->affinity_hint_mask.bits[0], irq->vector);
2225 
2226 	irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2227 
2228 	return rc;
2229 }
2230 
2231 static int ena_request_io_irq(struct ena_adapter *adapter)
2232 {
2233 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2234 	unsigned long flags = 0;
2235 	struct ena_irq *irq;
2236 	int rc = 0, i, k;
2237 
2238 	if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2239 		netif_err(adapter, ifup, adapter->netdev,
2240 			  "Failed to request I/O IRQ: MSI-X is not enabled\n");
2241 		return -EINVAL;
2242 	}
2243 
2244 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2245 		irq = &adapter->irq_tbl[i];
2246 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2247 				 irq->data);
2248 		if (rc) {
2249 			netif_err(adapter, ifup, adapter->netdev,
2250 				  "Failed to request I/O IRQ. index %d rc %d\n",
2251 				   i, rc);
2252 			goto err;
2253 		}
2254 
2255 		netif_dbg(adapter, ifup, adapter->netdev,
2256 			  "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
2257 			  i, irq->affinity_hint_mask.bits[0], irq->vector);
2258 
2259 		irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2260 	}
2261 
2262 	return rc;
2263 
2264 err:
2265 	for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
2266 		irq = &adapter->irq_tbl[k];
2267 		free_irq(irq->vector, irq->data);
2268 	}
2269 
2270 	return rc;
2271 }
2272 
2273 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
2274 {
2275 	struct ena_irq *irq;
2276 
2277 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2278 	synchronize_irq(irq->vector);
2279 	irq_set_affinity_hint(irq->vector, NULL);
2280 	free_irq(irq->vector, irq->data);
2281 }
2282 
2283 static void ena_free_io_irq(struct ena_adapter *adapter)
2284 {
2285 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2286 	struct ena_irq *irq;
2287 	int i;
2288 
2289 #ifdef CONFIG_RFS_ACCEL
2290 	if (adapter->msix_vecs >= 1) {
2291 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2292 		adapter->netdev->rx_cpu_rmap = NULL;
2293 	}
2294 #endif /* CONFIG_RFS_ACCEL */
2295 
2296 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2297 		irq = &adapter->irq_tbl[i];
2298 		irq_set_affinity_hint(irq->vector, NULL);
2299 		free_irq(irq->vector, irq->data);
2300 	}
2301 }
2302 
2303 static void ena_disable_msix(struct ena_adapter *adapter)
2304 {
2305 	if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
2306 		pci_free_irq_vectors(adapter->pdev);
2307 }
2308 
2309 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
2310 {
2311 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2312 	int i;
2313 
2314 	if (!netif_running(adapter->netdev))
2315 		return;
2316 
2317 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++)
2318 		synchronize_irq(adapter->irq_tbl[i].vector);
2319 }
2320 
2321 static void ena_del_napi_in_range(struct ena_adapter *adapter,
2322 				  int first_index,
2323 				  int count)
2324 {
2325 	int i;
2326 
2327 	for (i = first_index; i < first_index + count; i++) {
2328 		netif_napi_del(&adapter->ena_napi[i].napi);
2329 
2330 		WARN_ON(!ENA_IS_XDP_INDEX(adapter, i) &&
2331 			adapter->ena_napi[i].xdp_ring);
2332 	}
2333 }
2334 
2335 static void ena_init_napi_in_range(struct ena_adapter *adapter,
2336 				   int first_index, int count)
2337 {
2338 	int i;
2339 
2340 	for (i = first_index; i < first_index + count; i++) {
2341 		struct ena_napi *napi = &adapter->ena_napi[i];
2342 
2343 		netif_napi_add(adapter->netdev, &napi->napi,
2344 			       ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll);
2345 
2346 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
2347 			napi->rx_ring = &adapter->rx_ring[i];
2348 			napi->tx_ring = &adapter->tx_ring[i];
2349 		} else {
2350 			napi->xdp_ring = &adapter->tx_ring[i];
2351 		}
2352 		napi->qid = i;
2353 	}
2354 }
2355 
2356 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
2357 				      int first_index,
2358 				      int count)
2359 {
2360 	int i;
2361 
2362 	for (i = first_index; i < first_index + count; i++)
2363 		napi_disable(&adapter->ena_napi[i].napi);
2364 }
2365 
2366 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
2367 				     int first_index,
2368 				     int count)
2369 {
2370 	int i;
2371 
2372 	for (i = first_index; i < first_index + count; i++)
2373 		napi_enable(&adapter->ena_napi[i].napi);
2374 }
2375 
2376 /* Configure the Rx forwarding */
2377 static int ena_rss_configure(struct ena_adapter *adapter)
2378 {
2379 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2380 	int rc;
2381 
2382 	/* In case the RSS table wasn't initialized by probe */
2383 	if (!ena_dev->rss.tbl_log_size) {
2384 		rc = ena_rss_init_default(adapter);
2385 		if (rc && (rc != -EOPNOTSUPP)) {
2386 			netif_err(adapter, ifup, adapter->netdev,
2387 				  "Failed to init RSS rc: %d\n", rc);
2388 			return rc;
2389 		}
2390 	}
2391 
2392 	/* Set indirect table */
2393 	rc = ena_com_indirect_table_set(ena_dev);
2394 	if (unlikely(rc && rc != -EOPNOTSUPP))
2395 		return rc;
2396 
2397 	/* Configure hash function (if supported) */
2398 	rc = ena_com_set_hash_function(ena_dev);
2399 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2400 		return rc;
2401 
2402 	/* Configure hash inputs (if supported) */
2403 	rc = ena_com_set_hash_ctrl(ena_dev);
2404 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2405 		return rc;
2406 
2407 	return 0;
2408 }
2409 
2410 static int ena_up_complete(struct ena_adapter *adapter)
2411 {
2412 	int rc;
2413 
2414 	rc = ena_rss_configure(adapter);
2415 	if (rc)
2416 		return rc;
2417 
2418 	ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
2419 
2420 	ena_refill_all_rx_bufs(adapter);
2421 
2422 	/* enable transmits */
2423 	netif_tx_start_all_queues(adapter->netdev);
2424 
2425 	ena_napi_enable_in_range(adapter,
2426 				 0,
2427 				 adapter->xdp_num_queues + adapter->num_io_queues);
2428 
2429 	return 0;
2430 }
2431 
2432 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
2433 {
2434 	struct ena_com_create_io_ctx ctx;
2435 	struct ena_com_dev *ena_dev;
2436 	struct ena_ring *tx_ring;
2437 	u32 msix_vector;
2438 	u16 ena_qid;
2439 	int rc;
2440 
2441 	ena_dev = adapter->ena_dev;
2442 
2443 	tx_ring = &adapter->tx_ring[qid];
2444 	msix_vector = ENA_IO_IRQ_IDX(qid);
2445 	ena_qid = ENA_IO_TXQ_IDX(qid);
2446 
2447 	memset(&ctx, 0x0, sizeof(ctx));
2448 
2449 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
2450 	ctx.qid = ena_qid;
2451 	ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
2452 	ctx.msix_vector = msix_vector;
2453 	ctx.queue_size = tx_ring->ring_size;
2454 	ctx.numa_node = tx_ring->numa_node;
2455 
2456 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2457 	if (rc) {
2458 		netif_err(adapter, ifup, adapter->netdev,
2459 			  "Failed to create I/O TX queue num %d rc: %d\n",
2460 			  qid, rc);
2461 		return rc;
2462 	}
2463 
2464 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2465 				     &tx_ring->ena_com_io_sq,
2466 				     &tx_ring->ena_com_io_cq);
2467 	if (rc) {
2468 		netif_err(adapter, ifup, adapter->netdev,
2469 			  "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
2470 			  qid, rc);
2471 		ena_com_destroy_io_queue(ena_dev, ena_qid);
2472 		return rc;
2473 	}
2474 
2475 	ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
2476 	return rc;
2477 }
2478 
2479 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
2480 					    int first_index, int count)
2481 {
2482 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2483 	int rc, i;
2484 
2485 	for (i = first_index; i < first_index + count; i++) {
2486 		rc = ena_create_io_tx_queue(adapter, i);
2487 		if (rc)
2488 			goto create_err;
2489 	}
2490 
2491 	return 0;
2492 
2493 create_err:
2494 	while (i-- > first_index)
2495 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
2496 
2497 	return rc;
2498 }
2499 
2500 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
2501 {
2502 	struct ena_com_dev *ena_dev;
2503 	struct ena_com_create_io_ctx ctx;
2504 	struct ena_ring *rx_ring;
2505 	u32 msix_vector;
2506 	u16 ena_qid;
2507 	int rc;
2508 
2509 	ena_dev = adapter->ena_dev;
2510 
2511 	rx_ring = &adapter->rx_ring[qid];
2512 	msix_vector = ENA_IO_IRQ_IDX(qid);
2513 	ena_qid = ENA_IO_RXQ_IDX(qid);
2514 
2515 	memset(&ctx, 0x0, sizeof(ctx));
2516 
2517 	ctx.qid = ena_qid;
2518 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
2519 	ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2520 	ctx.msix_vector = msix_vector;
2521 	ctx.queue_size = rx_ring->ring_size;
2522 	ctx.numa_node = rx_ring->numa_node;
2523 
2524 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2525 	if (rc) {
2526 		netif_err(adapter, ifup, adapter->netdev,
2527 			  "Failed to create I/O RX queue num %d rc: %d\n",
2528 			  qid, rc);
2529 		return rc;
2530 	}
2531 
2532 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2533 				     &rx_ring->ena_com_io_sq,
2534 				     &rx_ring->ena_com_io_cq);
2535 	if (rc) {
2536 		netif_err(adapter, ifup, adapter->netdev,
2537 			  "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
2538 			  qid, rc);
2539 		goto err;
2540 	}
2541 
2542 	ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
2543 
2544 	return rc;
2545 err:
2546 	ena_com_destroy_io_queue(ena_dev, ena_qid);
2547 	return rc;
2548 }
2549 
2550 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
2551 {
2552 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2553 	int rc, i;
2554 
2555 	for (i = 0; i < adapter->num_io_queues; i++) {
2556 		rc = ena_create_io_rx_queue(adapter, i);
2557 		if (rc)
2558 			goto create_err;
2559 		INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
2560 	}
2561 
2562 	return 0;
2563 
2564 create_err:
2565 	while (i--) {
2566 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
2567 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
2568 	}
2569 
2570 	return rc;
2571 }
2572 
2573 static void set_io_rings_size(struct ena_adapter *adapter,
2574 			      int new_tx_size,
2575 			      int new_rx_size)
2576 {
2577 	int i;
2578 
2579 	for (i = 0; i < adapter->num_io_queues; i++) {
2580 		adapter->tx_ring[i].ring_size = new_tx_size;
2581 		adapter->rx_ring[i].ring_size = new_rx_size;
2582 	}
2583 }
2584 
2585 /* This function allows queue allocation to backoff when the system is
2586  * low on memory. If there is not enough memory to allocate io queues
2587  * the driver will try to allocate smaller queues.
2588  *
2589  * The backoff algorithm is as follows:
2590  *  1. Try to allocate TX and RX and if successful.
2591  *  1.1. return success
2592  *
2593  *  2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2594  *
2595  *  3. If TX or RX is smaller than 256
2596  *  3.1. return failure.
2597  *  4. else
2598  *  4.1. go back to 1.
2599  */
2600 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2601 {
2602 	int rc, cur_rx_ring_size, cur_tx_ring_size;
2603 	int new_rx_ring_size, new_tx_ring_size;
2604 
2605 	/* current queue sizes might be set to smaller than the requested
2606 	 * ones due to past queue allocation failures.
2607 	 */
2608 	set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2609 			  adapter->requested_rx_ring_size);
2610 
2611 	while (1) {
2612 		if (ena_xdp_present(adapter)) {
2613 			rc = ena_setup_and_create_all_xdp_queues(adapter);
2614 
2615 			if (rc)
2616 				goto err_setup_tx;
2617 		}
2618 		rc = ena_setup_tx_resources_in_range(adapter,
2619 						     0,
2620 						     adapter->num_io_queues);
2621 		if (rc)
2622 			goto err_setup_tx;
2623 
2624 		rc = ena_create_io_tx_queues_in_range(adapter,
2625 						      0,
2626 						      adapter->num_io_queues);
2627 		if (rc)
2628 			goto err_create_tx_queues;
2629 
2630 		rc = ena_setup_all_rx_resources(adapter);
2631 		if (rc)
2632 			goto err_setup_rx;
2633 
2634 		rc = ena_create_all_io_rx_queues(adapter);
2635 		if (rc)
2636 			goto err_create_rx_queues;
2637 
2638 		return 0;
2639 
2640 err_create_rx_queues:
2641 		ena_free_all_io_rx_resources(adapter);
2642 err_setup_rx:
2643 		ena_destroy_all_tx_queues(adapter);
2644 err_create_tx_queues:
2645 		ena_free_all_io_tx_resources(adapter);
2646 err_setup_tx:
2647 		if (rc != -ENOMEM) {
2648 			netif_err(adapter, ifup, adapter->netdev,
2649 				  "Queue creation failed with error code %d\n",
2650 				  rc);
2651 			return rc;
2652 		}
2653 
2654 		cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2655 		cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2656 
2657 		netif_err(adapter, ifup, adapter->netdev,
2658 			  "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2659 			  cur_tx_ring_size, cur_rx_ring_size);
2660 
2661 		new_tx_ring_size = cur_tx_ring_size;
2662 		new_rx_ring_size = cur_rx_ring_size;
2663 
2664 		/* Decrease the size of the larger queue, or
2665 		 * decrease both if they are the same size.
2666 		 */
2667 		if (cur_rx_ring_size <= cur_tx_ring_size)
2668 			new_tx_ring_size = cur_tx_ring_size / 2;
2669 		if (cur_rx_ring_size >= cur_tx_ring_size)
2670 			new_rx_ring_size = cur_rx_ring_size / 2;
2671 
2672 		if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2673 		    new_rx_ring_size < ENA_MIN_RING_SIZE) {
2674 			netif_err(adapter, ifup, adapter->netdev,
2675 				  "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2676 				  ENA_MIN_RING_SIZE);
2677 			return rc;
2678 		}
2679 
2680 		netif_err(adapter, ifup, adapter->netdev,
2681 			  "Retrying queue creation with sizes TX=%d, RX=%d\n",
2682 			  new_tx_ring_size,
2683 			  new_rx_ring_size);
2684 
2685 		set_io_rings_size(adapter, new_tx_ring_size,
2686 				  new_rx_ring_size);
2687 	}
2688 }
2689 
2690 static int ena_up(struct ena_adapter *adapter)
2691 {
2692 	int io_queue_count, rc, i;
2693 
2694 	netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
2695 
2696 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2697 	ena_setup_io_intr(adapter);
2698 
2699 	/* napi poll functions should be initialized before running
2700 	 * request_irq(), to handle a rare condition where there is a pending
2701 	 * interrupt, causing the ISR to fire immediately while the poll
2702 	 * function wasn't set yet, causing a null dereference
2703 	 */
2704 	ena_init_napi_in_range(adapter, 0, io_queue_count);
2705 
2706 	rc = ena_request_io_irq(adapter);
2707 	if (rc)
2708 		goto err_req_irq;
2709 
2710 	rc = create_queues_with_size_backoff(adapter);
2711 	if (rc)
2712 		goto err_create_queues_with_backoff;
2713 
2714 	rc = ena_up_complete(adapter);
2715 	if (rc)
2716 		goto err_up;
2717 
2718 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2719 		netif_carrier_on(adapter->netdev);
2720 
2721 	ena_increase_stat(&adapter->dev_stats.interface_up, 1,
2722 			  &adapter->syncp);
2723 
2724 	set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2725 
2726 	/* Enable completion queues interrupt */
2727 	for (i = 0; i < adapter->num_io_queues; i++)
2728 		ena_unmask_interrupt(&adapter->tx_ring[i],
2729 				     &adapter->rx_ring[i]);
2730 
2731 	/* schedule napi in case we had pending packets
2732 	 * from the last time we disable napi
2733 	 */
2734 	for (i = 0; i < io_queue_count; i++)
2735 		napi_schedule(&adapter->ena_napi[i].napi);
2736 
2737 	return rc;
2738 
2739 err_up:
2740 	ena_destroy_all_tx_queues(adapter);
2741 	ena_free_all_io_tx_resources(adapter);
2742 	ena_destroy_all_rx_queues(adapter);
2743 	ena_free_all_io_rx_resources(adapter);
2744 err_create_queues_with_backoff:
2745 	ena_free_io_irq(adapter);
2746 err_req_irq:
2747 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2748 
2749 	return rc;
2750 }
2751 
2752 static void ena_down(struct ena_adapter *adapter)
2753 {
2754 	int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2755 
2756 	netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2757 
2758 	clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2759 
2760 	ena_increase_stat(&adapter->dev_stats.interface_down, 1,
2761 			  &adapter->syncp);
2762 
2763 	netif_carrier_off(adapter->netdev);
2764 	netif_tx_disable(adapter->netdev);
2765 
2766 	/* After this point the napi handler won't enable the tx queue */
2767 	ena_napi_disable_in_range(adapter, 0, io_queue_count);
2768 
2769 	/* After destroy the queue there won't be any new interrupts */
2770 
2771 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2772 		int rc;
2773 
2774 		rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2775 		if (rc)
2776 			netif_err(adapter, ifdown, adapter->netdev,
2777 				  "Device reset failed\n");
2778 		/* stop submitting admin commands on a device that was reset */
2779 		ena_com_set_admin_running_state(adapter->ena_dev, false);
2780 	}
2781 
2782 	ena_destroy_all_io_queues(adapter);
2783 
2784 	ena_disable_io_intr_sync(adapter);
2785 	ena_free_io_irq(adapter);
2786 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2787 
2788 	ena_free_all_tx_bufs(adapter);
2789 	ena_free_all_rx_bufs(adapter);
2790 	ena_free_all_io_tx_resources(adapter);
2791 	ena_free_all_io_rx_resources(adapter);
2792 }
2793 
2794 /* ena_open - Called when a network interface is made active
2795  * @netdev: network interface device structure
2796  *
2797  * Returns 0 on success, negative value on failure
2798  *
2799  * The open entry point is called when a network interface is made
2800  * active by the system (IFF_UP).  At this point all resources needed
2801  * for transmit and receive operations are allocated, the interrupt
2802  * handler is registered with the OS, the watchdog timer is started,
2803  * and the stack is notified that the interface is ready.
2804  */
2805 static int ena_open(struct net_device *netdev)
2806 {
2807 	struct ena_adapter *adapter = netdev_priv(netdev);
2808 	int rc;
2809 
2810 	/* Notify the stack of the actual queue counts. */
2811 	rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2812 	if (rc) {
2813 		netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2814 		return rc;
2815 	}
2816 
2817 	rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2818 	if (rc) {
2819 		netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2820 		return rc;
2821 	}
2822 
2823 	rc = ena_up(adapter);
2824 	if (rc)
2825 		return rc;
2826 
2827 	return rc;
2828 }
2829 
2830 /* ena_close - Disables a network interface
2831  * @netdev: network interface device structure
2832  *
2833  * Returns 0, this is not allowed to fail
2834  *
2835  * The close entry point is called when an interface is de-activated
2836  * by the OS.  The hardware is still under the drivers control, but
2837  * needs to be disabled.  A global MAC reset is issued to stop the
2838  * hardware, and all transmit and receive resources are freed.
2839  */
2840 static int ena_close(struct net_device *netdev)
2841 {
2842 	struct ena_adapter *adapter = netdev_priv(netdev);
2843 
2844 	netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2845 
2846 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2847 		return 0;
2848 
2849 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2850 		ena_down(adapter);
2851 
2852 	/* Check for device status and issue reset if needed*/
2853 	check_for_admin_com_state(adapter);
2854 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2855 		netif_err(adapter, ifdown, adapter->netdev,
2856 			  "Destroy failure, restarting device\n");
2857 		ena_dump_stats_to_dmesg(adapter);
2858 		/* rtnl lock already obtained in dev_ioctl() layer */
2859 		ena_destroy_device(adapter, false);
2860 		ena_restore_device(adapter);
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 int ena_update_queue_params(struct ena_adapter *adapter,
2867 			    u32 new_tx_size,
2868 			    u32 new_rx_size,
2869 			    u32 new_llq_header_len)
2870 {
2871 	bool dev_was_up, large_llq_changed = false;
2872 	int rc = 0;
2873 
2874 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2875 	ena_close(adapter->netdev);
2876 	adapter->requested_tx_ring_size = new_tx_size;
2877 	adapter->requested_rx_ring_size = new_rx_size;
2878 	ena_init_io_rings(adapter,
2879 			  0,
2880 			  adapter->xdp_num_queues +
2881 			  adapter->num_io_queues);
2882 
2883 	large_llq_changed = adapter->ena_dev->tx_mem_queue_type ==
2884 			    ENA_ADMIN_PLACEMENT_POLICY_DEV;
2885 	large_llq_changed &=
2886 		new_llq_header_len != adapter->ena_dev->tx_max_header_size;
2887 
2888 	/* a check that the configuration is valid is done by caller */
2889 	if (large_llq_changed) {
2890 		adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled;
2891 
2892 		ena_destroy_device(adapter, false);
2893 		rc = ena_restore_device(adapter);
2894 	}
2895 
2896 	return dev_was_up && !rc ? ena_up(adapter) : rc;
2897 }
2898 
2899 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak)
2900 {
2901 	struct ena_ring *rx_ring;
2902 	int i;
2903 
2904 	if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE))
2905 		return -EINVAL;
2906 
2907 	adapter->rx_copybreak = rx_copybreak;
2908 
2909 	for (i = 0; i < adapter->num_io_queues; i++) {
2910 		rx_ring = &adapter->rx_ring[i];
2911 		rx_ring->rx_copybreak = rx_copybreak;
2912 	}
2913 
2914 	return 0;
2915 }
2916 
2917 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2918 {
2919 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2920 	int prev_channel_count;
2921 	bool dev_was_up;
2922 
2923 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2924 	ena_close(adapter->netdev);
2925 	prev_channel_count = adapter->num_io_queues;
2926 	adapter->num_io_queues = new_channel_count;
2927 	if (ena_xdp_present(adapter) &&
2928 	    ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2929 		adapter->xdp_first_ring = new_channel_count;
2930 		adapter->xdp_num_queues = new_channel_count;
2931 		if (prev_channel_count > new_channel_count)
2932 			ena_xdp_exchange_program_rx_in_range(adapter,
2933 							     NULL,
2934 							     new_channel_count,
2935 							     prev_channel_count);
2936 		else
2937 			ena_xdp_exchange_program_rx_in_range(adapter,
2938 							     adapter->xdp_bpf_prog,
2939 							     prev_channel_count,
2940 							     new_channel_count);
2941 	}
2942 
2943 	/* We need to destroy the rss table so that the indirection
2944 	 * table will be reinitialized by ena_up()
2945 	 */
2946 	ena_com_rss_destroy(ena_dev);
2947 	ena_init_io_rings(adapter,
2948 			  0,
2949 			  adapter->xdp_num_queues +
2950 			  adapter->num_io_queues);
2951 	return dev_was_up ? ena_open(adapter->netdev) : 0;
2952 }
2953 
2954 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx,
2955 			struct sk_buff *skb,
2956 			bool disable_meta_caching)
2957 {
2958 	u32 mss = skb_shinfo(skb)->gso_size;
2959 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2960 	u8 l4_protocol = 0;
2961 
2962 	if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2963 		ena_tx_ctx->l4_csum_enable = 1;
2964 		if (mss) {
2965 			ena_tx_ctx->tso_enable = 1;
2966 			ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2967 			ena_tx_ctx->l4_csum_partial = 0;
2968 		} else {
2969 			ena_tx_ctx->tso_enable = 0;
2970 			ena_meta->l4_hdr_len = 0;
2971 			ena_tx_ctx->l4_csum_partial = 1;
2972 		}
2973 
2974 		switch (ip_hdr(skb)->version) {
2975 		case IPVERSION:
2976 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2977 			if (ip_hdr(skb)->frag_off & htons(IP_DF))
2978 				ena_tx_ctx->df = 1;
2979 			if (mss)
2980 				ena_tx_ctx->l3_csum_enable = 1;
2981 			l4_protocol = ip_hdr(skb)->protocol;
2982 			break;
2983 		case 6:
2984 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2985 			l4_protocol = ipv6_hdr(skb)->nexthdr;
2986 			break;
2987 		default:
2988 			break;
2989 		}
2990 
2991 		if (l4_protocol == IPPROTO_TCP)
2992 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2993 		else
2994 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2995 
2996 		ena_meta->mss = mss;
2997 		ena_meta->l3_hdr_len = skb_network_header_len(skb);
2998 		ena_meta->l3_hdr_offset = skb_network_offset(skb);
2999 		ena_tx_ctx->meta_valid = 1;
3000 	} else if (disable_meta_caching) {
3001 		memset(ena_meta, 0, sizeof(*ena_meta));
3002 		ena_tx_ctx->meta_valid = 1;
3003 	} else {
3004 		ena_tx_ctx->meta_valid = 0;
3005 	}
3006 }
3007 
3008 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
3009 				       struct sk_buff *skb)
3010 {
3011 	int num_frags, header_len, rc;
3012 
3013 	num_frags = skb_shinfo(skb)->nr_frags;
3014 	header_len = skb_headlen(skb);
3015 
3016 	if (num_frags < tx_ring->sgl_size)
3017 		return 0;
3018 
3019 	if ((num_frags == tx_ring->sgl_size) &&
3020 	    (header_len < tx_ring->tx_max_header_size))
3021 		return 0;
3022 
3023 	ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp);
3024 
3025 	rc = skb_linearize(skb);
3026 	if (unlikely(rc)) {
3027 		ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1,
3028 				  &tx_ring->syncp);
3029 	}
3030 
3031 	return rc;
3032 }
3033 
3034 static int ena_tx_map_skb(struct ena_ring *tx_ring,
3035 			  struct ena_tx_buffer *tx_info,
3036 			  struct sk_buff *skb,
3037 			  void **push_hdr,
3038 			  u16 *header_len)
3039 {
3040 	struct ena_adapter *adapter = tx_ring->adapter;
3041 	struct ena_com_buf *ena_buf;
3042 	dma_addr_t dma;
3043 	u32 skb_head_len, frag_len, last_frag;
3044 	u16 push_len = 0;
3045 	u16 delta = 0;
3046 	int i = 0;
3047 
3048 	skb_head_len = skb_headlen(skb);
3049 	tx_info->skb = skb;
3050 	ena_buf = tx_info->bufs;
3051 
3052 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3053 		/* When the device is LLQ mode, the driver will copy
3054 		 * the header into the device memory space.
3055 		 * the ena_com layer assume the header is in a linear
3056 		 * memory space.
3057 		 * This assumption might be wrong since part of the header
3058 		 * can be in the fragmented buffers.
3059 		 * Use skb_header_pointer to make sure the header is in a
3060 		 * linear memory space.
3061 		 */
3062 
3063 		push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
3064 		*push_hdr = skb_header_pointer(skb, 0, push_len,
3065 					       tx_ring->push_buf_intermediate_buf);
3066 		*header_len = push_len;
3067 		if (unlikely(skb->data != *push_hdr)) {
3068 			ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1,
3069 					  &tx_ring->syncp);
3070 
3071 			delta = push_len - skb_head_len;
3072 		}
3073 	} else {
3074 		*push_hdr = NULL;
3075 		*header_len = min_t(u32, skb_head_len,
3076 				    tx_ring->tx_max_header_size);
3077 	}
3078 
3079 	netif_dbg(adapter, tx_queued, adapter->netdev,
3080 		  "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
3081 		  *push_hdr, push_len);
3082 
3083 	if (skb_head_len > push_len) {
3084 		dma = dma_map_single(tx_ring->dev, skb->data + push_len,
3085 				     skb_head_len - push_len, DMA_TO_DEVICE);
3086 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
3087 			goto error_report_dma_error;
3088 
3089 		ena_buf->paddr = dma;
3090 		ena_buf->len = skb_head_len - push_len;
3091 
3092 		ena_buf++;
3093 		tx_info->num_of_bufs++;
3094 		tx_info->map_linear_data = 1;
3095 	} else {
3096 		tx_info->map_linear_data = 0;
3097 	}
3098 
3099 	last_frag = skb_shinfo(skb)->nr_frags;
3100 
3101 	for (i = 0; i < last_frag; i++) {
3102 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3103 
3104 		frag_len = skb_frag_size(frag);
3105 
3106 		if (unlikely(delta >= frag_len)) {
3107 			delta -= frag_len;
3108 			continue;
3109 		}
3110 
3111 		dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
3112 				       frag_len - delta, DMA_TO_DEVICE);
3113 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
3114 			goto error_report_dma_error;
3115 
3116 		ena_buf->paddr = dma;
3117 		ena_buf->len = frag_len - delta;
3118 		ena_buf++;
3119 		tx_info->num_of_bufs++;
3120 		delta = 0;
3121 	}
3122 
3123 	return 0;
3124 
3125 error_report_dma_error:
3126 	ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1,
3127 			  &tx_ring->syncp);
3128 	netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n");
3129 
3130 	tx_info->skb = NULL;
3131 
3132 	tx_info->num_of_bufs += i;
3133 	ena_unmap_tx_buff(tx_ring, tx_info);
3134 
3135 	return -EINVAL;
3136 }
3137 
3138 /* Called with netif_tx_lock. */
3139 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
3140 {
3141 	struct ena_adapter *adapter = netdev_priv(dev);
3142 	struct ena_tx_buffer *tx_info;
3143 	struct ena_com_tx_ctx ena_tx_ctx;
3144 	struct ena_ring *tx_ring;
3145 	struct netdev_queue *txq;
3146 	void *push_hdr;
3147 	u16 next_to_use, req_id, header_len;
3148 	int qid, rc;
3149 
3150 	netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
3151 	/*  Determine which tx ring we will be placed on */
3152 	qid = skb_get_queue_mapping(skb);
3153 	tx_ring = &adapter->tx_ring[qid];
3154 	txq = netdev_get_tx_queue(dev, qid);
3155 
3156 	rc = ena_check_and_linearize_skb(tx_ring, skb);
3157 	if (unlikely(rc))
3158 		goto error_drop_packet;
3159 
3160 	skb_tx_timestamp(skb);
3161 
3162 	next_to_use = tx_ring->next_to_use;
3163 	req_id = tx_ring->free_ids[next_to_use];
3164 	tx_info = &tx_ring->tx_buffer_info[req_id];
3165 	tx_info->num_of_bufs = 0;
3166 
3167 	WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
3168 
3169 	rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
3170 	if (unlikely(rc))
3171 		goto error_drop_packet;
3172 
3173 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
3174 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3175 	ena_tx_ctx.push_header = push_hdr;
3176 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3177 	ena_tx_ctx.req_id = req_id;
3178 	ena_tx_ctx.header_len = header_len;
3179 
3180 	/* set flags and meta data */
3181 	ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching);
3182 
3183 	rc = ena_xmit_common(dev,
3184 			     tx_ring,
3185 			     tx_info,
3186 			     &ena_tx_ctx,
3187 			     next_to_use,
3188 			     skb->len);
3189 	if (rc)
3190 		goto error_unmap_dma;
3191 
3192 	netdev_tx_sent_queue(txq, skb->len);
3193 
3194 	/* stop the queue when no more space available, the packet can have up
3195 	 * to sgl_size + 2. one for the meta descriptor and one for header
3196 	 * (if the header is larger than tx_max_header_size).
3197 	 */
3198 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3199 						   tx_ring->sgl_size + 2))) {
3200 		netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
3201 			  __func__, qid);
3202 
3203 		netif_tx_stop_queue(txq);
3204 		ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1,
3205 				  &tx_ring->syncp);
3206 
3207 		/* There is a rare condition where this function decide to
3208 		 * stop the queue but meanwhile clean_tx_irq updates
3209 		 * next_to_completion and terminates.
3210 		 * The queue will remain stopped forever.
3211 		 * To solve this issue add a mb() to make sure that
3212 		 * netif_tx_stop_queue() write is vissible before checking if
3213 		 * there is additional space in the queue.
3214 		 */
3215 		smp_mb();
3216 
3217 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3218 						 ENA_TX_WAKEUP_THRESH)) {
3219 			netif_tx_wake_queue(txq);
3220 			ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
3221 					  &tx_ring->syncp);
3222 		}
3223 	}
3224 
3225 	if (netif_xmit_stopped(txq) || !netdev_xmit_more())
3226 		/* trigger the dma engine. ena_ring_tx_doorbell()
3227 		 * calls a memory barrier inside it.
3228 		 */
3229 		ena_ring_tx_doorbell(tx_ring);
3230 
3231 	return NETDEV_TX_OK;
3232 
3233 error_unmap_dma:
3234 	ena_unmap_tx_buff(tx_ring, tx_info);
3235 	tx_info->skb = NULL;
3236 
3237 error_drop_packet:
3238 	dev_kfree_skb(skb);
3239 	return NETDEV_TX_OK;
3240 }
3241 
3242 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
3243 			    struct net_device *sb_dev)
3244 {
3245 	u16 qid;
3246 	/* we suspect that this is good for in--kernel network services that
3247 	 * want to loop incoming skb rx to tx in normal user generated traffic,
3248 	 * most probably we will not get to this
3249 	 */
3250 	if (skb_rx_queue_recorded(skb))
3251 		qid = skb_get_rx_queue(skb);
3252 	else
3253 		qid = netdev_pick_tx(dev, skb, NULL);
3254 
3255 	return qid;
3256 }
3257 
3258 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3259 {
3260 	struct device *dev = &pdev->dev;
3261 	struct ena_admin_host_info *host_info;
3262 	int rc;
3263 
3264 	/* Allocate only the host info */
3265 	rc = ena_com_allocate_host_info(ena_dev);
3266 	if (rc) {
3267 		dev_err(dev, "Cannot allocate host info\n");
3268 		return;
3269 	}
3270 
3271 	host_info = ena_dev->host_attr.host_info;
3272 
3273 	host_info->bdf = pci_dev_id(pdev);
3274 	host_info->os_type = ENA_ADMIN_OS_LINUX;
3275 	host_info->kernel_ver = LINUX_VERSION_CODE;
3276 	strscpy(host_info->kernel_ver_str, utsname()->version,
3277 		sizeof(host_info->kernel_ver_str) - 1);
3278 	host_info->os_dist = 0;
3279 	strncpy(host_info->os_dist_str, utsname()->release,
3280 		sizeof(host_info->os_dist_str) - 1);
3281 	host_info->driver_version =
3282 		(DRV_MODULE_GEN_MAJOR) |
3283 		(DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3284 		(DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
3285 		("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
3286 	host_info->num_cpus = num_online_cpus();
3287 
3288 	host_info->driver_supported_features =
3289 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
3290 		ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK |
3291 		ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK |
3292 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK |
3293 		ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK;
3294 
3295 	rc = ena_com_set_host_attributes(ena_dev);
3296 	if (rc) {
3297 		if (rc == -EOPNOTSUPP)
3298 			dev_warn(dev, "Cannot set host attributes\n");
3299 		else
3300 			dev_err(dev, "Cannot set host attributes\n");
3301 
3302 		goto err;
3303 	}
3304 
3305 	return;
3306 
3307 err:
3308 	ena_com_delete_host_info(ena_dev);
3309 }
3310 
3311 static void ena_config_debug_area(struct ena_adapter *adapter)
3312 {
3313 	u32 debug_area_size;
3314 	int rc, ss_count;
3315 
3316 	ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
3317 	if (ss_count <= 0) {
3318 		netif_err(adapter, drv, adapter->netdev,
3319 			  "SS count is negative\n");
3320 		return;
3321 	}
3322 
3323 	/* allocate 32 bytes for each string and 64bit for the value */
3324 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
3325 
3326 	rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
3327 	if (rc) {
3328 		netif_err(adapter, drv, adapter->netdev,
3329 			  "Cannot allocate debug area\n");
3330 		return;
3331 	}
3332 
3333 	rc = ena_com_set_host_attributes(adapter->ena_dev);
3334 	if (rc) {
3335 		if (rc == -EOPNOTSUPP)
3336 			netif_warn(adapter, drv, adapter->netdev,
3337 				   "Cannot set host attributes\n");
3338 		else
3339 			netif_err(adapter, drv, adapter->netdev,
3340 				  "Cannot set host attributes\n");
3341 		goto err;
3342 	}
3343 
3344 	return;
3345 err:
3346 	ena_com_delete_debug_area(adapter->ena_dev);
3347 }
3348 
3349 int ena_update_hw_stats(struct ena_adapter *adapter)
3350 {
3351 	int rc;
3352 
3353 	rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats);
3354 	if (rc) {
3355 		netdev_err(adapter->netdev, "Failed to get ENI stats\n");
3356 		return rc;
3357 	}
3358 
3359 	return 0;
3360 }
3361 
3362 static void ena_get_stats64(struct net_device *netdev,
3363 			    struct rtnl_link_stats64 *stats)
3364 {
3365 	struct ena_adapter *adapter = netdev_priv(netdev);
3366 	struct ena_ring *rx_ring, *tx_ring;
3367 	unsigned int start;
3368 	u64 rx_drops;
3369 	u64 tx_drops;
3370 	int i;
3371 
3372 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3373 		return;
3374 
3375 	for (i = 0; i < adapter->num_io_queues; i++) {
3376 		u64 bytes, packets;
3377 
3378 		tx_ring = &adapter->tx_ring[i];
3379 
3380 		do {
3381 			start = u64_stats_fetch_begin(&tx_ring->syncp);
3382 			packets = tx_ring->tx_stats.cnt;
3383 			bytes = tx_ring->tx_stats.bytes;
3384 		} while (u64_stats_fetch_retry(&tx_ring->syncp, start));
3385 
3386 		stats->tx_packets += packets;
3387 		stats->tx_bytes += bytes;
3388 
3389 		rx_ring = &adapter->rx_ring[i];
3390 
3391 		do {
3392 			start = u64_stats_fetch_begin(&rx_ring->syncp);
3393 			packets = rx_ring->rx_stats.cnt;
3394 			bytes = rx_ring->rx_stats.bytes;
3395 		} while (u64_stats_fetch_retry(&rx_ring->syncp, start));
3396 
3397 		stats->rx_packets += packets;
3398 		stats->rx_bytes += bytes;
3399 	}
3400 
3401 	do {
3402 		start = u64_stats_fetch_begin(&adapter->syncp);
3403 		rx_drops = adapter->dev_stats.rx_drops;
3404 		tx_drops = adapter->dev_stats.tx_drops;
3405 	} while (u64_stats_fetch_retry(&adapter->syncp, start));
3406 
3407 	stats->rx_dropped = rx_drops;
3408 	stats->tx_dropped = tx_drops;
3409 
3410 	stats->multicast = 0;
3411 	stats->collisions = 0;
3412 
3413 	stats->rx_length_errors = 0;
3414 	stats->rx_crc_errors = 0;
3415 	stats->rx_frame_errors = 0;
3416 	stats->rx_fifo_errors = 0;
3417 	stats->rx_missed_errors = 0;
3418 	stats->tx_window_errors = 0;
3419 
3420 	stats->rx_errors = 0;
3421 	stats->tx_errors = 0;
3422 }
3423 
3424 static const struct net_device_ops ena_netdev_ops = {
3425 	.ndo_open		= ena_open,
3426 	.ndo_stop		= ena_close,
3427 	.ndo_start_xmit		= ena_start_xmit,
3428 	.ndo_select_queue	= ena_select_queue,
3429 	.ndo_get_stats64	= ena_get_stats64,
3430 	.ndo_tx_timeout		= ena_tx_timeout,
3431 	.ndo_change_mtu		= ena_change_mtu,
3432 	.ndo_set_mac_address	= NULL,
3433 	.ndo_validate_addr	= eth_validate_addr,
3434 	.ndo_bpf		= ena_xdp,
3435 	.ndo_xdp_xmit		= ena_xdp_xmit,
3436 };
3437 
3438 static void ena_calc_io_queue_size(struct ena_adapter *adapter,
3439 				   struct ena_com_dev_get_features_ctx *get_feat_ctx)
3440 {
3441 	struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq;
3442 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3443 	u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
3444 	u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
3445 	u32 max_tx_queue_size;
3446 	u32 max_rx_queue_size;
3447 
3448 	/* If this function is called after driver load, the ring sizes have already
3449 	 * been configured. Take it into account when recalculating ring size.
3450 	 */
3451 	if (adapter->tx_ring->ring_size)
3452 		tx_queue_size = adapter->tx_ring->ring_size;
3453 
3454 	if (adapter->rx_ring->ring_size)
3455 		rx_queue_size = adapter->rx_ring->ring_size;
3456 
3457 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3458 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3459 			&get_feat_ctx->max_queue_ext.max_queue_ext;
3460 		max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
3461 					  max_queue_ext->max_rx_sq_depth);
3462 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
3463 
3464 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3465 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3466 						  llq->max_llq_depth);
3467 		else
3468 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3469 						  max_queue_ext->max_tx_sq_depth);
3470 
3471 		adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3472 						 max_queue_ext->max_per_packet_tx_descs);
3473 		adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3474 						 max_queue_ext->max_per_packet_rx_descs);
3475 	} else {
3476 		struct ena_admin_queue_feature_desc *max_queues =
3477 			&get_feat_ctx->max_queues;
3478 		max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
3479 					  max_queues->max_sq_depth);
3480 		max_tx_queue_size = max_queues->max_cq_depth;
3481 
3482 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3483 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3484 						  llq->max_llq_depth);
3485 		else
3486 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
3487 						  max_queues->max_sq_depth);
3488 
3489 		adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3490 						 max_queues->max_packet_tx_descs);
3491 		adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
3492 						 max_queues->max_packet_rx_descs);
3493 	}
3494 
3495 	max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
3496 	max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
3497 
3498 	/* When forcing large headers, we multiply the entry size by 2, and therefore divide
3499 	 * the queue size by 2, leaving the amount of memory used by the queues unchanged.
3500 	 */
3501 	if (adapter->large_llq_header_enabled) {
3502 		if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
3503 		    ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3504 			max_tx_queue_size /= 2;
3505 			dev_info(&adapter->pdev->dev,
3506 				 "Forcing large headers and decreasing maximum TX queue size to %d\n",
3507 				 max_tx_queue_size);
3508 		} else {
3509 			dev_err(&adapter->pdev->dev,
3510 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
3511 
3512 			adapter->large_llq_header_enabled = false;
3513 		}
3514 	}
3515 
3516 	tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
3517 				  max_tx_queue_size);
3518 	rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
3519 				  max_rx_queue_size);
3520 
3521 	tx_queue_size = rounddown_pow_of_two(tx_queue_size);
3522 	rx_queue_size = rounddown_pow_of_two(rx_queue_size);
3523 
3524 	adapter->max_tx_ring_size  = max_tx_queue_size;
3525 	adapter->max_rx_ring_size = max_rx_queue_size;
3526 	adapter->requested_tx_ring_size = tx_queue_size;
3527 	adapter->requested_rx_ring_size = rx_queue_size;
3528 }
3529 
3530 static int ena_device_validate_params(struct ena_adapter *adapter,
3531 				      struct ena_com_dev_get_features_ctx *get_feat_ctx)
3532 {
3533 	struct net_device *netdev = adapter->netdev;
3534 	int rc;
3535 
3536 	rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
3537 			      adapter->mac_addr);
3538 	if (!rc) {
3539 		netif_err(adapter, drv, netdev,
3540 			  "Error, mac address are different\n");
3541 		return -EINVAL;
3542 	}
3543 
3544 	if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
3545 		netif_err(adapter, drv, netdev,
3546 			  "Error, device max mtu is smaller than netdev MTU\n");
3547 		return -EINVAL;
3548 	}
3549 
3550 	return 0;
3551 }
3552 
3553 static void set_default_llq_configurations(struct ena_adapter *adapter,
3554 					   struct ena_llq_configurations *llq_config,
3555 					   struct ena_admin_feature_llq_desc *llq)
3556 {
3557 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3558 
3559 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
3560 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
3561 	llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
3562 
3563 	adapter->large_llq_header_supported =
3564 		!!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ));
3565 	adapter->large_llq_header_supported &=
3566 		!!(llq->entry_size_ctrl_supported &
3567 			ENA_ADMIN_LIST_ENTRY_SIZE_256B);
3568 
3569 	if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
3570 	    adapter->large_llq_header_enabled) {
3571 		llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B;
3572 		llq_config->llq_ring_entry_size_value = 256;
3573 	} else {
3574 		llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
3575 		llq_config->llq_ring_entry_size_value = 128;
3576 	}
3577 }
3578 
3579 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3580 					   struct ena_com_dev *ena_dev,
3581 					   struct ena_admin_feature_llq_desc *llq,
3582 					   struct ena_llq_configurations *llq_default_configurations)
3583 {
3584 	int rc;
3585 	u32 llq_feature_mask;
3586 
3587 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3588 	if (!(ena_dev->supported_features & llq_feature_mask)) {
3589 		dev_warn(&pdev->dev,
3590 			"LLQ is not supported Fallback to host mode policy.\n");
3591 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3592 		return 0;
3593 	}
3594 
3595 	if (!ena_dev->mem_bar) {
3596 		netdev_err(ena_dev->net_device,
3597 			   "LLQ is advertised as supported but device doesn't expose mem bar\n");
3598 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3599 		return 0;
3600 	}
3601 
3602 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3603 	if (unlikely(rc)) {
3604 		dev_err(&pdev->dev,
3605 			"Failed to configure the device mode.  Fallback to host mode policy.\n");
3606 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3607 	}
3608 
3609 	return 0;
3610 }
3611 
3612 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
3613 			       int bars)
3614 {
3615 	bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR));
3616 
3617 	if (!has_mem_bar)
3618 		return 0;
3619 
3620 	ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3621 					   pci_resource_start(pdev, ENA_MEM_BAR),
3622 					   pci_resource_len(pdev, ENA_MEM_BAR));
3623 
3624 	if (!ena_dev->mem_bar)
3625 		return -EFAULT;
3626 
3627 	return 0;
3628 }
3629 
3630 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev,
3631 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
3632 			   bool *wd_state)
3633 {
3634 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3635 	struct ena_llq_configurations llq_config;
3636 	struct device *dev = &pdev->dev;
3637 	bool readless_supported;
3638 	u32 aenq_groups;
3639 	int dma_width;
3640 	int rc;
3641 
3642 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3643 	if (rc) {
3644 		dev_err(dev, "Failed to init mmio read less\n");
3645 		return rc;
3646 	}
3647 
3648 	/* The PCIe configuration space revision id indicate if mmio reg
3649 	 * read is disabled
3650 	 */
3651 	readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3652 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3653 
3654 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3655 	if (rc) {
3656 		dev_err(dev, "Can not reset device\n");
3657 		goto err_mmio_read_less;
3658 	}
3659 
3660 	rc = ena_com_validate_version(ena_dev);
3661 	if (rc) {
3662 		dev_err(dev, "Device version is too low\n");
3663 		goto err_mmio_read_less;
3664 	}
3665 
3666 	dma_width = ena_com_get_dma_width(ena_dev);
3667 	if (dma_width < 0) {
3668 		dev_err(dev, "Invalid dma width value %d", dma_width);
3669 		rc = dma_width;
3670 		goto err_mmio_read_less;
3671 	}
3672 
3673 	rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width));
3674 	if (rc) {
3675 		dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc);
3676 		goto err_mmio_read_less;
3677 	}
3678 
3679 	/* ENA admin level init */
3680 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3681 	if (rc) {
3682 		dev_err(dev,
3683 			"Can not initialize ena admin queue with device\n");
3684 		goto err_mmio_read_less;
3685 	}
3686 
3687 	/* To enable the msix interrupts the driver needs to know the number
3688 	 * of queues. So the driver uses polling mode to retrieve this
3689 	 * information
3690 	 */
3691 	ena_com_set_admin_polling_mode(ena_dev, true);
3692 
3693 	ena_config_host_info(ena_dev, pdev);
3694 
3695 	/* Get Device Attributes*/
3696 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3697 	if (rc) {
3698 		dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3699 		goto err_admin_init;
3700 	}
3701 
3702 	/* Try to turn all the available aenq groups */
3703 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3704 		BIT(ENA_ADMIN_FATAL_ERROR) |
3705 		BIT(ENA_ADMIN_WARNING) |
3706 		BIT(ENA_ADMIN_NOTIFICATION) |
3707 		BIT(ENA_ADMIN_KEEP_ALIVE);
3708 
3709 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3710 
3711 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3712 	if (rc) {
3713 		dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3714 		goto err_admin_init;
3715 	}
3716 
3717 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3718 
3719 	set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq);
3720 
3721 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq,
3722 					     &llq_config);
3723 	if (rc) {
3724 		dev_err(dev, "ENA device init failed\n");
3725 		goto err_admin_init;
3726 	}
3727 
3728 	ena_calc_io_queue_size(adapter, get_feat_ctx);
3729 
3730 	return 0;
3731 
3732 err_admin_init:
3733 	ena_com_delete_host_info(ena_dev);
3734 	ena_com_admin_destroy(ena_dev);
3735 err_mmio_read_less:
3736 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3737 
3738 	return rc;
3739 }
3740 
3741 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3742 {
3743 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3744 	struct device *dev = &adapter->pdev->dev;
3745 	int rc;
3746 
3747 	rc = ena_enable_msix(adapter);
3748 	if (rc) {
3749 		dev_err(dev, "Can not reserve msix vectors\n");
3750 		return rc;
3751 	}
3752 
3753 	ena_setup_mgmnt_intr(adapter);
3754 
3755 	rc = ena_request_mgmnt_irq(adapter);
3756 	if (rc) {
3757 		dev_err(dev, "Can not setup management interrupts\n");
3758 		goto err_disable_msix;
3759 	}
3760 
3761 	ena_com_set_admin_polling_mode(ena_dev, false);
3762 
3763 	ena_com_admin_aenq_enable(ena_dev);
3764 
3765 	return 0;
3766 
3767 err_disable_msix:
3768 	ena_disable_msix(adapter);
3769 
3770 	return rc;
3771 }
3772 
3773 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3774 {
3775 	struct net_device *netdev = adapter->netdev;
3776 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3777 	bool dev_up;
3778 
3779 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3780 		return;
3781 
3782 	netif_carrier_off(netdev);
3783 
3784 	del_timer_sync(&adapter->timer_service);
3785 
3786 	dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3787 	adapter->dev_up_before_reset = dev_up;
3788 	if (!graceful)
3789 		ena_com_set_admin_running_state(ena_dev, false);
3790 
3791 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3792 		ena_down(adapter);
3793 
3794 	/* Stop the device from sending AENQ events (in case reset flag is set
3795 	 *  and device is up, ena_down() already reset the device.
3796 	 */
3797 	if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3798 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3799 
3800 	ena_free_mgmnt_irq(adapter);
3801 
3802 	ena_disable_msix(adapter);
3803 
3804 	ena_com_abort_admin_commands(ena_dev);
3805 
3806 	ena_com_wait_for_abort_completion(ena_dev);
3807 
3808 	ena_com_admin_destroy(ena_dev);
3809 
3810 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3811 
3812 	/* return reset reason to default value */
3813 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3814 
3815 	clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3816 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3817 }
3818 
3819 static int ena_restore_device(struct ena_adapter *adapter)
3820 {
3821 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3822 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3823 	struct pci_dev *pdev = adapter->pdev;
3824 	struct ena_ring *txr;
3825 	int rc, count, i;
3826 	bool wd_state;
3827 
3828 	set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3829 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state);
3830 	if (rc) {
3831 		dev_err(&pdev->dev, "Can not initialize device\n");
3832 		goto err;
3833 	}
3834 	adapter->wd_state = wd_state;
3835 
3836 	count =  adapter->xdp_num_queues + adapter->num_io_queues;
3837 	for (i = 0 ; i < count; i++) {
3838 		txr = &adapter->tx_ring[i];
3839 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
3840 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
3841 	}
3842 
3843 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
3844 	if (rc) {
3845 		dev_err(&pdev->dev, "Validation of device parameters failed\n");
3846 		goto err_device_destroy;
3847 	}
3848 
3849 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3850 	if (rc) {
3851 		dev_err(&pdev->dev, "Enable MSI-X failed\n");
3852 		goto err_device_destroy;
3853 	}
3854 	/* If the interface was up before the reset bring it up */
3855 	if (adapter->dev_up_before_reset) {
3856 		rc = ena_up(adapter);
3857 		if (rc) {
3858 			dev_err(&pdev->dev, "Failed to create I/O queues\n");
3859 			goto err_disable_msix;
3860 		}
3861 	}
3862 
3863 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3864 
3865 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3866 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3867 		netif_carrier_on(adapter->netdev);
3868 
3869 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3870 	adapter->last_keep_alive_jiffies = jiffies;
3871 
3872 	return rc;
3873 err_disable_msix:
3874 	ena_free_mgmnt_irq(adapter);
3875 	ena_disable_msix(adapter);
3876 err_device_destroy:
3877 	ena_com_abort_admin_commands(ena_dev);
3878 	ena_com_wait_for_abort_completion(ena_dev);
3879 	ena_com_admin_destroy(ena_dev);
3880 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3881 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3882 err:
3883 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3884 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3885 	dev_err(&pdev->dev,
3886 		"Reset attempt failed. Can not reset the device\n");
3887 
3888 	return rc;
3889 }
3890 
3891 static void ena_fw_reset_device(struct work_struct *work)
3892 {
3893 	struct ena_adapter *adapter =
3894 		container_of(work, struct ena_adapter, reset_task);
3895 
3896 	rtnl_lock();
3897 
3898 	if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3899 		ena_destroy_device(adapter, false);
3900 		ena_restore_device(adapter);
3901 
3902 		dev_err(&adapter->pdev->dev, "Device reset completed successfully\n");
3903 	}
3904 
3905 	rtnl_unlock();
3906 }
3907 
3908 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3909 					struct ena_ring *rx_ring)
3910 {
3911 	struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi);
3912 
3913 	if (likely(READ_ONCE(ena_napi->first_interrupt)))
3914 		return 0;
3915 
3916 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3917 		return 0;
3918 
3919 	rx_ring->no_interrupt_event_cnt++;
3920 
3921 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3922 		netif_err(adapter, rx_err, adapter->netdev,
3923 			  "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3924 			  rx_ring->qid);
3925 
3926 		ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3927 		return -EIO;
3928 	}
3929 
3930 	return 0;
3931 }
3932 
3933 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3934 					  struct ena_ring *tx_ring)
3935 {
3936 	struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi);
3937 	unsigned int time_since_last_napi;
3938 	unsigned int missing_tx_comp_to;
3939 	bool is_tx_comp_time_expired;
3940 	struct ena_tx_buffer *tx_buf;
3941 	unsigned long last_jiffies;
3942 	u32 missed_tx = 0;
3943 	int i, rc = 0;
3944 
3945 	for (i = 0; i < tx_ring->ring_size; i++) {
3946 		tx_buf = &tx_ring->tx_buffer_info[i];
3947 		last_jiffies = tx_buf->last_jiffies;
3948 
3949 		if (last_jiffies == 0)
3950 			/* no pending Tx at this location */
3951 			continue;
3952 
3953 		is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3954 			 2 * adapter->missing_tx_completion_to);
3955 
3956 		if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) {
3957 			/* If after graceful period interrupt is still not
3958 			 * received, we schedule a reset
3959 			 */
3960 			netif_err(adapter, tx_err, adapter->netdev,
3961 				  "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3962 				  tx_ring->qid);
3963 			ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3964 			return -EIO;
3965 		}
3966 
3967 		is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3968 			adapter->missing_tx_completion_to);
3969 
3970 		if (unlikely(is_tx_comp_time_expired)) {
3971 			if (!tx_buf->print_once) {
3972 				time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies);
3973 				missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to);
3974 				netif_notice(adapter, tx_err, adapter->netdev,
3975 					     "Found a Tx that wasn't completed on time, qid %d, index %d. %u usecs have passed since last napi execution. Missing Tx timeout value %u msecs\n",
3976 					     tx_ring->qid, i, time_since_last_napi, missing_tx_comp_to);
3977 			}
3978 
3979 			tx_buf->print_once = 1;
3980 			missed_tx++;
3981 		}
3982 	}
3983 
3984 	if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3985 		netif_err(adapter, tx_err, adapter->netdev,
3986 			  "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
3987 			  missed_tx,
3988 			  adapter->missing_tx_completion_threshold);
3989 		ena_reset_device(adapter, ENA_REGS_RESET_MISS_TX_CMPL);
3990 		rc = -EIO;
3991 	}
3992 
3993 	ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx,
3994 			  &tx_ring->syncp);
3995 
3996 	return rc;
3997 }
3998 
3999 static void check_for_missing_completions(struct ena_adapter *adapter)
4000 {
4001 	struct ena_ring *tx_ring;
4002 	struct ena_ring *rx_ring;
4003 	int i, budget, rc;
4004 	int io_queue_count;
4005 
4006 	io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
4007 	/* Make sure the driver doesn't turn the device in other process */
4008 	smp_rmb();
4009 
4010 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
4011 		return;
4012 
4013 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
4014 		return;
4015 
4016 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
4017 		return;
4018 
4019 	budget = ENA_MONITORED_TX_QUEUES;
4020 
4021 	for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) {
4022 		tx_ring = &adapter->tx_ring[i];
4023 		rx_ring = &adapter->rx_ring[i];
4024 
4025 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
4026 		if (unlikely(rc))
4027 			return;
4028 
4029 		rc =  !ENA_IS_XDP_INDEX(adapter, i) ?
4030 			check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
4031 		if (unlikely(rc))
4032 			return;
4033 
4034 		budget--;
4035 		if (!budget)
4036 			break;
4037 	}
4038 
4039 	adapter->last_monitored_tx_qid = i % io_queue_count;
4040 }
4041 
4042 /* trigger napi schedule after 2 consecutive detections */
4043 #define EMPTY_RX_REFILL 2
4044 /* For the rare case where the device runs out of Rx descriptors and the
4045  * napi handler failed to refill new Rx descriptors (due to a lack of memory
4046  * for example).
4047  * This case will lead to a deadlock:
4048  * The device won't send interrupts since all the new Rx packets will be dropped
4049  * The napi handler won't allocate new Rx descriptors so the device will be
4050  * able to send new packets.
4051  *
4052  * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
4053  * It is recommended to have at least 512MB, with a minimum of 128MB for
4054  * constrained environment).
4055  *
4056  * When such a situation is detected - Reschedule napi
4057  */
4058 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
4059 {
4060 	struct ena_ring *rx_ring;
4061 	int i, refill_required;
4062 
4063 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
4064 		return;
4065 
4066 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
4067 		return;
4068 
4069 	for (i = 0; i < adapter->num_io_queues; i++) {
4070 		rx_ring = &adapter->rx_ring[i];
4071 
4072 		refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
4073 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
4074 			rx_ring->empty_rx_queue++;
4075 
4076 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
4077 				ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1,
4078 						  &rx_ring->syncp);
4079 
4080 				netif_err(adapter, drv, adapter->netdev,
4081 					  "Trigger refill for ring %d\n", i);
4082 
4083 				napi_schedule(rx_ring->napi);
4084 				rx_ring->empty_rx_queue = 0;
4085 			}
4086 		} else {
4087 			rx_ring->empty_rx_queue = 0;
4088 		}
4089 	}
4090 }
4091 
4092 /* Check for keep alive expiration */
4093 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
4094 {
4095 	unsigned long keep_alive_expired;
4096 
4097 	if (!adapter->wd_state)
4098 		return;
4099 
4100 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
4101 		return;
4102 
4103 	keep_alive_expired = adapter->last_keep_alive_jiffies +
4104 			     adapter->keep_alive_timeout;
4105 	if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
4106 		netif_err(adapter, drv, adapter->netdev,
4107 			  "Keep alive watchdog timeout.\n");
4108 		ena_increase_stat(&adapter->dev_stats.wd_expired, 1,
4109 				  &adapter->syncp);
4110 		ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
4111 	}
4112 }
4113 
4114 static void check_for_admin_com_state(struct ena_adapter *adapter)
4115 {
4116 	if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
4117 		netif_err(adapter, drv, adapter->netdev,
4118 			  "ENA admin queue is not in running state!\n");
4119 		ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1,
4120 				  &adapter->syncp);
4121 		ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO);
4122 	}
4123 }
4124 
4125 static void ena_update_hints(struct ena_adapter *adapter,
4126 			     struct ena_admin_ena_hw_hints *hints)
4127 {
4128 	struct net_device *netdev = adapter->netdev;
4129 
4130 	if (hints->admin_completion_tx_timeout)
4131 		adapter->ena_dev->admin_queue.completion_timeout =
4132 			hints->admin_completion_tx_timeout * 1000;
4133 
4134 	if (hints->mmio_read_timeout)
4135 		/* convert to usec */
4136 		adapter->ena_dev->mmio_read.reg_read_to =
4137 			hints->mmio_read_timeout * 1000;
4138 
4139 	if (hints->missed_tx_completion_count_threshold_to_reset)
4140 		adapter->missing_tx_completion_threshold =
4141 			hints->missed_tx_completion_count_threshold_to_reset;
4142 
4143 	if (hints->missing_tx_completion_timeout) {
4144 		if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
4145 			adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
4146 		else
4147 			adapter->missing_tx_completion_to =
4148 				msecs_to_jiffies(hints->missing_tx_completion_timeout);
4149 	}
4150 
4151 	if (hints->netdev_wd_timeout)
4152 		netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
4153 
4154 	if (hints->driver_watchdog_timeout) {
4155 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
4156 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
4157 		else
4158 			adapter->keep_alive_timeout =
4159 				msecs_to_jiffies(hints->driver_watchdog_timeout);
4160 	}
4161 }
4162 
4163 static void ena_update_host_info(struct ena_admin_host_info *host_info,
4164 				 struct net_device *netdev)
4165 {
4166 	host_info->supported_network_features[0] =
4167 		netdev->features & GENMASK_ULL(31, 0);
4168 	host_info->supported_network_features[1] =
4169 		(netdev->features & GENMASK_ULL(63, 32)) >> 32;
4170 }
4171 
4172 static void ena_timer_service(struct timer_list *t)
4173 {
4174 	struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
4175 	u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
4176 	struct ena_admin_host_info *host_info =
4177 		adapter->ena_dev->host_attr.host_info;
4178 
4179 	check_for_missing_keep_alive(adapter);
4180 
4181 	check_for_admin_com_state(adapter);
4182 
4183 	check_for_missing_completions(adapter);
4184 
4185 	check_for_empty_rx_ring(adapter);
4186 
4187 	if (debug_area)
4188 		ena_dump_stats_to_buf(adapter, debug_area);
4189 
4190 	if (host_info)
4191 		ena_update_host_info(host_info, adapter->netdev);
4192 
4193 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4194 		netif_err(adapter, drv, adapter->netdev,
4195 			  "Trigger reset is on\n");
4196 		ena_dump_stats_to_dmesg(adapter);
4197 		queue_work(ena_wq, &adapter->reset_task);
4198 		return;
4199 	}
4200 
4201 	/* Reset the timer */
4202 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4203 }
4204 
4205 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev,
4206 				     struct ena_com_dev *ena_dev,
4207 				     struct ena_com_dev_get_features_ctx *get_feat_ctx)
4208 {
4209 	u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
4210 
4211 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
4212 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
4213 			&get_feat_ctx->max_queue_ext.max_queue_ext;
4214 		io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
4215 				  max_queue_ext->max_rx_cq_num);
4216 
4217 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
4218 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
4219 	} else {
4220 		struct ena_admin_queue_feature_desc *max_queues =
4221 			&get_feat_ctx->max_queues;
4222 		io_tx_sq_num = max_queues->max_sq_num;
4223 		io_tx_cq_num = max_queues->max_cq_num;
4224 		io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
4225 	}
4226 
4227 	/* In case of LLQ use the llq fields for the tx SQ/CQ */
4228 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4229 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
4230 
4231 	max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
4232 	max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
4233 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
4234 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
4235 	/* 1 IRQ for mgmnt and 1 IRQs for each IO direction */
4236 	max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
4237 
4238 	return max_num_io_queues;
4239 }
4240 
4241 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
4242 				 struct net_device *netdev)
4243 {
4244 	netdev_features_t dev_features = 0;
4245 
4246 	/* Set offload features */
4247 	if (feat->offload.tx &
4248 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
4249 		dev_features |= NETIF_F_IP_CSUM;
4250 
4251 	if (feat->offload.tx &
4252 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
4253 		dev_features |= NETIF_F_IPV6_CSUM;
4254 
4255 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
4256 		dev_features |= NETIF_F_TSO;
4257 
4258 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
4259 		dev_features |= NETIF_F_TSO6;
4260 
4261 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
4262 		dev_features |= NETIF_F_TSO_ECN;
4263 
4264 	if (feat->offload.rx_supported &
4265 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
4266 		dev_features |= NETIF_F_RXCSUM;
4267 
4268 	if (feat->offload.rx_supported &
4269 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
4270 		dev_features |= NETIF_F_RXCSUM;
4271 
4272 	netdev->features =
4273 		dev_features |
4274 		NETIF_F_SG |
4275 		NETIF_F_RXHASH |
4276 		NETIF_F_HIGHDMA;
4277 
4278 	netdev->hw_features |= netdev->features;
4279 	netdev->vlan_features |= netdev->features;
4280 }
4281 
4282 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
4283 				     struct ena_com_dev_get_features_ctx *feat)
4284 {
4285 	struct net_device *netdev = adapter->netdev;
4286 
4287 	/* Copy mac address */
4288 	if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
4289 		eth_hw_addr_random(netdev);
4290 		ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
4291 	} else {
4292 		ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
4293 		eth_hw_addr_set(netdev, adapter->mac_addr);
4294 	}
4295 
4296 	/* Set offload features */
4297 	ena_set_dev_offloads(feat, netdev);
4298 
4299 	adapter->max_mtu = feat->dev_attr.max_mtu;
4300 	netdev->max_mtu = adapter->max_mtu;
4301 	netdev->min_mtu = ENA_MIN_MTU;
4302 }
4303 
4304 static int ena_rss_init_default(struct ena_adapter *adapter)
4305 {
4306 	struct ena_com_dev *ena_dev = adapter->ena_dev;
4307 	struct device *dev = &adapter->pdev->dev;
4308 	int rc, i;
4309 	u32 val;
4310 
4311 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
4312 	if (unlikely(rc)) {
4313 		dev_err(dev, "Cannot init indirect table\n");
4314 		goto err_rss_init;
4315 	}
4316 
4317 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
4318 		val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
4319 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
4320 						       ENA_IO_RXQ_IDX(val));
4321 		if (unlikely(rc)) {
4322 			dev_err(dev, "Cannot fill indirect table\n");
4323 			goto err_fill_indir;
4324 		}
4325 	}
4326 
4327 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL,
4328 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
4329 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4330 		dev_err(dev, "Cannot fill hash function\n");
4331 		goto err_fill_indir;
4332 	}
4333 
4334 	rc = ena_com_set_default_hash_ctrl(ena_dev);
4335 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4336 		dev_err(dev, "Cannot fill hash control\n");
4337 		goto err_fill_indir;
4338 	}
4339 
4340 	return 0;
4341 
4342 err_fill_indir:
4343 	ena_com_rss_destroy(ena_dev);
4344 err_rss_init:
4345 
4346 	return rc;
4347 }
4348 
4349 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
4350 {
4351 	int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4352 
4353 	pci_release_selected_regions(pdev, release_bars);
4354 }
4355 
4356 /* ena_probe - Device Initialization Routine
4357  * @pdev: PCI device information struct
4358  * @ent: entry in ena_pci_tbl
4359  *
4360  * Returns 0 on success, negative on failure
4361  *
4362  * ena_probe initializes an adapter identified by a pci_dev structure.
4363  * The OS initialization, configuring of the adapter private structure,
4364  * and a hardware reset occur.
4365  */
4366 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4367 {
4368 	struct ena_com_dev_get_features_ctx get_feat_ctx;
4369 	struct ena_com_dev *ena_dev = NULL;
4370 	struct ena_adapter *adapter;
4371 	struct net_device *netdev;
4372 	static int adapters_found;
4373 	u32 max_num_io_queues;
4374 	bool wd_state;
4375 	int bars, rc;
4376 
4377 	dev_dbg(&pdev->dev, "%s\n", __func__);
4378 
4379 	rc = pci_enable_device_mem(pdev);
4380 	if (rc) {
4381 		dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
4382 		return rc;
4383 	}
4384 
4385 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS));
4386 	if (rc) {
4387 		dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc);
4388 		goto err_disable_device;
4389 	}
4390 
4391 	pci_set_master(pdev);
4392 
4393 	ena_dev = vzalloc(sizeof(*ena_dev));
4394 	if (!ena_dev) {
4395 		rc = -ENOMEM;
4396 		goto err_disable_device;
4397 	}
4398 
4399 	bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4400 	rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
4401 	if (rc) {
4402 		dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
4403 			rc);
4404 		goto err_free_ena_dev;
4405 	}
4406 
4407 	ena_dev->reg_bar = devm_ioremap(&pdev->dev,
4408 					pci_resource_start(pdev, ENA_REG_BAR),
4409 					pci_resource_len(pdev, ENA_REG_BAR));
4410 	if (!ena_dev->reg_bar) {
4411 		dev_err(&pdev->dev, "Failed to remap regs bar\n");
4412 		rc = -EFAULT;
4413 		goto err_free_region;
4414 	}
4415 
4416 	ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US;
4417 
4418 	ena_dev->dmadev = &pdev->dev;
4419 
4420 	netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS);
4421 	if (!netdev) {
4422 		dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
4423 		rc = -ENOMEM;
4424 		goto err_free_region;
4425 	}
4426 
4427 	SET_NETDEV_DEV(netdev, &pdev->dev);
4428 	adapter = netdev_priv(netdev);
4429 	adapter->ena_dev = ena_dev;
4430 	adapter->netdev = netdev;
4431 	adapter->pdev = pdev;
4432 	adapter->msg_enable = DEFAULT_MSG_ENABLE;
4433 
4434 	ena_dev->net_device = netdev;
4435 
4436 	pci_set_drvdata(pdev, adapter);
4437 
4438 	rc = ena_map_llq_mem_bar(pdev, ena_dev, bars);
4439 	if (rc) {
4440 		dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n");
4441 		goto err_netdev_destroy;
4442 	}
4443 
4444 	rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state);
4445 	if (rc) {
4446 		dev_err(&pdev->dev, "ENA device init failed\n");
4447 		if (rc == -ETIME)
4448 			rc = -EPROBE_DEFER;
4449 		goto err_netdev_destroy;
4450 	}
4451 
4452 	/* Initial TX and RX interrupt delay. Assumes 1 usec granularity.
4453 	 * Updated during device initialization with the real granularity
4454 	 */
4455 	ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
4456 	ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
4457 	ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
4458 	max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
4459 	if (unlikely(!max_num_io_queues)) {
4460 		rc = -EFAULT;
4461 		goto err_device_destroy;
4462 	}
4463 
4464 	ena_set_conf_feat_params(adapter, &get_feat_ctx);
4465 
4466 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
4467 
4468 	adapter->num_io_queues = max_num_io_queues;
4469 	adapter->max_num_io_queues = max_num_io_queues;
4470 	adapter->last_monitored_tx_qid = 0;
4471 
4472 	adapter->xdp_first_ring = 0;
4473 	adapter->xdp_num_queues = 0;
4474 
4475 	adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
4476 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4477 		adapter->disable_meta_caching =
4478 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
4479 			   BIT(ENA_ADMIN_DISABLE_META_CACHING));
4480 
4481 	adapter->wd_state = wd_state;
4482 
4483 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
4484 
4485 	rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
4486 	if (rc) {
4487 		dev_err(&pdev->dev,
4488 			"Failed to query interrupt moderation feature\n");
4489 		goto err_device_destroy;
4490 	}
4491 
4492 	ena_init_io_rings(adapter,
4493 			  0,
4494 			  adapter->xdp_num_queues +
4495 			  adapter->num_io_queues);
4496 
4497 	netdev->netdev_ops = &ena_netdev_ops;
4498 	netdev->watchdog_timeo = TX_TIMEOUT;
4499 	ena_set_ethtool_ops(netdev);
4500 
4501 	netdev->priv_flags |= IFF_UNICAST_FLT;
4502 
4503 	u64_stats_init(&adapter->syncp);
4504 
4505 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
4506 	if (rc) {
4507 		dev_err(&pdev->dev,
4508 			"Failed to enable and set the admin interrupts\n");
4509 		goto err_worker_destroy;
4510 	}
4511 	rc = ena_rss_init_default(adapter);
4512 	if (rc && (rc != -EOPNOTSUPP)) {
4513 		dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
4514 		goto err_free_msix;
4515 	}
4516 
4517 	ena_config_debug_area(adapter);
4518 
4519 	if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues))
4520 		netdev->xdp_features = NETDEV_XDP_ACT_BASIC |
4521 				       NETDEV_XDP_ACT_REDIRECT;
4522 
4523 	memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
4524 
4525 	netif_carrier_off(netdev);
4526 
4527 	rc = register_netdev(netdev);
4528 	if (rc) {
4529 		dev_err(&pdev->dev, "Cannot register net device\n");
4530 		goto err_rss;
4531 	}
4532 
4533 	INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
4534 
4535 	adapter->last_keep_alive_jiffies = jiffies;
4536 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
4537 	adapter->missing_tx_completion_to = TX_TIMEOUT;
4538 	adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
4539 
4540 	ena_update_hints(adapter, &get_feat_ctx.hw_hints);
4541 
4542 	timer_setup(&adapter->timer_service, ena_timer_service, 0);
4543 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4544 
4545 	dev_info(&pdev->dev,
4546 		 "%s found at mem %lx, mac addr %pM\n",
4547 		 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
4548 		 netdev->dev_addr);
4549 
4550 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
4551 
4552 	adapters_found++;
4553 
4554 	return 0;
4555 
4556 err_rss:
4557 	ena_com_delete_debug_area(ena_dev);
4558 	ena_com_rss_destroy(ena_dev);
4559 err_free_msix:
4560 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
4561 	/* stop submitting admin commands on a device that was reset */
4562 	ena_com_set_admin_running_state(ena_dev, false);
4563 	ena_free_mgmnt_irq(adapter);
4564 	ena_disable_msix(adapter);
4565 err_worker_destroy:
4566 	del_timer(&adapter->timer_service);
4567 err_device_destroy:
4568 	ena_com_delete_host_info(ena_dev);
4569 	ena_com_admin_destroy(ena_dev);
4570 err_netdev_destroy:
4571 	free_netdev(netdev);
4572 err_free_region:
4573 	ena_release_bars(ena_dev, pdev);
4574 err_free_ena_dev:
4575 	vfree(ena_dev);
4576 err_disable_device:
4577 	pci_disable_device(pdev);
4578 	return rc;
4579 }
4580 
4581 /*****************************************************************************/
4582 
4583 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines
4584  * @pdev: PCI device information struct
4585  * @shutdown: Is it a shutdown operation? If false, means it is a removal
4586  *
4587  * __ena_shutoff is a helper routine that does the real work on shutdown and
4588  * removal paths; the difference between those paths is with regards to whether
4589  * dettach or unregister the netdevice.
4590  */
4591 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown)
4592 {
4593 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4594 	struct ena_com_dev *ena_dev;
4595 	struct net_device *netdev;
4596 
4597 	ena_dev = adapter->ena_dev;
4598 	netdev = adapter->netdev;
4599 
4600 #ifdef CONFIG_RFS_ACCEL
4601 	if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
4602 		free_irq_cpu_rmap(netdev->rx_cpu_rmap);
4603 		netdev->rx_cpu_rmap = NULL;
4604 	}
4605 #endif /* CONFIG_RFS_ACCEL */
4606 
4607 	/* Make sure timer and reset routine won't be called after
4608 	 * freeing device resources.
4609 	 */
4610 	del_timer_sync(&adapter->timer_service);
4611 	cancel_work_sync(&adapter->reset_task);
4612 
4613 	rtnl_lock(); /* lock released inside the below if-else block */
4614 	adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN;
4615 	ena_destroy_device(adapter, true);
4616 
4617 	if (shutdown) {
4618 		netif_device_detach(netdev);
4619 		dev_close(netdev);
4620 		rtnl_unlock();
4621 	} else {
4622 		rtnl_unlock();
4623 		unregister_netdev(netdev);
4624 		free_netdev(netdev);
4625 	}
4626 
4627 	ena_com_rss_destroy(ena_dev);
4628 
4629 	ena_com_delete_debug_area(ena_dev);
4630 
4631 	ena_com_delete_host_info(ena_dev);
4632 
4633 	ena_release_bars(ena_dev, pdev);
4634 
4635 	pci_disable_device(pdev);
4636 
4637 	vfree(ena_dev);
4638 }
4639 
4640 /* ena_remove - Device Removal Routine
4641  * @pdev: PCI device information struct
4642  *
4643  * ena_remove is called by the PCI subsystem to alert the driver
4644  * that it should release a PCI device.
4645  */
4646 
4647 static void ena_remove(struct pci_dev *pdev)
4648 {
4649 	__ena_shutoff(pdev, false);
4650 }
4651 
4652 /* ena_shutdown - Device Shutdown Routine
4653  * @pdev: PCI device information struct
4654  *
4655  * ena_shutdown is called by the PCI subsystem to alert the driver that
4656  * a shutdown/reboot (or kexec) is happening and device must be disabled.
4657  */
4658 
4659 static void ena_shutdown(struct pci_dev *pdev)
4660 {
4661 	__ena_shutoff(pdev, true);
4662 }
4663 
4664 /* ena_suspend - PM suspend callback
4665  * @dev_d: Device information struct
4666  */
4667 static int __maybe_unused ena_suspend(struct device *dev_d)
4668 {
4669 	struct pci_dev *pdev = to_pci_dev(dev_d);
4670 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4671 
4672 	ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp);
4673 
4674 	rtnl_lock();
4675 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4676 		dev_err(&pdev->dev,
4677 			"Ignoring device reset request as the device is being suspended\n");
4678 		clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4679 	}
4680 	ena_destroy_device(adapter, true);
4681 	rtnl_unlock();
4682 	return 0;
4683 }
4684 
4685 /* ena_resume - PM resume callback
4686  * @dev_d: Device information struct
4687  */
4688 static int __maybe_unused ena_resume(struct device *dev_d)
4689 {
4690 	struct ena_adapter *adapter = dev_get_drvdata(dev_d);
4691 	int rc;
4692 
4693 	ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp);
4694 
4695 	rtnl_lock();
4696 	rc = ena_restore_device(adapter);
4697 	rtnl_unlock();
4698 	return rc;
4699 }
4700 
4701 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume);
4702 
4703 static struct pci_driver ena_pci_driver = {
4704 	.name		= DRV_MODULE_NAME,
4705 	.id_table	= ena_pci_tbl,
4706 	.probe		= ena_probe,
4707 	.remove		= ena_remove,
4708 	.shutdown	= ena_shutdown,
4709 	.driver.pm	= &ena_pm_ops,
4710 	.sriov_configure = pci_sriov_configure_simple,
4711 };
4712 
4713 static int __init ena_init(void)
4714 {
4715 	int ret;
4716 
4717 	ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4718 	if (!ena_wq) {
4719 		pr_err("Failed to create workqueue\n");
4720 		return -ENOMEM;
4721 	}
4722 
4723 	ret = pci_register_driver(&ena_pci_driver);
4724 	if (ret)
4725 		destroy_workqueue(ena_wq);
4726 
4727 	return ret;
4728 }
4729 
4730 static void __exit ena_cleanup(void)
4731 {
4732 	pci_unregister_driver(&ena_pci_driver);
4733 
4734 	if (ena_wq) {
4735 		destroy_workqueue(ena_wq);
4736 		ena_wq = NULL;
4737 	}
4738 }
4739 
4740 /******************************************************************************
4741  ******************************** AENQ Handlers *******************************
4742  *****************************************************************************/
4743 /* ena_update_on_link_change:
4744  * Notify the network interface about the change in link status
4745  */
4746 static void ena_update_on_link_change(void *adapter_data,
4747 				      struct ena_admin_aenq_entry *aenq_e)
4748 {
4749 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4750 	struct ena_admin_aenq_link_change_desc *aenq_desc =
4751 		(struct ena_admin_aenq_link_change_desc *)aenq_e;
4752 	int status = aenq_desc->flags &
4753 		ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4754 
4755 	if (status) {
4756 		netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
4757 		set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4758 		if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4759 			netif_carrier_on(adapter->netdev);
4760 	} else {
4761 		clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4762 		netif_carrier_off(adapter->netdev);
4763 	}
4764 }
4765 
4766 static void ena_keep_alive_wd(void *adapter_data,
4767 			      struct ena_admin_aenq_entry *aenq_e)
4768 {
4769 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4770 	struct ena_admin_aenq_keep_alive_desc *desc;
4771 	u64 rx_drops;
4772 	u64 tx_drops;
4773 
4774 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4775 	adapter->last_keep_alive_jiffies = jiffies;
4776 
4777 	rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4778 	tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low;
4779 
4780 	u64_stats_update_begin(&adapter->syncp);
4781 	/* These stats are accumulated by the device, so the counters indicate
4782 	 * all drops since last reset.
4783 	 */
4784 	adapter->dev_stats.rx_drops = rx_drops;
4785 	adapter->dev_stats.tx_drops = tx_drops;
4786 	u64_stats_update_end(&adapter->syncp);
4787 }
4788 
4789 static void ena_notification(void *adapter_data,
4790 			     struct ena_admin_aenq_entry *aenq_e)
4791 {
4792 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4793 	struct ena_admin_ena_hw_hints *hints;
4794 
4795 	WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4796 	     "Invalid group(%x) expected %x\n",
4797 	     aenq_e->aenq_common_desc.group,
4798 	     ENA_ADMIN_NOTIFICATION);
4799 
4800 	switch (aenq_e->aenq_common_desc.syndrome) {
4801 	case ENA_ADMIN_UPDATE_HINTS:
4802 		hints = (struct ena_admin_ena_hw_hints *)
4803 			(&aenq_e->inline_data_w4);
4804 		ena_update_hints(adapter, hints);
4805 		break;
4806 	default:
4807 		netif_err(adapter, drv, adapter->netdev,
4808 			  "Invalid aenq notification link state %d\n",
4809 			  aenq_e->aenq_common_desc.syndrome);
4810 	}
4811 }
4812 
4813 /* This handler will called for unknown event group or unimplemented handlers*/
4814 static void unimplemented_aenq_handler(void *data,
4815 				       struct ena_admin_aenq_entry *aenq_e)
4816 {
4817 	struct ena_adapter *adapter = (struct ena_adapter *)data;
4818 
4819 	netif_err(adapter, drv, adapter->netdev,
4820 		  "Unknown event was received or event with unimplemented handler\n");
4821 }
4822 
4823 static struct ena_aenq_handlers aenq_handlers = {
4824 	.handlers = {
4825 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4826 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4827 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4828 	},
4829 	.unimplemented_handler = unimplemented_aenq_handler
4830 };
4831 
4832 module_init(ena_init);
4833 module_exit(ena_cleanup);
4834