1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #ifdef CONFIG_RFS_ACCEL 9 #include <linux/cpu_rmap.h> 10 #endif /* CONFIG_RFS_ACCEL */ 11 #include <linux/ethtool.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/numa.h> 15 #include <linux/pci.h> 16 #include <linux/utsname.h> 17 #include <linux/version.h> 18 #include <linux/vmalloc.h> 19 #include <net/ip.h> 20 21 #include "ena_netdev.h" 22 #include <linux/bpf_trace.h> 23 #include "ena_pci_id_tbl.h" 24 25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 26 MODULE_DESCRIPTION(DEVICE_NAME); 27 MODULE_LICENSE("GPL"); 28 29 /* Time in jiffies before concluding the transmitter is hung. */ 30 #define TX_TIMEOUT (5 * HZ) 31 32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus()) 33 34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 35 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 36 37 static struct ena_aenq_handlers aenq_handlers; 38 39 static struct workqueue_struct *ena_wq; 40 41 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 42 43 static int ena_rss_init_default(struct ena_adapter *adapter); 44 static void check_for_admin_com_state(struct ena_adapter *adapter); 45 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful); 46 static int ena_restore_device(struct ena_adapter *adapter); 47 48 static void ena_init_io_rings(struct ena_adapter *adapter, 49 int first_index, int count); 50 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index, 51 int count); 52 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index, 53 int count); 54 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid); 55 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 56 int first_index, 57 int count); 58 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid); 59 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid); 60 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget); 61 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter); 62 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter); 63 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 64 int first_index, int count); 65 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 66 int first_index, int count); 67 static int ena_up(struct ena_adapter *adapter); 68 static void ena_down(struct ena_adapter *adapter); 69 static void ena_unmask_interrupt(struct ena_ring *tx_ring, 70 struct ena_ring *rx_ring); 71 static void ena_update_ring_numa_node(struct ena_ring *tx_ring, 72 struct ena_ring *rx_ring); 73 static void ena_unmap_tx_buff(struct ena_ring *tx_ring, 74 struct ena_tx_buffer *tx_info); 75 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 76 int first_index, int count); 77 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 78 int first_index, int count); 79 80 /* Increase a stat by cnt while holding syncp seqlock on 32bit machines */ 81 static void ena_increase_stat(u64 *statp, u64 cnt, 82 struct u64_stats_sync *syncp) 83 { 84 u64_stats_update_begin(syncp); 85 (*statp) += cnt; 86 u64_stats_update_end(syncp); 87 } 88 89 static void ena_ring_tx_doorbell(struct ena_ring *tx_ring) 90 { 91 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 92 ena_increase_stat(&tx_ring->tx_stats.doorbells, 1, &tx_ring->syncp); 93 } 94 95 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) 96 { 97 struct ena_adapter *adapter = netdev_priv(dev); 98 99 /* Change the state of the device to trigger reset 100 * Check that we are not in the middle or a trigger already 101 */ 102 103 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 104 return; 105 106 ena_reset_device(adapter, ENA_REGS_RESET_OS_NETDEV_WD); 107 ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp); 108 109 netif_err(adapter, tx_err, dev, "Transmit time out\n"); 110 } 111 112 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 113 { 114 int i; 115 116 for (i = 0; i < adapter->num_io_queues; i++) 117 adapter->rx_ring[i].mtu = mtu; 118 } 119 120 static int ena_change_mtu(struct net_device *dev, int new_mtu) 121 { 122 struct ena_adapter *adapter = netdev_priv(dev); 123 int ret; 124 125 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 126 if (!ret) { 127 netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu); 128 update_rx_ring_mtu(adapter, new_mtu); 129 dev->mtu = new_mtu; 130 } else { 131 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 132 new_mtu); 133 } 134 135 return ret; 136 } 137 138 static int ena_xmit_common(struct net_device *dev, 139 struct ena_ring *ring, 140 struct ena_tx_buffer *tx_info, 141 struct ena_com_tx_ctx *ena_tx_ctx, 142 u16 next_to_use, 143 u32 bytes) 144 { 145 struct ena_adapter *adapter = netdev_priv(dev); 146 int rc, nb_hw_desc; 147 148 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, 149 ena_tx_ctx))) { 150 netif_dbg(adapter, tx_queued, dev, 151 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 152 ring->qid); 153 ena_ring_tx_doorbell(ring); 154 } 155 156 /* prepare the packet's descriptors to dma engine */ 157 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, 158 &nb_hw_desc); 159 160 /* In case there isn't enough space in the queue for the packet, 161 * we simply drop it. All other failure reasons of 162 * ena_com_prepare_tx() are fatal and therefore require a device reset. 163 */ 164 if (unlikely(rc)) { 165 netif_err(adapter, tx_queued, dev, 166 "Failed to prepare tx bufs\n"); 167 ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1, 168 &ring->syncp); 169 if (rc != -ENOMEM) 170 ena_reset_device(adapter, 171 ENA_REGS_RESET_DRIVER_INVALID_STATE); 172 return rc; 173 } 174 175 u64_stats_update_begin(&ring->syncp); 176 ring->tx_stats.cnt++; 177 ring->tx_stats.bytes += bytes; 178 u64_stats_update_end(&ring->syncp); 179 180 tx_info->tx_descs = nb_hw_desc; 181 tx_info->last_jiffies = jiffies; 182 tx_info->print_once = 0; 183 184 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 185 ring->ring_size); 186 return 0; 187 } 188 189 /* This is the XDP napi callback. XDP queues use a separate napi callback 190 * than Rx/Tx queues. 191 */ 192 static int ena_xdp_io_poll(struct napi_struct *napi, int budget) 193 { 194 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 195 u32 xdp_work_done, xdp_budget; 196 struct ena_ring *xdp_ring; 197 int napi_comp_call = 0; 198 int ret; 199 200 xdp_ring = ena_napi->xdp_ring; 201 202 xdp_budget = budget; 203 204 if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) || 205 test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) { 206 napi_complete_done(napi, 0); 207 return 0; 208 } 209 210 xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget); 211 212 /* If the device is about to reset or down, avoid unmask 213 * the interrupt and return 0 so NAPI won't reschedule 214 */ 215 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) { 216 napi_complete_done(napi, 0); 217 ret = 0; 218 } else if (xdp_budget > xdp_work_done) { 219 napi_comp_call = 1; 220 if (napi_complete_done(napi, xdp_work_done)) 221 ena_unmask_interrupt(xdp_ring, NULL); 222 ena_update_ring_numa_node(xdp_ring, NULL); 223 ret = xdp_work_done; 224 } else { 225 ret = xdp_budget; 226 } 227 228 u64_stats_update_begin(&xdp_ring->syncp); 229 xdp_ring->tx_stats.napi_comp += napi_comp_call; 230 xdp_ring->tx_stats.tx_poll++; 231 u64_stats_update_end(&xdp_ring->syncp); 232 xdp_ring->tx_stats.last_napi_jiffies = jiffies; 233 234 return ret; 235 } 236 237 static int ena_xdp_tx_map_frame(struct ena_ring *xdp_ring, 238 struct ena_tx_buffer *tx_info, 239 struct xdp_frame *xdpf, 240 struct ena_com_tx_ctx *ena_tx_ctx) 241 { 242 struct ena_adapter *adapter = xdp_ring->adapter; 243 struct ena_com_buf *ena_buf; 244 int push_len = 0; 245 dma_addr_t dma; 246 void *data; 247 u32 size; 248 249 tx_info->xdpf = xdpf; 250 data = tx_info->xdpf->data; 251 size = tx_info->xdpf->len; 252 253 if (xdp_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 254 /* Designate part of the packet for LLQ */ 255 push_len = min_t(u32, size, xdp_ring->tx_max_header_size); 256 257 ena_tx_ctx->push_header = data; 258 259 size -= push_len; 260 data += push_len; 261 } 262 263 ena_tx_ctx->header_len = push_len; 264 265 if (size > 0) { 266 dma = dma_map_single(xdp_ring->dev, 267 data, 268 size, 269 DMA_TO_DEVICE); 270 if (unlikely(dma_mapping_error(xdp_ring->dev, dma))) 271 goto error_report_dma_error; 272 273 tx_info->map_linear_data = 0; 274 275 ena_buf = tx_info->bufs; 276 ena_buf->paddr = dma; 277 ena_buf->len = size; 278 279 ena_tx_ctx->ena_bufs = ena_buf; 280 ena_tx_ctx->num_bufs = tx_info->num_of_bufs = 1; 281 } 282 283 return 0; 284 285 error_report_dma_error: 286 ena_increase_stat(&xdp_ring->tx_stats.dma_mapping_err, 1, 287 &xdp_ring->syncp); 288 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map xdp buff\n"); 289 290 return -EINVAL; 291 } 292 293 static int ena_xdp_xmit_frame(struct ena_ring *xdp_ring, 294 struct net_device *dev, 295 struct xdp_frame *xdpf, 296 int flags) 297 { 298 struct ena_com_tx_ctx ena_tx_ctx = {}; 299 struct ena_tx_buffer *tx_info; 300 u16 next_to_use, req_id; 301 int rc; 302 303 next_to_use = xdp_ring->next_to_use; 304 req_id = xdp_ring->free_ids[next_to_use]; 305 tx_info = &xdp_ring->tx_buffer_info[req_id]; 306 tx_info->num_of_bufs = 0; 307 308 rc = ena_xdp_tx_map_frame(xdp_ring, tx_info, xdpf, &ena_tx_ctx); 309 if (unlikely(rc)) 310 return rc; 311 312 ena_tx_ctx.req_id = req_id; 313 314 rc = ena_xmit_common(dev, 315 xdp_ring, 316 tx_info, 317 &ena_tx_ctx, 318 next_to_use, 319 xdpf->len); 320 if (rc) 321 goto error_unmap_dma; 322 323 /* trigger the dma engine. ena_ring_tx_doorbell() 324 * calls a memory barrier inside it. 325 */ 326 if (flags & XDP_XMIT_FLUSH) 327 ena_ring_tx_doorbell(xdp_ring); 328 329 return rc; 330 331 error_unmap_dma: 332 ena_unmap_tx_buff(xdp_ring, tx_info); 333 tx_info->xdpf = NULL; 334 return rc; 335 } 336 337 static int ena_xdp_xmit(struct net_device *dev, int n, 338 struct xdp_frame **frames, u32 flags) 339 { 340 struct ena_adapter *adapter = netdev_priv(dev); 341 struct ena_ring *xdp_ring; 342 int qid, i, nxmit = 0; 343 344 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 345 return -EINVAL; 346 347 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 348 return -ENETDOWN; 349 350 /* We assume that all rings have the same XDP program */ 351 if (!READ_ONCE(adapter->rx_ring->xdp_bpf_prog)) 352 return -ENXIO; 353 354 qid = smp_processor_id() % adapter->xdp_num_queues; 355 qid += adapter->xdp_first_ring; 356 xdp_ring = &adapter->tx_ring[qid]; 357 358 /* Other CPU ids might try to send thorugh this queue */ 359 spin_lock(&xdp_ring->xdp_tx_lock); 360 361 for (i = 0; i < n; i++) { 362 if (ena_xdp_xmit_frame(xdp_ring, dev, frames[i], 0)) 363 break; 364 nxmit++; 365 } 366 367 /* Ring doorbell to make device aware of the packets */ 368 if (flags & XDP_XMIT_FLUSH) 369 ena_ring_tx_doorbell(xdp_ring); 370 371 spin_unlock(&xdp_ring->xdp_tx_lock); 372 373 /* Return number of packets sent */ 374 return nxmit; 375 } 376 377 static int ena_xdp_execute(struct ena_ring *rx_ring, struct xdp_buff *xdp) 378 { 379 u32 verdict = ENA_XDP_PASS; 380 struct bpf_prog *xdp_prog; 381 struct ena_ring *xdp_ring; 382 struct xdp_frame *xdpf; 383 u64 *xdp_stat; 384 385 xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog); 386 387 if (!xdp_prog) 388 goto out; 389 390 verdict = bpf_prog_run_xdp(xdp_prog, xdp); 391 392 switch (verdict) { 393 case XDP_TX: 394 xdpf = xdp_convert_buff_to_frame(xdp); 395 if (unlikely(!xdpf)) { 396 trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict); 397 xdp_stat = &rx_ring->rx_stats.xdp_aborted; 398 verdict = ENA_XDP_DROP; 399 break; 400 } 401 402 /* Find xmit queue */ 403 xdp_ring = rx_ring->xdp_ring; 404 405 /* The XDP queues are shared between XDP_TX and XDP_REDIRECT */ 406 spin_lock(&xdp_ring->xdp_tx_lock); 407 408 if (ena_xdp_xmit_frame(xdp_ring, rx_ring->netdev, xdpf, 409 XDP_XMIT_FLUSH)) 410 xdp_return_frame(xdpf); 411 412 spin_unlock(&xdp_ring->xdp_tx_lock); 413 xdp_stat = &rx_ring->rx_stats.xdp_tx; 414 verdict = ENA_XDP_TX; 415 break; 416 case XDP_REDIRECT: 417 if (likely(!xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))) { 418 xdp_stat = &rx_ring->rx_stats.xdp_redirect; 419 verdict = ENA_XDP_REDIRECT; 420 break; 421 } 422 trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict); 423 xdp_stat = &rx_ring->rx_stats.xdp_aborted; 424 verdict = ENA_XDP_DROP; 425 break; 426 case XDP_ABORTED: 427 trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict); 428 xdp_stat = &rx_ring->rx_stats.xdp_aborted; 429 verdict = ENA_XDP_DROP; 430 break; 431 case XDP_DROP: 432 xdp_stat = &rx_ring->rx_stats.xdp_drop; 433 verdict = ENA_XDP_DROP; 434 break; 435 case XDP_PASS: 436 xdp_stat = &rx_ring->rx_stats.xdp_pass; 437 verdict = ENA_XDP_PASS; 438 break; 439 default: 440 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, verdict); 441 xdp_stat = &rx_ring->rx_stats.xdp_invalid; 442 verdict = ENA_XDP_DROP; 443 } 444 445 ena_increase_stat(xdp_stat, 1, &rx_ring->syncp); 446 out: 447 return verdict; 448 } 449 450 static void ena_init_all_xdp_queues(struct ena_adapter *adapter) 451 { 452 adapter->xdp_first_ring = adapter->num_io_queues; 453 adapter->xdp_num_queues = adapter->num_io_queues; 454 455 ena_init_io_rings(adapter, 456 adapter->xdp_first_ring, 457 adapter->xdp_num_queues); 458 } 459 460 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter) 461 { 462 u32 xdp_first_ring = adapter->xdp_first_ring; 463 u32 xdp_num_queues = adapter->xdp_num_queues; 464 int rc = 0; 465 466 rc = ena_setup_tx_resources_in_range(adapter, xdp_first_ring, xdp_num_queues); 467 if (rc) 468 goto setup_err; 469 470 rc = ena_create_io_tx_queues_in_range(adapter, xdp_first_ring, xdp_num_queues); 471 if (rc) 472 goto create_err; 473 474 return 0; 475 476 create_err: 477 ena_free_all_io_tx_resources_in_range(adapter, xdp_first_ring, xdp_num_queues); 478 setup_err: 479 return rc; 480 } 481 482 /* Provides a way for both kernel and bpf-prog to know 483 * more about the RX-queue a given XDP frame arrived on. 484 */ 485 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring) 486 { 487 int rc; 488 489 rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid, 0); 490 491 if (rc) { 492 netif_err(rx_ring->adapter, ifup, rx_ring->netdev, 493 "Failed to register xdp rx queue info. RX queue num %d rc: %d\n", 494 rx_ring->qid, rc); 495 goto err; 496 } 497 498 rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED, 499 NULL); 500 501 if (rc) { 502 netif_err(rx_ring->adapter, ifup, rx_ring->netdev, 503 "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n", 504 rx_ring->qid, rc); 505 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 506 } 507 508 err: 509 return rc; 510 } 511 512 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring) 513 { 514 xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq); 515 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 516 } 517 518 static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter, 519 struct bpf_prog *prog, 520 int first, int count) 521 { 522 struct bpf_prog *old_bpf_prog; 523 struct ena_ring *rx_ring; 524 int i = 0; 525 526 for (i = first; i < count; i++) { 527 rx_ring = &adapter->rx_ring[i]; 528 old_bpf_prog = xchg(&rx_ring->xdp_bpf_prog, prog); 529 530 if (!old_bpf_prog && prog) { 531 ena_xdp_register_rxq_info(rx_ring); 532 rx_ring->rx_headroom = XDP_PACKET_HEADROOM; 533 } else if (old_bpf_prog && !prog) { 534 ena_xdp_unregister_rxq_info(rx_ring); 535 rx_ring->rx_headroom = NET_SKB_PAD; 536 } 537 } 538 } 539 540 static void ena_xdp_exchange_program(struct ena_adapter *adapter, 541 struct bpf_prog *prog) 542 { 543 struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog); 544 545 ena_xdp_exchange_program_rx_in_range(adapter, 546 prog, 547 0, 548 adapter->num_io_queues); 549 550 if (old_bpf_prog) 551 bpf_prog_put(old_bpf_prog); 552 } 553 554 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter) 555 { 556 bool was_up; 557 int rc; 558 559 was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 560 561 if (was_up) 562 ena_down(adapter); 563 564 adapter->xdp_first_ring = 0; 565 adapter->xdp_num_queues = 0; 566 ena_xdp_exchange_program(adapter, NULL); 567 if (was_up) { 568 rc = ena_up(adapter); 569 if (rc) 570 return rc; 571 } 572 return 0; 573 } 574 575 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf) 576 { 577 struct ena_adapter *adapter = netdev_priv(netdev); 578 struct bpf_prog *prog = bpf->prog; 579 struct bpf_prog *old_bpf_prog; 580 int rc, prev_mtu; 581 bool is_up; 582 583 is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 584 rc = ena_xdp_allowed(adapter); 585 if (rc == ENA_XDP_ALLOWED) { 586 old_bpf_prog = adapter->xdp_bpf_prog; 587 if (prog) { 588 if (!is_up) { 589 ena_init_all_xdp_queues(adapter); 590 } else if (!old_bpf_prog) { 591 ena_down(adapter); 592 ena_init_all_xdp_queues(adapter); 593 } 594 ena_xdp_exchange_program(adapter, prog); 595 596 if (is_up && !old_bpf_prog) { 597 rc = ena_up(adapter); 598 if (rc) 599 return rc; 600 } 601 xdp_features_set_redirect_target(netdev, false); 602 } else if (old_bpf_prog) { 603 xdp_features_clear_redirect_target(netdev); 604 rc = ena_destroy_and_free_all_xdp_queues(adapter); 605 if (rc) 606 return rc; 607 } 608 609 prev_mtu = netdev->max_mtu; 610 netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu; 611 612 if (!old_bpf_prog) 613 netif_info(adapter, drv, adapter->netdev, 614 "XDP program is set, changing the max_mtu from %d to %d", 615 prev_mtu, netdev->max_mtu); 616 617 } else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) { 618 netif_err(adapter, drv, adapter->netdev, 619 "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on", 620 netdev->mtu, ENA_XDP_MAX_MTU); 621 NL_SET_ERR_MSG_MOD(bpf->extack, 622 "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info"); 623 return -EINVAL; 624 } else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) { 625 netif_err(adapter, drv, adapter->netdev, 626 "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n", 627 adapter->num_io_queues, adapter->max_num_io_queues); 628 NL_SET_ERR_MSG_MOD(bpf->extack, 629 "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info"); 630 return -EINVAL; 631 } 632 633 return 0; 634 } 635 636 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp 637 * program as well as to query the current xdp program id. 638 */ 639 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf) 640 { 641 switch (bpf->command) { 642 case XDP_SETUP_PROG: 643 return ena_xdp_set(netdev, bpf); 644 default: 645 return -EINVAL; 646 } 647 return 0; 648 } 649 650 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 651 { 652 #ifdef CONFIG_RFS_ACCEL 653 u32 i; 654 int rc; 655 656 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); 657 if (!adapter->netdev->rx_cpu_rmap) 658 return -ENOMEM; 659 for (i = 0; i < adapter->num_io_queues; i++) { 660 int irq_idx = ENA_IO_IRQ_IDX(i); 661 662 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 663 pci_irq_vector(adapter->pdev, irq_idx)); 664 if (rc) { 665 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 666 adapter->netdev->rx_cpu_rmap = NULL; 667 return rc; 668 } 669 } 670 #endif /* CONFIG_RFS_ACCEL */ 671 return 0; 672 } 673 674 static void ena_init_io_rings_common(struct ena_adapter *adapter, 675 struct ena_ring *ring, u16 qid) 676 { 677 ring->qid = qid; 678 ring->pdev = adapter->pdev; 679 ring->dev = &adapter->pdev->dev; 680 ring->netdev = adapter->netdev; 681 ring->napi = &adapter->ena_napi[qid].napi; 682 ring->adapter = adapter; 683 ring->ena_dev = adapter->ena_dev; 684 ring->per_napi_packets = 0; 685 ring->cpu = 0; 686 ring->numa_node = 0; 687 ring->no_interrupt_event_cnt = 0; 688 u64_stats_init(&ring->syncp); 689 } 690 691 static void ena_init_io_rings(struct ena_adapter *adapter, 692 int first_index, int count) 693 { 694 struct ena_com_dev *ena_dev; 695 struct ena_ring *txr, *rxr; 696 int i; 697 698 ena_dev = adapter->ena_dev; 699 700 for (i = first_index; i < first_index + count; i++) { 701 txr = &adapter->tx_ring[i]; 702 rxr = &adapter->rx_ring[i]; 703 704 /* TX common ring state */ 705 ena_init_io_rings_common(adapter, txr, i); 706 707 /* TX specific ring state */ 708 txr->ring_size = adapter->requested_tx_ring_size; 709 txr->tx_max_header_size = ena_dev->tx_max_header_size; 710 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 711 txr->sgl_size = adapter->max_tx_sgl_size; 712 txr->smoothed_interval = 713 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 714 txr->disable_meta_caching = adapter->disable_meta_caching; 715 spin_lock_init(&txr->xdp_tx_lock); 716 717 /* Don't init RX queues for xdp queues */ 718 if (!ENA_IS_XDP_INDEX(adapter, i)) { 719 /* RX common ring state */ 720 ena_init_io_rings_common(adapter, rxr, i); 721 722 /* RX specific ring state */ 723 rxr->ring_size = adapter->requested_rx_ring_size; 724 rxr->rx_copybreak = adapter->rx_copybreak; 725 rxr->sgl_size = adapter->max_rx_sgl_size; 726 rxr->smoothed_interval = 727 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 728 rxr->empty_rx_queue = 0; 729 rxr->rx_headroom = NET_SKB_PAD; 730 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 731 rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues]; 732 } 733 } 734 } 735 736 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 737 * @adapter: network interface device structure 738 * @qid: queue index 739 * 740 * Return 0 on success, negative on failure 741 */ 742 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 743 { 744 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 745 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 746 int size, i, node; 747 748 if (tx_ring->tx_buffer_info) { 749 netif_err(adapter, ifup, 750 adapter->netdev, "tx_buffer_info info is not NULL"); 751 return -EEXIST; 752 } 753 754 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 755 node = cpu_to_node(ena_irq->cpu); 756 757 tx_ring->tx_buffer_info = vzalloc_node(size, node); 758 if (!tx_ring->tx_buffer_info) { 759 tx_ring->tx_buffer_info = vzalloc(size); 760 if (!tx_ring->tx_buffer_info) 761 goto err_tx_buffer_info; 762 } 763 764 size = sizeof(u16) * tx_ring->ring_size; 765 tx_ring->free_ids = vzalloc_node(size, node); 766 if (!tx_ring->free_ids) { 767 tx_ring->free_ids = vzalloc(size); 768 if (!tx_ring->free_ids) 769 goto err_tx_free_ids; 770 } 771 772 size = tx_ring->tx_max_header_size; 773 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 774 if (!tx_ring->push_buf_intermediate_buf) { 775 tx_ring->push_buf_intermediate_buf = vzalloc(size); 776 if (!tx_ring->push_buf_intermediate_buf) 777 goto err_push_buf_intermediate_buf; 778 } 779 780 /* Req id ring for TX out of order completions */ 781 for (i = 0; i < tx_ring->ring_size; i++) 782 tx_ring->free_ids[i] = i; 783 784 /* Reset tx statistics */ 785 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 786 787 tx_ring->next_to_use = 0; 788 tx_ring->next_to_clean = 0; 789 tx_ring->cpu = ena_irq->cpu; 790 tx_ring->numa_node = node; 791 return 0; 792 793 err_push_buf_intermediate_buf: 794 vfree(tx_ring->free_ids); 795 tx_ring->free_ids = NULL; 796 err_tx_free_ids: 797 vfree(tx_ring->tx_buffer_info); 798 tx_ring->tx_buffer_info = NULL; 799 err_tx_buffer_info: 800 return -ENOMEM; 801 } 802 803 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 804 * @adapter: network interface device structure 805 * @qid: queue index 806 * 807 * Free all transmit software resources 808 */ 809 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 810 { 811 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 812 813 vfree(tx_ring->tx_buffer_info); 814 tx_ring->tx_buffer_info = NULL; 815 816 vfree(tx_ring->free_ids); 817 tx_ring->free_ids = NULL; 818 819 vfree(tx_ring->push_buf_intermediate_buf); 820 tx_ring->push_buf_intermediate_buf = NULL; 821 } 822 823 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 824 int first_index, 825 int count) 826 { 827 int i, rc = 0; 828 829 for (i = first_index; i < first_index + count; i++) { 830 rc = ena_setup_tx_resources(adapter, i); 831 if (rc) 832 goto err_setup_tx; 833 } 834 835 return 0; 836 837 err_setup_tx: 838 839 netif_err(adapter, ifup, adapter->netdev, 840 "Tx queue %d: allocation failed\n", i); 841 842 /* rewind the index freeing the rings as we go */ 843 while (first_index < i--) 844 ena_free_tx_resources(adapter, i); 845 return rc; 846 } 847 848 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 849 int first_index, int count) 850 { 851 int i; 852 853 for (i = first_index; i < first_index + count; i++) 854 ena_free_tx_resources(adapter, i); 855 } 856 857 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 858 * @adapter: board private structure 859 * 860 * Free all transmit software resources 861 */ 862 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 863 { 864 ena_free_all_io_tx_resources_in_range(adapter, 865 0, 866 adapter->xdp_num_queues + 867 adapter->num_io_queues); 868 } 869 870 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 871 * @adapter: network interface device structure 872 * @qid: queue index 873 * 874 * Returns 0 on success, negative on failure 875 */ 876 static int ena_setup_rx_resources(struct ena_adapter *adapter, 877 u32 qid) 878 { 879 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 880 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 881 int size, node, i; 882 883 if (rx_ring->rx_buffer_info) { 884 netif_err(adapter, ifup, adapter->netdev, 885 "rx_buffer_info is not NULL"); 886 return -EEXIST; 887 } 888 889 /* alloc extra element so in rx path 890 * we can always prefetch rx_info + 1 891 */ 892 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 893 node = cpu_to_node(ena_irq->cpu); 894 895 rx_ring->rx_buffer_info = vzalloc_node(size, node); 896 if (!rx_ring->rx_buffer_info) { 897 rx_ring->rx_buffer_info = vzalloc(size); 898 if (!rx_ring->rx_buffer_info) 899 return -ENOMEM; 900 } 901 902 size = sizeof(u16) * rx_ring->ring_size; 903 rx_ring->free_ids = vzalloc_node(size, node); 904 if (!rx_ring->free_ids) { 905 rx_ring->free_ids = vzalloc(size); 906 if (!rx_ring->free_ids) { 907 vfree(rx_ring->rx_buffer_info); 908 rx_ring->rx_buffer_info = NULL; 909 return -ENOMEM; 910 } 911 } 912 913 /* Req id ring for receiving RX pkts out of order */ 914 for (i = 0; i < rx_ring->ring_size; i++) 915 rx_ring->free_ids[i] = i; 916 917 /* Reset rx statistics */ 918 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 919 920 rx_ring->next_to_clean = 0; 921 rx_ring->next_to_use = 0; 922 rx_ring->cpu = ena_irq->cpu; 923 rx_ring->numa_node = node; 924 925 return 0; 926 } 927 928 /* ena_free_rx_resources - Free I/O Rx Resources 929 * @adapter: network interface device structure 930 * @qid: queue index 931 * 932 * Free all receive software resources 933 */ 934 static void ena_free_rx_resources(struct ena_adapter *adapter, 935 u32 qid) 936 { 937 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 938 939 vfree(rx_ring->rx_buffer_info); 940 rx_ring->rx_buffer_info = NULL; 941 942 vfree(rx_ring->free_ids); 943 rx_ring->free_ids = NULL; 944 } 945 946 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 947 * @adapter: board private structure 948 * 949 * Return 0 on success, negative on failure 950 */ 951 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 952 { 953 int i, rc = 0; 954 955 for (i = 0; i < adapter->num_io_queues; i++) { 956 rc = ena_setup_rx_resources(adapter, i); 957 if (rc) 958 goto err_setup_rx; 959 } 960 961 return 0; 962 963 err_setup_rx: 964 965 netif_err(adapter, ifup, adapter->netdev, 966 "Rx queue %d: allocation failed\n", i); 967 968 /* rewind the index freeing the rings as we go */ 969 while (i--) 970 ena_free_rx_resources(adapter, i); 971 return rc; 972 } 973 974 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 975 * @adapter: board private structure 976 * 977 * Free all receive software resources 978 */ 979 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 980 { 981 int i; 982 983 for (i = 0; i < adapter->num_io_queues; i++) 984 ena_free_rx_resources(adapter, i); 985 } 986 987 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring, 988 dma_addr_t *dma) 989 { 990 struct page *page; 991 992 /* This would allocate the page on the same NUMA node the executing code 993 * is running on. 994 */ 995 page = dev_alloc_page(); 996 if (!page) { 997 ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1, 998 &rx_ring->syncp); 999 return ERR_PTR(-ENOSPC); 1000 } 1001 1002 /* To enable NIC-side port-mirroring, AKA SPAN port, 1003 * we make the buffer readable from the nic as well 1004 */ 1005 *dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 1006 DMA_BIDIRECTIONAL); 1007 if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) { 1008 ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1, 1009 &rx_ring->syncp); 1010 __free_page(page); 1011 return ERR_PTR(-EIO); 1012 } 1013 1014 return page; 1015 } 1016 1017 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring, 1018 struct ena_rx_buffer *rx_info) 1019 { 1020 int headroom = rx_ring->rx_headroom; 1021 struct ena_com_buf *ena_buf; 1022 struct page *page; 1023 dma_addr_t dma; 1024 int tailroom; 1025 1026 /* restore page offset value in case it has been changed by device */ 1027 rx_info->buf_offset = headroom; 1028 1029 /* if previous allocated page is not used */ 1030 if (unlikely(rx_info->page)) 1031 return 0; 1032 1033 /* We handle DMA here */ 1034 page = ena_alloc_map_page(rx_ring, &dma); 1035 if (unlikely(IS_ERR(page))) 1036 return PTR_ERR(page); 1037 1038 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1039 "Allocate page %p, rx_info %p\n", page, rx_info); 1040 1041 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1042 1043 rx_info->page = page; 1044 rx_info->dma_addr = dma; 1045 rx_info->page_offset = 0; 1046 ena_buf = &rx_info->ena_buf; 1047 ena_buf->paddr = dma + headroom; 1048 ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom; 1049 1050 return 0; 1051 } 1052 1053 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring, 1054 struct ena_rx_buffer *rx_info, 1055 unsigned long attrs) 1056 { 1057 dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE, 1058 DMA_BIDIRECTIONAL, attrs); 1059 } 1060 1061 static void ena_free_rx_page(struct ena_ring *rx_ring, 1062 struct ena_rx_buffer *rx_info) 1063 { 1064 struct page *page = rx_info->page; 1065 1066 if (unlikely(!page)) { 1067 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 1068 "Trying to free unallocated buffer\n"); 1069 return; 1070 } 1071 1072 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0); 1073 1074 __free_page(page); 1075 rx_info->page = NULL; 1076 } 1077 1078 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 1079 { 1080 u16 next_to_use, req_id; 1081 u32 i; 1082 int rc; 1083 1084 next_to_use = rx_ring->next_to_use; 1085 1086 for (i = 0; i < num; i++) { 1087 struct ena_rx_buffer *rx_info; 1088 1089 req_id = rx_ring->free_ids[next_to_use]; 1090 1091 rx_info = &rx_ring->rx_buffer_info[req_id]; 1092 1093 rc = ena_alloc_rx_buffer(rx_ring, rx_info); 1094 if (unlikely(rc < 0)) { 1095 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 1096 "Failed to allocate buffer for rx queue %d\n", 1097 rx_ring->qid); 1098 break; 1099 } 1100 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 1101 &rx_info->ena_buf, 1102 req_id); 1103 if (unlikely(rc)) { 1104 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 1105 "Failed to add buffer for rx queue %d\n", 1106 rx_ring->qid); 1107 break; 1108 } 1109 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 1110 rx_ring->ring_size); 1111 } 1112 1113 if (unlikely(i < num)) { 1114 ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1, 1115 &rx_ring->syncp); 1116 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 1117 "Refilled rx qid %d with only %d buffers (from %d)\n", 1118 rx_ring->qid, i, num); 1119 } 1120 1121 /* ena_com_write_sq_doorbell issues a wmb() */ 1122 if (likely(i)) 1123 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 1124 1125 rx_ring->next_to_use = next_to_use; 1126 1127 return i; 1128 } 1129 1130 static void ena_free_rx_bufs(struct ena_adapter *adapter, 1131 u32 qid) 1132 { 1133 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 1134 u32 i; 1135 1136 for (i = 0; i < rx_ring->ring_size; i++) { 1137 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 1138 1139 if (rx_info->page) 1140 ena_free_rx_page(rx_ring, rx_info); 1141 } 1142 } 1143 1144 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 1145 * @adapter: board private structure 1146 */ 1147 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 1148 { 1149 struct ena_ring *rx_ring; 1150 int i, rc, bufs_num; 1151 1152 for (i = 0; i < adapter->num_io_queues; i++) { 1153 rx_ring = &adapter->rx_ring[i]; 1154 bufs_num = rx_ring->ring_size - 1; 1155 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 1156 1157 if (unlikely(rc != bufs_num)) 1158 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 1159 "Refilling Queue %d failed. allocated %d buffers from: %d\n", 1160 i, rc, bufs_num); 1161 } 1162 } 1163 1164 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 1165 { 1166 int i; 1167 1168 for (i = 0; i < adapter->num_io_queues; i++) 1169 ena_free_rx_bufs(adapter, i); 1170 } 1171 1172 static void ena_unmap_tx_buff(struct ena_ring *tx_ring, 1173 struct ena_tx_buffer *tx_info) 1174 { 1175 struct ena_com_buf *ena_buf; 1176 u32 cnt; 1177 int i; 1178 1179 ena_buf = tx_info->bufs; 1180 cnt = tx_info->num_of_bufs; 1181 1182 if (unlikely(!cnt)) 1183 return; 1184 1185 if (tx_info->map_linear_data) { 1186 dma_unmap_single(tx_ring->dev, 1187 dma_unmap_addr(ena_buf, paddr), 1188 dma_unmap_len(ena_buf, len), 1189 DMA_TO_DEVICE); 1190 ena_buf++; 1191 cnt--; 1192 } 1193 1194 /* unmap remaining mapped pages */ 1195 for (i = 0; i < cnt; i++) { 1196 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 1197 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 1198 ena_buf++; 1199 } 1200 } 1201 1202 /* ena_free_tx_bufs - Free Tx Buffers per Queue 1203 * @tx_ring: TX ring for which buffers be freed 1204 */ 1205 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 1206 { 1207 bool print_once = true; 1208 u32 i; 1209 1210 for (i = 0; i < tx_ring->ring_size; i++) { 1211 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 1212 1213 if (!tx_info->skb) 1214 continue; 1215 1216 if (print_once) { 1217 netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev, 1218 "Free uncompleted tx skb qid %d idx 0x%x\n", 1219 tx_ring->qid, i); 1220 print_once = false; 1221 } else { 1222 netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev, 1223 "Free uncompleted tx skb qid %d idx 0x%x\n", 1224 tx_ring->qid, i); 1225 } 1226 1227 ena_unmap_tx_buff(tx_ring, tx_info); 1228 1229 dev_kfree_skb_any(tx_info->skb); 1230 } 1231 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 1232 tx_ring->qid)); 1233 } 1234 1235 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 1236 { 1237 struct ena_ring *tx_ring; 1238 int i; 1239 1240 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 1241 tx_ring = &adapter->tx_ring[i]; 1242 ena_free_tx_bufs(tx_ring); 1243 } 1244 } 1245 1246 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 1247 { 1248 u16 ena_qid; 1249 int i; 1250 1251 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 1252 ena_qid = ENA_IO_TXQ_IDX(i); 1253 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 1254 } 1255 } 1256 1257 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 1258 { 1259 u16 ena_qid; 1260 int i; 1261 1262 for (i = 0; i < adapter->num_io_queues; i++) { 1263 ena_qid = ENA_IO_RXQ_IDX(i); 1264 cancel_work_sync(&adapter->ena_napi[i].dim.work); 1265 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 1266 } 1267 } 1268 1269 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 1270 { 1271 ena_destroy_all_tx_queues(adapter); 1272 ena_destroy_all_rx_queues(adapter); 1273 } 1274 1275 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, 1276 struct ena_tx_buffer *tx_info, bool is_xdp) 1277 { 1278 if (tx_info) 1279 netif_err(ring->adapter, 1280 tx_done, 1281 ring->netdev, 1282 "tx_info doesn't have valid %s. qid %u req_id %u", 1283 is_xdp ? "xdp frame" : "skb", ring->qid, req_id); 1284 else 1285 netif_err(ring->adapter, 1286 tx_done, 1287 ring->netdev, 1288 "Invalid req_id %u in qid %u\n", 1289 req_id, ring->qid); 1290 1291 ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp); 1292 ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID); 1293 1294 return -EFAULT; 1295 } 1296 1297 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 1298 { 1299 struct ena_tx_buffer *tx_info; 1300 1301 tx_info = &tx_ring->tx_buffer_info[req_id]; 1302 if (likely(tx_info->skb)) 1303 return 0; 1304 1305 return handle_invalid_req_id(tx_ring, req_id, tx_info, false); 1306 } 1307 1308 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id) 1309 { 1310 struct ena_tx_buffer *tx_info; 1311 1312 tx_info = &xdp_ring->tx_buffer_info[req_id]; 1313 if (likely(tx_info->xdpf)) 1314 return 0; 1315 1316 return handle_invalid_req_id(xdp_ring, req_id, tx_info, true); 1317 } 1318 1319 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 1320 { 1321 struct netdev_queue *txq; 1322 bool above_thresh; 1323 u32 tx_bytes = 0; 1324 u32 total_done = 0; 1325 u16 next_to_clean; 1326 u16 req_id; 1327 int tx_pkts = 0; 1328 int rc; 1329 1330 next_to_clean = tx_ring->next_to_clean; 1331 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 1332 1333 while (tx_pkts < budget) { 1334 struct ena_tx_buffer *tx_info; 1335 struct sk_buff *skb; 1336 1337 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 1338 &req_id); 1339 if (rc) { 1340 if (unlikely(rc == -EINVAL)) 1341 handle_invalid_req_id(tx_ring, req_id, NULL, 1342 false); 1343 break; 1344 } 1345 1346 /* validate that the request id points to a valid skb */ 1347 rc = validate_tx_req_id(tx_ring, req_id); 1348 if (rc) 1349 break; 1350 1351 tx_info = &tx_ring->tx_buffer_info[req_id]; 1352 skb = tx_info->skb; 1353 1354 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 1355 prefetch(&skb->end); 1356 1357 tx_info->skb = NULL; 1358 tx_info->last_jiffies = 0; 1359 1360 ena_unmap_tx_buff(tx_ring, tx_info); 1361 1362 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 1363 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 1364 skb); 1365 1366 tx_bytes += skb->len; 1367 dev_kfree_skb(skb); 1368 tx_pkts++; 1369 total_done += tx_info->tx_descs; 1370 1371 tx_ring->free_ids[next_to_clean] = req_id; 1372 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 1373 tx_ring->ring_size); 1374 } 1375 1376 tx_ring->next_to_clean = next_to_clean; 1377 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 1378 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); 1379 1380 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 1381 1382 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 1383 "tx_poll: q %d done. total pkts: %d\n", 1384 tx_ring->qid, tx_pkts); 1385 1386 /* need to make the rings circular update visible to 1387 * ena_start_xmit() before checking for netif_queue_stopped(). 1388 */ 1389 smp_mb(); 1390 1391 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1392 ENA_TX_WAKEUP_THRESH); 1393 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 1394 __netif_tx_lock(txq, smp_processor_id()); 1395 above_thresh = 1396 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1397 ENA_TX_WAKEUP_THRESH); 1398 if (netif_tx_queue_stopped(txq) && above_thresh && 1399 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 1400 netif_tx_wake_queue(txq); 1401 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 1402 &tx_ring->syncp); 1403 } 1404 __netif_tx_unlock(txq); 1405 } 1406 1407 return tx_pkts; 1408 } 1409 1410 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len) 1411 { 1412 struct sk_buff *skb; 1413 1414 if (!first_frag) 1415 skb = napi_alloc_skb(rx_ring->napi, len); 1416 else 1417 skb = napi_build_skb(first_frag, len); 1418 1419 if (unlikely(!skb)) { 1420 ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1, 1421 &rx_ring->syncp); 1422 1423 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1424 "Failed to allocate skb. first_frag %s\n", 1425 first_frag ? "provided" : "not provided"); 1426 } 1427 1428 return skb; 1429 } 1430 1431 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len, 1432 u16 len, int pkt_offset) 1433 { 1434 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 1435 1436 /* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer 1437 * for data + headroom + tailroom. 1438 */ 1439 if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) { 1440 page_ref_inc(rx_info->page); 1441 rx_info->page_offset += buf_len; 1442 ena_buf->paddr += buf_len; 1443 ena_buf->len -= buf_len; 1444 return true; 1445 } 1446 1447 return false; 1448 } 1449 1450 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 1451 struct ena_com_rx_buf_info *ena_bufs, 1452 u32 descs, 1453 u16 *next_to_clean) 1454 { 1455 int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1456 bool is_xdp_loaded = ena_xdp_present_ring(rx_ring); 1457 struct ena_rx_buffer *rx_info; 1458 struct ena_adapter *adapter; 1459 int page_offset, pkt_offset; 1460 dma_addr_t pre_reuse_paddr; 1461 u16 len, req_id, buf = 0; 1462 bool reuse_rx_buf_page; 1463 struct sk_buff *skb; 1464 void *buf_addr; 1465 int buf_offset; 1466 u16 buf_len; 1467 1468 len = ena_bufs[buf].len; 1469 req_id = ena_bufs[buf].req_id; 1470 1471 rx_info = &rx_ring->rx_buffer_info[req_id]; 1472 1473 if (unlikely(!rx_info->page)) { 1474 adapter = rx_ring->adapter; 1475 netif_err(adapter, rx_err, rx_ring->netdev, 1476 "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id); 1477 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp); 1478 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 1479 return NULL; 1480 } 1481 1482 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1483 "rx_info %p page %p\n", 1484 rx_info, rx_info->page); 1485 1486 buf_offset = rx_info->buf_offset; 1487 pkt_offset = buf_offset - rx_ring->rx_headroom; 1488 page_offset = rx_info->page_offset; 1489 buf_addr = page_address(rx_info->page) + page_offset; 1490 1491 if (len <= rx_ring->rx_copybreak) { 1492 skb = ena_alloc_skb(rx_ring, NULL, len); 1493 if (unlikely(!skb)) 1494 return NULL; 1495 1496 skb_copy_to_linear_data(skb, buf_addr + buf_offset, len); 1497 dma_sync_single_for_device(rx_ring->dev, 1498 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 1499 len, 1500 DMA_FROM_DEVICE); 1501 1502 skb_put(skb, len); 1503 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1504 "RX allocated small packet. len %d.\n", skb->len); 1505 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1506 rx_ring->free_ids[*next_to_clean] = req_id; 1507 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 1508 rx_ring->ring_size); 1509 return skb; 1510 } 1511 1512 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 1513 1514 /* If XDP isn't loaded try to reuse part of the RX buffer */ 1515 reuse_rx_buf_page = !is_xdp_loaded && 1516 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1517 1518 if (!reuse_rx_buf_page) 1519 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1520 1521 skb = ena_alloc_skb(rx_ring, buf_addr, buf_len); 1522 if (unlikely(!skb)) 1523 return NULL; 1524 1525 /* Populate skb's linear part */ 1526 skb_reserve(skb, buf_offset); 1527 skb_put(skb, len); 1528 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1529 1530 do { 1531 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1532 "RX skb updated. len %d. data_len %d\n", 1533 skb->len, skb->data_len); 1534 1535 if (!reuse_rx_buf_page) 1536 rx_info->page = NULL; 1537 1538 rx_ring->free_ids[*next_to_clean] = req_id; 1539 *next_to_clean = 1540 ENA_RX_RING_IDX_NEXT(*next_to_clean, 1541 rx_ring->ring_size); 1542 if (likely(--descs == 0)) 1543 break; 1544 1545 buf++; 1546 len = ena_bufs[buf].len; 1547 req_id = ena_bufs[buf].req_id; 1548 1549 rx_info = &rx_ring->rx_buffer_info[req_id]; 1550 1551 /* rx_info->buf_offset includes rx_ring->rx_headroom */ 1552 buf_offset = rx_info->buf_offset; 1553 pkt_offset = buf_offset - rx_ring->rx_headroom; 1554 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 1555 page_offset = rx_info->page_offset; 1556 1557 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr); 1558 1559 reuse_rx_buf_page = !is_xdp_loaded && 1560 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1561 1562 dma_sync_single_for_cpu(rx_ring->dev, 1563 pre_reuse_paddr + pkt_offset, 1564 len, 1565 DMA_FROM_DEVICE); 1566 1567 if (!reuse_rx_buf_page) 1568 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 1569 DMA_ATTR_SKIP_CPU_SYNC); 1570 1571 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 1572 page_offset + buf_offset, len, buf_len); 1573 1574 } while (1); 1575 1576 return skb; 1577 } 1578 1579 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 1580 * @adapter: structure containing adapter specific data 1581 * @ena_rx_ctx: received packet context/metadata 1582 * @skb: skb currently being received and modified 1583 */ 1584 static void ena_rx_checksum(struct ena_ring *rx_ring, 1585 struct ena_com_rx_ctx *ena_rx_ctx, 1586 struct sk_buff *skb) 1587 { 1588 /* Rx csum disabled */ 1589 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 1590 skb->ip_summed = CHECKSUM_NONE; 1591 return; 1592 } 1593 1594 /* For fragmented packets the checksum isn't valid */ 1595 if (ena_rx_ctx->frag) { 1596 skb->ip_summed = CHECKSUM_NONE; 1597 return; 1598 } 1599 1600 /* if IP and error */ 1601 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1602 (ena_rx_ctx->l3_csum_err))) { 1603 /* ipv4 checksum error */ 1604 skb->ip_summed = CHECKSUM_NONE; 1605 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1606 &rx_ring->syncp); 1607 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1608 "RX IPv4 header checksum error\n"); 1609 return; 1610 } 1611 1612 /* if TCP/UDP */ 1613 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1614 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 1615 if (unlikely(ena_rx_ctx->l4_csum_err)) { 1616 /* TCP/UDP checksum error */ 1617 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1618 &rx_ring->syncp); 1619 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1620 "RX L4 checksum error\n"); 1621 skb->ip_summed = CHECKSUM_NONE; 1622 return; 1623 } 1624 1625 if (likely(ena_rx_ctx->l4_csum_checked)) { 1626 skb->ip_summed = CHECKSUM_UNNECESSARY; 1627 ena_increase_stat(&rx_ring->rx_stats.csum_good, 1, 1628 &rx_ring->syncp); 1629 } else { 1630 ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1, 1631 &rx_ring->syncp); 1632 skb->ip_summed = CHECKSUM_NONE; 1633 } 1634 } else { 1635 skb->ip_summed = CHECKSUM_NONE; 1636 return; 1637 } 1638 1639 } 1640 1641 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1642 struct ena_com_rx_ctx *ena_rx_ctx, 1643 struct sk_buff *skb) 1644 { 1645 enum pkt_hash_types hash_type; 1646 1647 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1648 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1649 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1650 1651 hash_type = PKT_HASH_TYPE_L4; 1652 else 1653 hash_type = PKT_HASH_TYPE_NONE; 1654 1655 /* Override hash type if the packet is fragmented */ 1656 if (ena_rx_ctx->frag) 1657 hash_type = PKT_HASH_TYPE_NONE; 1658 1659 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1660 } 1661 } 1662 1663 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs) 1664 { 1665 struct ena_rx_buffer *rx_info; 1666 int ret; 1667 1668 /* XDP multi-buffer packets not supported */ 1669 if (unlikely(num_descs > 1)) { 1670 netdev_err_once(rx_ring->adapter->netdev, 1671 "xdp: dropped unsupported multi-buffer packets\n"); 1672 ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp); 1673 return ENA_XDP_DROP; 1674 } 1675 1676 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1677 xdp_prepare_buff(xdp, page_address(rx_info->page), 1678 rx_info->buf_offset, 1679 rx_ring->ena_bufs[0].len, false); 1680 1681 ret = ena_xdp_execute(rx_ring, xdp); 1682 1683 /* The xdp program might expand the headers */ 1684 if (ret == ENA_XDP_PASS) { 1685 rx_info->buf_offset = xdp->data - xdp->data_hard_start; 1686 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; 1687 } 1688 1689 return ret; 1690 } 1691 /* ena_clean_rx_irq - Cleanup RX irq 1692 * @rx_ring: RX ring to clean 1693 * @napi: napi handler 1694 * @budget: how many packets driver is allowed to clean 1695 * 1696 * Returns the number of cleaned buffers. 1697 */ 1698 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1699 u32 budget) 1700 { 1701 u16 next_to_clean = rx_ring->next_to_clean; 1702 struct ena_com_rx_ctx ena_rx_ctx; 1703 struct ena_rx_buffer *rx_info; 1704 struct ena_adapter *adapter; 1705 u32 res_budget, work_done; 1706 int rx_copybreak_pkt = 0; 1707 int refill_threshold; 1708 struct sk_buff *skb; 1709 int refill_required; 1710 struct xdp_buff xdp; 1711 int xdp_flags = 0; 1712 int total_len = 0; 1713 int xdp_verdict; 1714 u8 pkt_offset; 1715 int rc = 0; 1716 int i; 1717 1718 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1719 "%s qid %d\n", __func__, rx_ring->qid); 1720 res_budget = budget; 1721 xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq); 1722 1723 do { 1724 xdp_verdict = ENA_XDP_PASS; 1725 skb = NULL; 1726 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1727 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1728 ena_rx_ctx.descs = 0; 1729 ena_rx_ctx.pkt_offset = 0; 1730 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1731 rx_ring->ena_com_io_sq, 1732 &ena_rx_ctx); 1733 if (unlikely(rc)) 1734 goto error; 1735 1736 if (unlikely(ena_rx_ctx.descs == 0)) 1737 break; 1738 1739 /* First descriptor might have an offset set by the device */ 1740 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1741 pkt_offset = ena_rx_ctx.pkt_offset; 1742 rx_info->buf_offset += pkt_offset; 1743 1744 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1745 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1746 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1747 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1748 1749 dma_sync_single_for_cpu(rx_ring->dev, 1750 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 1751 rx_ring->ena_bufs[0].len, 1752 DMA_FROM_DEVICE); 1753 1754 if (ena_xdp_present_ring(rx_ring)) 1755 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs); 1756 1757 /* allocate skb and fill it */ 1758 if (xdp_verdict == ENA_XDP_PASS) 1759 skb = ena_rx_skb(rx_ring, 1760 rx_ring->ena_bufs, 1761 ena_rx_ctx.descs, 1762 &next_to_clean); 1763 1764 if (unlikely(!skb)) { 1765 for (i = 0; i < ena_rx_ctx.descs; i++) { 1766 int req_id = rx_ring->ena_bufs[i].req_id; 1767 1768 rx_ring->free_ids[next_to_clean] = req_id; 1769 next_to_clean = 1770 ENA_RX_RING_IDX_NEXT(next_to_clean, 1771 rx_ring->ring_size); 1772 1773 /* Packets was passed for transmission, unmap it 1774 * from RX side. 1775 */ 1776 if (xdp_verdict & ENA_XDP_FORWARDED) { 1777 ena_unmap_rx_buff_attrs(rx_ring, 1778 &rx_ring->rx_buffer_info[req_id], 1779 DMA_ATTR_SKIP_CPU_SYNC); 1780 rx_ring->rx_buffer_info[req_id].page = NULL; 1781 } 1782 } 1783 if (xdp_verdict != ENA_XDP_PASS) { 1784 xdp_flags |= xdp_verdict; 1785 total_len += ena_rx_ctx.ena_bufs[0].len; 1786 res_budget--; 1787 continue; 1788 } 1789 break; 1790 } 1791 1792 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1793 1794 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1795 1796 skb_record_rx_queue(skb, rx_ring->qid); 1797 1798 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) 1799 rx_copybreak_pkt++; 1800 1801 total_len += skb->len; 1802 1803 napi_gro_receive(napi, skb); 1804 1805 res_budget--; 1806 } while (likely(res_budget)); 1807 1808 work_done = budget - res_budget; 1809 rx_ring->per_napi_packets += work_done; 1810 u64_stats_update_begin(&rx_ring->syncp); 1811 rx_ring->rx_stats.bytes += total_len; 1812 rx_ring->rx_stats.cnt += work_done; 1813 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1814 u64_stats_update_end(&rx_ring->syncp); 1815 1816 rx_ring->next_to_clean = next_to_clean; 1817 1818 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 1819 refill_threshold = 1820 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1821 ENA_RX_REFILL_THRESH_PACKET); 1822 1823 /* Optimization, try to batch new rx buffers */ 1824 if (refill_required > refill_threshold) { 1825 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 1826 ena_refill_rx_bufs(rx_ring, refill_required); 1827 } 1828 1829 if (xdp_flags & ENA_XDP_REDIRECT) 1830 xdp_do_flush_map(); 1831 1832 return work_done; 1833 1834 error: 1835 if (xdp_flags & ENA_XDP_REDIRECT) 1836 xdp_do_flush(); 1837 1838 adapter = netdev_priv(rx_ring->netdev); 1839 1840 if (rc == -ENOSPC) { 1841 ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1, 1842 &rx_ring->syncp); 1843 ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS); 1844 } else { 1845 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, 1846 &rx_ring->syncp); 1847 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 1848 } 1849 return 0; 1850 } 1851 1852 static void ena_dim_work(struct work_struct *w) 1853 { 1854 struct dim *dim = container_of(w, struct dim, work); 1855 struct dim_cq_moder cur_moder = 1856 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1857 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1858 1859 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1860 dim->state = DIM_START_MEASURE; 1861 } 1862 1863 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1864 { 1865 struct dim_sample dim_sample; 1866 struct ena_ring *rx_ring = ena_napi->rx_ring; 1867 1868 if (!rx_ring->per_napi_packets) 1869 return; 1870 1871 rx_ring->non_empty_napi_events++; 1872 1873 dim_update_sample(rx_ring->non_empty_napi_events, 1874 rx_ring->rx_stats.cnt, 1875 rx_ring->rx_stats.bytes, 1876 &dim_sample); 1877 1878 net_dim(&ena_napi->dim, dim_sample); 1879 1880 rx_ring->per_napi_packets = 0; 1881 } 1882 1883 static void ena_unmask_interrupt(struct ena_ring *tx_ring, 1884 struct ena_ring *rx_ring) 1885 { 1886 u32 rx_interval = tx_ring->smoothed_interval; 1887 struct ena_eth_io_intr_reg intr_reg; 1888 1889 /* Rx ring can be NULL when for XDP tx queues which don't have an 1890 * accompanying rx_ring pair. 1891 */ 1892 if (rx_ring) 1893 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1894 rx_ring->smoothed_interval : 1895 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1896 1897 /* Update intr register: rx intr delay, 1898 * tx intr delay and interrupt unmask 1899 */ 1900 ena_com_update_intr_reg(&intr_reg, 1901 rx_interval, 1902 tx_ring->smoothed_interval, 1903 true); 1904 1905 ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1, 1906 &tx_ring->syncp); 1907 1908 /* It is a shared MSI-X. 1909 * Tx and Rx CQ have pointer to it. 1910 * So we use one of them to reach the intr reg 1911 * The Tx ring is used because the rx_ring is NULL for XDP queues 1912 */ 1913 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); 1914 } 1915 1916 static void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1917 struct ena_ring *rx_ring) 1918 { 1919 int cpu = get_cpu(); 1920 int numa_node; 1921 1922 /* Check only one ring since the 2 rings are running on the same cpu */ 1923 if (likely(tx_ring->cpu == cpu)) 1924 goto out; 1925 1926 tx_ring->cpu = cpu; 1927 if (rx_ring) 1928 rx_ring->cpu = cpu; 1929 1930 numa_node = cpu_to_node(cpu); 1931 1932 if (likely(tx_ring->numa_node == numa_node)) 1933 goto out; 1934 1935 put_cpu(); 1936 1937 if (numa_node != NUMA_NO_NODE) { 1938 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1939 tx_ring->numa_node = numa_node; 1940 if (rx_ring) { 1941 rx_ring->numa_node = numa_node; 1942 ena_com_update_numa_node(rx_ring->ena_com_io_cq, 1943 numa_node); 1944 } 1945 } 1946 1947 return; 1948 out: 1949 put_cpu(); 1950 } 1951 1952 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget) 1953 { 1954 u32 total_done = 0; 1955 u16 next_to_clean; 1956 int tx_pkts = 0; 1957 u16 req_id; 1958 int rc; 1959 1960 if (unlikely(!xdp_ring)) 1961 return 0; 1962 next_to_clean = xdp_ring->next_to_clean; 1963 1964 while (tx_pkts < budget) { 1965 struct ena_tx_buffer *tx_info; 1966 struct xdp_frame *xdpf; 1967 1968 rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq, 1969 &req_id); 1970 if (rc) { 1971 if (unlikely(rc == -EINVAL)) 1972 handle_invalid_req_id(xdp_ring, req_id, NULL, 1973 true); 1974 break; 1975 } 1976 1977 /* validate that the request id points to a valid xdp_frame */ 1978 rc = validate_xdp_req_id(xdp_ring, req_id); 1979 if (rc) 1980 break; 1981 1982 tx_info = &xdp_ring->tx_buffer_info[req_id]; 1983 xdpf = tx_info->xdpf; 1984 1985 tx_info->xdpf = NULL; 1986 tx_info->last_jiffies = 0; 1987 ena_unmap_tx_buff(xdp_ring, tx_info); 1988 1989 netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev, 1990 "tx_poll: q %d skb %p completed\n", xdp_ring->qid, 1991 xdpf); 1992 1993 tx_pkts++; 1994 total_done += tx_info->tx_descs; 1995 1996 xdp_return_frame(xdpf); 1997 xdp_ring->free_ids[next_to_clean] = req_id; 1998 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 1999 xdp_ring->ring_size); 2000 } 2001 2002 xdp_ring->next_to_clean = next_to_clean; 2003 ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done); 2004 ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq); 2005 2006 netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev, 2007 "tx_poll: q %d done. total pkts: %d\n", 2008 xdp_ring->qid, tx_pkts); 2009 2010 return tx_pkts; 2011 } 2012 2013 static int ena_io_poll(struct napi_struct *napi, int budget) 2014 { 2015 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 2016 struct ena_ring *tx_ring, *rx_ring; 2017 int tx_work_done; 2018 int rx_work_done = 0; 2019 int tx_budget; 2020 int napi_comp_call = 0; 2021 int ret; 2022 2023 tx_ring = ena_napi->tx_ring; 2024 rx_ring = ena_napi->rx_ring; 2025 2026 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 2027 2028 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 2029 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 2030 napi_complete_done(napi, 0); 2031 return 0; 2032 } 2033 2034 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 2035 /* On netpoll the budget is zero and the handler should only clean the 2036 * tx completions. 2037 */ 2038 if (likely(budget)) 2039 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 2040 2041 /* If the device is about to reset or down, avoid unmask 2042 * the interrupt and return 0 so NAPI won't reschedule 2043 */ 2044 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 2045 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 2046 napi_complete_done(napi, 0); 2047 ret = 0; 2048 2049 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 2050 napi_comp_call = 1; 2051 2052 /* Update numa and unmask the interrupt only when schedule 2053 * from the interrupt context (vs from sk_busy_loop) 2054 */ 2055 if (napi_complete_done(napi, rx_work_done) && 2056 READ_ONCE(ena_napi->interrupts_masked)) { 2057 smp_rmb(); /* make sure interrupts_masked is read */ 2058 WRITE_ONCE(ena_napi->interrupts_masked, false); 2059 /* We apply adaptive moderation on Rx path only. 2060 * Tx uses static interrupt moderation. 2061 */ 2062 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 2063 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 2064 2065 ena_update_ring_numa_node(tx_ring, rx_ring); 2066 ena_unmask_interrupt(tx_ring, rx_ring); 2067 } 2068 2069 ret = rx_work_done; 2070 } else { 2071 ret = budget; 2072 } 2073 2074 u64_stats_update_begin(&tx_ring->syncp); 2075 tx_ring->tx_stats.napi_comp += napi_comp_call; 2076 tx_ring->tx_stats.tx_poll++; 2077 u64_stats_update_end(&tx_ring->syncp); 2078 2079 tx_ring->tx_stats.last_napi_jiffies = jiffies; 2080 2081 return ret; 2082 } 2083 2084 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 2085 { 2086 struct ena_adapter *adapter = (struct ena_adapter *)data; 2087 2088 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 2089 2090 /* Don't call the aenq handler before probe is done */ 2091 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 2092 ena_com_aenq_intr_handler(adapter->ena_dev, data); 2093 2094 return IRQ_HANDLED; 2095 } 2096 2097 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 2098 * @irq: interrupt number 2099 * @data: pointer to a network interface private napi device structure 2100 */ 2101 static irqreturn_t ena_intr_msix_io(int irq, void *data) 2102 { 2103 struct ena_napi *ena_napi = data; 2104 2105 /* Used to check HW health */ 2106 WRITE_ONCE(ena_napi->first_interrupt, true); 2107 2108 WRITE_ONCE(ena_napi->interrupts_masked, true); 2109 smp_wmb(); /* write interrupts_masked before calling napi */ 2110 2111 napi_schedule_irqoff(&ena_napi->napi); 2112 2113 return IRQ_HANDLED; 2114 } 2115 2116 /* Reserve a single MSI-X vector for management (admin + aenq). 2117 * plus reserve one vector for each potential io queue. 2118 * the number of potential io queues is the minimum of what the device 2119 * supports and the number of vCPUs. 2120 */ 2121 static int ena_enable_msix(struct ena_adapter *adapter) 2122 { 2123 int msix_vecs, irq_cnt; 2124 2125 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 2126 netif_err(adapter, probe, adapter->netdev, 2127 "Error, MSI-X is already enabled\n"); 2128 return -EPERM; 2129 } 2130 2131 /* Reserved the max msix vectors we might need */ 2132 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); 2133 netif_dbg(adapter, probe, adapter->netdev, 2134 "Trying to enable MSI-X, vectors %d\n", msix_vecs); 2135 2136 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 2137 msix_vecs, PCI_IRQ_MSIX); 2138 2139 if (irq_cnt < 0) { 2140 netif_err(adapter, probe, adapter->netdev, 2141 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 2142 return -ENOSPC; 2143 } 2144 2145 if (irq_cnt != msix_vecs) { 2146 netif_notice(adapter, probe, adapter->netdev, 2147 "Enable only %d MSI-X (out of %d), reduce the number of queues\n", 2148 irq_cnt, msix_vecs); 2149 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 2150 } 2151 2152 if (ena_init_rx_cpu_rmap(adapter)) 2153 netif_warn(adapter, probe, adapter->netdev, 2154 "Failed to map IRQs to CPUs\n"); 2155 2156 adapter->msix_vecs = irq_cnt; 2157 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 2158 2159 return 0; 2160 } 2161 2162 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 2163 { 2164 u32 cpu; 2165 2166 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 2167 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 2168 pci_name(adapter->pdev)); 2169 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 2170 ena_intr_msix_mgmnt; 2171 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 2172 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 2173 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 2174 cpu = cpumask_first(cpu_online_mask); 2175 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 2176 cpumask_set_cpu(cpu, 2177 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 2178 } 2179 2180 static void ena_setup_io_intr(struct ena_adapter *adapter) 2181 { 2182 struct net_device *netdev; 2183 int irq_idx, i, cpu; 2184 int io_queue_count; 2185 2186 netdev = adapter->netdev; 2187 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2188 2189 for (i = 0; i < io_queue_count; i++) { 2190 irq_idx = ENA_IO_IRQ_IDX(i); 2191 cpu = i % num_online_cpus(); 2192 2193 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 2194 "%s-Tx-Rx-%d", netdev->name, i); 2195 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 2196 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 2197 adapter->irq_tbl[irq_idx].vector = 2198 pci_irq_vector(adapter->pdev, irq_idx); 2199 adapter->irq_tbl[irq_idx].cpu = cpu; 2200 2201 cpumask_set_cpu(cpu, 2202 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 2203 } 2204 } 2205 2206 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 2207 { 2208 unsigned long flags = 0; 2209 struct ena_irq *irq; 2210 int rc; 2211 2212 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 2213 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 2214 irq->data); 2215 if (rc) { 2216 netif_err(adapter, probe, adapter->netdev, 2217 "Failed to request admin irq\n"); 2218 return rc; 2219 } 2220 2221 netif_dbg(adapter, probe, adapter->netdev, 2222 "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 2223 irq->affinity_hint_mask.bits[0], irq->vector); 2224 2225 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 2226 2227 return rc; 2228 } 2229 2230 static int ena_request_io_irq(struct ena_adapter *adapter) 2231 { 2232 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2233 unsigned long flags = 0; 2234 struct ena_irq *irq; 2235 int rc = 0, i, k; 2236 2237 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 2238 netif_err(adapter, ifup, adapter->netdev, 2239 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 2240 return -EINVAL; 2241 } 2242 2243 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 2244 irq = &adapter->irq_tbl[i]; 2245 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 2246 irq->data); 2247 if (rc) { 2248 netif_err(adapter, ifup, adapter->netdev, 2249 "Failed to request I/O IRQ. index %d rc %d\n", 2250 i, rc); 2251 goto err; 2252 } 2253 2254 netif_dbg(adapter, ifup, adapter->netdev, 2255 "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 2256 i, irq->affinity_hint_mask.bits[0], irq->vector); 2257 2258 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 2259 } 2260 2261 return rc; 2262 2263 err: 2264 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 2265 irq = &adapter->irq_tbl[k]; 2266 free_irq(irq->vector, irq->data); 2267 } 2268 2269 return rc; 2270 } 2271 2272 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 2273 { 2274 struct ena_irq *irq; 2275 2276 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 2277 synchronize_irq(irq->vector); 2278 irq_set_affinity_hint(irq->vector, NULL); 2279 free_irq(irq->vector, irq->data); 2280 } 2281 2282 static void ena_free_io_irq(struct ena_adapter *adapter) 2283 { 2284 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2285 struct ena_irq *irq; 2286 int i; 2287 2288 #ifdef CONFIG_RFS_ACCEL 2289 if (adapter->msix_vecs >= 1) { 2290 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 2291 adapter->netdev->rx_cpu_rmap = NULL; 2292 } 2293 #endif /* CONFIG_RFS_ACCEL */ 2294 2295 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 2296 irq = &adapter->irq_tbl[i]; 2297 irq_set_affinity_hint(irq->vector, NULL); 2298 free_irq(irq->vector, irq->data); 2299 } 2300 } 2301 2302 static void ena_disable_msix(struct ena_adapter *adapter) 2303 { 2304 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 2305 pci_free_irq_vectors(adapter->pdev); 2306 } 2307 2308 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 2309 { 2310 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2311 int i; 2312 2313 if (!netif_running(adapter->netdev)) 2314 return; 2315 2316 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) 2317 synchronize_irq(adapter->irq_tbl[i].vector); 2318 } 2319 2320 static void ena_del_napi_in_range(struct ena_adapter *adapter, 2321 int first_index, 2322 int count) 2323 { 2324 int i; 2325 2326 for (i = first_index; i < first_index + count; i++) { 2327 netif_napi_del(&adapter->ena_napi[i].napi); 2328 2329 WARN_ON(!ENA_IS_XDP_INDEX(adapter, i) && 2330 adapter->ena_napi[i].xdp_ring); 2331 } 2332 } 2333 2334 static void ena_init_napi_in_range(struct ena_adapter *adapter, 2335 int first_index, int count) 2336 { 2337 int i; 2338 2339 for (i = first_index; i < first_index + count; i++) { 2340 struct ena_napi *napi = &adapter->ena_napi[i]; 2341 2342 netif_napi_add(adapter->netdev, &napi->napi, 2343 ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll); 2344 2345 if (!ENA_IS_XDP_INDEX(adapter, i)) { 2346 napi->rx_ring = &adapter->rx_ring[i]; 2347 napi->tx_ring = &adapter->tx_ring[i]; 2348 } else { 2349 napi->xdp_ring = &adapter->tx_ring[i]; 2350 } 2351 napi->qid = i; 2352 } 2353 } 2354 2355 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 2356 int first_index, 2357 int count) 2358 { 2359 int i; 2360 2361 for (i = first_index; i < first_index + count; i++) 2362 napi_disable(&adapter->ena_napi[i].napi); 2363 } 2364 2365 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 2366 int first_index, 2367 int count) 2368 { 2369 int i; 2370 2371 for (i = first_index; i < first_index + count; i++) 2372 napi_enable(&adapter->ena_napi[i].napi); 2373 } 2374 2375 /* Configure the Rx forwarding */ 2376 static int ena_rss_configure(struct ena_adapter *adapter) 2377 { 2378 struct ena_com_dev *ena_dev = adapter->ena_dev; 2379 int rc; 2380 2381 /* In case the RSS table wasn't initialized by probe */ 2382 if (!ena_dev->rss.tbl_log_size) { 2383 rc = ena_rss_init_default(adapter); 2384 if (rc && (rc != -EOPNOTSUPP)) { 2385 netif_err(adapter, ifup, adapter->netdev, 2386 "Failed to init RSS rc: %d\n", rc); 2387 return rc; 2388 } 2389 } 2390 2391 /* Set indirect table */ 2392 rc = ena_com_indirect_table_set(ena_dev); 2393 if (unlikely(rc && rc != -EOPNOTSUPP)) 2394 return rc; 2395 2396 /* Configure hash function (if supported) */ 2397 rc = ena_com_set_hash_function(ena_dev); 2398 if (unlikely(rc && (rc != -EOPNOTSUPP))) 2399 return rc; 2400 2401 /* Configure hash inputs (if supported) */ 2402 rc = ena_com_set_hash_ctrl(ena_dev); 2403 if (unlikely(rc && (rc != -EOPNOTSUPP))) 2404 return rc; 2405 2406 return 0; 2407 } 2408 2409 static int ena_up_complete(struct ena_adapter *adapter) 2410 { 2411 int rc; 2412 2413 rc = ena_rss_configure(adapter); 2414 if (rc) 2415 return rc; 2416 2417 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 2418 2419 ena_refill_all_rx_bufs(adapter); 2420 2421 /* enable transmits */ 2422 netif_tx_start_all_queues(adapter->netdev); 2423 2424 ena_napi_enable_in_range(adapter, 2425 0, 2426 adapter->xdp_num_queues + adapter->num_io_queues); 2427 2428 return 0; 2429 } 2430 2431 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 2432 { 2433 struct ena_com_create_io_ctx ctx; 2434 struct ena_com_dev *ena_dev; 2435 struct ena_ring *tx_ring; 2436 u32 msix_vector; 2437 u16 ena_qid; 2438 int rc; 2439 2440 ena_dev = adapter->ena_dev; 2441 2442 tx_ring = &adapter->tx_ring[qid]; 2443 msix_vector = ENA_IO_IRQ_IDX(qid); 2444 ena_qid = ENA_IO_TXQ_IDX(qid); 2445 2446 memset(&ctx, 0x0, sizeof(ctx)); 2447 2448 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 2449 ctx.qid = ena_qid; 2450 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 2451 ctx.msix_vector = msix_vector; 2452 ctx.queue_size = tx_ring->ring_size; 2453 ctx.numa_node = tx_ring->numa_node; 2454 2455 rc = ena_com_create_io_queue(ena_dev, &ctx); 2456 if (rc) { 2457 netif_err(adapter, ifup, adapter->netdev, 2458 "Failed to create I/O TX queue num %d rc: %d\n", 2459 qid, rc); 2460 return rc; 2461 } 2462 2463 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 2464 &tx_ring->ena_com_io_sq, 2465 &tx_ring->ena_com_io_cq); 2466 if (rc) { 2467 netif_err(adapter, ifup, adapter->netdev, 2468 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 2469 qid, rc); 2470 ena_com_destroy_io_queue(ena_dev, ena_qid); 2471 return rc; 2472 } 2473 2474 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 2475 return rc; 2476 } 2477 2478 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 2479 int first_index, int count) 2480 { 2481 struct ena_com_dev *ena_dev = adapter->ena_dev; 2482 int rc, i; 2483 2484 for (i = first_index; i < first_index + count; i++) { 2485 rc = ena_create_io_tx_queue(adapter, i); 2486 if (rc) 2487 goto create_err; 2488 } 2489 2490 return 0; 2491 2492 create_err: 2493 while (i-- > first_index) 2494 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 2495 2496 return rc; 2497 } 2498 2499 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 2500 { 2501 struct ena_com_dev *ena_dev; 2502 struct ena_com_create_io_ctx ctx; 2503 struct ena_ring *rx_ring; 2504 u32 msix_vector; 2505 u16 ena_qid; 2506 int rc; 2507 2508 ena_dev = adapter->ena_dev; 2509 2510 rx_ring = &adapter->rx_ring[qid]; 2511 msix_vector = ENA_IO_IRQ_IDX(qid); 2512 ena_qid = ENA_IO_RXQ_IDX(qid); 2513 2514 memset(&ctx, 0x0, sizeof(ctx)); 2515 2516 ctx.qid = ena_qid; 2517 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 2518 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 2519 ctx.msix_vector = msix_vector; 2520 ctx.queue_size = rx_ring->ring_size; 2521 ctx.numa_node = rx_ring->numa_node; 2522 2523 rc = ena_com_create_io_queue(ena_dev, &ctx); 2524 if (rc) { 2525 netif_err(adapter, ifup, adapter->netdev, 2526 "Failed to create I/O RX queue num %d rc: %d\n", 2527 qid, rc); 2528 return rc; 2529 } 2530 2531 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 2532 &rx_ring->ena_com_io_sq, 2533 &rx_ring->ena_com_io_cq); 2534 if (rc) { 2535 netif_err(adapter, ifup, adapter->netdev, 2536 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 2537 qid, rc); 2538 goto err; 2539 } 2540 2541 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 2542 2543 return rc; 2544 err: 2545 ena_com_destroy_io_queue(ena_dev, ena_qid); 2546 return rc; 2547 } 2548 2549 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 2550 { 2551 struct ena_com_dev *ena_dev = adapter->ena_dev; 2552 int rc, i; 2553 2554 for (i = 0; i < adapter->num_io_queues; i++) { 2555 rc = ena_create_io_rx_queue(adapter, i); 2556 if (rc) 2557 goto create_err; 2558 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 2559 } 2560 2561 return 0; 2562 2563 create_err: 2564 while (i--) { 2565 cancel_work_sync(&adapter->ena_napi[i].dim.work); 2566 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 2567 } 2568 2569 return rc; 2570 } 2571 2572 static void set_io_rings_size(struct ena_adapter *adapter, 2573 int new_tx_size, 2574 int new_rx_size) 2575 { 2576 int i; 2577 2578 for (i = 0; i < adapter->num_io_queues; i++) { 2579 adapter->tx_ring[i].ring_size = new_tx_size; 2580 adapter->rx_ring[i].ring_size = new_rx_size; 2581 } 2582 } 2583 2584 /* This function allows queue allocation to backoff when the system is 2585 * low on memory. If there is not enough memory to allocate io queues 2586 * the driver will try to allocate smaller queues. 2587 * 2588 * The backoff algorithm is as follows: 2589 * 1. Try to allocate TX and RX and if successful. 2590 * 1.1. return success 2591 * 2592 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 2593 * 2594 * 3. If TX or RX is smaller than 256 2595 * 3.1. return failure. 2596 * 4. else 2597 * 4.1. go back to 1. 2598 */ 2599 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 2600 { 2601 int rc, cur_rx_ring_size, cur_tx_ring_size; 2602 int new_rx_ring_size, new_tx_ring_size; 2603 2604 /* current queue sizes might be set to smaller than the requested 2605 * ones due to past queue allocation failures. 2606 */ 2607 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 2608 adapter->requested_rx_ring_size); 2609 2610 while (1) { 2611 if (ena_xdp_present(adapter)) { 2612 rc = ena_setup_and_create_all_xdp_queues(adapter); 2613 2614 if (rc) 2615 goto err_setup_tx; 2616 } 2617 rc = ena_setup_tx_resources_in_range(adapter, 2618 0, 2619 adapter->num_io_queues); 2620 if (rc) 2621 goto err_setup_tx; 2622 2623 rc = ena_create_io_tx_queues_in_range(adapter, 2624 0, 2625 adapter->num_io_queues); 2626 if (rc) 2627 goto err_create_tx_queues; 2628 2629 rc = ena_setup_all_rx_resources(adapter); 2630 if (rc) 2631 goto err_setup_rx; 2632 2633 rc = ena_create_all_io_rx_queues(adapter); 2634 if (rc) 2635 goto err_create_rx_queues; 2636 2637 return 0; 2638 2639 err_create_rx_queues: 2640 ena_free_all_io_rx_resources(adapter); 2641 err_setup_rx: 2642 ena_destroy_all_tx_queues(adapter); 2643 err_create_tx_queues: 2644 ena_free_all_io_tx_resources(adapter); 2645 err_setup_tx: 2646 if (rc != -ENOMEM) { 2647 netif_err(adapter, ifup, adapter->netdev, 2648 "Queue creation failed with error code %d\n", 2649 rc); 2650 return rc; 2651 } 2652 2653 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 2654 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 2655 2656 netif_err(adapter, ifup, adapter->netdev, 2657 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 2658 cur_tx_ring_size, cur_rx_ring_size); 2659 2660 new_tx_ring_size = cur_tx_ring_size; 2661 new_rx_ring_size = cur_rx_ring_size; 2662 2663 /* Decrease the size of the larger queue, or 2664 * decrease both if they are the same size. 2665 */ 2666 if (cur_rx_ring_size <= cur_tx_ring_size) 2667 new_tx_ring_size = cur_tx_ring_size / 2; 2668 if (cur_rx_ring_size >= cur_tx_ring_size) 2669 new_rx_ring_size = cur_rx_ring_size / 2; 2670 2671 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 2672 new_rx_ring_size < ENA_MIN_RING_SIZE) { 2673 netif_err(adapter, ifup, adapter->netdev, 2674 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 2675 ENA_MIN_RING_SIZE); 2676 return rc; 2677 } 2678 2679 netif_err(adapter, ifup, adapter->netdev, 2680 "Retrying queue creation with sizes TX=%d, RX=%d\n", 2681 new_tx_ring_size, 2682 new_rx_ring_size); 2683 2684 set_io_rings_size(adapter, new_tx_ring_size, 2685 new_rx_ring_size); 2686 } 2687 } 2688 2689 static int ena_up(struct ena_adapter *adapter) 2690 { 2691 int io_queue_count, rc, i; 2692 2693 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 2694 2695 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2696 ena_setup_io_intr(adapter); 2697 2698 /* napi poll functions should be initialized before running 2699 * request_irq(), to handle a rare condition where there is a pending 2700 * interrupt, causing the ISR to fire immediately while the poll 2701 * function wasn't set yet, causing a null dereference 2702 */ 2703 ena_init_napi_in_range(adapter, 0, io_queue_count); 2704 2705 rc = ena_request_io_irq(adapter); 2706 if (rc) 2707 goto err_req_irq; 2708 2709 rc = create_queues_with_size_backoff(adapter); 2710 if (rc) 2711 goto err_create_queues_with_backoff; 2712 2713 rc = ena_up_complete(adapter); 2714 if (rc) 2715 goto err_up; 2716 2717 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2718 netif_carrier_on(adapter->netdev); 2719 2720 ena_increase_stat(&adapter->dev_stats.interface_up, 1, 2721 &adapter->syncp); 2722 2723 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2724 2725 /* Enable completion queues interrupt */ 2726 for (i = 0; i < adapter->num_io_queues; i++) 2727 ena_unmask_interrupt(&adapter->tx_ring[i], 2728 &adapter->rx_ring[i]); 2729 2730 /* schedule napi in case we had pending packets 2731 * from the last time we disable napi 2732 */ 2733 for (i = 0; i < io_queue_count; i++) 2734 napi_schedule(&adapter->ena_napi[i].napi); 2735 2736 return rc; 2737 2738 err_up: 2739 ena_destroy_all_tx_queues(adapter); 2740 ena_free_all_io_tx_resources(adapter); 2741 ena_destroy_all_rx_queues(adapter); 2742 ena_free_all_io_rx_resources(adapter); 2743 err_create_queues_with_backoff: 2744 ena_free_io_irq(adapter); 2745 err_req_irq: 2746 ena_del_napi_in_range(adapter, 0, io_queue_count); 2747 2748 return rc; 2749 } 2750 2751 static void ena_down(struct ena_adapter *adapter) 2752 { 2753 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2754 2755 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__); 2756 2757 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2758 2759 ena_increase_stat(&adapter->dev_stats.interface_down, 1, 2760 &adapter->syncp); 2761 2762 netif_carrier_off(adapter->netdev); 2763 netif_tx_disable(adapter->netdev); 2764 2765 /* After this point the napi handler won't enable the tx queue */ 2766 ena_napi_disable_in_range(adapter, 0, io_queue_count); 2767 2768 /* After destroy the queue there won't be any new interrupts */ 2769 2770 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 2771 int rc; 2772 2773 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2774 if (rc) 2775 netif_err(adapter, ifdown, adapter->netdev, 2776 "Device reset failed\n"); 2777 /* stop submitting admin commands on a device that was reset */ 2778 ena_com_set_admin_running_state(adapter->ena_dev, false); 2779 } 2780 2781 ena_destroy_all_io_queues(adapter); 2782 2783 ena_disable_io_intr_sync(adapter); 2784 ena_free_io_irq(adapter); 2785 ena_del_napi_in_range(adapter, 0, io_queue_count); 2786 2787 ena_free_all_tx_bufs(adapter); 2788 ena_free_all_rx_bufs(adapter); 2789 ena_free_all_io_tx_resources(adapter); 2790 ena_free_all_io_rx_resources(adapter); 2791 } 2792 2793 /* ena_open - Called when a network interface is made active 2794 * @netdev: network interface device structure 2795 * 2796 * Returns 0 on success, negative value on failure 2797 * 2798 * The open entry point is called when a network interface is made 2799 * active by the system (IFF_UP). At this point all resources needed 2800 * for transmit and receive operations are allocated, the interrupt 2801 * handler is registered with the OS, the watchdog timer is started, 2802 * and the stack is notified that the interface is ready. 2803 */ 2804 static int ena_open(struct net_device *netdev) 2805 { 2806 struct ena_adapter *adapter = netdev_priv(netdev); 2807 int rc; 2808 2809 /* Notify the stack of the actual queue counts. */ 2810 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 2811 if (rc) { 2812 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 2813 return rc; 2814 } 2815 2816 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 2817 if (rc) { 2818 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2819 return rc; 2820 } 2821 2822 rc = ena_up(adapter); 2823 if (rc) 2824 return rc; 2825 2826 return rc; 2827 } 2828 2829 /* ena_close - Disables a network interface 2830 * @netdev: network interface device structure 2831 * 2832 * Returns 0, this is not allowed to fail 2833 * 2834 * The close entry point is called when an interface is de-activated 2835 * by the OS. The hardware is still under the drivers control, but 2836 * needs to be disabled. A global MAC reset is issued to stop the 2837 * hardware, and all transmit and receive resources are freed. 2838 */ 2839 static int ena_close(struct net_device *netdev) 2840 { 2841 struct ena_adapter *adapter = netdev_priv(netdev); 2842 2843 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2844 2845 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2846 return 0; 2847 2848 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2849 ena_down(adapter); 2850 2851 /* Check for device status and issue reset if needed*/ 2852 check_for_admin_com_state(adapter); 2853 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2854 netif_err(adapter, ifdown, adapter->netdev, 2855 "Destroy failure, restarting device\n"); 2856 ena_dump_stats_to_dmesg(adapter); 2857 /* rtnl lock already obtained in dev_ioctl() layer */ 2858 ena_destroy_device(adapter, false); 2859 ena_restore_device(adapter); 2860 } 2861 2862 return 0; 2863 } 2864 2865 int ena_update_queue_params(struct ena_adapter *adapter, 2866 u32 new_tx_size, 2867 u32 new_rx_size, 2868 u32 new_llq_header_len) 2869 { 2870 bool dev_was_up, large_llq_changed = false; 2871 int rc = 0; 2872 2873 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2874 ena_close(adapter->netdev); 2875 adapter->requested_tx_ring_size = new_tx_size; 2876 adapter->requested_rx_ring_size = new_rx_size; 2877 ena_init_io_rings(adapter, 2878 0, 2879 adapter->xdp_num_queues + 2880 adapter->num_io_queues); 2881 2882 large_llq_changed = adapter->ena_dev->tx_mem_queue_type == 2883 ENA_ADMIN_PLACEMENT_POLICY_DEV; 2884 large_llq_changed &= 2885 new_llq_header_len != adapter->ena_dev->tx_max_header_size; 2886 2887 /* a check that the configuration is valid is done by caller */ 2888 if (large_llq_changed) { 2889 adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled; 2890 2891 ena_destroy_device(adapter, false); 2892 rc = ena_restore_device(adapter); 2893 } 2894 2895 return dev_was_up && !rc ? ena_up(adapter) : rc; 2896 } 2897 2898 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak) 2899 { 2900 struct ena_ring *rx_ring; 2901 int i; 2902 2903 if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE)) 2904 return -EINVAL; 2905 2906 adapter->rx_copybreak = rx_copybreak; 2907 2908 for (i = 0; i < adapter->num_io_queues; i++) { 2909 rx_ring = &adapter->rx_ring[i]; 2910 rx_ring->rx_copybreak = rx_copybreak; 2911 } 2912 2913 return 0; 2914 } 2915 2916 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2917 { 2918 struct ena_com_dev *ena_dev = adapter->ena_dev; 2919 int prev_channel_count; 2920 bool dev_was_up; 2921 2922 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2923 ena_close(adapter->netdev); 2924 prev_channel_count = adapter->num_io_queues; 2925 adapter->num_io_queues = new_channel_count; 2926 if (ena_xdp_present(adapter) && 2927 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { 2928 adapter->xdp_first_ring = new_channel_count; 2929 adapter->xdp_num_queues = new_channel_count; 2930 if (prev_channel_count > new_channel_count) 2931 ena_xdp_exchange_program_rx_in_range(adapter, 2932 NULL, 2933 new_channel_count, 2934 prev_channel_count); 2935 else 2936 ena_xdp_exchange_program_rx_in_range(adapter, 2937 adapter->xdp_bpf_prog, 2938 prev_channel_count, 2939 new_channel_count); 2940 } 2941 2942 /* We need to destroy the rss table so that the indirection 2943 * table will be reinitialized by ena_up() 2944 */ 2945 ena_com_rss_destroy(ena_dev); 2946 ena_init_io_rings(adapter, 2947 0, 2948 adapter->xdp_num_queues + 2949 adapter->num_io_queues); 2950 return dev_was_up ? ena_open(adapter->netdev) : 0; 2951 } 2952 2953 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, 2954 struct sk_buff *skb, 2955 bool disable_meta_caching) 2956 { 2957 u32 mss = skb_shinfo(skb)->gso_size; 2958 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2959 u8 l4_protocol = 0; 2960 2961 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2962 ena_tx_ctx->l4_csum_enable = 1; 2963 if (mss) { 2964 ena_tx_ctx->tso_enable = 1; 2965 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2966 ena_tx_ctx->l4_csum_partial = 0; 2967 } else { 2968 ena_tx_ctx->tso_enable = 0; 2969 ena_meta->l4_hdr_len = 0; 2970 ena_tx_ctx->l4_csum_partial = 1; 2971 } 2972 2973 switch (ip_hdr(skb)->version) { 2974 case IPVERSION: 2975 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2976 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2977 ena_tx_ctx->df = 1; 2978 if (mss) 2979 ena_tx_ctx->l3_csum_enable = 1; 2980 l4_protocol = ip_hdr(skb)->protocol; 2981 break; 2982 case 6: 2983 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2984 l4_protocol = ipv6_hdr(skb)->nexthdr; 2985 break; 2986 default: 2987 break; 2988 } 2989 2990 if (l4_protocol == IPPROTO_TCP) 2991 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2992 else 2993 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2994 2995 ena_meta->mss = mss; 2996 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2997 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2998 ena_tx_ctx->meta_valid = 1; 2999 } else if (disable_meta_caching) { 3000 memset(ena_meta, 0, sizeof(*ena_meta)); 3001 ena_tx_ctx->meta_valid = 1; 3002 } else { 3003 ena_tx_ctx->meta_valid = 0; 3004 } 3005 } 3006 3007 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 3008 struct sk_buff *skb) 3009 { 3010 int num_frags, header_len, rc; 3011 3012 num_frags = skb_shinfo(skb)->nr_frags; 3013 header_len = skb_headlen(skb); 3014 3015 if (num_frags < tx_ring->sgl_size) 3016 return 0; 3017 3018 if ((num_frags == tx_ring->sgl_size) && 3019 (header_len < tx_ring->tx_max_header_size)) 3020 return 0; 3021 3022 ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp); 3023 3024 rc = skb_linearize(skb); 3025 if (unlikely(rc)) { 3026 ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1, 3027 &tx_ring->syncp); 3028 } 3029 3030 return rc; 3031 } 3032 3033 static int ena_tx_map_skb(struct ena_ring *tx_ring, 3034 struct ena_tx_buffer *tx_info, 3035 struct sk_buff *skb, 3036 void **push_hdr, 3037 u16 *header_len) 3038 { 3039 struct ena_adapter *adapter = tx_ring->adapter; 3040 struct ena_com_buf *ena_buf; 3041 dma_addr_t dma; 3042 u32 skb_head_len, frag_len, last_frag; 3043 u16 push_len = 0; 3044 u16 delta = 0; 3045 int i = 0; 3046 3047 skb_head_len = skb_headlen(skb); 3048 tx_info->skb = skb; 3049 ena_buf = tx_info->bufs; 3050 3051 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 3052 /* When the device is LLQ mode, the driver will copy 3053 * the header into the device memory space. 3054 * the ena_com layer assume the header is in a linear 3055 * memory space. 3056 * This assumption might be wrong since part of the header 3057 * can be in the fragmented buffers. 3058 * Use skb_header_pointer to make sure the header is in a 3059 * linear memory space. 3060 */ 3061 3062 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 3063 *push_hdr = skb_header_pointer(skb, 0, push_len, 3064 tx_ring->push_buf_intermediate_buf); 3065 *header_len = push_len; 3066 if (unlikely(skb->data != *push_hdr)) { 3067 ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1, 3068 &tx_ring->syncp); 3069 3070 delta = push_len - skb_head_len; 3071 } 3072 } else { 3073 *push_hdr = NULL; 3074 *header_len = min_t(u32, skb_head_len, 3075 tx_ring->tx_max_header_size); 3076 } 3077 3078 netif_dbg(adapter, tx_queued, adapter->netdev, 3079 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 3080 *push_hdr, push_len); 3081 3082 if (skb_head_len > push_len) { 3083 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 3084 skb_head_len - push_len, DMA_TO_DEVICE); 3085 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 3086 goto error_report_dma_error; 3087 3088 ena_buf->paddr = dma; 3089 ena_buf->len = skb_head_len - push_len; 3090 3091 ena_buf++; 3092 tx_info->num_of_bufs++; 3093 tx_info->map_linear_data = 1; 3094 } else { 3095 tx_info->map_linear_data = 0; 3096 } 3097 3098 last_frag = skb_shinfo(skb)->nr_frags; 3099 3100 for (i = 0; i < last_frag; i++) { 3101 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3102 3103 frag_len = skb_frag_size(frag); 3104 3105 if (unlikely(delta >= frag_len)) { 3106 delta -= frag_len; 3107 continue; 3108 } 3109 3110 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 3111 frag_len - delta, DMA_TO_DEVICE); 3112 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 3113 goto error_report_dma_error; 3114 3115 ena_buf->paddr = dma; 3116 ena_buf->len = frag_len - delta; 3117 ena_buf++; 3118 tx_info->num_of_bufs++; 3119 delta = 0; 3120 } 3121 3122 return 0; 3123 3124 error_report_dma_error: 3125 ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1, 3126 &tx_ring->syncp); 3127 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n"); 3128 3129 tx_info->skb = NULL; 3130 3131 tx_info->num_of_bufs += i; 3132 ena_unmap_tx_buff(tx_ring, tx_info); 3133 3134 return -EINVAL; 3135 } 3136 3137 /* Called with netif_tx_lock. */ 3138 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 3139 { 3140 struct ena_adapter *adapter = netdev_priv(dev); 3141 struct ena_tx_buffer *tx_info; 3142 struct ena_com_tx_ctx ena_tx_ctx; 3143 struct ena_ring *tx_ring; 3144 struct netdev_queue *txq; 3145 void *push_hdr; 3146 u16 next_to_use, req_id, header_len; 3147 int qid, rc; 3148 3149 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 3150 /* Determine which tx ring we will be placed on */ 3151 qid = skb_get_queue_mapping(skb); 3152 tx_ring = &adapter->tx_ring[qid]; 3153 txq = netdev_get_tx_queue(dev, qid); 3154 3155 rc = ena_check_and_linearize_skb(tx_ring, skb); 3156 if (unlikely(rc)) 3157 goto error_drop_packet; 3158 3159 skb_tx_timestamp(skb); 3160 3161 next_to_use = tx_ring->next_to_use; 3162 req_id = tx_ring->free_ids[next_to_use]; 3163 tx_info = &tx_ring->tx_buffer_info[req_id]; 3164 tx_info->num_of_bufs = 0; 3165 3166 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 3167 3168 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 3169 if (unlikely(rc)) 3170 goto error_drop_packet; 3171 3172 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 3173 ena_tx_ctx.ena_bufs = tx_info->bufs; 3174 ena_tx_ctx.push_header = push_hdr; 3175 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 3176 ena_tx_ctx.req_id = req_id; 3177 ena_tx_ctx.header_len = header_len; 3178 3179 /* set flags and meta data */ 3180 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching); 3181 3182 rc = ena_xmit_common(dev, 3183 tx_ring, 3184 tx_info, 3185 &ena_tx_ctx, 3186 next_to_use, 3187 skb->len); 3188 if (rc) 3189 goto error_unmap_dma; 3190 3191 netdev_tx_sent_queue(txq, skb->len); 3192 3193 /* stop the queue when no more space available, the packet can have up 3194 * to sgl_size + 2. one for the meta descriptor and one for header 3195 * (if the header is larger than tx_max_header_size). 3196 */ 3197 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3198 tx_ring->sgl_size + 2))) { 3199 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 3200 __func__, qid); 3201 3202 netif_tx_stop_queue(txq); 3203 ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1, 3204 &tx_ring->syncp); 3205 3206 /* There is a rare condition where this function decide to 3207 * stop the queue but meanwhile clean_tx_irq updates 3208 * next_to_completion and terminates. 3209 * The queue will remain stopped forever. 3210 * To solve this issue add a mb() to make sure that 3211 * netif_tx_stop_queue() write is vissible before checking if 3212 * there is additional space in the queue. 3213 */ 3214 smp_mb(); 3215 3216 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3217 ENA_TX_WAKEUP_THRESH)) { 3218 netif_tx_wake_queue(txq); 3219 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 3220 &tx_ring->syncp); 3221 } 3222 } 3223 3224 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) 3225 /* trigger the dma engine. ena_ring_tx_doorbell() 3226 * calls a memory barrier inside it. 3227 */ 3228 ena_ring_tx_doorbell(tx_ring); 3229 3230 return NETDEV_TX_OK; 3231 3232 error_unmap_dma: 3233 ena_unmap_tx_buff(tx_ring, tx_info); 3234 tx_info->skb = NULL; 3235 3236 error_drop_packet: 3237 dev_kfree_skb(skb); 3238 return NETDEV_TX_OK; 3239 } 3240 3241 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb, 3242 struct net_device *sb_dev) 3243 { 3244 u16 qid; 3245 /* we suspect that this is good for in--kernel network services that 3246 * want to loop incoming skb rx to tx in normal user generated traffic, 3247 * most probably we will not get to this 3248 */ 3249 if (skb_rx_queue_recorded(skb)) 3250 qid = skb_get_rx_queue(skb); 3251 else 3252 qid = netdev_pick_tx(dev, skb, NULL); 3253 3254 return qid; 3255 } 3256 3257 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3258 { 3259 struct device *dev = &pdev->dev; 3260 struct ena_admin_host_info *host_info; 3261 int rc; 3262 3263 /* Allocate only the host info */ 3264 rc = ena_com_allocate_host_info(ena_dev); 3265 if (rc) { 3266 dev_err(dev, "Cannot allocate host info\n"); 3267 return; 3268 } 3269 3270 host_info = ena_dev->host_attr.host_info; 3271 3272 host_info->bdf = pci_dev_id(pdev); 3273 host_info->os_type = ENA_ADMIN_OS_LINUX; 3274 host_info->kernel_ver = LINUX_VERSION_CODE; 3275 strscpy(host_info->kernel_ver_str, utsname()->version, 3276 sizeof(host_info->kernel_ver_str) - 1); 3277 host_info->os_dist = 0; 3278 strncpy(host_info->os_dist_str, utsname()->release, 3279 sizeof(host_info->os_dist_str) - 1); 3280 host_info->driver_version = 3281 (DRV_MODULE_GEN_MAJOR) | 3282 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 3283 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 3284 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 3285 host_info->num_cpus = num_online_cpus(); 3286 3287 host_info->driver_supported_features = 3288 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK | 3289 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK | 3290 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK | 3291 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK | 3292 ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK; 3293 3294 rc = ena_com_set_host_attributes(ena_dev); 3295 if (rc) { 3296 if (rc == -EOPNOTSUPP) 3297 dev_warn(dev, "Cannot set host attributes\n"); 3298 else 3299 dev_err(dev, "Cannot set host attributes\n"); 3300 3301 goto err; 3302 } 3303 3304 return; 3305 3306 err: 3307 ena_com_delete_host_info(ena_dev); 3308 } 3309 3310 static void ena_config_debug_area(struct ena_adapter *adapter) 3311 { 3312 u32 debug_area_size; 3313 int rc, ss_count; 3314 3315 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 3316 if (ss_count <= 0) { 3317 netif_err(adapter, drv, adapter->netdev, 3318 "SS count is negative\n"); 3319 return; 3320 } 3321 3322 /* allocate 32 bytes for each string and 64bit for the value */ 3323 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 3324 3325 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 3326 if (rc) { 3327 netif_err(adapter, drv, adapter->netdev, 3328 "Cannot allocate debug area\n"); 3329 return; 3330 } 3331 3332 rc = ena_com_set_host_attributes(adapter->ena_dev); 3333 if (rc) { 3334 if (rc == -EOPNOTSUPP) 3335 netif_warn(adapter, drv, adapter->netdev, 3336 "Cannot set host attributes\n"); 3337 else 3338 netif_err(adapter, drv, adapter->netdev, 3339 "Cannot set host attributes\n"); 3340 goto err; 3341 } 3342 3343 return; 3344 err: 3345 ena_com_delete_debug_area(adapter->ena_dev); 3346 } 3347 3348 int ena_update_hw_stats(struct ena_adapter *adapter) 3349 { 3350 int rc; 3351 3352 rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats); 3353 if (rc) { 3354 netdev_err(adapter->netdev, "Failed to get ENI stats\n"); 3355 return rc; 3356 } 3357 3358 return 0; 3359 } 3360 3361 static void ena_get_stats64(struct net_device *netdev, 3362 struct rtnl_link_stats64 *stats) 3363 { 3364 struct ena_adapter *adapter = netdev_priv(netdev); 3365 struct ena_ring *rx_ring, *tx_ring; 3366 unsigned int start; 3367 u64 rx_drops; 3368 u64 tx_drops; 3369 int i; 3370 3371 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3372 return; 3373 3374 for (i = 0; i < adapter->num_io_queues; i++) { 3375 u64 bytes, packets; 3376 3377 tx_ring = &adapter->tx_ring[i]; 3378 3379 do { 3380 start = u64_stats_fetch_begin(&tx_ring->syncp); 3381 packets = tx_ring->tx_stats.cnt; 3382 bytes = tx_ring->tx_stats.bytes; 3383 } while (u64_stats_fetch_retry(&tx_ring->syncp, start)); 3384 3385 stats->tx_packets += packets; 3386 stats->tx_bytes += bytes; 3387 3388 rx_ring = &adapter->rx_ring[i]; 3389 3390 do { 3391 start = u64_stats_fetch_begin(&rx_ring->syncp); 3392 packets = rx_ring->rx_stats.cnt; 3393 bytes = rx_ring->rx_stats.bytes; 3394 } while (u64_stats_fetch_retry(&rx_ring->syncp, start)); 3395 3396 stats->rx_packets += packets; 3397 stats->rx_bytes += bytes; 3398 } 3399 3400 do { 3401 start = u64_stats_fetch_begin(&adapter->syncp); 3402 rx_drops = adapter->dev_stats.rx_drops; 3403 tx_drops = adapter->dev_stats.tx_drops; 3404 } while (u64_stats_fetch_retry(&adapter->syncp, start)); 3405 3406 stats->rx_dropped = rx_drops; 3407 stats->tx_dropped = tx_drops; 3408 3409 stats->multicast = 0; 3410 stats->collisions = 0; 3411 3412 stats->rx_length_errors = 0; 3413 stats->rx_crc_errors = 0; 3414 stats->rx_frame_errors = 0; 3415 stats->rx_fifo_errors = 0; 3416 stats->rx_missed_errors = 0; 3417 stats->tx_window_errors = 0; 3418 3419 stats->rx_errors = 0; 3420 stats->tx_errors = 0; 3421 } 3422 3423 static const struct net_device_ops ena_netdev_ops = { 3424 .ndo_open = ena_open, 3425 .ndo_stop = ena_close, 3426 .ndo_start_xmit = ena_start_xmit, 3427 .ndo_select_queue = ena_select_queue, 3428 .ndo_get_stats64 = ena_get_stats64, 3429 .ndo_tx_timeout = ena_tx_timeout, 3430 .ndo_change_mtu = ena_change_mtu, 3431 .ndo_set_mac_address = NULL, 3432 .ndo_validate_addr = eth_validate_addr, 3433 .ndo_bpf = ena_xdp, 3434 .ndo_xdp_xmit = ena_xdp_xmit, 3435 }; 3436 3437 static void ena_calc_io_queue_size(struct ena_adapter *adapter, 3438 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3439 { 3440 struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq; 3441 struct ena_com_dev *ena_dev = adapter->ena_dev; 3442 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 3443 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 3444 u32 max_tx_queue_size; 3445 u32 max_rx_queue_size; 3446 3447 /* If this function is called after driver load, the ring sizes have already 3448 * been configured. Take it into account when recalculating ring size. 3449 */ 3450 if (adapter->tx_ring->ring_size) 3451 tx_queue_size = adapter->tx_ring->ring_size; 3452 3453 if (adapter->rx_ring->ring_size) 3454 rx_queue_size = adapter->rx_ring->ring_size; 3455 3456 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3457 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3458 &get_feat_ctx->max_queue_ext.max_queue_ext; 3459 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 3460 max_queue_ext->max_rx_sq_depth); 3461 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 3462 3463 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3464 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3465 llq->max_llq_depth); 3466 else 3467 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3468 max_queue_ext->max_tx_sq_depth); 3469 3470 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3471 max_queue_ext->max_per_packet_tx_descs); 3472 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3473 max_queue_ext->max_per_packet_rx_descs); 3474 } else { 3475 struct ena_admin_queue_feature_desc *max_queues = 3476 &get_feat_ctx->max_queues; 3477 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 3478 max_queues->max_sq_depth); 3479 max_tx_queue_size = max_queues->max_cq_depth; 3480 3481 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3482 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3483 llq->max_llq_depth); 3484 else 3485 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3486 max_queues->max_sq_depth); 3487 3488 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3489 max_queues->max_packet_tx_descs); 3490 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3491 max_queues->max_packet_rx_descs); 3492 } 3493 3494 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 3495 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 3496 3497 /* When forcing large headers, we multiply the entry size by 2, and therefore divide 3498 * the queue size by 2, leaving the amount of memory used by the queues unchanged. 3499 */ 3500 if (adapter->large_llq_header_enabled) { 3501 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 3502 ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 3503 max_tx_queue_size /= 2; 3504 dev_info(&adapter->pdev->dev, 3505 "Forcing large headers and decreasing maximum TX queue size to %d\n", 3506 max_tx_queue_size); 3507 } else { 3508 dev_err(&adapter->pdev->dev, 3509 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n"); 3510 3511 adapter->large_llq_header_enabled = false; 3512 } 3513 } 3514 3515 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 3516 max_tx_queue_size); 3517 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 3518 max_rx_queue_size); 3519 3520 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 3521 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 3522 3523 adapter->max_tx_ring_size = max_tx_queue_size; 3524 adapter->max_rx_ring_size = max_rx_queue_size; 3525 adapter->requested_tx_ring_size = tx_queue_size; 3526 adapter->requested_rx_ring_size = rx_queue_size; 3527 } 3528 3529 static int ena_device_validate_params(struct ena_adapter *adapter, 3530 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3531 { 3532 struct net_device *netdev = adapter->netdev; 3533 int rc; 3534 3535 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 3536 adapter->mac_addr); 3537 if (!rc) { 3538 netif_err(adapter, drv, netdev, 3539 "Error, mac address are different\n"); 3540 return -EINVAL; 3541 } 3542 3543 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 3544 netif_err(adapter, drv, netdev, 3545 "Error, device max mtu is smaller than netdev MTU\n"); 3546 return -EINVAL; 3547 } 3548 3549 return 0; 3550 } 3551 3552 static void set_default_llq_configurations(struct ena_adapter *adapter, 3553 struct ena_llq_configurations *llq_config, 3554 struct ena_admin_feature_llq_desc *llq) 3555 { 3556 struct ena_com_dev *ena_dev = adapter->ena_dev; 3557 3558 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 3559 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 3560 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 3561 3562 adapter->large_llq_header_supported = 3563 !!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ)); 3564 adapter->large_llq_header_supported &= 3565 !!(llq->entry_size_ctrl_supported & 3566 ENA_ADMIN_LIST_ENTRY_SIZE_256B); 3567 3568 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 3569 adapter->large_llq_header_enabled) { 3570 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B; 3571 llq_config->llq_ring_entry_size_value = 256; 3572 } else { 3573 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 3574 llq_config->llq_ring_entry_size_value = 128; 3575 } 3576 } 3577 3578 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3579 struct ena_com_dev *ena_dev, 3580 struct ena_admin_feature_llq_desc *llq, 3581 struct ena_llq_configurations *llq_default_configurations) 3582 { 3583 int rc; 3584 u32 llq_feature_mask; 3585 3586 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3587 if (!(ena_dev->supported_features & llq_feature_mask)) { 3588 dev_warn(&pdev->dev, 3589 "LLQ is not supported Fallback to host mode policy.\n"); 3590 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3591 return 0; 3592 } 3593 3594 if (!ena_dev->mem_bar) { 3595 netdev_err(ena_dev->net_device, 3596 "LLQ is advertised as supported but device doesn't expose mem bar\n"); 3597 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3598 return 0; 3599 } 3600 3601 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3602 if (unlikely(rc)) { 3603 dev_err(&pdev->dev, 3604 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3605 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3606 } 3607 3608 return 0; 3609 } 3610 3611 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, 3612 int bars) 3613 { 3614 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR)); 3615 3616 if (!has_mem_bar) 3617 return 0; 3618 3619 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3620 pci_resource_start(pdev, ENA_MEM_BAR), 3621 pci_resource_len(pdev, ENA_MEM_BAR)); 3622 3623 if (!ena_dev->mem_bar) 3624 return -EFAULT; 3625 3626 return 0; 3627 } 3628 3629 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev, 3630 struct ena_com_dev_get_features_ctx *get_feat_ctx, 3631 bool *wd_state) 3632 { 3633 struct ena_com_dev *ena_dev = adapter->ena_dev; 3634 struct ena_llq_configurations llq_config; 3635 struct device *dev = &pdev->dev; 3636 bool readless_supported; 3637 u32 aenq_groups; 3638 int dma_width; 3639 int rc; 3640 3641 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3642 if (rc) { 3643 dev_err(dev, "Failed to init mmio read less\n"); 3644 return rc; 3645 } 3646 3647 /* The PCIe configuration space revision id indicate if mmio reg 3648 * read is disabled 3649 */ 3650 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 3651 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3652 3653 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3654 if (rc) { 3655 dev_err(dev, "Can not reset device\n"); 3656 goto err_mmio_read_less; 3657 } 3658 3659 rc = ena_com_validate_version(ena_dev); 3660 if (rc) { 3661 dev_err(dev, "Device version is too low\n"); 3662 goto err_mmio_read_less; 3663 } 3664 3665 dma_width = ena_com_get_dma_width(ena_dev); 3666 if (dma_width < 0) { 3667 dev_err(dev, "Invalid dma width value %d", dma_width); 3668 rc = dma_width; 3669 goto err_mmio_read_less; 3670 } 3671 3672 rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width)); 3673 if (rc) { 3674 dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc); 3675 goto err_mmio_read_less; 3676 } 3677 3678 /* ENA admin level init */ 3679 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 3680 if (rc) { 3681 dev_err(dev, 3682 "Can not initialize ena admin queue with device\n"); 3683 goto err_mmio_read_less; 3684 } 3685 3686 /* To enable the msix interrupts the driver needs to know the number 3687 * of queues. So the driver uses polling mode to retrieve this 3688 * information 3689 */ 3690 ena_com_set_admin_polling_mode(ena_dev, true); 3691 3692 ena_config_host_info(ena_dev, pdev); 3693 3694 /* Get Device Attributes*/ 3695 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3696 if (rc) { 3697 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 3698 goto err_admin_init; 3699 } 3700 3701 /* Try to turn all the available aenq groups */ 3702 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 3703 BIT(ENA_ADMIN_FATAL_ERROR) | 3704 BIT(ENA_ADMIN_WARNING) | 3705 BIT(ENA_ADMIN_NOTIFICATION) | 3706 BIT(ENA_ADMIN_KEEP_ALIVE); 3707 3708 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3709 3710 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3711 if (rc) { 3712 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 3713 goto err_admin_init; 3714 } 3715 3716 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3717 3718 set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq); 3719 3720 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq, 3721 &llq_config); 3722 if (rc) { 3723 dev_err(dev, "ENA device init failed\n"); 3724 goto err_admin_init; 3725 } 3726 3727 ena_calc_io_queue_size(adapter, get_feat_ctx); 3728 3729 return 0; 3730 3731 err_admin_init: 3732 ena_com_delete_host_info(ena_dev); 3733 ena_com_admin_destroy(ena_dev); 3734 err_mmio_read_less: 3735 ena_com_mmio_reg_read_request_destroy(ena_dev); 3736 3737 return rc; 3738 } 3739 3740 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 3741 { 3742 struct ena_com_dev *ena_dev = adapter->ena_dev; 3743 struct device *dev = &adapter->pdev->dev; 3744 int rc; 3745 3746 rc = ena_enable_msix(adapter); 3747 if (rc) { 3748 dev_err(dev, "Can not reserve msix vectors\n"); 3749 return rc; 3750 } 3751 3752 ena_setup_mgmnt_intr(adapter); 3753 3754 rc = ena_request_mgmnt_irq(adapter); 3755 if (rc) { 3756 dev_err(dev, "Can not setup management interrupts\n"); 3757 goto err_disable_msix; 3758 } 3759 3760 ena_com_set_admin_polling_mode(ena_dev, false); 3761 3762 ena_com_admin_aenq_enable(ena_dev); 3763 3764 return 0; 3765 3766 err_disable_msix: 3767 ena_disable_msix(adapter); 3768 3769 return rc; 3770 } 3771 3772 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful) 3773 { 3774 struct net_device *netdev = adapter->netdev; 3775 struct ena_com_dev *ena_dev = adapter->ena_dev; 3776 bool dev_up; 3777 3778 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3779 return; 3780 3781 netif_carrier_off(netdev); 3782 3783 del_timer_sync(&adapter->timer_service); 3784 3785 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 3786 adapter->dev_up_before_reset = dev_up; 3787 if (!graceful) 3788 ena_com_set_admin_running_state(ena_dev, false); 3789 3790 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3791 ena_down(adapter); 3792 3793 /* Stop the device from sending AENQ events (in case reset flag is set 3794 * and device is up, ena_down() already reset the device. 3795 */ 3796 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 3797 ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 3798 3799 ena_free_mgmnt_irq(adapter); 3800 3801 ena_disable_msix(adapter); 3802 3803 ena_com_abort_admin_commands(ena_dev); 3804 3805 ena_com_wait_for_abort_completion(ena_dev); 3806 3807 ena_com_admin_destroy(ena_dev); 3808 3809 ena_com_mmio_reg_read_request_destroy(ena_dev); 3810 3811 /* return reset reason to default value */ 3812 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3813 3814 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3815 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3816 } 3817 3818 static int ena_restore_device(struct ena_adapter *adapter) 3819 { 3820 struct ena_com_dev_get_features_ctx get_feat_ctx; 3821 struct ena_com_dev *ena_dev = adapter->ena_dev; 3822 struct pci_dev *pdev = adapter->pdev; 3823 struct ena_ring *txr; 3824 int rc, count, i; 3825 bool wd_state; 3826 3827 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3828 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state); 3829 if (rc) { 3830 dev_err(&pdev->dev, "Can not initialize device\n"); 3831 goto err; 3832 } 3833 adapter->wd_state = wd_state; 3834 3835 count = adapter->xdp_num_queues + adapter->num_io_queues; 3836 for (i = 0 ; i < count; i++) { 3837 txr = &adapter->tx_ring[i]; 3838 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 3839 txr->tx_max_header_size = ena_dev->tx_max_header_size; 3840 } 3841 3842 rc = ena_device_validate_params(adapter, &get_feat_ctx); 3843 if (rc) { 3844 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 3845 goto err_device_destroy; 3846 } 3847 3848 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3849 if (rc) { 3850 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 3851 goto err_device_destroy; 3852 } 3853 /* If the interface was up before the reset bring it up */ 3854 if (adapter->dev_up_before_reset) { 3855 rc = ena_up(adapter); 3856 if (rc) { 3857 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 3858 goto err_disable_msix; 3859 } 3860 } 3861 3862 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3863 3864 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3865 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 3866 netif_carrier_on(adapter->netdev); 3867 3868 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3869 adapter->last_keep_alive_jiffies = jiffies; 3870 3871 return rc; 3872 err_disable_msix: 3873 ena_free_mgmnt_irq(adapter); 3874 ena_disable_msix(adapter); 3875 err_device_destroy: 3876 ena_com_abort_admin_commands(ena_dev); 3877 ena_com_wait_for_abort_completion(ena_dev); 3878 ena_com_admin_destroy(ena_dev); 3879 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 3880 ena_com_mmio_reg_read_request_destroy(ena_dev); 3881 err: 3882 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3883 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3884 dev_err(&pdev->dev, 3885 "Reset attempt failed. Can not reset the device\n"); 3886 3887 return rc; 3888 } 3889 3890 static void ena_fw_reset_device(struct work_struct *work) 3891 { 3892 struct ena_adapter *adapter = 3893 container_of(work, struct ena_adapter, reset_task); 3894 3895 rtnl_lock(); 3896 3897 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3898 ena_destroy_device(adapter, false); 3899 ena_restore_device(adapter); 3900 3901 dev_err(&adapter->pdev->dev, "Device reset completed successfully\n"); 3902 } 3903 3904 rtnl_unlock(); 3905 } 3906 3907 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 3908 struct ena_ring *rx_ring) 3909 { 3910 struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi); 3911 3912 if (likely(READ_ONCE(ena_napi->first_interrupt))) 3913 return 0; 3914 3915 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 3916 return 0; 3917 3918 rx_ring->no_interrupt_event_cnt++; 3919 3920 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 3921 netif_err(adapter, rx_err, adapter->netdev, 3922 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 3923 rx_ring->qid); 3924 3925 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3926 return -EIO; 3927 } 3928 3929 return 0; 3930 } 3931 3932 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 3933 struct ena_ring *tx_ring) 3934 { 3935 struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi); 3936 unsigned int time_since_last_napi; 3937 unsigned int missing_tx_comp_to; 3938 bool is_tx_comp_time_expired; 3939 struct ena_tx_buffer *tx_buf; 3940 unsigned long last_jiffies; 3941 u32 missed_tx = 0; 3942 int i, rc = 0; 3943 3944 for (i = 0; i < tx_ring->ring_size; i++) { 3945 tx_buf = &tx_ring->tx_buffer_info[i]; 3946 last_jiffies = tx_buf->last_jiffies; 3947 3948 if (last_jiffies == 0) 3949 /* no pending Tx at this location */ 3950 continue; 3951 3952 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3953 2 * adapter->missing_tx_completion_to); 3954 3955 if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) { 3956 /* If after graceful period interrupt is still not 3957 * received, we schedule a reset 3958 */ 3959 netif_err(adapter, tx_err, adapter->netdev, 3960 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 3961 tx_ring->qid); 3962 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3963 return -EIO; 3964 } 3965 3966 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3967 adapter->missing_tx_completion_to); 3968 3969 if (unlikely(is_tx_comp_time_expired)) { 3970 if (!tx_buf->print_once) { 3971 time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 3972 missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to); 3973 netif_notice(adapter, tx_err, adapter->netdev, 3974 "Found a Tx that wasn't completed on time, qid %d, index %d. %u usecs have passed since last napi execution. Missing Tx timeout value %u msecs\n", 3975 tx_ring->qid, i, time_since_last_napi, missing_tx_comp_to); 3976 } 3977 3978 tx_buf->print_once = 1; 3979 missed_tx++; 3980 } 3981 } 3982 3983 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 3984 netif_err(adapter, tx_err, adapter->netdev, 3985 "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n", 3986 missed_tx, 3987 adapter->missing_tx_completion_threshold); 3988 ena_reset_device(adapter, ENA_REGS_RESET_MISS_TX_CMPL); 3989 rc = -EIO; 3990 } 3991 3992 ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx, 3993 &tx_ring->syncp); 3994 3995 return rc; 3996 } 3997 3998 static void check_for_missing_completions(struct ena_adapter *adapter) 3999 { 4000 struct ena_ring *tx_ring; 4001 struct ena_ring *rx_ring; 4002 int i, budget, rc; 4003 int io_queue_count; 4004 4005 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; 4006 /* Make sure the driver doesn't turn the device in other process */ 4007 smp_rmb(); 4008 4009 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 4010 return; 4011 4012 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 4013 return; 4014 4015 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 4016 return; 4017 4018 budget = ENA_MONITORED_TX_QUEUES; 4019 4020 for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) { 4021 tx_ring = &adapter->tx_ring[i]; 4022 rx_ring = &adapter->rx_ring[i]; 4023 4024 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 4025 if (unlikely(rc)) 4026 return; 4027 4028 rc = !ENA_IS_XDP_INDEX(adapter, i) ? 4029 check_for_rx_interrupt_queue(adapter, rx_ring) : 0; 4030 if (unlikely(rc)) 4031 return; 4032 4033 budget--; 4034 if (!budget) 4035 break; 4036 } 4037 4038 adapter->last_monitored_tx_qid = i % io_queue_count; 4039 } 4040 4041 /* trigger napi schedule after 2 consecutive detections */ 4042 #define EMPTY_RX_REFILL 2 4043 /* For the rare case where the device runs out of Rx descriptors and the 4044 * napi handler failed to refill new Rx descriptors (due to a lack of memory 4045 * for example). 4046 * This case will lead to a deadlock: 4047 * The device won't send interrupts since all the new Rx packets will be dropped 4048 * The napi handler won't allocate new Rx descriptors so the device will be 4049 * able to send new packets. 4050 * 4051 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 4052 * It is recommended to have at least 512MB, with a minimum of 128MB for 4053 * constrained environment). 4054 * 4055 * When such a situation is detected - Reschedule napi 4056 */ 4057 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 4058 { 4059 struct ena_ring *rx_ring; 4060 int i, refill_required; 4061 4062 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 4063 return; 4064 4065 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 4066 return; 4067 4068 for (i = 0; i < adapter->num_io_queues; i++) { 4069 rx_ring = &adapter->rx_ring[i]; 4070 4071 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 4072 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 4073 rx_ring->empty_rx_queue++; 4074 4075 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 4076 ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1, 4077 &rx_ring->syncp); 4078 4079 netif_err(adapter, drv, adapter->netdev, 4080 "Trigger refill for ring %d\n", i); 4081 4082 napi_schedule(rx_ring->napi); 4083 rx_ring->empty_rx_queue = 0; 4084 } 4085 } else { 4086 rx_ring->empty_rx_queue = 0; 4087 } 4088 } 4089 } 4090 4091 /* Check for keep alive expiration */ 4092 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 4093 { 4094 unsigned long keep_alive_expired; 4095 4096 if (!adapter->wd_state) 4097 return; 4098 4099 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 4100 return; 4101 4102 keep_alive_expired = adapter->last_keep_alive_jiffies + 4103 adapter->keep_alive_timeout; 4104 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 4105 netif_err(adapter, drv, adapter->netdev, 4106 "Keep alive watchdog timeout.\n"); 4107 ena_increase_stat(&adapter->dev_stats.wd_expired, 1, 4108 &adapter->syncp); 4109 ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO); 4110 } 4111 } 4112 4113 static void check_for_admin_com_state(struct ena_adapter *adapter) 4114 { 4115 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 4116 netif_err(adapter, drv, adapter->netdev, 4117 "ENA admin queue is not in running state!\n"); 4118 ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1, 4119 &adapter->syncp); 4120 ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO); 4121 } 4122 } 4123 4124 static void ena_update_hints(struct ena_adapter *adapter, 4125 struct ena_admin_ena_hw_hints *hints) 4126 { 4127 struct net_device *netdev = adapter->netdev; 4128 4129 if (hints->admin_completion_tx_timeout) 4130 adapter->ena_dev->admin_queue.completion_timeout = 4131 hints->admin_completion_tx_timeout * 1000; 4132 4133 if (hints->mmio_read_timeout) 4134 /* convert to usec */ 4135 adapter->ena_dev->mmio_read.reg_read_to = 4136 hints->mmio_read_timeout * 1000; 4137 4138 if (hints->missed_tx_completion_count_threshold_to_reset) 4139 adapter->missing_tx_completion_threshold = 4140 hints->missed_tx_completion_count_threshold_to_reset; 4141 4142 if (hints->missing_tx_completion_timeout) { 4143 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 4144 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 4145 else 4146 adapter->missing_tx_completion_to = 4147 msecs_to_jiffies(hints->missing_tx_completion_timeout); 4148 } 4149 4150 if (hints->netdev_wd_timeout) 4151 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 4152 4153 if (hints->driver_watchdog_timeout) { 4154 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 4155 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 4156 else 4157 adapter->keep_alive_timeout = 4158 msecs_to_jiffies(hints->driver_watchdog_timeout); 4159 } 4160 } 4161 4162 static void ena_update_host_info(struct ena_admin_host_info *host_info, 4163 struct net_device *netdev) 4164 { 4165 host_info->supported_network_features[0] = 4166 netdev->features & GENMASK_ULL(31, 0); 4167 host_info->supported_network_features[1] = 4168 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 4169 } 4170 4171 static void ena_timer_service(struct timer_list *t) 4172 { 4173 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 4174 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 4175 struct ena_admin_host_info *host_info = 4176 adapter->ena_dev->host_attr.host_info; 4177 4178 check_for_missing_keep_alive(adapter); 4179 4180 check_for_admin_com_state(adapter); 4181 4182 check_for_missing_completions(adapter); 4183 4184 check_for_empty_rx_ring(adapter); 4185 4186 if (debug_area) 4187 ena_dump_stats_to_buf(adapter, debug_area); 4188 4189 if (host_info) 4190 ena_update_host_info(host_info, adapter->netdev); 4191 4192 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4193 netif_err(adapter, drv, adapter->netdev, 4194 "Trigger reset is on\n"); 4195 ena_dump_stats_to_dmesg(adapter); 4196 queue_work(ena_wq, &adapter->reset_task); 4197 return; 4198 } 4199 4200 /* Reset the timer */ 4201 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 4202 } 4203 4204 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev, 4205 struct ena_com_dev *ena_dev, 4206 struct ena_com_dev_get_features_ctx *get_feat_ctx) 4207 { 4208 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 4209 4210 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 4211 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 4212 &get_feat_ctx->max_queue_ext.max_queue_ext; 4213 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 4214 max_queue_ext->max_rx_cq_num); 4215 4216 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 4217 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 4218 } else { 4219 struct ena_admin_queue_feature_desc *max_queues = 4220 &get_feat_ctx->max_queues; 4221 io_tx_sq_num = max_queues->max_sq_num; 4222 io_tx_cq_num = max_queues->max_cq_num; 4223 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 4224 } 4225 4226 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 4227 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4228 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 4229 4230 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 4231 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 4232 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 4233 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 4234 /* 1 IRQ for mgmnt and 1 IRQs for each IO direction */ 4235 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 4236 4237 return max_num_io_queues; 4238 } 4239 4240 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 4241 struct net_device *netdev) 4242 { 4243 netdev_features_t dev_features = 0; 4244 4245 /* Set offload features */ 4246 if (feat->offload.tx & 4247 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 4248 dev_features |= NETIF_F_IP_CSUM; 4249 4250 if (feat->offload.tx & 4251 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 4252 dev_features |= NETIF_F_IPV6_CSUM; 4253 4254 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 4255 dev_features |= NETIF_F_TSO; 4256 4257 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 4258 dev_features |= NETIF_F_TSO6; 4259 4260 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 4261 dev_features |= NETIF_F_TSO_ECN; 4262 4263 if (feat->offload.rx_supported & 4264 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 4265 dev_features |= NETIF_F_RXCSUM; 4266 4267 if (feat->offload.rx_supported & 4268 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 4269 dev_features |= NETIF_F_RXCSUM; 4270 4271 netdev->features = 4272 dev_features | 4273 NETIF_F_SG | 4274 NETIF_F_RXHASH | 4275 NETIF_F_HIGHDMA; 4276 4277 netdev->hw_features |= netdev->features; 4278 netdev->vlan_features |= netdev->features; 4279 } 4280 4281 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 4282 struct ena_com_dev_get_features_ctx *feat) 4283 { 4284 struct net_device *netdev = adapter->netdev; 4285 4286 /* Copy mac address */ 4287 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 4288 eth_hw_addr_random(netdev); 4289 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 4290 } else { 4291 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 4292 eth_hw_addr_set(netdev, adapter->mac_addr); 4293 } 4294 4295 /* Set offload features */ 4296 ena_set_dev_offloads(feat, netdev); 4297 4298 adapter->max_mtu = feat->dev_attr.max_mtu; 4299 netdev->max_mtu = adapter->max_mtu; 4300 netdev->min_mtu = ENA_MIN_MTU; 4301 } 4302 4303 static int ena_rss_init_default(struct ena_adapter *adapter) 4304 { 4305 struct ena_com_dev *ena_dev = adapter->ena_dev; 4306 struct device *dev = &adapter->pdev->dev; 4307 int rc, i; 4308 u32 val; 4309 4310 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 4311 if (unlikely(rc)) { 4312 dev_err(dev, "Cannot init indirect table\n"); 4313 goto err_rss_init; 4314 } 4315 4316 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 4317 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 4318 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 4319 ENA_IO_RXQ_IDX(val)); 4320 if (unlikely(rc)) { 4321 dev_err(dev, "Cannot fill indirect table\n"); 4322 goto err_fill_indir; 4323 } 4324 } 4325 4326 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, 4327 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 4328 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 4329 dev_err(dev, "Cannot fill hash function\n"); 4330 goto err_fill_indir; 4331 } 4332 4333 rc = ena_com_set_default_hash_ctrl(ena_dev); 4334 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 4335 dev_err(dev, "Cannot fill hash control\n"); 4336 goto err_fill_indir; 4337 } 4338 4339 return 0; 4340 4341 err_fill_indir: 4342 ena_com_rss_destroy(ena_dev); 4343 err_rss_init: 4344 4345 return rc; 4346 } 4347 4348 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 4349 { 4350 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 4351 4352 pci_release_selected_regions(pdev, release_bars); 4353 } 4354 4355 /* ena_probe - Device Initialization Routine 4356 * @pdev: PCI device information struct 4357 * @ent: entry in ena_pci_tbl 4358 * 4359 * Returns 0 on success, negative on failure 4360 * 4361 * ena_probe initializes an adapter identified by a pci_dev structure. 4362 * The OS initialization, configuring of the adapter private structure, 4363 * and a hardware reset occur. 4364 */ 4365 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4366 { 4367 struct ena_com_dev_get_features_ctx get_feat_ctx; 4368 struct ena_com_dev *ena_dev = NULL; 4369 struct ena_adapter *adapter; 4370 struct net_device *netdev; 4371 static int adapters_found; 4372 u32 max_num_io_queues; 4373 bool wd_state; 4374 int bars, rc; 4375 4376 dev_dbg(&pdev->dev, "%s\n", __func__); 4377 4378 rc = pci_enable_device_mem(pdev); 4379 if (rc) { 4380 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 4381 return rc; 4382 } 4383 4384 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS)); 4385 if (rc) { 4386 dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc); 4387 goto err_disable_device; 4388 } 4389 4390 pci_set_master(pdev); 4391 4392 ena_dev = vzalloc(sizeof(*ena_dev)); 4393 if (!ena_dev) { 4394 rc = -ENOMEM; 4395 goto err_disable_device; 4396 } 4397 4398 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 4399 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 4400 if (rc) { 4401 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 4402 rc); 4403 goto err_free_ena_dev; 4404 } 4405 4406 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 4407 pci_resource_start(pdev, ENA_REG_BAR), 4408 pci_resource_len(pdev, ENA_REG_BAR)); 4409 if (!ena_dev->reg_bar) { 4410 dev_err(&pdev->dev, "Failed to remap regs bar\n"); 4411 rc = -EFAULT; 4412 goto err_free_region; 4413 } 4414 4415 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US; 4416 4417 ena_dev->dmadev = &pdev->dev; 4418 4419 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS); 4420 if (!netdev) { 4421 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 4422 rc = -ENOMEM; 4423 goto err_free_region; 4424 } 4425 4426 SET_NETDEV_DEV(netdev, &pdev->dev); 4427 adapter = netdev_priv(netdev); 4428 adapter->ena_dev = ena_dev; 4429 adapter->netdev = netdev; 4430 adapter->pdev = pdev; 4431 adapter->msg_enable = DEFAULT_MSG_ENABLE; 4432 4433 ena_dev->net_device = netdev; 4434 4435 pci_set_drvdata(pdev, adapter); 4436 4437 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars); 4438 if (rc) { 4439 dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n"); 4440 goto err_netdev_destroy; 4441 } 4442 4443 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state); 4444 if (rc) { 4445 dev_err(&pdev->dev, "ENA device init failed\n"); 4446 if (rc == -ETIME) 4447 rc = -EPROBE_DEFER; 4448 goto err_netdev_destroy; 4449 } 4450 4451 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity. 4452 * Updated during device initialization with the real granularity 4453 */ 4454 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 4455 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 4456 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 4457 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 4458 if (unlikely(!max_num_io_queues)) { 4459 rc = -EFAULT; 4460 goto err_device_destroy; 4461 } 4462 4463 ena_set_conf_feat_params(adapter, &get_feat_ctx); 4464 4465 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 4466 4467 adapter->num_io_queues = max_num_io_queues; 4468 adapter->max_num_io_queues = max_num_io_queues; 4469 adapter->last_monitored_tx_qid = 0; 4470 4471 adapter->xdp_first_ring = 0; 4472 adapter->xdp_num_queues = 0; 4473 4474 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 4475 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4476 adapter->disable_meta_caching = 4477 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & 4478 BIT(ENA_ADMIN_DISABLE_META_CACHING)); 4479 4480 adapter->wd_state = wd_state; 4481 4482 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 4483 4484 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 4485 if (rc) { 4486 dev_err(&pdev->dev, 4487 "Failed to query interrupt moderation feature\n"); 4488 goto err_device_destroy; 4489 } 4490 4491 ena_init_io_rings(adapter, 4492 0, 4493 adapter->xdp_num_queues + 4494 adapter->num_io_queues); 4495 4496 netdev->netdev_ops = &ena_netdev_ops; 4497 netdev->watchdog_timeo = TX_TIMEOUT; 4498 ena_set_ethtool_ops(netdev); 4499 4500 netdev->priv_flags |= IFF_UNICAST_FLT; 4501 4502 u64_stats_init(&adapter->syncp); 4503 4504 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 4505 if (rc) { 4506 dev_err(&pdev->dev, 4507 "Failed to enable and set the admin interrupts\n"); 4508 goto err_worker_destroy; 4509 } 4510 rc = ena_rss_init_default(adapter); 4511 if (rc && (rc != -EOPNOTSUPP)) { 4512 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 4513 goto err_free_msix; 4514 } 4515 4516 ena_config_debug_area(adapter); 4517 4518 if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues)) 4519 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 4520 NETDEV_XDP_ACT_REDIRECT; 4521 4522 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 4523 4524 netif_carrier_off(netdev); 4525 4526 rc = register_netdev(netdev); 4527 if (rc) { 4528 dev_err(&pdev->dev, "Cannot register net device\n"); 4529 goto err_rss; 4530 } 4531 4532 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 4533 4534 adapter->last_keep_alive_jiffies = jiffies; 4535 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 4536 adapter->missing_tx_completion_to = TX_TIMEOUT; 4537 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 4538 4539 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 4540 4541 timer_setup(&adapter->timer_service, ena_timer_service, 0); 4542 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 4543 4544 dev_info(&pdev->dev, 4545 "%s found at mem %lx, mac addr %pM\n", 4546 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 4547 netdev->dev_addr); 4548 4549 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 4550 4551 adapters_found++; 4552 4553 return 0; 4554 4555 err_rss: 4556 ena_com_delete_debug_area(ena_dev); 4557 ena_com_rss_destroy(ena_dev); 4558 err_free_msix: 4559 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 4560 /* stop submitting admin commands on a device that was reset */ 4561 ena_com_set_admin_running_state(ena_dev, false); 4562 ena_free_mgmnt_irq(adapter); 4563 ena_disable_msix(adapter); 4564 err_worker_destroy: 4565 del_timer(&adapter->timer_service); 4566 err_device_destroy: 4567 ena_com_delete_host_info(ena_dev); 4568 ena_com_admin_destroy(ena_dev); 4569 err_netdev_destroy: 4570 free_netdev(netdev); 4571 err_free_region: 4572 ena_release_bars(ena_dev, pdev); 4573 err_free_ena_dev: 4574 vfree(ena_dev); 4575 err_disable_device: 4576 pci_disable_device(pdev); 4577 return rc; 4578 } 4579 4580 /*****************************************************************************/ 4581 4582 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines 4583 * @pdev: PCI device information struct 4584 * @shutdown: Is it a shutdown operation? If false, means it is a removal 4585 * 4586 * __ena_shutoff is a helper routine that does the real work on shutdown and 4587 * removal paths; the difference between those paths is with regards to whether 4588 * dettach or unregister the netdevice. 4589 */ 4590 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) 4591 { 4592 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4593 struct ena_com_dev *ena_dev; 4594 struct net_device *netdev; 4595 4596 ena_dev = adapter->ena_dev; 4597 netdev = adapter->netdev; 4598 4599 #ifdef CONFIG_RFS_ACCEL 4600 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 4601 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 4602 netdev->rx_cpu_rmap = NULL; 4603 } 4604 #endif /* CONFIG_RFS_ACCEL */ 4605 4606 /* Make sure timer and reset routine won't be called after 4607 * freeing device resources. 4608 */ 4609 del_timer_sync(&adapter->timer_service); 4610 cancel_work_sync(&adapter->reset_task); 4611 4612 rtnl_lock(); /* lock released inside the below if-else block */ 4613 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN; 4614 ena_destroy_device(adapter, true); 4615 4616 if (shutdown) { 4617 netif_device_detach(netdev); 4618 dev_close(netdev); 4619 rtnl_unlock(); 4620 } else { 4621 rtnl_unlock(); 4622 unregister_netdev(netdev); 4623 free_netdev(netdev); 4624 } 4625 4626 ena_com_rss_destroy(ena_dev); 4627 4628 ena_com_delete_debug_area(ena_dev); 4629 4630 ena_com_delete_host_info(ena_dev); 4631 4632 ena_release_bars(ena_dev, pdev); 4633 4634 pci_disable_device(pdev); 4635 4636 vfree(ena_dev); 4637 } 4638 4639 /* ena_remove - Device Removal Routine 4640 * @pdev: PCI device information struct 4641 * 4642 * ena_remove is called by the PCI subsystem to alert the driver 4643 * that it should release a PCI device. 4644 */ 4645 4646 static void ena_remove(struct pci_dev *pdev) 4647 { 4648 __ena_shutoff(pdev, false); 4649 } 4650 4651 /* ena_shutdown - Device Shutdown Routine 4652 * @pdev: PCI device information struct 4653 * 4654 * ena_shutdown is called by the PCI subsystem to alert the driver that 4655 * a shutdown/reboot (or kexec) is happening and device must be disabled. 4656 */ 4657 4658 static void ena_shutdown(struct pci_dev *pdev) 4659 { 4660 __ena_shutoff(pdev, true); 4661 } 4662 4663 /* ena_suspend - PM suspend callback 4664 * @dev_d: Device information struct 4665 */ 4666 static int __maybe_unused ena_suspend(struct device *dev_d) 4667 { 4668 struct pci_dev *pdev = to_pci_dev(dev_d); 4669 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4670 4671 ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp); 4672 4673 rtnl_lock(); 4674 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4675 dev_err(&pdev->dev, 4676 "Ignoring device reset request as the device is being suspended\n"); 4677 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 4678 } 4679 ena_destroy_device(adapter, true); 4680 rtnl_unlock(); 4681 return 0; 4682 } 4683 4684 /* ena_resume - PM resume callback 4685 * @dev_d: Device information struct 4686 */ 4687 static int __maybe_unused ena_resume(struct device *dev_d) 4688 { 4689 struct ena_adapter *adapter = dev_get_drvdata(dev_d); 4690 int rc; 4691 4692 ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp); 4693 4694 rtnl_lock(); 4695 rc = ena_restore_device(adapter); 4696 rtnl_unlock(); 4697 return rc; 4698 } 4699 4700 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume); 4701 4702 static struct pci_driver ena_pci_driver = { 4703 .name = DRV_MODULE_NAME, 4704 .id_table = ena_pci_tbl, 4705 .probe = ena_probe, 4706 .remove = ena_remove, 4707 .shutdown = ena_shutdown, 4708 .driver.pm = &ena_pm_ops, 4709 .sriov_configure = pci_sriov_configure_simple, 4710 }; 4711 4712 static int __init ena_init(void) 4713 { 4714 int ret; 4715 4716 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 4717 if (!ena_wq) { 4718 pr_err("Failed to create workqueue\n"); 4719 return -ENOMEM; 4720 } 4721 4722 ret = pci_register_driver(&ena_pci_driver); 4723 if (ret) 4724 destroy_workqueue(ena_wq); 4725 4726 return ret; 4727 } 4728 4729 static void __exit ena_cleanup(void) 4730 { 4731 pci_unregister_driver(&ena_pci_driver); 4732 4733 if (ena_wq) { 4734 destroy_workqueue(ena_wq); 4735 ena_wq = NULL; 4736 } 4737 } 4738 4739 /****************************************************************************** 4740 ******************************** AENQ Handlers ******************************* 4741 *****************************************************************************/ 4742 /* ena_update_on_link_change: 4743 * Notify the network interface about the change in link status 4744 */ 4745 static void ena_update_on_link_change(void *adapter_data, 4746 struct ena_admin_aenq_entry *aenq_e) 4747 { 4748 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4749 struct ena_admin_aenq_link_change_desc *aenq_desc = 4750 (struct ena_admin_aenq_link_change_desc *)aenq_e; 4751 int status = aenq_desc->flags & 4752 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 4753 4754 if (status) { 4755 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 4756 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4757 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 4758 netif_carrier_on(adapter->netdev); 4759 } else { 4760 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4761 netif_carrier_off(adapter->netdev); 4762 } 4763 } 4764 4765 static void ena_keep_alive_wd(void *adapter_data, 4766 struct ena_admin_aenq_entry *aenq_e) 4767 { 4768 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4769 struct ena_admin_aenq_keep_alive_desc *desc; 4770 u64 rx_drops; 4771 u64 tx_drops; 4772 4773 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 4774 adapter->last_keep_alive_jiffies = jiffies; 4775 4776 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 4777 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low; 4778 4779 u64_stats_update_begin(&adapter->syncp); 4780 /* These stats are accumulated by the device, so the counters indicate 4781 * all drops since last reset. 4782 */ 4783 adapter->dev_stats.rx_drops = rx_drops; 4784 adapter->dev_stats.tx_drops = tx_drops; 4785 u64_stats_update_end(&adapter->syncp); 4786 } 4787 4788 static void ena_notification(void *adapter_data, 4789 struct ena_admin_aenq_entry *aenq_e) 4790 { 4791 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4792 struct ena_admin_ena_hw_hints *hints; 4793 4794 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 4795 "Invalid group(%x) expected %x\n", 4796 aenq_e->aenq_common_desc.group, 4797 ENA_ADMIN_NOTIFICATION); 4798 4799 switch (aenq_e->aenq_common_desc.syndrome) { 4800 case ENA_ADMIN_UPDATE_HINTS: 4801 hints = (struct ena_admin_ena_hw_hints *) 4802 (&aenq_e->inline_data_w4); 4803 ena_update_hints(adapter, hints); 4804 break; 4805 default: 4806 netif_err(adapter, drv, adapter->netdev, 4807 "Invalid aenq notification link state %d\n", 4808 aenq_e->aenq_common_desc.syndrome); 4809 } 4810 } 4811 4812 /* This handler will called for unknown event group or unimplemented handlers*/ 4813 static void unimplemented_aenq_handler(void *data, 4814 struct ena_admin_aenq_entry *aenq_e) 4815 { 4816 struct ena_adapter *adapter = (struct ena_adapter *)data; 4817 4818 netif_err(adapter, drv, adapter->netdev, 4819 "Unknown event was received or event with unimplemented handler\n"); 4820 } 4821 4822 static struct ena_aenq_handlers aenq_handlers = { 4823 .handlers = { 4824 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 4825 [ENA_ADMIN_NOTIFICATION] = ena_notification, 4826 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 4827 }, 4828 .unimplemented_handler = unimplemented_aenq_handler 4829 }; 4830 4831 module_init(ena_init); 4832 module_exit(ena_cleanup); 4833