1 /*
2  * Copyright 2015 Amazon.com, Inc. or its affiliates.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #ifdef CONFIG_RFS_ACCEL
36 #include <linux/cpu_rmap.h>
37 #endif /* CONFIG_RFS_ACCEL */
38 #include <linux/ethtool.h>
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/numa.h>
42 #include <linux/pci.h>
43 #include <linux/utsname.h>
44 #include <linux/version.h>
45 #include <linux/vmalloc.h>
46 #include <net/ip.h>
47 
48 #include "ena_netdev.h"
49 #include <linux/bpf_trace.h>
50 #include "ena_pci_id_tbl.h"
51 
52 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
53 MODULE_DESCRIPTION(DEVICE_NAME);
54 MODULE_LICENSE("GPL");
55 
56 /* Time in jiffies before concluding the transmitter is hung. */
57 #define TX_TIMEOUT  (5 * HZ)
58 
59 #define ENA_NAPI_BUDGET 64
60 
61 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
62 		NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66 
67 static struct ena_aenq_handlers aenq_handlers;
68 
69 static struct workqueue_struct *ena_wq;
70 
71 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
72 
73 static int ena_rss_init_default(struct ena_adapter *adapter);
74 static void check_for_admin_com_state(struct ena_adapter *adapter);
75 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
76 static int ena_restore_device(struct ena_adapter *adapter);
77 
78 static void ena_init_io_rings(struct ena_adapter *adapter,
79 			      int first_index, int count);
80 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index,
81 				   int count);
82 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index,
83 				  int count);
84 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid);
85 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
86 					   int first_index,
87 					   int count);
88 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid);
89 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid);
90 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget);
91 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter);
92 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter);
93 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
94 				      int first_index, int count);
95 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
96 				     int first_index, int count);
97 static int ena_up(struct ena_adapter *adapter);
98 static void ena_down(struct ena_adapter *adapter);
99 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
100 				 struct ena_ring *rx_ring);
101 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
102 				      struct ena_ring *rx_ring);
103 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
104 			      struct ena_tx_buffer *tx_info);
105 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
106 					    int first_index, int count);
107 
108 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
109 {
110 	struct ena_adapter *adapter = netdev_priv(dev);
111 
112 	/* Change the state of the device to trigger reset
113 	 * Check that we are not in the middle or a trigger already
114 	 */
115 
116 	if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
117 		return;
118 
119 	adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD;
120 	u64_stats_update_begin(&adapter->syncp);
121 	adapter->dev_stats.tx_timeout++;
122 	u64_stats_update_end(&adapter->syncp);
123 
124 	netif_err(adapter, tx_err, dev, "Transmit time out\n");
125 }
126 
127 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
128 {
129 	int i;
130 
131 	for (i = 0; i < adapter->num_io_queues; i++)
132 		adapter->rx_ring[i].mtu = mtu;
133 }
134 
135 static int ena_change_mtu(struct net_device *dev, int new_mtu)
136 {
137 	struct ena_adapter *adapter = netdev_priv(dev);
138 	int ret;
139 
140 	ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
141 	if (!ret) {
142 		netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu);
143 		update_rx_ring_mtu(adapter, new_mtu);
144 		dev->mtu = new_mtu;
145 	} else {
146 		netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
147 			  new_mtu);
148 	}
149 
150 	return ret;
151 }
152 
153 static int ena_xmit_common(struct net_device *dev,
154 			   struct ena_ring *ring,
155 			   struct ena_tx_buffer *tx_info,
156 			   struct ena_com_tx_ctx *ena_tx_ctx,
157 			   u16 next_to_use,
158 			   u32 bytes)
159 {
160 	struct ena_adapter *adapter = netdev_priv(dev);
161 	int rc, nb_hw_desc;
162 
163 	if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
164 						ena_tx_ctx))) {
165 		netif_dbg(adapter, tx_queued, dev,
166 			  "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
167 			  ring->qid);
168 		ena_com_write_sq_doorbell(ring->ena_com_io_sq);
169 	}
170 
171 	/* prepare the packet's descriptors to dma engine */
172 	rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
173 				&nb_hw_desc);
174 
175 	/* In case there isn't enough space in the queue for the packet,
176 	 * we simply drop it. All other failure reasons of
177 	 * ena_com_prepare_tx() are fatal and therefore require a device reset.
178 	 */
179 	if (unlikely(rc)) {
180 		netif_err(adapter, tx_queued, dev,
181 			  "failed to prepare tx bufs\n");
182 		u64_stats_update_begin(&ring->syncp);
183 		ring->tx_stats.prepare_ctx_err++;
184 		u64_stats_update_end(&ring->syncp);
185 		if (rc != -ENOMEM) {
186 			adapter->reset_reason =
187 				ENA_REGS_RESET_DRIVER_INVALID_STATE;
188 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
189 		}
190 		return rc;
191 	}
192 
193 	u64_stats_update_begin(&ring->syncp);
194 	ring->tx_stats.cnt++;
195 	ring->tx_stats.bytes += bytes;
196 	u64_stats_update_end(&ring->syncp);
197 
198 	tx_info->tx_descs = nb_hw_desc;
199 	tx_info->last_jiffies = jiffies;
200 	tx_info->print_once = 0;
201 
202 	ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
203 						 ring->ring_size);
204 	return 0;
205 }
206 
207 /* This is the XDP napi callback. XDP queues use a separate napi callback
208  * than Rx/Tx queues.
209  */
210 static int ena_xdp_io_poll(struct napi_struct *napi, int budget)
211 {
212 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
213 	u32 xdp_work_done, xdp_budget;
214 	struct ena_ring *xdp_ring;
215 	int napi_comp_call = 0;
216 	int ret;
217 
218 	xdp_ring = ena_napi->xdp_ring;
219 	xdp_ring->first_interrupt = ena_napi->first_interrupt;
220 
221 	xdp_budget = budget;
222 
223 	if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) ||
224 	    test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) {
225 		napi_complete_done(napi, 0);
226 		return 0;
227 	}
228 
229 	xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget);
230 
231 	/* If the device is about to reset or down, avoid unmask
232 	 * the interrupt and return 0 so NAPI won't reschedule
233 	 */
234 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) {
235 		napi_complete_done(napi, 0);
236 		ret = 0;
237 	} else if (xdp_budget > xdp_work_done) {
238 		napi_comp_call = 1;
239 		if (napi_complete_done(napi, xdp_work_done))
240 			ena_unmask_interrupt(xdp_ring, NULL);
241 		ena_update_ring_numa_node(xdp_ring, NULL);
242 		ret = xdp_work_done;
243 	} else {
244 		ret = xdp_budget;
245 	}
246 
247 	u64_stats_update_begin(&xdp_ring->syncp);
248 	xdp_ring->tx_stats.napi_comp += napi_comp_call;
249 	xdp_ring->tx_stats.tx_poll++;
250 	u64_stats_update_end(&xdp_ring->syncp);
251 
252 	return ret;
253 }
254 
255 static int ena_xdp_tx_map_buff(struct ena_ring *xdp_ring,
256 			       struct ena_tx_buffer *tx_info,
257 			       struct xdp_buff *xdp,
258 			       void **push_hdr,
259 			       u32 *push_len)
260 {
261 	struct ena_adapter *adapter = xdp_ring->adapter;
262 	struct ena_com_buf *ena_buf;
263 	dma_addr_t dma = 0;
264 	u32 size;
265 
266 	tx_info->xdpf = xdp_convert_buff_to_frame(xdp);
267 	size = tx_info->xdpf->len;
268 	ena_buf = tx_info->bufs;
269 
270 	/* llq push buffer */
271 	*push_len = min_t(u32, size, xdp_ring->tx_max_header_size);
272 	*push_hdr = tx_info->xdpf->data;
273 
274 	if (size - *push_len > 0) {
275 		dma = dma_map_single(xdp_ring->dev,
276 				     *push_hdr + *push_len,
277 				     size - *push_len,
278 				     DMA_TO_DEVICE);
279 		if (unlikely(dma_mapping_error(xdp_ring->dev, dma)))
280 			goto error_report_dma_error;
281 
282 		tx_info->map_linear_data = 1;
283 		tx_info->num_of_bufs = 1;
284 	}
285 
286 	ena_buf->paddr = dma;
287 	ena_buf->len = size;
288 
289 	return 0;
290 
291 error_report_dma_error:
292 	u64_stats_update_begin(&xdp_ring->syncp);
293 	xdp_ring->tx_stats.dma_mapping_err++;
294 	u64_stats_update_end(&xdp_ring->syncp);
295 	netdev_warn(adapter->netdev, "failed to map xdp buff\n");
296 
297 	xdp_return_frame_rx_napi(tx_info->xdpf);
298 	tx_info->xdpf = NULL;
299 	tx_info->num_of_bufs = 0;
300 
301 	return -EINVAL;
302 }
303 
304 static int ena_xdp_xmit_buff(struct net_device *dev,
305 			     struct xdp_buff *xdp,
306 			     int qid,
307 			     struct ena_rx_buffer *rx_info)
308 {
309 	struct ena_adapter *adapter = netdev_priv(dev);
310 	struct ena_com_tx_ctx ena_tx_ctx = {0};
311 	struct ena_tx_buffer *tx_info;
312 	struct ena_ring *xdp_ring;
313 	u16 next_to_use, req_id;
314 	int rc;
315 	void *push_hdr;
316 	u32 push_len;
317 
318 	xdp_ring = &adapter->tx_ring[qid];
319 	next_to_use = xdp_ring->next_to_use;
320 	req_id = xdp_ring->free_ids[next_to_use];
321 	tx_info = &xdp_ring->tx_buffer_info[req_id];
322 	tx_info->num_of_bufs = 0;
323 	page_ref_inc(rx_info->page);
324 	tx_info->xdp_rx_page = rx_info->page;
325 
326 	rc = ena_xdp_tx_map_buff(xdp_ring, tx_info, xdp, &push_hdr, &push_len);
327 	if (unlikely(rc))
328 		goto error_drop_packet;
329 
330 	ena_tx_ctx.ena_bufs = tx_info->bufs;
331 	ena_tx_ctx.push_header = push_hdr;
332 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
333 	ena_tx_ctx.req_id = req_id;
334 	ena_tx_ctx.header_len = push_len;
335 
336 	rc = ena_xmit_common(dev,
337 			     xdp_ring,
338 			     tx_info,
339 			     &ena_tx_ctx,
340 			     next_to_use,
341 			     xdp->data_end - xdp->data);
342 	if (rc)
343 		goto error_unmap_dma;
344 	/* trigger the dma engine. ena_com_write_sq_doorbell()
345 	 * has a mb
346 	 */
347 	ena_com_write_sq_doorbell(xdp_ring->ena_com_io_sq);
348 	u64_stats_update_begin(&xdp_ring->syncp);
349 	xdp_ring->tx_stats.doorbells++;
350 	u64_stats_update_end(&xdp_ring->syncp);
351 
352 	return NETDEV_TX_OK;
353 
354 error_unmap_dma:
355 	ena_unmap_tx_buff(xdp_ring, tx_info);
356 	tx_info->xdpf = NULL;
357 error_drop_packet:
358 	__free_page(tx_info->xdp_rx_page);
359 	return NETDEV_TX_OK;
360 }
361 
362 static int ena_xdp_execute(struct ena_ring *rx_ring,
363 			   struct xdp_buff *xdp,
364 			   struct ena_rx_buffer *rx_info)
365 {
366 	struct bpf_prog *xdp_prog;
367 	u32 verdict = XDP_PASS;
368 
369 	rcu_read_lock();
370 	xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog);
371 
372 	if (!xdp_prog)
373 		goto out;
374 
375 	verdict = bpf_prog_run_xdp(xdp_prog, xdp);
376 
377 	if (verdict == XDP_TX)
378 		ena_xdp_xmit_buff(rx_ring->netdev,
379 				  xdp,
380 				  rx_ring->qid + rx_ring->adapter->num_io_queues,
381 				  rx_info);
382 	else if (unlikely(verdict == XDP_ABORTED))
383 		trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
384 	else if (unlikely(verdict > XDP_TX))
385 		bpf_warn_invalid_xdp_action(verdict);
386 out:
387 	rcu_read_unlock();
388 	return verdict;
389 }
390 
391 static void ena_init_all_xdp_queues(struct ena_adapter *adapter)
392 {
393 	adapter->xdp_first_ring = adapter->num_io_queues;
394 	adapter->xdp_num_queues = adapter->num_io_queues;
395 
396 	ena_init_io_rings(adapter,
397 			  adapter->xdp_first_ring,
398 			  adapter->xdp_num_queues);
399 }
400 
401 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter)
402 {
403 	int rc = 0;
404 
405 	rc = ena_setup_tx_resources_in_range(adapter, adapter->xdp_first_ring,
406 					     adapter->xdp_num_queues);
407 	if (rc)
408 		goto setup_err;
409 
410 	rc = ena_create_io_tx_queues_in_range(adapter,
411 					      adapter->xdp_first_ring,
412 					      adapter->xdp_num_queues);
413 	if (rc)
414 		goto create_err;
415 
416 	return 0;
417 
418 create_err:
419 	ena_free_all_io_tx_resources(adapter);
420 setup_err:
421 	return rc;
422 }
423 
424 /* Provides a way for both kernel and bpf-prog to know
425  * more about the RX-queue a given XDP frame arrived on.
426  */
427 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring)
428 {
429 	int rc;
430 
431 	rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid);
432 
433 	if (rc) {
434 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
435 			  "Failed to register xdp rx queue info. RX queue num %d rc: %d\n",
436 			  rx_ring->qid, rc);
437 		goto err;
438 	}
439 
440 	rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED,
441 					NULL);
442 
443 	if (rc) {
444 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
445 			  "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n",
446 			  rx_ring->qid, rc);
447 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
448 	}
449 
450 err:
451 	return rc;
452 }
453 
454 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring)
455 {
456 	xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq);
457 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
458 }
459 
460 static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter,
461 						 struct bpf_prog *prog,
462 						 int first, int count)
463 {
464 	struct ena_ring *rx_ring;
465 	int i = 0;
466 
467 	for (i = first; i < count; i++) {
468 		rx_ring = &adapter->rx_ring[i];
469 		xchg(&rx_ring->xdp_bpf_prog, prog);
470 		if (prog) {
471 			ena_xdp_register_rxq_info(rx_ring);
472 			rx_ring->rx_headroom = XDP_PACKET_HEADROOM;
473 		} else {
474 			ena_xdp_unregister_rxq_info(rx_ring);
475 			rx_ring->rx_headroom = 0;
476 		}
477 	}
478 }
479 
480 static void ena_xdp_exchange_program(struct ena_adapter *adapter,
481 				     struct bpf_prog *prog)
482 {
483 	struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog);
484 
485 	ena_xdp_exchange_program_rx_in_range(adapter,
486 					     prog,
487 					     0,
488 					     adapter->num_io_queues);
489 
490 	if (old_bpf_prog)
491 		bpf_prog_put(old_bpf_prog);
492 }
493 
494 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter)
495 {
496 	bool was_up;
497 	int rc;
498 
499 	was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
500 
501 	if (was_up)
502 		ena_down(adapter);
503 
504 	adapter->xdp_first_ring = 0;
505 	adapter->xdp_num_queues = 0;
506 	ena_xdp_exchange_program(adapter, NULL);
507 	if (was_up) {
508 		rc = ena_up(adapter);
509 		if (rc)
510 			return rc;
511 	}
512 	return 0;
513 }
514 
515 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf)
516 {
517 	struct ena_adapter *adapter = netdev_priv(netdev);
518 	struct bpf_prog *prog = bpf->prog;
519 	struct bpf_prog *old_bpf_prog;
520 	int rc, prev_mtu;
521 	bool is_up;
522 
523 	is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
524 	rc = ena_xdp_allowed(adapter);
525 	if (rc == ENA_XDP_ALLOWED) {
526 		old_bpf_prog = adapter->xdp_bpf_prog;
527 		if (prog) {
528 			if (!is_up) {
529 				ena_init_all_xdp_queues(adapter);
530 			} else if (!old_bpf_prog) {
531 				ena_down(adapter);
532 				ena_init_all_xdp_queues(adapter);
533 			}
534 			ena_xdp_exchange_program(adapter, prog);
535 
536 			if (is_up && !old_bpf_prog) {
537 				rc = ena_up(adapter);
538 				if (rc)
539 					return rc;
540 			}
541 		} else if (old_bpf_prog) {
542 			rc = ena_destroy_and_free_all_xdp_queues(adapter);
543 			if (rc)
544 				return rc;
545 		}
546 
547 		prev_mtu = netdev->max_mtu;
548 		netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu;
549 
550 		if (!old_bpf_prog)
551 			netif_info(adapter, drv, adapter->netdev,
552 				   "xdp program set, changing the max_mtu from %d to %d",
553 				   prev_mtu, netdev->max_mtu);
554 
555 	} else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) {
556 		netif_err(adapter, drv, adapter->netdev,
557 			  "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on",
558 			  netdev->mtu, ENA_XDP_MAX_MTU);
559 		NL_SET_ERR_MSG_MOD(bpf->extack,
560 				   "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info");
561 		return -EINVAL;
562 	} else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) {
563 		netif_err(adapter, drv, adapter->netdev,
564 			  "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n",
565 			  adapter->num_io_queues, adapter->max_num_io_queues);
566 		NL_SET_ERR_MSG_MOD(bpf->extack,
567 				   "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info");
568 		return -EINVAL;
569 	}
570 
571 	return 0;
572 }
573 
574 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp
575  * program as well as to query the current xdp program id.
576  */
577 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf)
578 {
579 	struct ena_adapter *adapter = netdev_priv(netdev);
580 
581 	switch (bpf->command) {
582 	case XDP_SETUP_PROG:
583 		return ena_xdp_set(netdev, bpf);
584 	case XDP_QUERY_PROG:
585 		bpf->prog_id = adapter->xdp_bpf_prog ?
586 			adapter->xdp_bpf_prog->aux->id : 0;
587 		break;
588 	default:
589 		return -EINVAL;
590 	}
591 	return 0;
592 }
593 
594 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
595 {
596 #ifdef CONFIG_RFS_ACCEL
597 	u32 i;
598 	int rc;
599 
600 	adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
601 	if (!adapter->netdev->rx_cpu_rmap)
602 		return -ENOMEM;
603 	for (i = 0; i < adapter->num_io_queues; i++) {
604 		int irq_idx = ENA_IO_IRQ_IDX(i);
605 
606 		rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
607 				      pci_irq_vector(adapter->pdev, irq_idx));
608 		if (rc) {
609 			free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
610 			adapter->netdev->rx_cpu_rmap = NULL;
611 			return rc;
612 		}
613 	}
614 #endif /* CONFIG_RFS_ACCEL */
615 	return 0;
616 }
617 
618 static void ena_init_io_rings_common(struct ena_adapter *adapter,
619 				     struct ena_ring *ring, u16 qid)
620 {
621 	ring->qid = qid;
622 	ring->pdev = adapter->pdev;
623 	ring->dev = &adapter->pdev->dev;
624 	ring->netdev = adapter->netdev;
625 	ring->napi = &adapter->ena_napi[qid].napi;
626 	ring->adapter = adapter;
627 	ring->ena_dev = adapter->ena_dev;
628 	ring->per_napi_packets = 0;
629 	ring->cpu = 0;
630 	ring->first_interrupt = false;
631 	ring->no_interrupt_event_cnt = 0;
632 	u64_stats_init(&ring->syncp);
633 }
634 
635 static void ena_init_io_rings(struct ena_adapter *adapter,
636 			      int first_index, int count)
637 {
638 	struct ena_com_dev *ena_dev;
639 	struct ena_ring *txr, *rxr;
640 	int i;
641 
642 	ena_dev = adapter->ena_dev;
643 
644 	for (i = first_index; i < first_index + count; i++) {
645 		txr = &adapter->tx_ring[i];
646 		rxr = &adapter->rx_ring[i];
647 
648 		/* TX common ring state */
649 		ena_init_io_rings_common(adapter, txr, i);
650 
651 		/* TX specific ring state */
652 		txr->ring_size = adapter->requested_tx_ring_size;
653 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
654 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
655 		txr->sgl_size = adapter->max_tx_sgl_size;
656 		txr->smoothed_interval =
657 			ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
658 
659 		/* Don't init RX queues for xdp queues */
660 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
661 			/* RX common ring state */
662 			ena_init_io_rings_common(adapter, rxr, i);
663 
664 			/* RX specific ring state */
665 			rxr->ring_size = adapter->requested_rx_ring_size;
666 			rxr->rx_copybreak = adapter->rx_copybreak;
667 			rxr->sgl_size = adapter->max_rx_sgl_size;
668 			rxr->smoothed_interval =
669 				ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
670 			rxr->empty_rx_queue = 0;
671 			adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
672 		}
673 	}
674 }
675 
676 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
677  * @adapter: network interface device structure
678  * @qid: queue index
679  *
680  * Return 0 on success, negative on failure
681  */
682 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
683 {
684 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
685 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
686 	int size, i, node;
687 
688 	if (tx_ring->tx_buffer_info) {
689 		netif_err(adapter, ifup,
690 			  adapter->netdev, "tx_buffer_info info is not NULL");
691 		return -EEXIST;
692 	}
693 
694 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
695 	node = cpu_to_node(ena_irq->cpu);
696 
697 	tx_ring->tx_buffer_info = vzalloc_node(size, node);
698 	if (!tx_ring->tx_buffer_info) {
699 		tx_ring->tx_buffer_info = vzalloc(size);
700 		if (!tx_ring->tx_buffer_info)
701 			goto err_tx_buffer_info;
702 	}
703 
704 	size = sizeof(u16) * tx_ring->ring_size;
705 	tx_ring->free_ids = vzalloc_node(size, node);
706 	if (!tx_ring->free_ids) {
707 		tx_ring->free_ids = vzalloc(size);
708 		if (!tx_ring->free_ids)
709 			goto err_tx_free_ids;
710 	}
711 
712 	size = tx_ring->tx_max_header_size;
713 	tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
714 	if (!tx_ring->push_buf_intermediate_buf) {
715 		tx_ring->push_buf_intermediate_buf = vzalloc(size);
716 		if (!tx_ring->push_buf_intermediate_buf)
717 			goto err_push_buf_intermediate_buf;
718 	}
719 
720 	/* Req id ring for TX out of order completions */
721 	for (i = 0; i < tx_ring->ring_size; i++)
722 		tx_ring->free_ids[i] = i;
723 
724 	/* Reset tx statistics */
725 	memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
726 
727 	tx_ring->next_to_use = 0;
728 	tx_ring->next_to_clean = 0;
729 	tx_ring->cpu = ena_irq->cpu;
730 	return 0;
731 
732 err_push_buf_intermediate_buf:
733 	vfree(tx_ring->free_ids);
734 	tx_ring->free_ids = NULL;
735 err_tx_free_ids:
736 	vfree(tx_ring->tx_buffer_info);
737 	tx_ring->tx_buffer_info = NULL;
738 err_tx_buffer_info:
739 	return -ENOMEM;
740 }
741 
742 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
743  * @adapter: network interface device structure
744  * @qid: queue index
745  *
746  * Free all transmit software resources
747  */
748 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
749 {
750 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
751 
752 	vfree(tx_ring->tx_buffer_info);
753 	tx_ring->tx_buffer_info = NULL;
754 
755 	vfree(tx_ring->free_ids);
756 	tx_ring->free_ids = NULL;
757 
758 	vfree(tx_ring->push_buf_intermediate_buf);
759 	tx_ring->push_buf_intermediate_buf = NULL;
760 }
761 
762 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
763 					   int first_index,
764 					   int count)
765 {
766 	int i, rc = 0;
767 
768 	for (i = first_index; i < first_index + count; i++) {
769 		rc = ena_setup_tx_resources(adapter, i);
770 		if (rc)
771 			goto err_setup_tx;
772 	}
773 
774 	return 0;
775 
776 err_setup_tx:
777 
778 	netif_err(adapter, ifup, adapter->netdev,
779 		  "Tx queue %d: allocation failed\n", i);
780 
781 	/* rewind the index freeing the rings as we go */
782 	while (first_index < i--)
783 		ena_free_tx_resources(adapter, i);
784 	return rc;
785 }
786 
787 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
788 						  int first_index, int count)
789 {
790 	int i;
791 
792 	for (i = first_index; i < first_index + count; i++)
793 		ena_free_tx_resources(adapter, i);
794 }
795 
796 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
797  * @adapter: board private structure
798  *
799  * Free all transmit software resources
800  */
801 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
802 {
803 	ena_free_all_io_tx_resources_in_range(adapter,
804 					      0,
805 					      adapter->xdp_num_queues +
806 					      adapter->num_io_queues);
807 }
808 
809 static int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id)
810 {
811 	if (likely(req_id < rx_ring->ring_size))
812 		return 0;
813 
814 	netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
815 		  "Invalid rx req_id: %hu\n", req_id);
816 
817 	u64_stats_update_begin(&rx_ring->syncp);
818 	rx_ring->rx_stats.bad_req_id++;
819 	u64_stats_update_end(&rx_ring->syncp);
820 
821 	/* Trigger device reset */
822 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
823 	set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags);
824 	return -EFAULT;
825 }
826 
827 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
828  * @adapter: network interface device structure
829  * @qid: queue index
830  *
831  * Returns 0 on success, negative on failure
832  */
833 static int ena_setup_rx_resources(struct ena_adapter *adapter,
834 				  u32 qid)
835 {
836 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
837 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
838 	int size, node, i;
839 
840 	if (rx_ring->rx_buffer_info) {
841 		netif_err(adapter, ifup, adapter->netdev,
842 			  "rx_buffer_info is not NULL");
843 		return -EEXIST;
844 	}
845 
846 	/* alloc extra element so in rx path
847 	 * we can always prefetch rx_info + 1
848 	 */
849 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
850 	node = cpu_to_node(ena_irq->cpu);
851 
852 	rx_ring->rx_buffer_info = vzalloc_node(size, node);
853 	if (!rx_ring->rx_buffer_info) {
854 		rx_ring->rx_buffer_info = vzalloc(size);
855 		if (!rx_ring->rx_buffer_info)
856 			return -ENOMEM;
857 	}
858 
859 	size = sizeof(u16) * rx_ring->ring_size;
860 	rx_ring->free_ids = vzalloc_node(size, node);
861 	if (!rx_ring->free_ids) {
862 		rx_ring->free_ids = vzalloc(size);
863 		if (!rx_ring->free_ids) {
864 			vfree(rx_ring->rx_buffer_info);
865 			rx_ring->rx_buffer_info = NULL;
866 			return -ENOMEM;
867 		}
868 	}
869 
870 	/* Req id ring for receiving RX pkts out of order */
871 	for (i = 0; i < rx_ring->ring_size; i++)
872 		rx_ring->free_ids[i] = i;
873 
874 	/* Reset rx statistics */
875 	memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
876 
877 	rx_ring->next_to_clean = 0;
878 	rx_ring->next_to_use = 0;
879 	rx_ring->cpu = ena_irq->cpu;
880 
881 	return 0;
882 }
883 
884 /* ena_free_rx_resources - Free I/O Rx Resources
885  * @adapter: network interface device structure
886  * @qid: queue index
887  *
888  * Free all receive software resources
889  */
890 static void ena_free_rx_resources(struct ena_adapter *adapter,
891 				  u32 qid)
892 {
893 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
894 
895 	vfree(rx_ring->rx_buffer_info);
896 	rx_ring->rx_buffer_info = NULL;
897 
898 	vfree(rx_ring->free_ids);
899 	rx_ring->free_ids = NULL;
900 }
901 
902 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
903  * @adapter: board private structure
904  *
905  * Return 0 on success, negative on failure
906  */
907 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
908 {
909 	int i, rc = 0;
910 
911 	for (i = 0; i < adapter->num_io_queues; i++) {
912 		rc = ena_setup_rx_resources(adapter, i);
913 		if (rc)
914 			goto err_setup_rx;
915 	}
916 
917 	return 0;
918 
919 err_setup_rx:
920 
921 	netif_err(adapter, ifup, adapter->netdev,
922 		  "Rx queue %d: allocation failed\n", i);
923 
924 	/* rewind the index freeing the rings as we go */
925 	while (i--)
926 		ena_free_rx_resources(adapter, i);
927 	return rc;
928 }
929 
930 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
931  * @adapter: board private structure
932  *
933  * Free all receive software resources
934  */
935 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
936 {
937 	int i;
938 
939 	for (i = 0; i < adapter->num_io_queues; i++)
940 		ena_free_rx_resources(adapter, i);
941 }
942 
943 static int ena_alloc_rx_page(struct ena_ring *rx_ring,
944 				    struct ena_rx_buffer *rx_info, gfp_t gfp)
945 {
946 	struct ena_com_buf *ena_buf;
947 	struct page *page;
948 	dma_addr_t dma;
949 
950 	/* if previous allocated page is not used */
951 	if (unlikely(rx_info->page))
952 		return 0;
953 
954 	page = alloc_page(gfp);
955 	if (unlikely(!page)) {
956 		u64_stats_update_begin(&rx_ring->syncp);
957 		rx_ring->rx_stats.page_alloc_fail++;
958 		u64_stats_update_end(&rx_ring->syncp);
959 		return -ENOMEM;
960 	}
961 
962 	dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
963 			   DMA_FROM_DEVICE);
964 	if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
965 		u64_stats_update_begin(&rx_ring->syncp);
966 		rx_ring->rx_stats.dma_mapping_err++;
967 		u64_stats_update_end(&rx_ring->syncp);
968 
969 		__free_page(page);
970 		return -EIO;
971 	}
972 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
973 		  "alloc page %p, rx_info %p\n", page, rx_info);
974 
975 	rx_info->page = page;
976 	rx_info->page_offset = 0;
977 	ena_buf = &rx_info->ena_buf;
978 	ena_buf->paddr = dma + rx_ring->rx_headroom;
979 	ena_buf->len = ENA_PAGE_SIZE - rx_ring->rx_headroom;
980 
981 	return 0;
982 }
983 
984 static void ena_free_rx_page(struct ena_ring *rx_ring,
985 			     struct ena_rx_buffer *rx_info)
986 {
987 	struct page *page = rx_info->page;
988 	struct ena_com_buf *ena_buf = &rx_info->ena_buf;
989 
990 	if (unlikely(!page)) {
991 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
992 			   "Trying to free unallocated buffer\n");
993 		return;
994 	}
995 
996 	dma_unmap_page(rx_ring->dev,
997 		       ena_buf->paddr - rx_ring->rx_headroom,
998 		       ENA_PAGE_SIZE,
999 		       DMA_FROM_DEVICE);
1000 
1001 	__free_page(page);
1002 	rx_info->page = NULL;
1003 }
1004 
1005 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
1006 {
1007 	u16 next_to_use, req_id;
1008 	u32 i;
1009 	int rc;
1010 
1011 	next_to_use = rx_ring->next_to_use;
1012 
1013 	for (i = 0; i < num; i++) {
1014 		struct ena_rx_buffer *rx_info;
1015 
1016 		req_id = rx_ring->free_ids[next_to_use];
1017 
1018 		rx_info = &rx_ring->rx_buffer_info[req_id];
1019 
1020 		rc = ena_alloc_rx_page(rx_ring, rx_info,
1021 				       GFP_ATOMIC | __GFP_COMP);
1022 		if (unlikely(rc < 0)) {
1023 			netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1024 				   "failed to alloc buffer for rx queue %d\n",
1025 				   rx_ring->qid);
1026 			break;
1027 		}
1028 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1029 						&rx_info->ena_buf,
1030 						req_id);
1031 		if (unlikely(rc)) {
1032 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1033 				   "failed to add buffer for rx queue %d\n",
1034 				   rx_ring->qid);
1035 			break;
1036 		}
1037 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1038 						   rx_ring->ring_size);
1039 	}
1040 
1041 	if (unlikely(i < num)) {
1042 		u64_stats_update_begin(&rx_ring->syncp);
1043 		rx_ring->rx_stats.refil_partial++;
1044 		u64_stats_update_end(&rx_ring->syncp);
1045 		netdev_warn(rx_ring->netdev,
1046 			    "refilled rx qid %d with only %d buffers (from %d)\n",
1047 			    rx_ring->qid, i, num);
1048 	}
1049 
1050 	/* ena_com_write_sq_doorbell issues a wmb() */
1051 	if (likely(i))
1052 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1053 
1054 	rx_ring->next_to_use = next_to_use;
1055 
1056 	return i;
1057 }
1058 
1059 static void ena_free_rx_bufs(struct ena_adapter *adapter,
1060 			     u32 qid)
1061 {
1062 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1063 	u32 i;
1064 
1065 	for (i = 0; i < rx_ring->ring_size; i++) {
1066 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1067 
1068 		if (rx_info->page)
1069 			ena_free_rx_page(rx_ring, rx_info);
1070 	}
1071 }
1072 
1073 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
1074  * @adapter: board private structure
1075  */
1076 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1077 {
1078 	struct ena_ring *rx_ring;
1079 	int i, rc, bufs_num;
1080 
1081 	for (i = 0; i < adapter->num_io_queues; i++) {
1082 		rx_ring = &adapter->rx_ring[i];
1083 		bufs_num = rx_ring->ring_size - 1;
1084 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1085 
1086 		if (unlikely(rc != bufs_num))
1087 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1088 				   "refilling Queue %d failed. allocated %d buffers from: %d\n",
1089 				   i, rc, bufs_num);
1090 	}
1091 }
1092 
1093 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
1094 {
1095 	int i;
1096 
1097 	for (i = 0; i < adapter->num_io_queues; i++)
1098 		ena_free_rx_bufs(adapter, i);
1099 }
1100 
1101 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
1102 			      struct ena_tx_buffer *tx_info)
1103 {
1104 	struct ena_com_buf *ena_buf;
1105 	u32 cnt;
1106 	int i;
1107 
1108 	ena_buf = tx_info->bufs;
1109 	cnt = tx_info->num_of_bufs;
1110 
1111 	if (unlikely(!cnt))
1112 		return;
1113 
1114 	if (tx_info->map_linear_data) {
1115 		dma_unmap_single(tx_ring->dev,
1116 				 dma_unmap_addr(ena_buf, paddr),
1117 				 dma_unmap_len(ena_buf, len),
1118 				 DMA_TO_DEVICE);
1119 		ena_buf++;
1120 		cnt--;
1121 	}
1122 
1123 	/* unmap remaining mapped pages */
1124 	for (i = 0; i < cnt; i++) {
1125 		dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
1126 			       dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
1127 		ena_buf++;
1128 	}
1129 }
1130 
1131 /* ena_free_tx_bufs - Free Tx Buffers per Queue
1132  * @tx_ring: TX ring for which buffers be freed
1133  */
1134 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
1135 {
1136 	bool print_once = true;
1137 	u32 i;
1138 
1139 	for (i = 0; i < tx_ring->ring_size; i++) {
1140 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1141 
1142 		if (!tx_info->skb)
1143 			continue;
1144 
1145 		if (print_once) {
1146 			netdev_notice(tx_ring->netdev,
1147 				      "free uncompleted tx skb qid %d idx 0x%x\n",
1148 				      tx_ring->qid, i);
1149 			print_once = false;
1150 		} else {
1151 			netdev_dbg(tx_ring->netdev,
1152 				   "free uncompleted tx skb qid %d idx 0x%x\n",
1153 				   tx_ring->qid, i);
1154 		}
1155 
1156 		ena_unmap_tx_buff(tx_ring, tx_info);
1157 
1158 		dev_kfree_skb_any(tx_info->skb);
1159 	}
1160 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
1161 						  tx_ring->qid));
1162 }
1163 
1164 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
1165 {
1166 	struct ena_ring *tx_ring;
1167 	int i;
1168 
1169 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1170 		tx_ring = &adapter->tx_ring[i];
1171 		ena_free_tx_bufs(tx_ring);
1172 	}
1173 }
1174 
1175 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1176 {
1177 	u16 ena_qid;
1178 	int i;
1179 
1180 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1181 		ena_qid = ENA_IO_TXQ_IDX(i);
1182 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1183 	}
1184 }
1185 
1186 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1187 {
1188 	u16 ena_qid;
1189 	int i;
1190 
1191 	for (i = 0; i < adapter->num_io_queues; i++) {
1192 		ena_qid = ENA_IO_RXQ_IDX(i);
1193 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
1194 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1195 	}
1196 }
1197 
1198 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
1199 {
1200 	ena_destroy_all_tx_queues(adapter);
1201 	ena_destroy_all_rx_queues(adapter);
1202 }
1203 
1204 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
1205 				 struct ena_tx_buffer *tx_info, bool is_xdp)
1206 {
1207 	if (tx_info)
1208 		netif_err(ring->adapter,
1209 			  tx_done,
1210 			  ring->netdev,
1211 			  "tx_info doesn't have valid %s",
1212 			   is_xdp ? "xdp frame" : "skb");
1213 	else
1214 		netif_err(ring->adapter,
1215 			  tx_done,
1216 			  ring->netdev,
1217 			  "Invalid req_id: %hu\n",
1218 			  req_id);
1219 
1220 	u64_stats_update_begin(&ring->syncp);
1221 	ring->tx_stats.bad_req_id++;
1222 	u64_stats_update_end(&ring->syncp);
1223 
1224 	/* Trigger device reset */
1225 	ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
1226 	set_bit(ENA_FLAG_TRIGGER_RESET, &ring->adapter->flags);
1227 	return -EFAULT;
1228 }
1229 
1230 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
1231 {
1232 	struct ena_tx_buffer *tx_info = NULL;
1233 
1234 	if (likely(req_id < tx_ring->ring_size)) {
1235 		tx_info = &tx_ring->tx_buffer_info[req_id];
1236 		if (likely(tx_info->skb))
1237 			return 0;
1238 	}
1239 
1240 	return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
1241 }
1242 
1243 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id)
1244 {
1245 	struct ena_tx_buffer *tx_info = NULL;
1246 
1247 	if (likely(req_id < xdp_ring->ring_size)) {
1248 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1249 		if (likely(tx_info->xdpf))
1250 			return 0;
1251 	}
1252 
1253 	return handle_invalid_req_id(xdp_ring, req_id, tx_info, true);
1254 }
1255 
1256 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
1257 {
1258 	struct netdev_queue *txq;
1259 	bool above_thresh;
1260 	u32 tx_bytes = 0;
1261 	u32 total_done = 0;
1262 	u16 next_to_clean;
1263 	u16 req_id;
1264 	int tx_pkts = 0;
1265 	int rc;
1266 
1267 	next_to_clean = tx_ring->next_to_clean;
1268 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
1269 
1270 	while (tx_pkts < budget) {
1271 		struct ena_tx_buffer *tx_info;
1272 		struct sk_buff *skb;
1273 
1274 		rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
1275 						&req_id);
1276 		if (rc)
1277 			break;
1278 
1279 		rc = validate_tx_req_id(tx_ring, req_id);
1280 		if (rc)
1281 			break;
1282 
1283 		tx_info = &tx_ring->tx_buffer_info[req_id];
1284 		skb = tx_info->skb;
1285 
1286 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
1287 		prefetch(&skb->end);
1288 
1289 		tx_info->skb = NULL;
1290 		tx_info->last_jiffies = 0;
1291 
1292 		ena_unmap_tx_buff(tx_ring, tx_info);
1293 
1294 		netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1295 			  "tx_poll: q %d skb %p completed\n", tx_ring->qid,
1296 			  skb);
1297 
1298 		tx_bytes += skb->len;
1299 		dev_kfree_skb(skb);
1300 		tx_pkts++;
1301 		total_done += tx_info->tx_descs;
1302 
1303 		tx_ring->free_ids[next_to_clean] = req_id;
1304 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1305 						     tx_ring->ring_size);
1306 	}
1307 
1308 	tx_ring->next_to_clean = next_to_clean;
1309 	ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
1310 	ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
1311 
1312 	netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1313 
1314 	netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1315 		  "tx_poll: q %d done. total pkts: %d\n",
1316 		  tx_ring->qid, tx_pkts);
1317 
1318 	/* need to make the rings circular update visible to
1319 	 * ena_start_xmit() before checking for netif_queue_stopped().
1320 	 */
1321 	smp_mb();
1322 
1323 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1324 						    ENA_TX_WAKEUP_THRESH);
1325 	if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
1326 		__netif_tx_lock(txq, smp_processor_id());
1327 		above_thresh =
1328 			ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1329 						     ENA_TX_WAKEUP_THRESH);
1330 		if (netif_tx_queue_stopped(txq) && above_thresh &&
1331 		    test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
1332 			netif_tx_wake_queue(txq);
1333 			u64_stats_update_begin(&tx_ring->syncp);
1334 			tx_ring->tx_stats.queue_wakeup++;
1335 			u64_stats_update_end(&tx_ring->syncp);
1336 		}
1337 		__netif_tx_unlock(txq);
1338 	}
1339 
1340 	return tx_pkts;
1341 }
1342 
1343 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags)
1344 {
1345 	struct sk_buff *skb;
1346 
1347 	if (frags)
1348 		skb = napi_get_frags(rx_ring->napi);
1349 	else
1350 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1351 						rx_ring->rx_copybreak);
1352 
1353 	if (unlikely(!skb)) {
1354 		u64_stats_update_begin(&rx_ring->syncp);
1355 		rx_ring->rx_stats.skb_alloc_fail++;
1356 		u64_stats_update_end(&rx_ring->syncp);
1357 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1358 			  "Failed to allocate skb. frags: %d\n", frags);
1359 		return NULL;
1360 	}
1361 
1362 	return skb;
1363 }
1364 
1365 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
1366 				  struct ena_com_rx_buf_info *ena_bufs,
1367 				  u32 descs,
1368 				  u16 *next_to_clean)
1369 {
1370 	struct sk_buff *skb;
1371 	struct ena_rx_buffer *rx_info;
1372 	u16 len, req_id, buf = 0;
1373 	void *va;
1374 	int rc;
1375 
1376 	len = ena_bufs[buf].len;
1377 	req_id = ena_bufs[buf].req_id;
1378 
1379 	rc = validate_rx_req_id(rx_ring, req_id);
1380 	if (unlikely(rc < 0))
1381 		return NULL;
1382 
1383 	rx_info = &rx_ring->rx_buffer_info[req_id];
1384 
1385 	if (unlikely(!rx_info->page)) {
1386 		netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
1387 			  "Page is NULL\n");
1388 		return NULL;
1389 	}
1390 
1391 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1392 		  "rx_info %p page %p\n",
1393 		  rx_info, rx_info->page);
1394 
1395 	/* save virt address of first buffer */
1396 	va = page_address(rx_info->page) + rx_info->page_offset;
1397 	prefetch(va + NET_IP_ALIGN);
1398 
1399 	if (len <= rx_ring->rx_copybreak) {
1400 		skb = ena_alloc_skb(rx_ring, false);
1401 		if (unlikely(!skb))
1402 			return NULL;
1403 
1404 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1405 			  "rx allocated small packet. len %d. data_len %d\n",
1406 			  skb->len, skb->data_len);
1407 
1408 		/* sync this buffer for CPU use */
1409 		dma_sync_single_for_cpu(rx_ring->dev,
1410 					dma_unmap_addr(&rx_info->ena_buf, paddr),
1411 					len,
1412 					DMA_FROM_DEVICE);
1413 		skb_copy_to_linear_data(skb, va, len);
1414 		dma_sync_single_for_device(rx_ring->dev,
1415 					   dma_unmap_addr(&rx_info->ena_buf, paddr),
1416 					   len,
1417 					   DMA_FROM_DEVICE);
1418 
1419 		skb_put(skb, len);
1420 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1421 		rx_ring->free_ids[*next_to_clean] = req_id;
1422 		*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
1423 						     rx_ring->ring_size);
1424 		return skb;
1425 	}
1426 
1427 	skb = ena_alloc_skb(rx_ring, true);
1428 	if (unlikely(!skb))
1429 		return NULL;
1430 
1431 	do {
1432 		dma_unmap_page(rx_ring->dev,
1433 			       dma_unmap_addr(&rx_info->ena_buf, paddr),
1434 			       ENA_PAGE_SIZE, DMA_FROM_DEVICE);
1435 
1436 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1437 				rx_info->page_offset, len, ENA_PAGE_SIZE);
1438 		/* The offset is non zero only for the first buffer */
1439 		rx_info->page_offset = 0;
1440 
1441 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1442 			  "rx skb updated. len %d. data_len %d\n",
1443 			  skb->len, skb->data_len);
1444 
1445 		rx_info->page = NULL;
1446 
1447 		rx_ring->free_ids[*next_to_clean] = req_id;
1448 		*next_to_clean =
1449 			ENA_RX_RING_IDX_NEXT(*next_to_clean,
1450 					     rx_ring->ring_size);
1451 		if (likely(--descs == 0))
1452 			break;
1453 
1454 		buf++;
1455 		len = ena_bufs[buf].len;
1456 		req_id = ena_bufs[buf].req_id;
1457 
1458 		rc = validate_rx_req_id(rx_ring, req_id);
1459 		if (unlikely(rc < 0))
1460 			return NULL;
1461 
1462 		rx_info = &rx_ring->rx_buffer_info[req_id];
1463 	} while (1);
1464 
1465 	return skb;
1466 }
1467 
1468 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1469  * @adapter: structure containing adapter specific data
1470  * @ena_rx_ctx: received packet context/metadata
1471  * @skb: skb currently being received and modified
1472  */
1473 static void ena_rx_checksum(struct ena_ring *rx_ring,
1474 				   struct ena_com_rx_ctx *ena_rx_ctx,
1475 				   struct sk_buff *skb)
1476 {
1477 	/* Rx csum disabled */
1478 	if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1479 		skb->ip_summed = CHECKSUM_NONE;
1480 		return;
1481 	}
1482 
1483 	/* For fragmented packets the checksum isn't valid */
1484 	if (ena_rx_ctx->frag) {
1485 		skb->ip_summed = CHECKSUM_NONE;
1486 		return;
1487 	}
1488 
1489 	/* if IP and error */
1490 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1491 		     (ena_rx_ctx->l3_csum_err))) {
1492 		/* ipv4 checksum error */
1493 		skb->ip_summed = CHECKSUM_NONE;
1494 		u64_stats_update_begin(&rx_ring->syncp);
1495 		rx_ring->rx_stats.bad_csum++;
1496 		u64_stats_update_end(&rx_ring->syncp);
1497 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1498 			  "RX IPv4 header checksum error\n");
1499 		return;
1500 	}
1501 
1502 	/* if TCP/UDP */
1503 	if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1504 		   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1505 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
1506 			/* TCP/UDP checksum error */
1507 			u64_stats_update_begin(&rx_ring->syncp);
1508 			rx_ring->rx_stats.bad_csum++;
1509 			u64_stats_update_end(&rx_ring->syncp);
1510 			netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1511 				  "RX L4 checksum error\n");
1512 			skb->ip_summed = CHECKSUM_NONE;
1513 			return;
1514 		}
1515 
1516 		if (likely(ena_rx_ctx->l4_csum_checked)) {
1517 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1518 			u64_stats_update_begin(&rx_ring->syncp);
1519 			rx_ring->rx_stats.csum_good++;
1520 			u64_stats_update_end(&rx_ring->syncp);
1521 		} else {
1522 			u64_stats_update_begin(&rx_ring->syncp);
1523 			rx_ring->rx_stats.csum_unchecked++;
1524 			u64_stats_update_end(&rx_ring->syncp);
1525 			skb->ip_summed = CHECKSUM_NONE;
1526 		}
1527 	} else {
1528 		skb->ip_summed = CHECKSUM_NONE;
1529 		return;
1530 	}
1531 
1532 }
1533 
1534 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1535 			    struct ena_com_rx_ctx *ena_rx_ctx,
1536 			    struct sk_buff *skb)
1537 {
1538 	enum pkt_hash_types hash_type;
1539 
1540 	if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1541 		if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1542 			   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1543 
1544 			hash_type = PKT_HASH_TYPE_L4;
1545 		else
1546 			hash_type = PKT_HASH_TYPE_NONE;
1547 
1548 		/* Override hash type if the packet is fragmented */
1549 		if (ena_rx_ctx->frag)
1550 			hash_type = PKT_HASH_TYPE_NONE;
1551 
1552 		skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1553 	}
1554 }
1555 
1556 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp)
1557 {
1558 	struct ena_rx_buffer *rx_info;
1559 	int ret;
1560 
1561 	rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1562 	xdp->data = page_address(rx_info->page) +
1563 		rx_info->page_offset + rx_ring->rx_headroom;
1564 	xdp_set_data_meta_invalid(xdp);
1565 	xdp->data_hard_start = page_address(rx_info->page);
1566 	xdp->data_end = xdp->data + rx_ring->ena_bufs[0].len;
1567 	/* If for some reason we received a bigger packet than
1568 	 * we expect, then we simply drop it
1569 	 */
1570 	if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU))
1571 		return XDP_DROP;
1572 
1573 	ret = ena_xdp_execute(rx_ring, xdp, rx_info);
1574 
1575 	/* The xdp program might expand the headers */
1576 	if (ret == XDP_PASS) {
1577 		rx_info->page_offset = xdp->data - xdp->data_hard_start;
1578 		rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1579 	}
1580 
1581 	return ret;
1582 }
1583 /* ena_clean_rx_irq - Cleanup RX irq
1584  * @rx_ring: RX ring to clean
1585  * @napi: napi handler
1586  * @budget: how many packets driver is allowed to clean
1587  *
1588  * Returns the number of cleaned buffers.
1589  */
1590 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1591 			    u32 budget)
1592 {
1593 	u16 next_to_clean = rx_ring->next_to_clean;
1594 	struct ena_com_rx_ctx ena_rx_ctx;
1595 	struct ena_rx_buffer *rx_info;
1596 	struct ena_adapter *adapter;
1597 	u32 res_budget, work_done;
1598 	int rx_copybreak_pkt = 0;
1599 	int refill_threshold;
1600 	struct sk_buff *skb;
1601 	int refill_required;
1602 	struct xdp_buff xdp;
1603 	int total_len = 0;
1604 	int xdp_verdict;
1605 	int rc = 0;
1606 	int i;
1607 
1608 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1609 		  "%s qid %d\n", __func__, rx_ring->qid);
1610 	res_budget = budget;
1611 	xdp.rxq = &rx_ring->xdp_rxq;
1612 	xdp.frame_sz = ENA_PAGE_SIZE;
1613 
1614 	do {
1615 		xdp_verdict = XDP_PASS;
1616 		skb = NULL;
1617 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1618 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1619 		ena_rx_ctx.descs = 0;
1620 		ena_rx_ctx.pkt_offset = 0;
1621 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1622 				    rx_ring->ena_com_io_sq,
1623 				    &ena_rx_ctx);
1624 		if (unlikely(rc))
1625 			goto error;
1626 
1627 		if (unlikely(ena_rx_ctx.descs == 0))
1628 			break;
1629 
1630 		rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1631 		rx_info->page_offset = ena_rx_ctx.pkt_offset;
1632 
1633 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1634 			  "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1635 			  rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1636 			  ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1637 
1638 		if (ena_xdp_present_ring(rx_ring))
1639 			xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp);
1640 
1641 		/* allocate skb and fill it */
1642 		if (xdp_verdict == XDP_PASS)
1643 			skb = ena_rx_skb(rx_ring,
1644 					 rx_ring->ena_bufs,
1645 					 ena_rx_ctx.descs,
1646 					 &next_to_clean);
1647 
1648 		if (unlikely(!skb)) {
1649 			if (xdp_verdict == XDP_TX)
1650 				ena_free_rx_page(rx_ring,
1651 						 &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]);
1652 			for (i = 0; i < ena_rx_ctx.descs; i++) {
1653 				rx_ring->free_ids[next_to_clean] =
1654 					rx_ring->ena_bufs[i].req_id;
1655 				next_to_clean =
1656 					ENA_RX_RING_IDX_NEXT(next_to_clean,
1657 							     rx_ring->ring_size);
1658 			}
1659 			if (xdp_verdict != XDP_PASS) {
1660 				res_budget--;
1661 				continue;
1662 			}
1663 			break;
1664 		}
1665 
1666 		ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1667 
1668 		ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1669 
1670 		skb_record_rx_queue(skb, rx_ring->qid);
1671 
1672 		if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
1673 			total_len += rx_ring->ena_bufs[0].len;
1674 			rx_copybreak_pkt++;
1675 			napi_gro_receive(napi, skb);
1676 		} else {
1677 			total_len += skb->len;
1678 			napi_gro_frags(napi);
1679 		}
1680 
1681 		res_budget--;
1682 	} while (likely(res_budget));
1683 
1684 	work_done = budget - res_budget;
1685 	rx_ring->per_napi_packets += work_done;
1686 	u64_stats_update_begin(&rx_ring->syncp);
1687 	rx_ring->rx_stats.bytes += total_len;
1688 	rx_ring->rx_stats.cnt += work_done;
1689 	rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1690 	u64_stats_update_end(&rx_ring->syncp);
1691 
1692 	rx_ring->next_to_clean = next_to_clean;
1693 
1694 	refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
1695 	refill_threshold =
1696 		min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1697 		      ENA_RX_REFILL_THRESH_PACKET);
1698 
1699 	/* Optimization, try to batch new rx buffers */
1700 	if (refill_required > refill_threshold) {
1701 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1702 		ena_refill_rx_bufs(rx_ring, refill_required);
1703 	}
1704 
1705 	return work_done;
1706 
1707 error:
1708 	adapter = netdev_priv(rx_ring->netdev);
1709 
1710 	u64_stats_update_begin(&rx_ring->syncp);
1711 	rx_ring->rx_stats.bad_desc_num++;
1712 	u64_stats_update_end(&rx_ring->syncp);
1713 
1714 	/* Too many desc from the device. Trigger reset */
1715 	adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
1716 	set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
1717 
1718 	return 0;
1719 }
1720 
1721 static void ena_dim_work(struct work_struct *w)
1722 {
1723 	struct dim *dim = container_of(w, struct dim, work);
1724 	struct dim_cq_moder cur_moder =
1725 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1726 	struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1727 
1728 	ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1729 	dim->state = DIM_START_MEASURE;
1730 }
1731 
1732 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1733 {
1734 	struct dim_sample dim_sample;
1735 	struct ena_ring *rx_ring = ena_napi->rx_ring;
1736 
1737 	if (!rx_ring->per_napi_packets)
1738 		return;
1739 
1740 	rx_ring->non_empty_napi_events++;
1741 
1742 	dim_update_sample(rx_ring->non_empty_napi_events,
1743 			  rx_ring->rx_stats.cnt,
1744 			  rx_ring->rx_stats.bytes,
1745 			  &dim_sample);
1746 
1747 	net_dim(&ena_napi->dim, dim_sample);
1748 
1749 	rx_ring->per_napi_packets = 0;
1750 }
1751 
1752 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
1753 					struct ena_ring *rx_ring)
1754 {
1755 	struct ena_eth_io_intr_reg intr_reg;
1756 	u32 rx_interval = 0;
1757 	/* Rx ring can be NULL when for XDP tx queues which don't have an
1758 	 * accompanying rx_ring pair.
1759 	 */
1760 	if (rx_ring)
1761 		rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1762 			rx_ring->smoothed_interval :
1763 			ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1764 
1765 	/* Update intr register: rx intr delay,
1766 	 * tx intr delay and interrupt unmask
1767 	 */
1768 	ena_com_update_intr_reg(&intr_reg,
1769 				rx_interval,
1770 				tx_ring->smoothed_interval,
1771 				true);
1772 
1773 	u64_stats_update_begin(&tx_ring->syncp);
1774 	tx_ring->tx_stats.unmask_interrupt++;
1775 	u64_stats_update_end(&tx_ring->syncp);
1776 	/* It is a shared MSI-X.
1777 	 * Tx and Rx CQ have pointer to it.
1778 	 * So we use one of them to reach the intr reg
1779 	 * The Tx ring is used because the rx_ring is NULL for XDP queues
1780 	 */
1781 	ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1782 }
1783 
1784 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1785 					     struct ena_ring *rx_ring)
1786 {
1787 	int cpu = get_cpu();
1788 	int numa_node;
1789 
1790 	/* Check only one ring since the 2 rings are running on the same cpu */
1791 	if (likely(tx_ring->cpu == cpu))
1792 		goto out;
1793 
1794 	numa_node = cpu_to_node(cpu);
1795 	put_cpu();
1796 
1797 	if (numa_node != NUMA_NO_NODE) {
1798 		ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1799 		if (rx_ring)
1800 			ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1801 						 numa_node);
1802 	}
1803 
1804 	tx_ring->cpu = cpu;
1805 	if (rx_ring)
1806 		rx_ring->cpu = cpu;
1807 
1808 	return;
1809 out:
1810 	put_cpu();
1811 }
1812 
1813 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget)
1814 {
1815 	u32 total_done = 0;
1816 	u16 next_to_clean;
1817 	u32 tx_bytes = 0;
1818 	int tx_pkts = 0;
1819 	u16 req_id;
1820 	int rc;
1821 
1822 	if (unlikely(!xdp_ring))
1823 		return 0;
1824 	next_to_clean = xdp_ring->next_to_clean;
1825 
1826 	while (tx_pkts < budget) {
1827 		struct ena_tx_buffer *tx_info;
1828 		struct xdp_frame *xdpf;
1829 
1830 		rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq,
1831 						&req_id);
1832 		if (rc)
1833 			break;
1834 
1835 		rc = validate_xdp_req_id(xdp_ring, req_id);
1836 		if (rc)
1837 			break;
1838 
1839 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1840 		xdpf = tx_info->xdpf;
1841 
1842 		tx_info->xdpf = NULL;
1843 		tx_info->last_jiffies = 0;
1844 		ena_unmap_tx_buff(xdp_ring, tx_info);
1845 
1846 		netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1847 			  "tx_poll: q %d skb %p completed\n", xdp_ring->qid,
1848 			  xdpf);
1849 
1850 		tx_bytes += xdpf->len;
1851 		tx_pkts++;
1852 		total_done += tx_info->tx_descs;
1853 
1854 		__free_page(tx_info->xdp_rx_page);
1855 		xdp_ring->free_ids[next_to_clean] = req_id;
1856 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1857 						     xdp_ring->ring_size);
1858 	}
1859 
1860 	xdp_ring->next_to_clean = next_to_clean;
1861 	ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done);
1862 	ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq);
1863 
1864 	netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1865 		  "tx_poll: q %d done. total pkts: %d\n",
1866 		  xdp_ring->qid, tx_pkts);
1867 
1868 	return tx_pkts;
1869 }
1870 
1871 static int ena_io_poll(struct napi_struct *napi, int budget)
1872 {
1873 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1874 	struct ena_ring *tx_ring, *rx_ring;
1875 	int tx_work_done;
1876 	int rx_work_done = 0;
1877 	int tx_budget;
1878 	int napi_comp_call = 0;
1879 	int ret;
1880 
1881 	tx_ring = ena_napi->tx_ring;
1882 	rx_ring = ena_napi->rx_ring;
1883 
1884 	tx_ring->first_interrupt = ena_napi->first_interrupt;
1885 	rx_ring->first_interrupt = ena_napi->first_interrupt;
1886 
1887 	tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1888 
1889 	if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1890 	    test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1891 		napi_complete_done(napi, 0);
1892 		return 0;
1893 	}
1894 
1895 	tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1896 	/* On netpoll the budget is zero and the handler should only clean the
1897 	 * tx completions.
1898 	 */
1899 	if (likely(budget))
1900 		rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1901 
1902 	/* If the device is about to reset or down, avoid unmask
1903 	 * the interrupt and return 0 so NAPI won't reschedule
1904 	 */
1905 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1906 		     test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1907 		napi_complete_done(napi, 0);
1908 		ret = 0;
1909 
1910 	} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1911 		napi_comp_call = 1;
1912 
1913 		/* Update numa and unmask the interrupt only when schedule
1914 		 * from the interrupt context (vs from sk_busy_loop)
1915 		 */
1916 		if (napi_complete_done(napi, rx_work_done)) {
1917 			/* We apply adaptive moderation on Rx path only.
1918 			 * Tx uses static interrupt moderation.
1919 			 */
1920 			if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1921 				ena_adjust_adaptive_rx_intr_moderation(ena_napi);
1922 
1923 			ena_unmask_interrupt(tx_ring, rx_ring);
1924 		}
1925 
1926 		ena_update_ring_numa_node(tx_ring, rx_ring);
1927 
1928 		ret = rx_work_done;
1929 	} else {
1930 		ret = budget;
1931 	}
1932 
1933 	u64_stats_update_begin(&tx_ring->syncp);
1934 	tx_ring->tx_stats.napi_comp += napi_comp_call;
1935 	tx_ring->tx_stats.tx_poll++;
1936 	u64_stats_update_end(&tx_ring->syncp);
1937 
1938 	return ret;
1939 }
1940 
1941 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1942 {
1943 	struct ena_adapter *adapter = (struct ena_adapter *)data;
1944 
1945 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1946 
1947 	/* Don't call the aenq handler before probe is done */
1948 	if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1949 		ena_com_aenq_intr_handler(adapter->ena_dev, data);
1950 
1951 	return IRQ_HANDLED;
1952 }
1953 
1954 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1955  * @irq: interrupt number
1956  * @data: pointer to a network interface private napi device structure
1957  */
1958 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1959 {
1960 	struct ena_napi *ena_napi = data;
1961 
1962 	ena_napi->first_interrupt = true;
1963 
1964 	napi_schedule_irqoff(&ena_napi->napi);
1965 
1966 	return IRQ_HANDLED;
1967 }
1968 
1969 /* Reserve a single MSI-X vector for management (admin + aenq).
1970  * plus reserve one vector for each potential io queue.
1971  * the number of potential io queues is the minimum of what the device
1972  * supports and the number of vCPUs.
1973  */
1974 static int ena_enable_msix(struct ena_adapter *adapter)
1975 {
1976 	int msix_vecs, irq_cnt;
1977 
1978 	if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1979 		netif_err(adapter, probe, adapter->netdev,
1980 			  "Error, MSI-X is already enabled\n");
1981 		return -EPERM;
1982 	}
1983 
1984 	/* Reserved the max msix vectors we might need */
1985 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
1986 	netif_dbg(adapter, probe, adapter->netdev,
1987 		  "trying to enable MSI-X, vectors %d\n", msix_vecs);
1988 
1989 	irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
1990 					msix_vecs, PCI_IRQ_MSIX);
1991 
1992 	if (irq_cnt < 0) {
1993 		netif_err(adapter, probe, adapter->netdev,
1994 			  "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
1995 		return -ENOSPC;
1996 	}
1997 
1998 	if (irq_cnt != msix_vecs) {
1999 		netif_notice(adapter, probe, adapter->netdev,
2000 			     "enable only %d MSI-X (out of %d), reduce the number of queues\n",
2001 			     irq_cnt, msix_vecs);
2002 		adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
2003 	}
2004 
2005 	if (ena_init_rx_cpu_rmap(adapter))
2006 		netif_warn(adapter, probe, adapter->netdev,
2007 			   "Failed to map IRQs to CPUs\n");
2008 
2009 	adapter->msix_vecs = irq_cnt;
2010 	set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
2011 
2012 	return 0;
2013 }
2014 
2015 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
2016 {
2017 	u32 cpu;
2018 
2019 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
2020 		 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
2021 		 pci_name(adapter->pdev));
2022 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
2023 		ena_intr_msix_mgmnt;
2024 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
2025 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
2026 		pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
2027 	cpu = cpumask_first(cpu_online_mask);
2028 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
2029 	cpumask_set_cpu(cpu,
2030 			&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
2031 }
2032 
2033 static void ena_setup_io_intr(struct ena_adapter *adapter)
2034 {
2035 	struct net_device *netdev;
2036 	int irq_idx, i, cpu;
2037 	int io_queue_count;
2038 
2039 	netdev = adapter->netdev;
2040 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2041 
2042 	for (i = 0; i < io_queue_count; i++) {
2043 		irq_idx = ENA_IO_IRQ_IDX(i);
2044 		cpu = i % num_online_cpus();
2045 
2046 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
2047 			 "%s-Tx-Rx-%d", netdev->name, i);
2048 		adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
2049 		adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
2050 		adapter->irq_tbl[irq_idx].vector =
2051 			pci_irq_vector(adapter->pdev, irq_idx);
2052 		adapter->irq_tbl[irq_idx].cpu = cpu;
2053 
2054 		cpumask_set_cpu(cpu,
2055 				&adapter->irq_tbl[irq_idx].affinity_hint_mask);
2056 	}
2057 }
2058 
2059 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
2060 {
2061 	unsigned long flags = 0;
2062 	struct ena_irq *irq;
2063 	int rc;
2064 
2065 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2066 	rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2067 			 irq->data);
2068 	if (rc) {
2069 		netif_err(adapter, probe, adapter->netdev,
2070 			  "failed to request admin irq\n");
2071 		return rc;
2072 	}
2073 
2074 	netif_dbg(adapter, probe, adapter->netdev,
2075 		  "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
2076 		  irq->affinity_hint_mask.bits[0], irq->vector);
2077 
2078 	irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2079 
2080 	return rc;
2081 }
2082 
2083 static int ena_request_io_irq(struct ena_adapter *adapter)
2084 {
2085 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2086 	unsigned long flags = 0;
2087 	struct ena_irq *irq;
2088 	int rc = 0, i, k;
2089 
2090 	if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2091 		netif_err(adapter, ifup, adapter->netdev,
2092 			  "Failed to request I/O IRQ: MSI-X is not enabled\n");
2093 		return -EINVAL;
2094 	}
2095 
2096 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2097 		irq = &adapter->irq_tbl[i];
2098 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2099 				 irq->data);
2100 		if (rc) {
2101 			netif_err(adapter, ifup, adapter->netdev,
2102 				  "Failed to request I/O IRQ. index %d rc %d\n",
2103 				   i, rc);
2104 			goto err;
2105 		}
2106 
2107 		netif_dbg(adapter, ifup, adapter->netdev,
2108 			  "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
2109 			  i, irq->affinity_hint_mask.bits[0], irq->vector);
2110 
2111 		irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2112 	}
2113 
2114 	return rc;
2115 
2116 err:
2117 	for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
2118 		irq = &adapter->irq_tbl[k];
2119 		free_irq(irq->vector, irq->data);
2120 	}
2121 
2122 	return rc;
2123 }
2124 
2125 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
2126 {
2127 	struct ena_irq *irq;
2128 
2129 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2130 	synchronize_irq(irq->vector);
2131 	irq_set_affinity_hint(irq->vector, NULL);
2132 	free_irq(irq->vector, irq->data);
2133 }
2134 
2135 static void ena_free_io_irq(struct ena_adapter *adapter)
2136 {
2137 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2138 	struct ena_irq *irq;
2139 	int i;
2140 
2141 #ifdef CONFIG_RFS_ACCEL
2142 	if (adapter->msix_vecs >= 1) {
2143 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2144 		adapter->netdev->rx_cpu_rmap = NULL;
2145 	}
2146 #endif /* CONFIG_RFS_ACCEL */
2147 
2148 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2149 		irq = &adapter->irq_tbl[i];
2150 		irq_set_affinity_hint(irq->vector, NULL);
2151 		free_irq(irq->vector, irq->data);
2152 	}
2153 }
2154 
2155 static void ena_disable_msix(struct ena_adapter *adapter)
2156 {
2157 	if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
2158 		pci_free_irq_vectors(adapter->pdev);
2159 }
2160 
2161 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
2162 {
2163 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2164 	int i;
2165 
2166 	if (!netif_running(adapter->netdev))
2167 		return;
2168 
2169 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++)
2170 		synchronize_irq(adapter->irq_tbl[i].vector);
2171 }
2172 
2173 static void ena_del_napi_in_range(struct ena_adapter *adapter,
2174 				  int first_index,
2175 				  int count)
2176 {
2177 	int i;
2178 
2179 	for (i = first_index; i < first_index + count; i++) {
2180 		/* Check if napi was initialized before */
2181 		if (!ENA_IS_XDP_INDEX(adapter, i) ||
2182 		    adapter->ena_napi[i].xdp_ring)
2183 			netif_napi_del(&adapter->ena_napi[i].napi);
2184 		else
2185 			WARN_ON(ENA_IS_XDP_INDEX(adapter, i) &&
2186 				adapter->ena_napi[i].xdp_ring);
2187 	}
2188 }
2189 
2190 static void ena_init_napi_in_range(struct ena_adapter *adapter,
2191 				   int first_index, int count)
2192 {
2193 	struct ena_napi *napi = {0};
2194 	int i;
2195 
2196 	for (i = first_index; i < first_index + count; i++) {
2197 		napi = &adapter->ena_napi[i];
2198 
2199 		netif_napi_add(adapter->netdev,
2200 			       &adapter->ena_napi[i].napi,
2201 			       ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll,
2202 			       ENA_NAPI_BUDGET);
2203 
2204 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
2205 			napi->rx_ring = &adapter->rx_ring[i];
2206 			napi->tx_ring = &adapter->tx_ring[i];
2207 		} else {
2208 			napi->xdp_ring = &adapter->tx_ring[i];
2209 		}
2210 		napi->qid = i;
2211 	}
2212 }
2213 
2214 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
2215 				      int first_index,
2216 				      int count)
2217 {
2218 	int i;
2219 
2220 	for (i = first_index; i < first_index + count; i++)
2221 		napi_disable(&adapter->ena_napi[i].napi);
2222 }
2223 
2224 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
2225 				     int first_index,
2226 				     int count)
2227 {
2228 	int i;
2229 
2230 	for (i = first_index; i < first_index + count; i++)
2231 		napi_enable(&adapter->ena_napi[i].napi);
2232 }
2233 
2234 /* Configure the Rx forwarding */
2235 static int ena_rss_configure(struct ena_adapter *adapter)
2236 {
2237 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2238 	int rc;
2239 
2240 	/* In case the RSS table wasn't initialized by probe */
2241 	if (!ena_dev->rss.tbl_log_size) {
2242 		rc = ena_rss_init_default(adapter);
2243 		if (rc && (rc != -EOPNOTSUPP)) {
2244 			netif_err(adapter, ifup, adapter->netdev,
2245 				  "Failed to init RSS rc: %d\n", rc);
2246 			return rc;
2247 		}
2248 	}
2249 
2250 	/* Set indirect table */
2251 	rc = ena_com_indirect_table_set(ena_dev);
2252 	if (unlikely(rc && rc != -EOPNOTSUPP))
2253 		return rc;
2254 
2255 	/* Configure hash function (if supported) */
2256 	rc = ena_com_set_hash_function(ena_dev);
2257 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2258 		return rc;
2259 
2260 	/* Configure hash inputs (if supported) */
2261 	rc = ena_com_set_hash_ctrl(ena_dev);
2262 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2263 		return rc;
2264 
2265 	return 0;
2266 }
2267 
2268 static int ena_up_complete(struct ena_adapter *adapter)
2269 {
2270 	int rc;
2271 
2272 	rc = ena_rss_configure(adapter);
2273 	if (rc)
2274 		return rc;
2275 
2276 	ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
2277 
2278 	ena_refill_all_rx_bufs(adapter);
2279 
2280 	/* enable transmits */
2281 	netif_tx_start_all_queues(adapter->netdev);
2282 
2283 	ena_napi_enable_in_range(adapter,
2284 				 0,
2285 				 adapter->xdp_num_queues + adapter->num_io_queues);
2286 
2287 	return 0;
2288 }
2289 
2290 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
2291 {
2292 	struct ena_com_create_io_ctx ctx;
2293 	struct ena_com_dev *ena_dev;
2294 	struct ena_ring *tx_ring;
2295 	u32 msix_vector;
2296 	u16 ena_qid;
2297 	int rc;
2298 
2299 	ena_dev = adapter->ena_dev;
2300 
2301 	tx_ring = &adapter->tx_ring[qid];
2302 	msix_vector = ENA_IO_IRQ_IDX(qid);
2303 	ena_qid = ENA_IO_TXQ_IDX(qid);
2304 
2305 	memset(&ctx, 0x0, sizeof(ctx));
2306 
2307 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
2308 	ctx.qid = ena_qid;
2309 	ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
2310 	ctx.msix_vector = msix_vector;
2311 	ctx.queue_size = tx_ring->ring_size;
2312 	ctx.numa_node = cpu_to_node(tx_ring->cpu);
2313 
2314 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2315 	if (rc) {
2316 		netif_err(adapter, ifup, adapter->netdev,
2317 			  "Failed to create I/O TX queue num %d rc: %d\n",
2318 			  qid, rc);
2319 		return rc;
2320 	}
2321 
2322 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2323 				     &tx_ring->ena_com_io_sq,
2324 				     &tx_ring->ena_com_io_cq);
2325 	if (rc) {
2326 		netif_err(adapter, ifup, adapter->netdev,
2327 			  "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
2328 			  qid, rc);
2329 		ena_com_destroy_io_queue(ena_dev, ena_qid);
2330 		return rc;
2331 	}
2332 
2333 	ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
2334 	return rc;
2335 }
2336 
2337 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
2338 					    int first_index, int count)
2339 {
2340 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2341 	int rc, i;
2342 
2343 	for (i = first_index; i < first_index + count; i++) {
2344 		rc = ena_create_io_tx_queue(adapter, i);
2345 		if (rc)
2346 			goto create_err;
2347 	}
2348 
2349 	return 0;
2350 
2351 create_err:
2352 	while (i-- > first_index)
2353 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
2354 
2355 	return rc;
2356 }
2357 
2358 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
2359 {
2360 	struct ena_com_dev *ena_dev;
2361 	struct ena_com_create_io_ctx ctx;
2362 	struct ena_ring *rx_ring;
2363 	u32 msix_vector;
2364 	u16 ena_qid;
2365 	int rc;
2366 
2367 	ena_dev = adapter->ena_dev;
2368 
2369 	rx_ring = &adapter->rx_ring[qid];
2370 	msix_vector = ENA_IO_IRQ_IDX(qid);
2371 	ena_qid = ENA_IO_RXQ_IDX(qid);
2372 
2373 	memset(&ctx, 0x0, sizeof(ctx));
2374 
2375 	ctx.qid = ena_qid;
2376 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
2377 	ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2378 	ctx.msix_vector = msix_vector;
2379 	ctx.queue_size = rx_ring->ring_size;
2380 	ctx.numa_node = cpu_to_node(rx_ring->cpu);
2381 
2382 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2383 	if (rc) {
2384 		netif_err(adapter, ifup, adapter->netdev,
2385 			  "Failed to create I/O RX queue num %d rc: %d\n",
2386 			  qid, rc);
2387 		return rc;
2388 	}
2389 
2390 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2391 				     &rx_ring->ena_com_io_sq,
2392 				     &rx_ring->ena_com_io_cq);
2393 	if (rc) {
2394 		netif_err(adapter, ifup, adapter->netdev,
2395 			  "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
2396 			  qid, rc);
2397 		goto err;
2398 	}
2399 
2400 	ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
2401 
2402 	return rc;
2403 err:
2404 	ena_com_destroy_io_queue(ena_dev, ena_qid);
2405 	return rc;
2406 }
2407 
2408 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
2409 {
2410 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2411 	int rc, i;
2412 
2413 	for (i = 0; i < adapter->num_io_queues; i++) {
2414 		rc = ena_create_io_rx_queue(adapter, i);
2415 		if (rc)
2416 			goto create_err;
2417 		INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
2418 	}
2419 
2420 	return 0;
2421 
2422 create_err:
2423 	while (i--) {
2424 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
2425 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
2426 	}
2427 
2428 	return rc;
2429 }
2430 
2431 static void set_io_rings_size(struct ena_adapter *adapter,
2432 			      int new_tx_size,
2433 			      int new_rx_size)
2434 {
2435 	int i;
2436 
2437 	for (i = 0; i < adapter->num_io_queues; i++) {
2438 		adapter->tx_ring[i].ring_size = new_tx_size;
2439 		adapter->rx_ring[i].ring_size = new_rx_size;
2440 	}
2441 }
2442 
2443 /* This function allows queue allocation to backoff when the system is
2444  * low on memory. If there is not enough memory to allocate io queues
2445  * the driver will try to allocate smaller queues.
2446  *
2447  * The backoff algorithm is as follows:
2448  *  1. Try to allocate TX and RX and if successful.
2449  *  1.1. return success
2450  *
2451  *  2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2452  *
2453  *  3. If TX or RX is smaller than 256
2454  *  3.1. return failure.
2455  *  4. else
2456  *  4.1. go back to 1.
2457  */
2458 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2459 {
2460 	int rc, cur_rx_ring_size, cur_tx_ring_size;
2461 	int new_rx_ring_size, new_tx_ring_size;
2462 
2463 	/* current queue sizes might be set to smaller than the requested
2464 	 * ones due to past queue allocation failures.
2465 	 */
2466 	set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2467 			  adapter->requested_rx_ring_size);
2468 
2469 	while (1) {
2470 		if (ena_xdp_present(adapter)) {
2471 			rc = ena_setup_and_create_all_xdp_queues(adapter);
2472 
2473 			if (rc)
2474 				goto err_setup_tx;
2475 		}
2476 		rc = ena_setup_tx_resources_in_range(adapter,
2477 						     0,
2478 						     adapter->num_io_queues);
2479 		if (rc)
2480 			goto err_setup_tx;
2481 
2482 		rc = ena_create_io_tx_queues_in_range(adapter,
2483 						      0,
2484 						      adapter->num_io_queues);
2485 		if (rc)
2486 			goto err_create_tx_queues;
2487 
2488 		rc = ena_setup_all_rx_resources(adapter);
2489 		if (rc)
2490 			goto err_setup_rx;
2491 
2492 		rc = ena_create_all_io_rx_queues(adapter);
2493 		if (rc)
2494 			goto err_create_rx_queues;
2495 
2496 		return 0;
2497 
2498 err_create_rx_queues:
2499 		ena_free_all_io_rx_resources(adapter);
2500 err_setup_rx:
2501 		ena_destroy_all_tx_queues(adapter);
2502 err_create_tx_queues:
2503 		ena_free_all_io_tx_resources(adapter);
2504 err_setup_tx:
2505 		if (rc != -ENOMEM) {
2506 			netif_err(adapter, ifup, adapter->netdev,
2507 				  "Queue creation failed with error code %d\n",
2508 				  rc);
2509 			return rc;
2510 		}
2511 
2512 		cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2513 		cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2514 
2515 		netif_err(adapter, ifup, adapter->netdev,
2516 			  "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2517 			  cur_tx_ring_size, cur_rx_ring_size);
2518 
2519 		new_tx_ring_size = cur_tx_ring_size;
2520 		new_rx_ring_size = cur_rx_ring_size;
2521 
2522 		/* Decrease the size of the larger queue, or
2523 		 * decrease both if they are the same size.
2524 		 */
2525 		if (cur_rx_ring_size <= cur_tx_ring_size)
2526 			new_tx_ring_size = cur_tx_ring_size / 2;
2527 		if (cur_rx_ring_size >= cur_tx_ring_size)
2528 			new_rx_ring_size = cur_rx_ring_size / 2;
2529 
2530 		if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2531 		    new_rx_ring_size < ENA_MIN_RING_SIZE) {
2532 			netif_err(adapter, ifup, adapter->netdev,
2533 				  "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2534 				  ENA_MIN_RING_SIZE);
2535 			return rc;
2536 		}
2537 
2538 		netif_err(adapter, ifup, adapter->netdev,
2539 			  "Retrying queue creation with sizes TX=%d, RX=%d\n",
2540 			  new_tx_ring_size,
2541 			  new_rx_ring_size);
2542 
2543 		set_io_rings_size(adapter, new_tx_ring_size,
2544 				  new_rx_ring_size);
2545 	}
2546 }
2547 
2548 static int ena_up(struct ena_adapter *adapter)
2549 {
2550 	int io_queue_count, rc, i;
2551 
2552 	netdev_dbg(adapter->netdev, "%s\n", __func__);
2553 
2554 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2555 	ena_setup_io_intr(adapter);
2556 
2557 	/* napi poll functions should be initialized before running
2558 	 * request_irq(), to handle a rare condition where there is a pending
2559 	 * interrupt, causing the ISR to fire immediately while the poll
2560 	 * function wasn't set yet, causing a null dereference
2561 	 */
2562 	ena_init_napi_in_range(adapter, 0, io_queue_count);
2563 
2564 	rc = ena_request_io_irq(adapter);
2565 	if (rc)
2566 		goto err_req_irq;
2567 
2568 	rc = create_queues_with_size_backoff(adapter);
2569 	if (rc)
2570 		goto err_create_queues_with_backoff;
2571 
2572 	rc = ena_up_complete(adapter);
2573 	if (rc)
2574 		goto err_up;
2575 
2576 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2577 		netif_carrier_on(adapter->netdev);
2578 
2579 	u64_stats_update_begin(&adapter->syncp);
2580 	adapter->dev_stats.interface_up++;
2581 	u64_stats_update_end(&adapter->syncp);
2582 
2583 	set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2584 
2585 	/* Enable completion queues interrupt */
2586 	for (i = 0; i < adapter->num_io_queues; i++)
2587 		ena_unmask_interrupt(&adapter->tx_ring[i],
2588 				     &adapter->rx_ring[i]);
2589 
2590 	/* schedule napi in case we had pending packets
2591 	 * from the last time we disable napi
2592 	 */
2593 	for (i = 0; i < io_queue_count; i++)
2594 		napi_schedule(&adapter->ena_napi[i].napi);
2595 
2596 	return rc;
2597 
2598 err_up:
2599 	ena_destroy_all_tx_queues(adapter);
2600 	ena_free_all_io_tx_resources(adapter);
2601 	ena_destroy_all_rx_queues(adapter);
2602 	ena_free_all_io_rx_resources(adapter);
2603 err_create_queues_with_backoff:
2604 	ena_free_io_irq(adapter);
2605 err_req_irq:
2606 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2607 
2608 	return rc;
2609 }
2610 
2611 static void ena_down(struct ena_adapter *adapter)
2612 {
2613 	int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2614 
2615 	netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2616 
2617 	clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2618 
2619 	u64_stats_update_begin(&adapter->syncp);
2620 	adapter->dev_stats.interface_down++;
2621 	u64_stats_update_end(&adapter->syncp);
2622 
2623 	netif_carrier_off(adapter->netdev);
2624 	netif_tx_disable(adapter->netdev);
2625 
2626 	/* After this point the napi handler won't enable the tx queue */
2627 	ena_napi_disable_in_range(adapter, 0, io_queue_count);
2628 
2629 	/* After destroy the queue there won't be any new interrupts */
2630 
2631 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2632 		int rc;
2633 
2634 		rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2635 		if (rc)
2636 			dev_err(&adapter->pdev->dev, "Device reset failed\n");
2637 		/* stop submitting admin commands on a device that was reset */
2638 		ena_com_set_admin_running_state(adapter->ena_dev, false);
2639 	}
2640 
2641 	ena_destroy_all_io_queues(adapter);
2642 
2643 	ena_disable_io_intr_sync(adapter);
2644 	ena_free_io_irq(adapter);
2645 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2646 
2647 	ena_free_all_tx_bufs(adapter);
2648 	ena_free_all_rx_bufs(adapter);
2649 	ena_free_all_io_tx_resources(adapter);
2650 	ena_free_all_io_rx_resources(adapter);
2651 }
2652 
2653 /* ena_open - Called when a network interface is made active
2654  * @netdev: network interface device structure
2655  *
2656  * Returns 0 on success, negative value on failure
2657  *
2658  * The open entry point is called when a network interface is made
2659  * active by the system (IFF_UP).  At this point all resources needed
2660  * for transmit and receive operations are allocated, the interrupt
2661  * handler is registered with the OS, the watchdog timer is started,
2662  * and the stack is notified that the interface is ready.
2663  */
2664 static int ena_open(struct net_device *netdev)
2665 {
2666 	struct ena_adapter *adapter = netdev_priv(netdev);
2667 	int rc;
2668 
2669 	/* Notify the stack of the actual queue counts. */
2670 	rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2671 	if (rc) {
2672 		netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2673 		return rc;
2674 	}
2675 
2676 	rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2677 	if (rc) {
2678 		netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2679 		return rc;
2680 	}
2681 
2682 	rc = ena_up(adapter);
2683 	if (rc)
2684 		return rc;
2685 
2686 	return rc;
2687 }
2688 
2689 /* ena_close - Disables a network interface
2690  * @netdev: network interface device structure
2691  *
2692  * Returns 0, this is not allowed to fail
2693  *
2694  * The close entry point is called when an interface is de-activated
2695  * by the OS.  The hardware is still under the drivers control, but
2696  * needs to be disabled.  A global MAC reset is issued to stop the
2697  * hardware, and all transmit and receive resources are freed.
2698  */
2699 static int ena_close(struct net_device *netdev)
2700 {
2701 	struct ena_adapter *adapter = netdev_priv(netdev);
2702 
2703 	netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2704 
2705 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2706 		return 0;
2707 
2708 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2709 		ena_down(adapter);
2710 
2711 	/* Check for device status and issue reset if needed*/
2712 	check_for_admin_com_state(adapter);
2713 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2714 		netif_err(adapter, ifdown, adapter->netdev,
2715 			  "Destroy failure, restarting device\n");
2716 		ena_dump_stats_to_dmesg(adapter);
2717 		/* rtnl lock already obtained in dev_ioctl() layer */
2718 		ena_destroy_device(adapter, false);
2719 		ena_restore_device(adapter);
2720 	}
2721 
2722 	return 0;
2723 }
2724 
2725 int ena_update_queue_sizes(struct ena_adapter *adapter,
2726 			   u32 new_tx_size,
2727 			   u32 new_rx_size)
2728 {
2729 	bool dev_was_up;
2730 
2731 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2732 	ena_close(adapter->netdev);
2733 	adapter->requested_tx_ring_size = new_tx_size;
2734 	adapter->requested_rx_ring_size = new_rx_size;
2735 	ena_init_io_rings(adapter,
2736 			  0,
2737 			  adapter->xdp_num_queues +
2738 			  adapter->num_io_queues);
2739 	return dev_was_up ? ena_up(adapter) : 0;
2740 }
2741 
2742 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2743 {
2744 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2745 	int prev_channel_count;
2746 	bool dev_was_up;
2747 
2748 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2749 	ena_close(adapter->netdev);
2750 	prev_channel_count = adapter->num_io_queues;
2751 	adapter->num_io_queues = new_channel_count;
2752 	if (ena_xdp_present(adapter) &&
2753 	    ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2754 		adapter->xdp_first_ring = new_channel_count;
2755 		adapter->xdp_num_queues = new_channel_count;
2756 		if (prev_channel_count > new_channel_count)
2757 			ena_xdp_exchange_program_rx_in_range(adapter,
2758 							     NULL,
2759 							     new_channel_count,
2760 							     prev_channel_count);
2761 		else
2762 			ena_xdp_exchange_program_rx_in_range(adapter,
2763 							     adapter->xdp_bpf_prog,
2764 							     prev_channel_count,
2765 							     new_channel_count);
2766 	}
2767 
2768 	/* We need to destroy the rss table so that the indirection
2769 	 * table will be reinitialized by ena_up()
2770 	 */
2771 	ena_com_rss_destroy(ena_dev);
2772 	ena_init_io_rings(adapter,
2773 			  0,
2774 			  adapter->xdp_num_queues +
2775 			  adapter->num_io_queues);
2776 	return dev_was_up ? ena_open(adapter->netdev) : 0;
2777 }
2778 
2779 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb)
2780 {
2781 	u32 mss = skb_shinfo(skb)->gso_size;
2782 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2783 	u8 l4_protocol = 0;
2784 
2785 	if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2786 		ena_tx_ctx->l4_csum_enable = 1;
2787 		if (mss) {
2788 			ena_tx_ctx->tso_enable = 1;
2789 			ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2790 			ena_tx_ctx->l4_csum_partial = 0;
2791 		} else {
2792 			ena_tx_ctx->tso_enable = 0;
2793 			ena_meta->l4_hdr_len = 0;
2794 			ena_tx_ctx->l4_csum_partial = 1;
2795 		}
2796 
2797 		switch (ip_hdr(skb)->version) {
2798 		case IPVERSION:
2799 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2800 			if (ip_hdr(skb)->frag_off & htons(IP_DF))
2801 				ena_tx_ctx->df = 1;
2802 			if (mss)
2803 				ena_tx_ctx->l3_csum_enable = 1;
2804 			l4_protocol = ip_hdr(skb)->protocol;
2805 			break;
2806 		case 6:
2807 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2808 			l4_protocol = ipv6_hdr(skb)->nexthdr;
2809 			break;
2810 		default:
2811 			break;
2812 		}
2813 
2814 		if (l4_protocol == IPPROTO_TCP)
2815 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2816 		else
2817 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2818 
2819 		ena_meta->mss = mss;
2820 		ena_meta->l3_hdr_len = skb_network_header_len(skb);
2821 		ena_meta->l3_hdr_offset = skb_network_offset(skb);
2822 		ena_tx_ctx->meta_valid = 1;
2823 
2824 	} else {
2825 		ena_tx_ctx->meta_valid = 0;
2826 	}
2827 }
2828 
2829 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
2830 				       struct sk_buff *skb)
2831 {
2832 	int num_frags, header_len, rc;
2833 
2834 	num_frags = skb_shinfo(skb)->nr_frags;
2835 	header_len = skb_headlen(skb);
2836 
2837 	if (num_frags < tx_ring->sgl_size)
2838 		return 0;
2839 
2840 	if ((num_frags == tx_ring->sgl_size) &&
2841 	    (header_len < tx_ring->tx_max_header_size))
2842 		return 0;
2843 
2844 	u64_stats_update_begin(&tx_ring->syncp);
2845 	tx_ring->tx_stats.linearize++;
2846 	u64_stats_update_end(&tx_ring->syncp);
2847 
2848 	rc = skb_linearize(skb);
2849 	if (unlikely(rc)) {
2850 		u64_stats_update_begin(&tx_ring->syncp);
2851 		tx_ring->tx_stats.linearize_failed++;
2852 		u64_stats_update_end(&tx_ring->syncp);
2853 	}
2854 
2855 	return rc;
2856 }
2857 
2858 static int ena_tx_map_skb(struct ena_ring *tx_ring,
2859 			  struct ena_tx_buffer *tx_info,
2860 			  struct sk_buff *skb,
2861 			  void **push_hdr,
2862 			  u16 *header_len)
2863 {
2864 	struct ena_adapter *adapter = tx_ring->adapter;
2865 	struct ena_com_buf *ena_buf;
2866 	dma_addr_t dma;
2867 	u32 skb_head_len, frag_len, last_frag;
2868 	u16 push_len = 0;
2869 	u16 delta = 0;
2870 	int i = 0;
2871 
2872 	skb_head_len = skb_headlen(skb);
2873 	tx_info->skb = skb;
2874 	ena_buf = tx_info->bufs;
2875 
2876 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2877 		/* When the device is LLQ mode, the driver will copy
2878 		 * the header into the device memory space.
2879 		 * the ena_com layer assume the header is in a linear
2880 		 * memory space.
2881 		 * This assumption might be wrong since part of the header
2882 		 * can be in the fragmented buffers.
2883 		 * Use skb_header_pointer to make sure the header is in a
2884 		 * linear memory space.
2885 		 */
2886 
2887 		push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
2888 		*push_hdr = skb_header_pointer(skb, 0, push_len,
2889 					       tx_ring->push_buf_intermediate_buf);
2890 		*header_len = push_len;
2891 		if (unlikely(skb->data != *push_hdr)) {
2892 			u64_stats_update_begin(&tx_ring->syncp);
2893 			tx_ring->tx_stats.llq_buffer_copy++;
2894 			u64_stats_update_end(&tx_ring->syncp);
2895 
2896 			delta = push_len - skb_head_len;
2897 		}
2898 	} else {
2899 		*push_hdr = NULL;
2900 		*header_len = min_t(u32, skb_head_len,
2901 				    tx_ring->tx_max_header_size);
2902 	}
2903 
2904 	netif_dbg(adapter, tx_queued, adapter->netdev,
2905 		  "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
2906 		  *push_hdr, push_len);
2907 
2908 	if (skb_head_len > push_len) {
2909 		dma = dma_map_single(tx_ring->dev, skb->data + push_len,
2910 				     skb_head_len - push_len, DMA_TO_DEVICE);
2911 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2912 			goto error_report_dma_error;
2913 
2914 		ena_buf->paddr = dma;
2915 		ena_buf->len = skb_head_len - push_len;
2916 
2917 		ena_buf++;
2918 		tx_info->num_of_bufs++;
2919 		tx_info->map_linear_data = 1;
2920 	} else {
2921 		tx_info->map_linear_data = 0;
2922 	}
2923 
2924 	last_frag = skb_shinfo(skb)->nr_frags;
2925 
2926 	for (i = 0; i < last_frag; i++) {
2927 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2928 
2929 		frag_len = skb_frag_size(frag);
2930 
2931 		if (unlikely(delta >= frag_len)) {
2932 			delta -= frag_len;
2933 			continue;
2934 		}
2935 
2936 		dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
2937 				       frag_len - delta, DMA_TO_DEVICE);
2938 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2939 			goto error_report_dma_error;
2940 
2941 		ena_buf->paddr = dma;
2942 		ena_buf->len = frag_len - delta;
2943 		ena_buf++;
2944 		tx_info->num_of_bufs++;
2945 		delta = 0;
2946 	}
2947 
2948 	return 0;
2949 
2950 error_report_dma_error:
2951 	u64_stats_update_begin(&tx_ring->syncp);
2952 	tx_ring->tx_stats.dma_mapping_err++;
2953 	u64_stats_update_end(&tx_ring->syncp);
2954 	netdev_warn(adapter->netdev, "failed to map skb\n");
2955 
2956 	tx_info->skb = NULL;
2957 
2958 	tx_info->num_of_bufs += i;
2959 	ena_unmap_tx_buff(tx_ring, tx_info);
2960 
2961 	return -EINVAL;
2962 }
2963 
2964 /* Called with netif_tx_lock. */
2965 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
2966 {
2967 	struct ena_adapter *adapter = netdev_priv(dev);
2968 	struct ena_tx_buffer *tx_info;
2969 	struct ena_com_tx_ctx ena_tx_ctx;
2970 	struct ena_ring *tx_ring;
2971 	struct netdev_queue *txq;
2972 	void *push_hdr;
2973 	u16 next_to_use, req_id, header_len;
2974 	int qid, rc;
2975 
2976 	netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
2977 	/*  Determine which tx ring we will be placed on */
2978 	qid = skb_get_queue_mapping(skb);
2979 	tx_ring = &adapter->tx_ring[qid];
2980 	txq = netdev_get_tx_queue(dev, qid);
2981 
2982 	rc = ena_check_and_linearize_skb(tx_ring, skb);
2983 	if (unlikely(rc))
2984 		goto error_drop_packet;
2985 
2986 	skb_tx_timestamp(skb);
2987 
2988 	next_to_use = tx_ring->next_to_use;
2989 	req_id = tx_ring->free_ids[next_to_use];
2990 	tx_info = &tx_ring->tx_buffer_info[req_id];
2991 	tx_info->num_of_bufs = 0;
2992 
2993 	WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
2994 
2995 	rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
2996 	if (unlikely(rc))
2997 		goto error_drop_packet;
2998 
2999 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
3000 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3001 	ena_tx_ctx.push_header = push_hdr;
3002 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3003 	ena_tx_ctx.req_id = req_id;
3004 	ena_tx_ctx.header_len = header_len;
3005 
3006 	/* set flags and meta data */
3007 	ena_tx_csum(&ena_tx_ctx, skb);
3008 
3009 	rc = ena_xmit_common(dev,
3010 			     tx_ring,
3011 			     tx_info,
3012 			     &ena_tx_ctx,
3013 			     next_to_use,
3014 			     skb->len);
3015 	if (rc)
3016 		goto error_unmap_dma;
3017 
3018 	netdev_tx_sent_queue(txq, skb->len);
3019 
3020 	/* stop the queue when no more space available, the packet can have up
3021 	 * to sgl_size + 2. one for the meta descriptor and one for header
3022 	 * (if the header is larger than tx_max_header_size).
3023 	 */
3024 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3025 						   tx_ring->sgl_size + 2))) {
3026 		netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
3027 			  __func__, qid);
3028 
3029 		netif_tx_stop_queue(txq);
3030 		u64_stats_update_begin(&tx_ring->syncp);
3031 		tx_ring->tx_stats.queue_stop++;
3032 		u64_stats_update_end(&tx_ring->syncp);
3033 
3034 		/* There is a rare condition where this function decide to
3035 		 * stop the queue but meanwhile clean_tx_irq updates
3036 		 * next_to_completion and terminates.
3037 		 * The queue will remain stopped forever.
3038 		 * To solve this issue add a mb() to make sure that
3039 		 * netif_tx_stop_queue() write is vissible before checking if
3040 		 * there is additional space in the queue.
3041 		 */
3042 		smp_mb();
3043 
3044 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3045 						 ENA_TX_WAKEUP_THRESH)) {
3046 			netif_tx_wake_queue(txq);
3047 			u64_stats_update_begin(&tx_ring->syncp);
3048 			tx_ring->tx_stats.queue_wakeup++;
3049 			u64_stats_update_end(&tx_ring->syncp);
3050 		}
3051 	}
3052 
3053 	if (netif_xmit_stopped(txq) || !netdev_xmit_more()) {
3054 		/* trigger the dma engine. ena_com_write_sq_doorbell()
3055 		 * has a mb
3056 		 */
3057 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3058 		u64_stats_update_begin(&tx_ring->syncp);
3059 		tx_ring->tx_stats.doorbells++;
3060 		u64_stats_update_end(&tx_ring->syncp);
3061 	}
3062 
3063 	return NETDEV_TX_OK;
3064 
3065 error_unmap_dma:
3066 	ena_unmap_tx_buff(tx_ring, tx_info);
3067 	tx_info->skb = NULL;
3068 
3069 error_drop_packet:
3070 	dev_kfree_skb(skb);
3071 	return NETDEV_TX_OK;
3072 }
3073 
3074 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
3075 			    struct net_device *sb_dev)
3076 {
3077 	u16 qid;
3078 	/* we suspect that this is good for in--kernel network services that
3079 	 * want to loop incoming skb rx to tx in normal user generated traffic,
3080 	 * most probably we will not get to this
3081 	 */
3082 	if (skb_rx_queue_recorded(skb))
3083 		qid = skb_get_rx_queue(skb);
3084 	else
3085 		qid = netdev_pick_tx(dev, skb, NULL);
3086 
3087 	return qid;
3088 }
3089 
3090 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3091 {
3092 	struct ena_admin_host_info *host_info;
3093 	int rc;
3094 
3095 	/* Allocate only the host info */
3096 	rc = ena_com_allocate_host_info(ena_dev);
3097 	if (rc) {
3098 		pr_err("Cannot allocate host info\n");
3099 		return;
3100 	}
3101 
3102 	host_info = ena_dev->host_attr.host_info;
3103 
3104 	host_info->bdf = (pdev->bus->number << 8) | pdev->devfn;
3105 	host_info->os_type = ENA_ADMIN_OS_LINUX;
3106 	host_info->kernel_ver = LINUX_VERSION_CODE;
3107 	strlcpy(host_info->kernel_ver_str, utsname()->version,
3108 		sizeof(host_info->kernel_ver_str) - 1);
3109 	host_info->os_dist = 0;
3110 	strncpy(host_info->os_dist_str, utsname()->release,
3111 		sizeof(host_info->os_dist_str) - 1);
3112 	host_info->driver_version =
3113 		(DRV_MODULE_GEN_MAJOR) |
3114 		(DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3115 		(DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
3116 		("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
3117 	host_info->num_cpus = num_online_cpus();
3118 
3119 	host_info->driver_supported_features =
3120 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
3121 		ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK;
3122 
3123 	rc = ena_com_set_host_attributes(ena_dev);
3124 	if (rc) {
3125 		if (rc == -EOPNOTSUPP)
3126 			pr_warn("Cannot set host attributes\n");
3127 		else
3128 			pr_err("Cannot set host attributes\n");
3129 
3130 		goto err;
3131 	}
3132 
3133 	return;
3134 
3135 err:
3136 	ena_com_delete_host_info(ena_dev);
3137 }
3138 
3139 static void ena_config_debug_area(struct ena_adapter *adapter)
3140 {
3141 	u32 debug_area_size;
3142 	int rc, ss_count;
3143 
3144 	ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
3145 	if (ss_count <= 0) {
3146 		netif_err(adapter, drv, adapter->netdev,
3147 			  "SS count is negative\n");
3148 		return;
3149 	}
3150 
3151 	/* allocate 32 bytes for each string and 64bit for the value */
3152 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
3153 
3154 	rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
3155 	if (rc) {
3156 		pr_err("Cannot allocate debug area\n");
3157 		return;
3158 	}
3159 
3160 	rc = ena_com_set_host_attributes(adapter->ena_dev);
3161 	if (rc) {
3162 		if (rc == -EOPNOTSUPP)
3163 			netif_warn(adapter, drv, adapter->netdev,
3164 				   "Cannot set host attributes\n");
3165 		else
3166 			netif_err(adapter, drv, adapter->netdev,
3167 				  "Cannot set host attributes\n");
3168 		goto err;
3169 	}
3170 
3171 	return;
3172 err:
3173 	ena_com_delete_debug_area(adapter->ena_dev);
3174 }
3175 
3176 static void ena_get_stats64(struct net_device *netdev,
3177 			    struct rtnl_link_stats64 *stats)
3178 {
3179 	struct ena_adapter *adapter = netdev_priv(netdev);
3180 	struct ena_ring *rx_ring, *tx_ring;
3181 	unsigned int start;
3182 	u64 rx_drops;
3183 	u64 tx_drops;
3184 	int i;
3185 
3186 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3187 		return;
3188 
3189 	for (i = 0; i < adapter->num_io_queues; i++) {
3190 		u64 bytes, packets;
3191 
3192 		tx_ring = &adapter->tx_ring[i];
3193 
3194 		do {
3195 			start = u64_stats_fetch_begin_irq(&tx_ring->syncp);
3196 			packets = tx_ring->tx_stats.cnt;
3197 			bytes = tx_ring->tx_stats.bytes;
3198 		} while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start));
3199 
3200 		stats->tx_packets += packets;
3201 		stats->tx_bytes += bytes;
3202 
3203 		rx_ring = &adapter->rx_ring[i];
3204 
3205 		do {
3206 			start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
3207 			packets = rx_ring->rx_stats.cnt;
3208 			bytes = rx_ring->rx_stats.bytes;
3209 		} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
3210 
3211 		stats->rx_packets += packets;
3212 		stats->rx_bytes += bytes;
3213 	}
3214 
3215 	do {
3216 		start = u64_stats_fetch_begin_irq(&adapter->syncp);
3217 		rx_drops = adapter->dev_stats.rx_drops;
3218 		tx_drops = adapter->dev_stats.tx_drops;
3219 	} while (u64_stats_fetch_retry_irq(&adapter->syncp, start));
3220 
3221 	stats->rx_dropped = rx_drops;
3222 	stats->tx_dropped = tx_drops;
3223 
3224 	stats->multicast = 0;
3225 	stats->collisions = 0;
3226 
3227 	stats->rx_length_errors = 0;
3228 	stats->rx_crc_errors = 0;
3229 	stats->rx_frame_errors = 0;
3230 	stats->rx_fifo_errors = 0;
3231 	stats->rx_missed_errors = 0;
3232 	stats->tx_window_errors = 0;
3233 
3234 	stats->rx_errors = 0;
3235 	stats->tx_errors = 0;
3236 }
3237 
3238 static const struct net_device_ops ena_netdev_ops = {
3239 	.ndo_open		= ena_open,
3240 	.ndo_stop		= ena_close,
3241 	.ndo_start_xmit		= ena_start_xmit,
3242 	.ndo_select_queue	= ena_select_queue,
3243 	.ndo_get_stats64	= ena_get_stats64,
3244 	.ndo_tx_timeout		= ena_tx_timeout,
3245 	.ndo_change_mtu		= ena_change_mtu,
3246 	.ndo_set_mac_address	= NULL,
3247 	.ndo_validate_addr	= eth_validate_addr,
3248 	.ndo_bpf		= ena_xdp,
3249 };
3250 
3251 static int ena_device_validate_params(struct ena_adapter *adapter,
3252 				      struct ena_com_dev_get_features_ctx *get_feat_ctx)
3253 {
3254 	struct net_device *netdev = adapter->netdev;
3255 	int rc;
3256 
3257 	rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
3258 			      adapter->mac_addr);
3259 	if (!rc) {
3260 		netif_err(adapter, drv, netdev,
3261 			  "Error, mac address are different\n");
3262 		return -EINVAL;
3263 	}
3264 
3265 	if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
3266 		netif_err(adapter, drv, netdev,
3267 			  "Error, device max mtu is smaller than netdev MTU\n");
3268 		return -EINVAL;
3269 	}
3270 
3271 	return 0;
3272 }
3273 
3274 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
3275 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
3276 			   bool *wd_state)
3277 {
3278 	struct device *dev = &pdev->dev;
3279 	bool readless_supported;
3280 	u32 aenq_groups;
3281 	int dma_width;
3282 	int rc;
3283 
3284 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3285 	if (rc) {
3286 		dev_err(dev, "failed to init mmio read less\n");
3287 		return rc;
3288 	}
3289 
3290 	/* The PCIe configuration space revision id indicate if mmio reg
3291 	 * read is disabled
3292 	 */
3293 	readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3294 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3295 
3296 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3297 	if (rc) {
3298 		dev_err(dev, "Can not reset device\n");
3299 		goto err_mmio_read_less;
3300 	}
3301 
3302 	rc = ena_com_validate_version(ena_dev);
3303 	if (rc) {
3304 		dev_err(dev, "device version is too low\n");
3305 		goto err_mmio_read_less;
3306 	}
3307 
3308 	dma_width = ena_com_get_dma_width(ena_dev);
3309 	if (dma_width < 0) {
3310 		dev_err(dev, "Invalid dma width value %d", dma_width);
3311 		rc = dma_width;
3312 		goto err_mmio_read_less;
3313 	}
3314 
3315 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width));
3316 	if (rc) {
3317 		dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc);
3318 		goto err_mmio_read_less;
3319 	}
3320 
3321 	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width));
3322 	if (rc) {
3323 		dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n",
3324 			rc);
3325 		goto err_mmio_read_less;
3326 	}
3327 
3328 	/* ENA admin level init */
3329 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3330 	if (rc) {
3331 		dev_err(dev,
3332 			"Can not initialize ena admin queue with device\n");
3333 		goto err_mmio_read_less;
3334 	}
3335 
3336 	/* To enable the msix interrupts the driver needs to know the number
3337 	 * of queues. So the driver uses polling mode to retrieve this
3338 	 * information
3339 	 */
3340 	ena_com_set_admin_polling_mode(ena_dev, true);
3341 
3342 	ena_config_host_info(ena_dev, pdev);
3343 
3344 	/* Get Device Attributes*/
3345 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3346 	if (rc) {
3347 		dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3348 		goto err_admin_init;
3349 	}
3350 
3351 	/* Try to turn all the available aenq groups */
3352 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3353 		BIT(ENA_ADMIN_FATAL_ERROR) |
3354 		BIT(ENA_ADMIN_WARNING) |
3355 		BIT(ENA_ADMIN_NOTIFICATION) |
3356 		BIT(ENA_ADMIN_KEEP_ALIVE);
3357 
3358 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3359 
3360 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3361 	if (rc) {
3362 		dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3363 		goto err_admin_init;
3364 	}
3365 
3366 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3367 
3368 	return 0;
3369 
3370 err_admin_init:
3371 	ena_com_delete_host_info(ena_dev);
3372 	ena_com_admin_destroy(ena_dev);
3373 err_mmio_read_less:
3374 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3375 
3376 	return rc;
3377 }
3378 
3379 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3380 {
3381 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3382 	struct device *dev = &adapter->pdev->dev;
3383 	int rc;
3384 
3385 	rc = ena_enable_msix(adapter);
3386 	if (rc) {
3387 		dev_err(dev, "Can not reserve msix vectors\n");
3388 		return rc;
3389 	}
3390 
3391 	ena_setup_mgmnt_intr(adapter);
3392 
3393 	rc = ena_request_mgmnt_irq(adapter);
3394 	if (rc) {
3395 		dev_err(dev, "Can not setup management interrupts\n");
3396 		goto err_disable_msix;
3397 	}
3398 
3399 	ena_com_set_admin_polling_mode(ena_dev, false);
3400 
3401 	ena_com_admin_aenq_enable(ena_dev);
3402 
3403 	return 0;
3404 
3405 err_disable_msix:
3406 	ena_disable_msix(adapter);
3407 
3408 	return rc;
3409 }
3410 
3411 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3412 {
3413 	struct net_device *netdev = adapter->netdev;
3414 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3415 	bool dev_up;
3416 
3417 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3418 		return;
3419 
3420 	netif_carrier_off(netdev);
3421 
3422 	del_timer_sync(&adapter->timer_service);
3423 
3424 	dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3425 	adapter->dev_up_before_reset = dev_up;
3426 	if (!graceful)
3427 		ena_com_set_admin_running_state(ena_dev, false);
3428 
3429 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3430 		ena_down(adapter);
3431 
3432 	/* Stop the device from sending AENQ events (in case reset flag is set
3433 	 *  and device is up, ena_down() already reset the device.
3434 	 */
3435 	if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3436 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3437 
3438 	ena_free_mgmnt_irq(adapter);
3439 
3440 	ena_disable_msix(adapter);
3441 
3442 	ena_com_abort_admin_commands(ena_dev);
3443 
3444 	ena_com_wait_for_abort_completion(ena_dev);
3445 
3446 	ena_com_admin_destroy(ena_dev);
3447 
3448 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3449 
3450 	/* return reset reason to default value */
3451 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3452 
3453 	clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3454 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3455 }
3456 
3457 static int ena_restore_device(struct ena_adapter *adapter)
3458 {
3459 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3460 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3461 	struct pci_dev *pdev = adapter->pdev;
3462 	bool wd_state;
3463 	int rc;
3464 
3465 	set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3466 	rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
3467 	if (rc) {
3468 		dev_err(&pdev->dev, "Can not initialize device\n");
3469 		goto err;
3470 	}
3471 	adapter->wd_state = wd_state;
3472 
3473 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
3474 	if (rc) {
3475 		dev_err(&pdev->dev, "Validation of device parameters failed\n");
3476 		goto err_device_destroy;
3477 	}
3478 
3479 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3480 	if (rc) {
3481 		dev_err(&pdev->dev, "Enable MSI-X failed\n");
3482 		goto err_device_destroy;
3483 	}
3484 	/* If the interface was up before the reset bring it up */
3485 	if (adapter->dev_up_before_reset) {
3486 		rc = ena_up(adapter);
3487 		if (rc) {
3488 			dev_err(&pdev->dev, "Failed to create I/O queues\n");
3489 			goto err_disable_msix;
3490 		}
3491 	}
3492 
3493 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3494 
3495 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3496 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3497 		netif_carrier_on(adapter->netdev);
3498 
3499 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3500 	dev_err(&pdev->dev, "Device reset completed successfully\n");
3501 	adapter->last_keep_alive_jiffies = jiffies;
3502 
3503 	return rc;
3504 err_disable_msix:
3505 	ena_free_mgmnt_irq(adapter);
3506 	ena_disable_msix(adapter);
3507 err_device_destroy:
3508 	ena_com_abort_admin_commands(ena_dev);
3509 	ena_com_wait_for_abort_completion(ena_dev);
3510 	ena_com_admin_destroy(ena_dev);
3511 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3512 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3513 err:
3514 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3515 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3516 	dev_err(&pdev->dev,
3517 		"Reset attempt failed. Can not reset the device\n");
3518 
3519 	return rc;
3520 }
3521 
3522 static void ena_fw_reset_device(struct work_struct *work)
3523 {
3524 	struct ena_adapter *adapter =
3525 		container_of(work, struct ena_adapter, reset_task);
3526 	struct pci_dev *pdev = adapter->pdev;
3527 
3528 	if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3529 		dev_err(&pdev->dev,
3530 			"device reset schedule while reset bit is off\n");
3531 		return;
3532 	}
3533 	rtnl_lock();
3534 	ena_destroy_device(adapter, false);
3535 	ena_restore_device(adapter);
3536 	rtnl_unlock();
3537 }
3538 
3539 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3540 					struct ena_ring *rx_ring)
3541 {
3542 	if (likely(rx_ring->first_interrupt))
3543 		return 0;
3544 
3545 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3546 		return 0;
3547 
3548 	rx_ring->no_interrupt_event_cnt++;
3549 
3550 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3551 		netif_err(adapter, rx_err, adapter->netdev,
3552 			  "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3553 			  rx_ring->qid);
3554 		adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
3555 		smp_mb__before_atomic();
3556 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3557 		return -EIO;
3558 	}
3559 
3560 	return 0;
3561 }
3562 
3563 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3564 					  struct ena_ring *tx_ring)
3565 {
3566 	struct ena_tx_buffer *tx_buf;
3567 	unsigned long last_jiffies;
3568 	u32 missed_tx = 0;
3569 	int i, rc = 0;
3570 
3571 	for (i = 0; i < tx_ring->ring_size; i++) {
3572 		tx_buf = &tx_ring->tx_buffer_info[i];
3573 		last_jiffies = tx_buf->last_jiffies;
3574 
3575 		if (last_jiffies == 0)
3576 			/* no pending Tx at this location */
3577 			continue;
3578 
3579 		if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies +
3580 			     2 * adapter->missing_tx_completion_to))) {
3581 			/* If after graceful period interrupt is still not
3582 			 * received, we schedule a reset
3583 			 */
3584 			netif_err(adapter, tx_err, adapter->netdev,
3585 				  "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3586 				  tx_ring->qid);
3587 			adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
3588 			smp_mb__before_atomic();
3589 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3590 			return -EIO;
3591 		}
3592 
3593 		if (unlikely(time_is_before_jiffies(last_jiffies +
3594 				adapter->missing_tx_completion_to))) {
3595 			if (!tx_buf->print_once)
3596 				netif_notice(adapter, tx_err, adapter->netdev,
3597 					     "Found a Tx that wasn't completed on time, qid %d, index %d.\n",
3598 					     tx_ring->qid, i);
3599 
3600 			tx_buf->print_once = 1;
3601 			missed_tx++;
3602 		}
3603 	}
3604 
3605 	if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3606 		netif_err(adapter, tx_err, adapter->netdev,
3607 			  "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
3608 			  missed_tx,
3609 			  adapter->missing_tx_completion_threshold);
3610 		adapter->reset_reason =
3611 			ENA_REGS_RESET_MISS_TX_CMPL;
3612 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3613 		rc = -EIO;
3614 	}
3615 
3616 	u64_stats_update_begin(&tx_ring->syncp);
3617 	tx_ring->tx_stats.missed_tx = missed_tx;
3618 	u64_stats_update_end(&tx_ring->syncp);
3619 
3620 	return rc;
3621 }
3622 
3623 static void check_for_missing_completions(struct ena_adapter *adapter)
3624 {
3625 	struct ena_ring *tx_ring;
3626 	struct ena_ring *rx_ring;
3627 	int i, budget, rc;
3628 	int io_queue_count;
3629 
3630 	io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
3631 	/* Make sure the driver doesn't turn the device in other process */
3632 	smp_rmb();
3633 
3634 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3635 		return;
3636 
3637 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3638 		return;
3639 
3640 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
3641 		return;
3642 
3643 	budget = ENA_MONITORED_TX_QUEUES;
3644 
3645 	for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) {
3646 		tx_ring = &adapter->tx_ring[i];
3647 		rx_ring = &adapter->rx_ring[i];
3648 
3649 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
3650 		if (unlikely(rc))
3651 			return;
3652 
3653 		rc =  !ENA_IS_XDP_INDEX(adapter, i) ?
3654 			check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
3655 		if (unlikely(rc))
3656 			return;
3657 
3658 		budget--;
3659 		if (!budget)
3660 			break;
3661 	}
3662 
3663 	adapter->last_monitored_tx_qid = i % io_queue_count;
3664 }
3665 
3666 /* trigger napi schedule after 2 consecutive detections */
3667 #define EMPTY_RX_REFILL 2
3668 /* For the rare case where the device runs out of Rx descriptors and the
3669  * napi handler failed to refill new Rx descriptors (due to a lack of memory
3670  * for example).
3671  * This case will lead to a deadlock:
3672  * The device won't send interrupts since all the new Rx packets will be dropped
3673  * The napi handler won't allocate new Rx descriptors so the device will be
3674  * able to send new packets.
3675  *
3676  * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
3677  * It is recommended to have at least 512MB, with a minimum of 128MB for
3678  * constrained environment).
3679  *
3680  * When such a situation is detected - Reschedule napi
3681  */
3682 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
3683 {
3684 	struct ena_ring *rx_ring;
3685 	int i, refill_required;
3686 
3687 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3688 		return;
3689 
3690 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3691 		return;
3692 
3693 	for (i = 0; i < adapter->num_io_queues; i++) {
3694 		rx_ring = &adapter->rx_ring[i];
3695 
3696 		refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
3697 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3698 			rx_ring->empty_rx_queue++;
3699 
3700 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3701 				u64_stats_update_begin(&rx_ring->syncp);
3702 				rx_ring->rx_stats.empty_rx_ring++;
3703 				u64_stats_update_end(&rx_ring->syncp);
3704 
3705 				netif_err(adapter, drv, adapter->netdev,
3706 					  "trigger refill for ring %d\n", i);
3707 
3708 				napi_schedule(rx_ring->napi);
3709 				rx_ring->empty_rx_queue = 0;
3710 			}
3711 		} else {
3712 			rx_ring->empty_rx_queue = 0;
3713 		}
3714 	}
3715 }
3716 
3717 /* Check for keep alive expiration */
3718 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3719 {
3720 	unsigned long keep_alive_expired;
3721 
3722 	if (!adapter->wd_state)
3723 		return;
3724 
3725 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3726 		return;
3727 
3728 	keep_alive_expired = adapter->last_keep_alive_jiffies +
3729 			     adapter->keep_alive_timeout;
3730 	if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
3731 		netif_err(adapter, drv, adapter->netdev,
3732 			  "Keep alive watchdog timeout.\n");
3733 		u64_stats_update_begin(&adapter->syncp);
3734 		adapter->dev_stats.wd_expired++;
3735 		u64_stats_update_end(&adapter->syncp);
3736 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3737 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3738 	}
3739 }
3740 
3741 static void check_for_admin_com_state(struct ena_adapter *adapter)
3742 {
3743 	if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
3744 		netif_err(adapter, drv, adapter->netdev,
3745 			  "ENA admin queue is not in running state!\n");
3746 		u64_stats_update_begin(&adapter->syncp);
3747 		adapter->dev_stats.admin_q_pause++;
3748 		u64_stats_update_end(&adapter->syncp);
3749 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3750 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3751 	}
3752 }
3753 
3754 static void ena_update_hints(struct ena_adapter *adapter,
3755 			     struct ena_admin_ena_hw_hints *hints)
3756 {
3757 	struct net_device *netdev = adapter->netdev;
3758 
3759 	if (hints->admin_completion_tx_timeout)
3760 		adapter->ena_dev->admin_queue.completion_timeout =
3761 			hints->admin_completion_tx_timeout * 1000;
3762 
3763 	if (hints->mmio_read_timeout)
3764 		/* convert to usec */
3765 		adapter->ena_dev->mmio_read.reg_read_to =
3766 			hints->mmio_read_timeout * 1000;
3767 
3768 	if (hints->missed_tx_completion_count_threshold_to_reset)
3769 		adapter->missing_tx_completion_threshold =
3770 			hints->missed_tx_completion_count_threshold_to_reset;
3771 
3772 	if (hints->missing_tx_completion_timeout) {
3773 		if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3774 			adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
3775 		else
3776 			adapter->missing_tx_completion_to =
3777 				msecs_to_jiffies(hints->missing_tx_completion_timeout);
3778 	}
3779 
3780 	if (hints->netdev_wd_timeout)
3781 		netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
3782 
3783 	if (hints->driver_watchdog_timeout) {
3784 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3785 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3786 		else
3787 			adapter->keep_alive_timeout =
3788 				msecs_to_jiffies(hints->driver_watchdog_timeout);
3789 	}
3790 }
3791 
3792 static void ena_update_host_info(struct ena_admin_host_info *host_info,
3793 				 struct net_device *netdev)
3794 {
3795 	host_info->supported_network_features[0] =
3796 		netdev->features & GENMASK_ULL(31, 0);
3797 	host_info->supported_network_features[1] =
3798 		(netdev->features & GENMASK_ULL(63, 32)) >> 32;
3799 }
3800 
3801 static void ena_timer_service(struct timer_list *t)
3802 {
3803 	struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
3804 	u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
3805 	struct ena_admin_host_info *host_info =
3806 		adapter->ena_dev->host_attr.host_info;
3807 
3808 	check_for_missing_keep_alive(adapter);
3809 
3810 	check_for_admin_com_state(adapter);
3811 
3812 	check_for_missing_completions(adapter);
3813 
3814 	check_for_empty_rx_ring(adapter);
3815 
3816 	if (debug_area)
3817 		ena_dump_stats_to_buf(adapter, debug_area);
3818 
3819 	if (host_info)
3820 		ena_update_host_info(host_info, adapter->netdev);
3821 
3822 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3823 		netif_err(adapter, drv, adapter->netdev,
3824 			  "Trigger reset is on\n");
3825 		ena_dump_stats_to_dmesg(adapter);
3826 		queue_work(ena_wq, &adapter->reset_task);
3827 		return;
3828 	}
3829 
3830 	/* Reset the timer */
3831 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3832 }
3833 
3834 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev,
3835 				     struct ena_com_dev *ena_dev,
3836 				     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3837 {
3838 	u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
3839 
3840 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3841 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3842 			&get_feat_ctx->max_queue_ext.max_queue_ext;
3843 		io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
3844 				  max_queue_ext->max_rx_cq_num);
3845 
3846 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
3847 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
3848 	} else {
3849 		struct ena_admin_queue_feature_desc *max_queues =
3850 			&get_feat_ctx->max_queues;
3851 		io_tx_sq_num = max_queues->max_sq_num;
3852 		io_tx_cq_num = max_queues->max_cq_num;
3853 		io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
3854 	}
3855 
3856 	/* In case of LLQ use the llq fields for the tx SQ/CQ */
3857 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3858 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
3859 
3860 	max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
3861 	max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
3862 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
3863 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
3864 	/* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */
3865 	max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
3866 	if (unlikely(!max_num_io_queues)) {
3867 		dev_err(&pdev->dev, "The device doesn't have io queues\n");
3868 		return -EFAULT;
3869 	}
3870 
3871 	return max_num_io_queues;
3872 }
3873 
3874 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3875 					   struct ena_com_dev *ena_dev,
3876 					   struct ena_admin_feature_llq_desc *llq,
3877 					   struct ena_llq_configurations *llq_default_configurations)
3878 {
3879 	bool has_mem_bar;
3880 	int rc;
3881 	u32 llq_feature_mask;
3882 
3883 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3884 	if (!(ena_dev->supported_features & llq_feature_mask)) {
3885 		dev_err(&pdev->dev,
3886 			"LLQ is not supported Fallback to host mode policy.\n");
3887 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3888 		return 0;
3889 	}
3890 
3891 	has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR);
3892 
3893 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3894 	if (unlikely(rc)) {
3895 		dev_err(&pdev->dev,
3896 			"Failed to configure the device mode.  Fallback to host mode policy.\n");
3897 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3898 		return 0;
3899 	}
3900 
3901 	/* Nothing to config, exit */
3902 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
3903 		return 0;
3904 
3905 	if (!has_mem_bar) {
3906 		dev_err(&pdev->dev,
3907 			"ENA device does not expose LLQ bar. Fallback to host mode policy.\n");
3908 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3909 		return 0;
3910 	}
3911 
3912 	ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3913 					   pci_resource_start(pdev, ENA_MEM_BAR),
3914 					   pci_resource_len(pdev, ENA_MEM_BAR));
3915 
3916 	if (!ena_dev->mem_bar)
3917 		return -EFAULT;
3918 
3919 	return 0;
3920 }
3921 
3922 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
3923 				 struct net_device *netdev)
3924 {
3925 	netdev_features_t dev_features = 0;
3926 
3927 	/* Set offload features */
3928 	if (feat->offload.tx &
3929 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
3930 		dev_features |= NETIF_F_IP_CSUM;
3931 
3932 	if (feat->offload.tx &
3933 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
3934 		dev_features |= NETIF_F_IPV6_CSUM;
3935 
3936 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
3937 		dev_features |= NETIF_F_TSO;
3938 
3939 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
3940 		dev_features |= NETIF_F_TSO6;
3941 
3942 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
3943 		dev_features |= NETIF_F_TSO_ECN;
3944 
3945 	if (feat->offload.rx_supported &
3946 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
3947 		dev_features |= NETIF_F_RXCSUM;
3948 
3949 	if (feat->offload.rx_supported &
3950 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
3951 		dev_features |= NETIF_F_RXCSUM;
3952 
3953 	netdev->features =
3954 		dev_features |
3955 		NETIF_F_SG |
3956 		NETIF_F_RXHASH |
3957 		NETIF_F_HIGHDMA;
3958 
3959 	netdev->hw_features |= netdev->features;
3960 	netdev->vlan_features |= netdev->features;
3961 }
3962 
3963 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
3964 				     struct ena_com_dev_get_features_ctx *feat)
3965 {
3966 	struct net_device *netdev = adapter->netdev;
3967 
3968 	/* Copy mac address */
3969 	if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
3970 		eth_hw_addr_random(netdev);
3971 		ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
3972 	} else {
3973 		ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
3974 		ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
3975 	}
3976 
3977 	/* Set offload features */
3978 	ena_set_dev_offloads(feat, netdev);
3979 
3980 	adapter->max_mtu = feat->dev_attr.max_mtu;
3981 	netdev->max_mtu = adapter->max_mtu;
3982 	netdev->min_mtu = ENA_MIN_MTU;
3983 }
3984 
3985 static int ena_rss_init_default(struct ena_adapter *adapter)
3986 {
3987 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3988 	struct device *dev = &adapter->pdev->dev;
3989 	int rc, i;
3990 	u32 val;
3991 
3992 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3993 	if (unlikely(rc)) {
3994 		dev_err(dev, "Cannot init indirect table\n");
3995 		goto err_rss_init;
3996 	}
3997 
3998 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3999 		val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
4000 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
4001 						       ENA_IO_RXQ_IDX(val));
4002 		if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4003 			dev_err(dev, "Cannot fill indirect table\n");
4004 			goto err_fill_indir;
4005 		}
4006 	}
4007 
4008 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL,
4009 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
4010 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4011 		dev_err(dev, "Cannot fill hash function\n");
4012 		goto err_fill_indir;
4013 	}
4014 
4015 	rc = ena_com_set_default_hash_ctrl(ena_dev);
4016 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4017 		dev_err(dev, "Cannot fill hash control\n");
4018 		goto err_fill_indir;
4019 	}
4020 
4021 	return 0;
4022 
4023 err_fill_indir:
4024 	ena_com_rss_destroy(ena_dev);
4025 err_rss_init:
4026 
4027 	return rc;
4028 }
4029 
4030 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
4031 {
4032 	int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4033 
4034 	pci_release_selected_regions(pdev, release_bars);
4035 }
4036 
4037 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config)
4038 {
4039 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
4040 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
4041 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
4042 	llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
4043 	llq_config->llq_ring_entry_size_value = 128;
4044 }
4045 
4046 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx)
4047 {
4048 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
4049 	struct ena_com_dev *ena_dev = ctx->ena_dev;
4050 	u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
4051 	u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
4052 	u32 max_tx_queue_size;
4053 	u32 max_rx_queue_size;
4054 
4055 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
4056 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
4057 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
4058 		max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
4059 					  max_queue_ext->max_rx_sq_depth);
4060 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
4061 
4062 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4063 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4064 						  llq->max_llq_depth);
4065 		else
4066 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4067 						  max_queue_ext->max_tx_sq_depth);
4068 
4069 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4070 					     max_queue_ext->max_per_packet_tx_descs);
4071 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4072 					     max_queue_ext->max_per_packet_rx_descs);
4073 	} else {
4074 		struct ena_admin_queue_feature_desc *max_queues =
4075 			&ctx->get_feat_ctx->max_queues;
4076 		max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
4077 					  max_queues->max_sq_depth);
4078 		max_tx_queue_size = max_queues->max_cq_depth;
4079 
4080 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4081 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4082 						  llq->max_llq_depth);
4083 		else
4084 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4085 						  max_queues->max_sq_depth);
4086 
4087 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4088 					     max_queues->max_packet_tx_descs);
4089 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4090 					     max_queues->max_packet_rx_descs);
4091 	}
4092 
4093 	max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
4094 	max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
4095 
4096 	tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
4097 				  max_tx_queue_size);
4098 	rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
4099 				  max_rx_queue_size);
4100 
4101 	tx_queue_size = rounddown_pow_of_two(tx_queue_size);
4102 	rx_queue_size = rounddown_pow_of_two(rx_queue_size);
4103 
4104 	ctx->max_tx_queue_size = max_tx_queue_size;
4105 	ctx->max_rx_queue_size = max_rx_queue_size;
4106 	ctx->tx_queue_size = tx_queue_size;
4107 	ctx->rx_queue_size = rx_queue_size;
4108 
4109 	return 0;
4110 }
4111 
4112 /* ena_probe - Device Initialization Routine
4113  * @pdev: PCI device information struct
4114  * @ent: entry in ena_pci_tbl
4115  *
4116  * Returns 0 on success, negative on failure
4117  *
4118  * ena_probe initializes an adapter identified by a pci_dev structure.
4119  * The OS initialization, configuring of the adapter private structure,
4120  * and a hardware reset occur.
4121  */
4122 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4123 {
4124 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
4125 	struct ena_com_dev_get_features_ctx get_feat_ctx;
4126 	struct ena_llq_configurations llq_config;
4127 	struct ena_com_dev *ena_dev = NULL;
4128 	struct ena_adapter *adapter;
4129 	struct net_device *netdev;
4130 	static int adapters_found;
4131 	u32 max_num_io_queues;
4132 	char *queue_type_str;
4133 	bool wd_state;
4134 	int bars, rc;
4135 
4136 	dev_dbg(&pdev->dev, "%s\n", __func__);
4137 
4138 	rc = pci_enable_device_mem(pdev);
4139 	if (rc) {
4140 		dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
4141 		return rc;
4142 	}
4143 
4144 	pci_set_master(pdev);
4145 
4146 	ena_dev = vzalloc(sizeof(*ena_dev));
4147 	if (!ena_dev) {
4148 		rc = -ENOMEM;
4149 		goto err_disable_device;
4150 	}
4151 
4152 	bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4153 	rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
4154 	if (rc) {
4155 		dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
4156 			rc);
4157 		goto err_free_ena_dev;
4158 	}
4159 
4160 	ena_dev->reg_bar = devm_ioremap(&pdev->dev,
4161 					pci_resource_start(pdev, ENA_REG_BAR),
4162 					pci_resource_len(pdev, ENA_REG_BAR));
4163 	if (!ena_dev->reg_bar) {
4164 		dev_err(&pdev->dev, "failed to remap regs bar\n");
4165 		rc = -EFAULT;
4166 		goto err_free_region;
4167 	}
4168 
4169 	ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US;
4170 
4171 	ena_dev->dmadev = &pdev->dev;
4172 
4173 	rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
4174 	if (rc) {
4175 		dev_err(&pdev->dev, "ena device init failed\n");
4176 		if (rc == -ETIME)
4177 			rc = -EPROBE_DEFER;
4178 		goto err_free_region;
4179 	}
4180 
4181 	set_default_llq_configurations(&llq_config);
4182 
4183 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx.llq,
4184 					     &llq_config);
4185 	if (rc) {
4186 		dev_err(&pdev->dev, "ena device init failed\n");
4187 		goto err_device_destroy;
4188 	}
4189 
4190 	calc_queue_ctx.ena_dev = ena_dev;
4191 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
4192 	calc_queue_ctx.pdev = pdev;
4193 
4194 	/* Initial TX and RX interrupt delay. Assumes 1 usec granularity.
4195 	 * Updated during device initialization with the real granularity
4196 	 */
4197 	ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
4198 	ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
4199 	ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
4200 	max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
4201 	rc = ena_calc_io_queue_size(&calc_queue_ctx);
4202 	if (rc || !max_num_io_queues) {
4203 		rc = -EFAULT;
4204 		goto err_device_destroy;
4205 	}
4206 
4207 	/* dev zeroed in init_etherdev */
4208 	netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues);
4209 	if (!netdev) {
4210 		dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
4211 		rc = -ENOMEM;
4212 		goto err_device_destroy;
4213 	}
4214 
4215 	SET_NETDEV_DEV(netdev, &pdev->dev);
4216 
4217 	adapter = netdev_priv(netdev);
4218 	pci_set_drvdata(pdev, adapter);
4219 
4220 	adapter->ena_dev = ena_dev;
4221 	adapter->netdev = netdev;
4222 	adapter->pdev = pdev;
4223 
4224 	ena_set_conf_feat_params(adapter, &get_feat_ctx);
4225 
4226 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4227 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
4228 
4229 	adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size;
4230 	adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size;
4231 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
4232 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
4233 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
4234 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
4235 
4236 	adapter->num_io_queues = max_num_io_queues;
4237 	adapter->max_num_io_queues = max_num_io_queues;
4238 	adapter->last_monitored_tx_qid = 0;
4239 
4240 	adapter->xdp_first_ring = 0;
4241 	adapter->xdp_num_queues = 0;
4242 
4243 	adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
4244 	adapter->wd_state = wd_state;
4245 
4246 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
4247 
4248 	rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
4249 	if (rc) {
4250 		dev_err(&pdev->dev,
4251 			"Failed to query interrupt moderation feature\n");
4252 		goto err_netdev_destroy;
4253 	}
4254 	ena_init_io_rings(adapter,
4255 			  0,
4256 			  adapter->xdp_num_queues +
4257 			  adapter->num_io_queues);
4258 
4259 	netdev->netdev_ops = &ena_netdev_ops;
4260 	netdev->watchdog_timeo = TX_TIMEOUT;
4261 	ena_set_ethtool_ops(netdev);
4262 
4263 	netdev->priv_flags |= IFF_UNICAST_FLT;
4264 
4265 	u64_stats_init(&adapter->syncp);
4266 
4267 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
4268 	if (rc) {
4269 		dev_err(&pdev->dev,
4270 			"Failed to enable and set the admin interrupts\n");
4271 		goto err_worker_destroy;
4272 	}
4273 	rc = ena_rss_init_default(adapter);
4274 	if (rc && (rc != -EOPNOTSUPP)) {
4275 		dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
4276 		goto err_free_msix;
4277 	}
4278 
4279 	ena_config_debug_area(adapter);
4280 
4281 	memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
4282 
4283 	netif_carrier_off(netdev);
4284 
4285 	rc = register_netdev(netdev);
4286 	if (rc) {
4287 		dev_err(&pdev->dev, "Cannot register net device\n");
4288 		goto err_rss;
4289 	}
4290 
4291 	INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
4292 
4293 	adapter->last_keep_alive_jiffies = jiffies;
4294 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
4295 	adapter->missing_tx_completion_to = TX_TIMEOUT;
4296 	adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
4297 
4298 	ena_update_hints(adapter, &get_feat_ctx.hw_hints);
4299 
4300 	timer_setup(&adapter->timer_service, ena_timer_service, 0);
4301 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4302 
4303 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
4304 		queue_type_str = "Regular";
4305 	else
4306 		queue_type_str = "Low Latency";
4307 
4308 	dev_info(&pdev->dev,
4309 		 "%s found at mem %lx, mac addr %pM, Placement policy: %s\n",
4310 		 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
4311 		 netdev->dev_addr, queue_type_str);
4312 
4313 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
4314 
4315 	adapters_found++;
4316 
4317 	return 0;
4318 
4319 err_rss:
4320 	ena_com_delete_debug_area(ena_dev);
4321 	ena_com_rss_destroy(ena_dev);
4322 err_free_msix:
4323 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
4324 	/* stop submitting admin commands on a device that was reset */
4325 	ena_com_set_admin_running_state(ena_dev, false);
4326 	ena_free_mgmnt_irq(adapter);
4327 	ena_disable_msix(adapter);
4328 err_worker_destroy:
4329 	del_timer(&adapter->timer_service);
4330 err_netdev_destroy:
4331 	free_netdev(netdev);
4332 err_device_destroy:
4333 	ena_com_delete_host_info(ena_dev);
4334 	ena_com_admin_destroy(ena_dev);
4335 err_free_region:
4336 	ena_release_bars(ena_dev, pdev);
4337 err_free_ena_dev:
4338 	vfree(ena_dev);
4339 err_disable_device:
4340 	pci_disable_device(pdev);
4341 	return rc;
4342 }
4343 
4344 /*****************************************************************************/
4345 
4346 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines
4347  * @pdev: PCI device information struct
4348  * @shutdown: Is it a shutdown operation? If false, means it is a removal
4349  *
4350  * __ena_shutoff is a helper routine that does the real work on shutdown and
4351  * removal paths; the difference between those paths is with regards to whether
4352  * dettach or unregister the netdevice.
4353  */
4354 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown)
4355 {
4356 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4357 	struct ena_com_dev *ena_dev;
4358 	struct net_device *netdev;
4359 
4360 	ena_dev = adapter->ena_dev;
4361 	netdev = adapter->netdev;
4362 
4363 #ifdef CONFIG_RFS_ACCEL
4364 	if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
4365 		free_irq_cpu_rmap(netdev->rx_cpu_rmap);
4366 		netdev->rx_cpu_rmap = NULL;
4367 	}
4368 #endif /* CONFIG_RFS_ACCEL */
4369 	del_timer_sync(&adapter->timer_service);
4370 
4371 	cancel_work_sync(&adapter->reset_task);
4372 
4373 	rtnl_lock(); /* lock released inside the below if-else block */
4374 	adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN;
4375 	ena_destroy_device(adapter, true);
4376 	if (shutdown) {
4377 		netif_device_detach(netdev);
4378 		dev_close(netdev);
4379 		rtnl_unlock();
4380 	} else {
4381 		rtnl_unlock();
4382 		unregister_netdev(netdev);
4383 		free_netdev(netdev);
4384 	}
4385 
4386 	ena_com_rss_destroy(ena_dev);
4387 
4388 	ena_com_delete_debug_area(ena_dev);
4389 
4390 	ena_com_delete_host_info(ena_dev);
4391 
4392 	ena_release_bars(ena_dev, pdev);
4393 
4394 	pci_disable_device(pdev);
4395 
4396 	vfree(ena_dev);
4397 }
4398 
4399 /* ena_remove - Device Removal Routine
4400  * @pdev: PCI device information struct
4401  *
4402  * ena_remove is called by the PCI subsystem to alert the driver
4403  * that it should release a PCI device.
4404  */
4405 
4406 static void ena_remove(struct pci_dev *pdev)
4407 {
4408 	__ena_shutoff(pdev, false);
4409 }
4410 
4411 /* ena_shutdown - Device Shutdown Routine
4412  * @pdev: PCI device information struct
4413  *
4414  * ena_shutdown is called by the PCI subsystem to alert the driver that
4415  * a shutdown/reboot (or kexec) is happening and device must be disabled.
4416  */
4417 
4418 static void ena_shutdown(struct pci_dev *pdev)
4419 {
4420 	__ena_shutoff(pdev, true);
4421 }
4422 
4423 #ifdef CONFIG_PM
4424 /* ena_suspend - PM suspend callback
4425  * @pdev: PCI device information struct
4426  * @state:power state
4427  */
4428 static int ena_suspend(struct pci_dev *pdev,  pm_message_t state)
4429 {
4430 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4431 
4432 	u64_stats_update_begin(&adapter->syncp);
4433 	adapter->dev_stats.suspend++;
4434 	u64_stats_update_end(&adapter->syncp);
4435 
4436 	rtnl_lock();
4437 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4438 		dev_err(&pdev->dev,
4439 			"ignoring device reset request as the device is being suspended\n");
4440 		clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4441 	}
4442 	ena_destroy_device(adapter, true);
4443 	rtnl_unlock();
4444 	return 0;
4445 }
4446 
4447 /* ena_resume - PM resume callback
4448  * @pdev: PCI device information struct
4449  *
4450  */
4451 static int ena_resume(struct pci_dev *pdev)
4452 {
4453 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4454 	int rc;
4455 
4456 	u64_stats_update_begin(&adapter->syncp);
4457 	adapter->dev_stats.resume++;
4458 	u64_stats_update_end(&adapter->syncp);
4459 
4460 	rtnl_lock();
4461 	rc = ena_restore_device(adapter);
4462 	rtnl_unlock();
4463 	return rc;
4464 }
4465 #endif
4466 
4467 static struct pci_driver ena_pci_driver = {
4468 	.name		= DRV_MODULE_NAME,
4469 	.id_table	= ena_pci_tbl,
4470 	.probe		= ena_probe,
4471 	.remove		= ena_remove,
4472 	.shutdown	= ena_shutdown,
4473 #ifdef CONFIG_PM
4474 	.suspend    = ena_suspend,
4475 	.resume     = ena_resume,
4476 #endif
4477 	.sriov_configure = pci_sriov_configure_simple,
4478 };
4479 
4480 static int __init ena_init(void)
4481 {
4482 	ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4483 	if (!ena_wq) {
4484 		pr_err("Failed to create workqueue\n");
4485 		return -ENOMEM;
4486 	}
4487 
4488 	return pci_register_driver(&ena_pci_driver);
4489 }
4490 
4491 static void __exit ena_cleanup(void)
4492 {
4493 	pci_unregister_driver(&ena_pci_driver);
4494 
4495 	if (ena_wq) {
4496 		destroy_workqueue(ena_wq);
4497 		ena_wq = NULL;
4498 	}
4499 }
4500 
4501 /******************************************************************************
4502  ******************************** AENQ Handlers *******************************
4503  *****************************************************************************/
4504 /* ena_update_on_link_change:
4505  * Notify the network interface about the change in link status
4506  */
4507 static void ena_update_on_link_change(void *adapter_data,
4508 				      struct ena_admin_aenq_entry *aenq_e)
4509 {
4510 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4511 	struct ena_admin_aenq_link_change_desc *aenq_desc =
4512 		(struct ena_admin_aenq_link_change_desc *)aenq_e;
4513 	int status = aenq_desc->flags &
4514 		ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4515 
4516 	if (status) {
4517 		netdev_dbg(adapter->netdev, "%s\n", __func__);
4518 		set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4519 		if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4520 			netif_carrier_on(adapter->netdev);
4521 	} else {
4522 		clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4523 		netif_carrier_off(adapter->netdev);
4524 	}
4525 }
4526 
4527 static void ena_keep_alive_wd(void *adapter_data,
4528 			      struct ena_admin_aenq_entry *aenq_e)
4529 {
4530 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4531 	struct ena_admin_aenq_keep_alive_desc *desc;
4532 	u64 rx_drops;
4533 	u64 tx_drops;
4534 
4535 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4536 	adapter->last_keep_alive_jiffies = jiffies;
4537 
4538 	rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4539 	tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low;
4540 
4541 	u64_stats_update_begin(&adapter->syncp);
4542 	adapter->dev_stats.rx_drops = rx_drops;
4543 	adapter->dev_stats.tx_drops = tx_drops;
4544 	u64_stats_update_end(&adapter->syncp);
4545 }
4546 
4547 static void ena_notification(void *adapter_data,
4548 			     struct ena_admin_aenq_entry *aenq_e)
4549 {
4550 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4551 	struct ena_admin_ena_hw_hints *hints;
4552 
4553 	WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4554 	     "Invalid group(%x) expected %x\n",
4555 	     aenq_e->aenq_common_desc.group,
4556 	     ENA_ADMIN_NOTIFICATION);
4557 
4558 	switch (aenq_e->aenq_common_desc.syndrom) {
4559 	case ENA_ADMIN_UPDATE_HINTS:
4560 		hints = (struct ena_admin_ena_hw_hints *)
4561 			(&aenq_e->inline_data_w4);
4562 		ena_update_hints(adapter, hints);
4563 		break;
4564 	default:
4565 		netif_err(adapter, drv, adapter->netdev,
4566 			  "Invalid aenq notification link state %d\n",
4567 			  aenq_e->aenq_common_desc.syndrom);
4568 	}
4569 }
4570 
4571 /* This handler will called for unknown event group or unimplemented handlers*/
4572 static void unimplemented_aenq_handler(void *data,
4573 				       struct ena_admin_aenq_entry *aenq_e)
4574 {
4575 	struct ena_adapter *adapter = (struct ena_adapter *)data;
4576 
4577 	netif_err(adapter, drv, adapter->netdev,
4578 		  "Unknown event was received or event with unimplemented handler\n");
4579 }
4580 
4581 static struct ena_aenq_handlers aenq_handlers = {
4582 	.handlers = {
4583 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4584 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4585 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4586 	},
4587 	.unimplemented_handler = unimplemented_aenq_handler
4588 };
4589 
4590 module_init(ena_init);
4591 module_exit(ena_cleanup);
4592