1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #ifdef CONFIG_RFS_ACCEL
9 #include <linux/cpu_rmap.h>
10 #endif /* CONFIG_RFS_ACCEL */
11 #include <linux/ethtool.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/numa.h>
15 #include <linux/pci.h>
16 #include <linux/utsname.h>
17 #include <linux/version.h>
18 #include <linux/vmalloc.h>
19 #include <net/ip.h>
20 
21 #include "ena_netdev.h"
22 #include <linux/bpf_trace.h>
23 #include "ena_pci_id_tbl.h"
24 
25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
26 MODULE_DESCRIPTION(DEVICE_NAME);
27 MODULE_LICENSE("GPL");
28 
29 /* Time in jiffies before concluding the transmitter is hung. */
30 #define TX_TIMEOUT  (5 * HZ)
31 
32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus())
33 
34 #define ENA_NAPI_BUDGET 64
35 
36 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
37 		NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
38 static int debug = -1;
39 module_param(debug, int, 0);
40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
41 
42 static struct ena_aenq_handlers aenq_handlers;
43 
44 static struct workqueue_struct *ena_wq;
45 
46 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
47 
48 static int ena_rss_init_default(struct ena_adapter *adapter);
49 static void check_for_admin_com_state(struct ena_adapter *adapter);
50 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
51 static int ena_restore_device(struct ena_adapter *adapter);
52 
53 static void ena_init_io_rings(struct ena_adapter *adapter,
54 			      int first_index, int count);
55 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index,
56 				   int count);
57 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index,
58 				  int count);
59 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid);
60 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
61 					   int first_index,
62 					   int count);
63 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid);
64 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid);
65 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget);
66 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter);
67 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter);
68 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
69 				      int first_index, int count);
70 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
71 				     int first_index, int count);
72 static int ena_up(struct ena_adapter *adapter);
73 static void ena_down(struct ena_adapter *adapter);
74 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
75 				 struct ena_ring *rx_ring);
76 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
77 				      struct ena_ring *rx_ring);
78 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
79 			      struct ena_tx_buffer *tx_info);
80 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
81 					    int first_index, int count);
82 
83 /* Increase a stat by cnt while holding syncp seqlock on 32bit machines */
84 static void ena_increase_stat(u64 *statp, u64 cnt,
85 			      struct u64_stats_sync *syncp)
86 {
87 	u64_stats_update_begin(syncp);
88 	(*statp) += cnt;
89 	u64_stats_update_end(syncp);
90 }
91 
92 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
93 {
94 	struct ena_adapter *adapter = netdev_priv(dev);
95 
96 	/* Change the state of the device to trigger reset
97 	 * Check that we are not in the middle or a trigger already
98 	 */
99 
100 	if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
101 		return;
102 
103 	adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD;
104 	ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp);
105 
106 	netif_err(adapter, tx_err, dev, "Transmit time out\n");
107 }
108 
109 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
110 {
111 	int i;
112 
113 	for (i = 0; i < adapter->num_io_queues; i++)
114 		adapter->rx_ring[i].mtu = mtu;
115 }
116 
117 static int ena_change_mtu(struct net_device *dev, int new_mtu)
118 {
119 	struct ena_adapter *adapter = netdev_priv(dev);
120 	int ret;
121 
122 	ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
123 	if (!ret) {
124 		netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu);
125 		update_rx_ring_mtu(adapter, new_mtu);
126 		dev->mtu = new_mtu;
127 	} else {
128 		netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
129 			  new_mtu);
130 	}
131 
132 	return ret;
133 }
134 
135 static int ena_xmit_common(struct net_device *dev,
136 			   struct ena_ring *ring,
137 			   struct ena_tx_buffer *tx_info,
138 			   struct ena_com_tx_ctx *ena_tx_ctx,
139 			   u16 next_to_use,
140 			   u32 bytes)
141 {
142 	struct ena_adapter *adapter = netdev_priv(dev);
143 	int rc, nb_hw_desc;
144 
145 	if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
146 						ena_tx_ctx))) {
147 		netif_dbg(adapter, tx_queued, dev,
148 			  "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
149 			  ring->qid);
150 		ena_com_write_sq_doorbell(ring->ena_com_io_sq);
151 	}
152 
153 	/* prepare the packet's descriptors to dma engine */
154 	rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
155 				&nb_hw_desc);
156 
157 	/* In case there isn't enough space in the queue for the packet,
158 	 * we simply drop it. All other failure reasons of
159 	 * ena_com_prepare_tx() are fatal and therefore require a device reset.
160 	 */
161 	if (unlikely(rc)) {
162 		netif_err(adapter, tx_queued, dev,
163 			  "Failed to prepare tx bufs\n");
164 		ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1,
165 				  &ring->syncp);
166 		if (rc != -ENOMEM) {
167 			adapter->reset_reason =
168 				ENA_REGS_RESET_DRIVER_INVALID_STATE;
169 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
170 		}
171 		return rc;
172 	}
173 
174 	u64_stats_update_begin(&ring->syncp);
175 	ring->tx_stats.cnt++;
176 	ring->tx_stats.bytes += bytes;
177 	u64_stats_update_end(&ring->syncp);
178 
179 	tx_info->tx_descs = nb_hw_desc;
180 	tx_info->last_jiffies = jiffies;
181 	tx_info->print_once = 0;
182 
183 	ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
184 						 ring->ring_size);
185 	return 0;
186 }
187 
188 /* This is the XDP napi callback. XDP queues use a separate napi callback
189  * than Rx/Tx queues.
190  */
191 static int ena_xdp_io_poll(struct napi_struct *napi, int budget)
192 {
193 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
194 	u32 xdp_work_done, xdp_budget;
195 	struct ena_ring *xdp_ring;
196 	int napi_comp_call = 0;
197 	int ret;
198 
199 	xdp_ring = ena_napi->xdp_ring;
200 	xdp_ring->first_interrupt = ena_napi->first_interrupt;
201 
202 	xdp_budget = budget;
203 
204 	if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) ||
205 	    test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) {
206 		napi_complete_done(napi, 0);
207 		return 0;
208 	}
209 
210 	xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget);
211 
212 	/* If the device is about to reset or down, avoid unmask
213 	 * the interrupt and return 0 so NAPI won't reschedule
214 	 */
215 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) {
216 		napi_complete_done(napi, 0);
217 		ret = 0;
218 	} else if (xdp_budget > xdp_work_done) {
219 		napi_comp_call = 1;
220 		if (napi_complete_done(napi, xdp_work_done))
221 			ena_unmask_interrupt(xdp_ring, NULL);
222 		ena_update_ring_numa_node(xdp_ring, NULL);
223 		ret = xdp_work_done;
224 	} else {
225 		ret = xdp_budget;
226 	}
227 
228 	u64_stats_update_begin(&xdp_ring->syncp);
229 	xdp_ring->tx_stats.napi_comp += napi_comp_call;
230 	xdp_ring->tx_stats.tx_poll++;
231 	u64_stats_update_end(&xdp_ring->syncp);
232 
233 	return ret;
234 }
235 
236 static int ena_xdp_tx_map_frame(struct ena_ring *xdp_ring,
237 				struct ena_tx_buffer *tx_info,
238 				struct xdp_frame *xdpf,
239 				struct ena_com_tx_ctx *ena_tx_ctx)
240 {
241 	struct ena_adapter *adapter = xdp_ring->adapter;
242 	struct ena_com_buf *ena_buf;
243 	int push_len = 0;
244 	dma_addr_t dma;
245 	void *data;
246 	u32 size;
247 
248 	tx_info->xdpf = xdpf;
249 	data = tx_info->xdpf->data;
250 	size = tx_info->xdpf->len;
251 
252 	if (xdp_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
253 		/* Designate part of the packet for LLQ */
254 		push_len = min_t(u32, size, xdp_ring->tx_max_header_size);
255 
256 		ena_tx_ctx->push_header = data;
257 
258 		size -= push_len;
259 		data += push_len;
260 	}
261 
262 	ena_tx_ctx->header_len = push_len;
263 
264 	if (size > 0) {
265 		dma = dma_map_single(xdp_ring->dev,
266 				     data,
267 				     size,
268 				     DMA_TO_DEVICE);
269 		if (unlikely(dma_mapping_error(xdp_ring->dev, dma)))
270 			goto error_report_dma_error;
271 
272 		tx_info->map_linear_data = 0;
273 
274 		ena_buf = tx_info->bufs;
275 		ena_buf->paddr = dma;
276 		ena_buf->len = size;
277 
278 		ena_tx_ctx->ena_bufs = ena_buf;
279 		ena_tx_ctx->num_bufs = tx_info->num_of_bufs = 1;
280 	}
281 
282 	return 0;
283 
284 error_report_dma_error:
285 	ena_increase_stat(&xdp_ring->tx_stats.dma_mapping_err, 1,
286 			  &xdp_ring->syncp);
287 	netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map xdp buff\n");
288 
289 	return -EINVAL;
290 }
291 
292 static int ena_xdp_xmit_frame(struct ena_ring *xdp_ring,
293 			      struct net_device *dev,
294 			      struct xdp_frame *xdpf,
295 			      int flags)
296 {
297 	struct ena_com_tx_ctx ena_tx_ctx = {};
298 	struct ena_tx_buffer *tx_info;
299 	u16 next_to_use, req_id;
300 	int rc;
301 
302 	next_to_use = xdp_ring->next_to_use;
303 	req_id = xdp_ring->free_ids[next_to_use];
304 	tx_info = &xdp_ring->tx_buffer_info[req_id];
305 	tx_info->num_of_bufs = 0;
306 
307 	rc = ena_xdp_tx_map_frame(xdp_ring, tx_info, xdpf, &ena_tx_ctx);
308 	if (unlikely(rc))
309 		return rc;
310 
311 	ena_tx_ctx.req_id = req_id;
312 
313 	rc = ena_xmit_common(dev,
314 			     xdp_ring,
315 			     tx_info,
316 			     &ena_tx_ctx,
317 			     next_to_use,
318 			     xdpf->len);
319 	if (rc)
320 		goto error_unmap_dma;
321 	/* trigger the dma engine. ena_com_write_sq_doorbell()
322 	 * has a mb
323 	 */
324 	if (flags & XDP_XMIT_FLUSH) {
325 		ena_com_write_sq_doorbell(xdp_ring->ena_com_io_sq);
326 		ena_increase_stat(&xdp_ring->tx_stats.doorbells, 1,
327 				  &xdp_ring->syncp);
328 	}
329 
330 	return rc;
331 
332 error_unmap_dma:
333 	ena_unmap_tx_buff(xdp_ring, tx_info);
334 	tx_info->xdpf = NULL;
335 	return rc;
336 }
337 
338 static int ena_xdp_xmit(struct net_device *dev, int n,
339 			struct xdp_frame **frames, u32 flags)
340 {
341 	struct ena_adapter *adapter = netdev_priv(dev);
342 	struct ena_ring *xdp_ring;
343 	int qid, i, nxmit = 0;
344 
345 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
346 		return -EINVAL;
347 
348 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
349 		return -ENETDOWN;
350 
351 	/* We assume that all rings have the same XDP program */
352 	if (!READ_ONCE(adapter->rx_ring->xdp_bpf_prog))
353 		return -ENXIO;
354 
355 	qid = smp_processor_id() % adapter->xdp_num_queues;
356 	qid += adapter->xdp_first_ring;
357 	xdp_ring = &adapter->tx_ring[qid];
358 
359 	/* Other CPU ids might try to send thorugh this queue */
360 	spin_lock(&xdp_ring->xdp_tx_lock);
361 
362 	for (i = 0; i < n; i++) {
363 		if (ena_xdp_xmit_frame(xdp_ring, dev, frames[i], 0))
364 			break;
365 		nxmit++;
366 	}
367 
368 	/* Ring doorbell to make device aware of the packets */
369 	if (flags & XDP_XMIT_FLUSH) {
370 		ena_com_write_sq_doorbell(xdp_ring->ena_com_io_sq);
371 		ena_increase_stat(&xdp_ring->tx_stats.doorbells, 1,
372 				  &xdp_ring->syncp);
373 	}
374 
375 	spin_unlock(&xdp_ring->xdp_tx_lock);
376 
377 	/* Return number of packets sent */
378 	return nxmit;
379 }
380 
381 static int ena_xdp_execute(struct ena_ring *rx_ring, struct xdp_buff *xdp)
382 {
383 	struct bpf_prog *xdp_prog;
384 	struct ena_ring *xdp_ring;
385 	u32 verdict = XDP_PASS;
386 	struct xdp_frame *xdpf;
387 	u64 *xdp_stat;
388 	int qid;
389 
390 	rcu_read_lock();
391 	xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog);
392 
393 	if (!xdp_prog)
394 		goto out;
395 
396 	verdict = bpf_prog_run_xdp(xdp_prog, xdp);
397 
398 	switch (verdict) {
399 	case XDP_TX:
400 		xdpf = xdp_convert_buff_to_frame(xdp);
401 		if (unlikely(!xdpf)) {
402 			trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
403 			xdp_stat = &rx_ring->rx_stats.xdp_aborted;
404 			verdict = XDP_ABORTED;
405 			break;
406 		}
407 
408 		/* Find xmit queue */
409 		qid = rx_ring->qid + rx_ring->adapter->num_io_queues;
410 		xdp_ring = &rx_ring->adapter->tx_ring[qid];
411 
412 		/* The XDP queues are shared between XDP_TX and XDP_REDIRECT */
413 		spin_lock(&xdp_ring->xdp_tx_lock);
414 
415 		if (ena_xdp_xmit_frame(xdp_ring, rx_ring->netdev, xdpf,
416 				       XDP_XMIT_FLUSH))
417 			xdp_return_frame(xdpf);
418 
419 		spin_unlock(&xdp_ring->xdp_tx_lock);
420 		xdp_stat = &rx_ring->rx_stats.xdp_tx;
421 		break;
422 	case XDP_REDIRECT:
423 		if (likely(!xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))) {
424 			xdp_stat = &rx_ring->rx_stats.xdp_redirect;
425 			break;
426 		}
427 		trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
428 		xdp_stat = &rx_ring->rx_stats.xdp_aborted;
429 		verdict = XDP_ABORTED;
430 		break;
431 	case XDP_ABORTED:
432 		trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
433 		xdp_stat = &rx_ring->rx_stats.xdp_aborted;
434 		break;
435 	case XDP_DROP:
436 		xdp_stat = &rx_ring->rx_stats.xdp_drop;
437 		break;
438 	case XDP_PASS:
439 		xdp_stat = &rx_ring->rx_stats.xdp_pass;
440 		break;
441 	default:
442 		bpf_warn_invalid_xdp_action(verdict);
443 		xdp_stat = &rx_ring->rx_stats.xdp_invalid;
444 	}
445 
446 	ena_increase_stat(xdp_stat, 1, &rx_ring->syncp);
447 out:
448 	rcu_read_unlock();
449 
450 	return verdict;
451 }
452 
453 static void ena_init_all_xdp_queues(struct ena_adapter *adapter)
454 {
455 	adapter->xdp_first_ring = adapter->num_io_queues;
456 	adapter->xdp_num_queues = adapter->num_io_queues;
457 
458 	ena_init_io_rings(adapter,
459 			  adapter->xdp_first_ring,
460 			  adapter->xdp_num_queues);
461 }
462 
463 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter)
464 {
465 	int rc = 0;
466 
467 	rc = ena_setup_tx_resources_in_range(adapter, adapter->xdp_first_ring,
468 					     adapter->xdp_num_queues);
469 	if (rc)
470 		goto setup_err;
471 
472 	rc = ena_create_io_tx_queues_in_range(adapter,
473 					      adapter->xdp_first_ring,
474 					      adapter->xdp_num_queues);
475 	if (rc)
476 		goto create_err;
477 
478 	return 0;
479 
480 create_err:
481 	ena_free_all_io_tx_resources(adapter);
482 setup_err:
483 	return rc;
484 }
485 
486 /* Provides a way for both kernel and bpf-prog to know
487  * more about the RX-queue a given XDP frame arrived on.
488  */
489 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring)
490 {
491 	int rc;
492 
493 	rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid, 0);
494 
495 	if (rc) {
496 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
497 			  "Failed to register xdp rx queue info. RX queue num %d rc: %d\n",
498 			  rx_ring->qid, rc);
499 		goto err;
500 	}
501 
502 	rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED,
503 					NULL);
504 
505 	if (rc) {
506 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
507 			  "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n",
508 			  rx_ring->qid, rc);
509 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
510 	}
511 
512 err:
513 	return rc;
514 }
515 
516 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring)
517 {
518 	xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq);
519 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
520 }
521 
522 static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter,
523 						 struct bpf_prog *prog,
524 						 int first, int count)
525 {
526 	struct ena_ring *rx_ring;
527 	int i = 0;
528 
529 	for (i = first; i < count; i++) {
530 		rx_ring = &adapter->rx_ring[i];
531 		xchg(&rx_ring->xdp_bpf_prog, prog);
532 		if (prog) {
533 			ena_xdp_register_rxq_info(rx_ring);
534 			rx_ring->rx_headroom = XDP_PACKET_HEADROOM;
535 		} else {
536 			ena_xdp_unregister_rxq_info(rx_ring);
537 			rx_ring->rx_headroom = 0;
538 		}
539 	}
540 }
541 
542 static void ena_xdp_exchange_program(struct ena_adapter *adapter,
543 				     struct bpf_prog *prog)
544 {
545 	struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog);
546 
547 	ena_xdp_exchange_program_rx_in_range(adapter,
548 					     prog,
549 					     0,
550 					     adapter->num_io_queues);
551 
552 	if (old_bpf_prog)
553 		bpf_prog_put(old_bpf_prog);
554 }
555 
556 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter)
557 {
558 	bool was_up;
559 	int rc;
560 
561 	was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
562 
563 	if (was_up)
564 		ena_down(adapter);
565 
566 	adapter->xdp_first_ring = 0;
567 	adapter->xdp_num_queues = 0;
568 	ena_xdp_exchange_program(adapter, NULL);
569 	if (was_up) {
570 		rc = ena_up(adapter);
571 		if (rc)
572 			return rc;
573 	}
574 	return 0;
575 }
576 
577 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf)
578 {
579 	struct ena_adapter *adapter = netdev_priv(netdev);
580 	struct bpf_prog *prog = bpf->prog;
581 	struct bpf_prog *old_bpf_prog;
582 	int rc, prev_mtu;
583 	bool is_up;
584 
585 	is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
586 	rc = ena_xdp_allowed(adapter);
587 	if (rc == ENA_XDP_ALLOWED) {
588 		old_bpf_prog = adapter->xdp_bpf_prog;
589 		if (prog) {
590 			if (!is_up) {
591 				ena_init_all_xdp_queues(adapter);
592 			} else if (!old_bpf_prog) {
593 				ena_down(adapter);
594 				ena_init_all_xdp_queues(adapter);
595 			}
596 			ena_xdp_exchange_program(adapter, prog);
597 
598 			if (is_up && !old_bpf_prog) {
599 				rc = ena_up(adapter);
600 				if (rc)
601 					return rc;
602 			}
603 		} else if (old_bpf_prog) {
604 			rc = ena_destroy_and_free_all_xdp_queues(adapter);
605 			if (rc)
606 				return rc;
607 		}
608 
609 		prev_mtu = netdev->max_mtu;
610 		netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu;
611 
612 		if (!old_bpf_prog)
613 			netif_info(adapter, drv, adapter->netdev,
614 				   "XDP program is set, changing the max_mtu from %d to %d",
615 				   prev_mtu, netdev->max_mtu);
616 
617 	} else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) {
618 		netif_err(adapter, drv, adapter->netdev,
619 			  "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on",
620 			  netdev->mtu, ENA_XDP_MAX_MTU);
621 		NL_SET_ERR_MSG_MOD(bpf->extack,
622 				   "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info");
623 		return -EINVAL;
624 	} else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) {
625 		netif_err(adapter, drv, adapter->netdev,
626 			  "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n",
627 			  adapter->num_io_queues, adapter->max_num_io_queues);
628 		NL_SET_ERR_MSG_MOD(bpf->extack,
629 				   "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info");
630 		return -EINVAL;
631 	}
632 
633 	return 0;
634 }
635 
636 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp
637  * program as well as to query the current xdp program id.
638  */
639 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf)
640 {
641 	switch (bpf->command) {
642 	case XDP_SETUP_PROG:
643 		return ena_xdp_set(netdev, bpf);
644 	default:
645 		return -EINVAL;
646 	}
647 	return 0;
648 }
649 
650 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
651 {
652 #ifdef CONFIG_RFS_ACCEL
653 	u32 i;
654 	int rc;
655 
656 	adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
657 	if (!adapter->netdev->rx_cpu_rmap)
658 		return -ENOMEM;
659 	for (i = 0; i < adapter->num_io_queues; i++) {
660 		int irq_idx = ENA_IO_IRQ_IDX(i);
661 
662 		rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
663 				      pci_irq_vector(adapter->pdev, irq_idx));
664 		if (rc) {
665 			free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
666 			adapter->netdev->rx_cpu_rmap = NULL;
667 			return rc;
668 		}
669 	}
670 #endif /* CONFIG_RFS_ACCEL */
671 	return 0;
672 }
673 
674 static void ena_init_io_rings_common(struct ena_adapter *adapter,
675 				     struct ena_ring *ring, u16 qid)
676 {
677 	ring->qid = qid;
678 	ring->pdev = adapter->pdev;
679 	ring->dev = &adapter->pdev->dev;
680 	ring->netdev = adapter->netdev;
681 	ring->napi = &adapter->ena_napi[qid].napi;
682 	ring->adapter = adapter;
683 	ring->ena_dev = adapter->ena_dev;
684 	ring->per_napi_packets = 0;
685 	ring->cpu = 0;
686 	ring->first_interrupt = false;
687 	ring->no_interrupt_event_cnt = 0;
688 	u64_stats_init(&ring->syncp);
689 }
690 
691 static void ena_init_io_rings(struct ena_adapter *adapter,
692 			      int first_index, int count)
693 {
694 	struct ena_com_dev *ena_dev;
695 	struct ena_ring *txr, *rxr;
696 	int i;
697 
698 	ena_dev = adapter->ena_dev;
699 
700 	for (i = first_index; i < first_index + count; i++) {
701 		txr = &adapter->tx_ring[i];
702 		rxr = &adapter->rx_ring[i];
703 
704 		/* TX common ring state */
705 		ena_init_io_rings_common(adapter, txr, i);
706 
707 		/* TX specific ring state */
708 		txr->ring_size = adapter->requested_tx_ring_size;
709 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
710 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
711 		txr->sgl_size = adapter->max_tx_sgl_size;
712 		txr->smoothed_interval =
713 			ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
714 		txr->disable_meta_caching = adapter->disable_meta_caching;
715 		spin_lock_init(&txr->xdp_tx_lock);
716 
717 		/* Don't init RX queues for xdp queues */
718 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
719 			/* RX common ring state */
720 			ena_init_io_rings_common(adapter, rxr, i);
721 
722 			/* RX specific ring state */
723 			rxr->ring_size = adapter->requested_rx_ring_size;
724 			rxr->rx_copybreak = adapter->rx_copybreak;
725 			rxr->sgl_size = adapter->max_rx_sgl_size;
726 			rxr->smoothed_interval =
727 				ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
728 			rxr->empty_rx_queue = 0;
729 			adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
730 		}
731 	}
732 }
733 
734 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
735  * @adapter: network interface device structure
736  * @qid: queue index
737  *
738  * Return 0 on success, negative on failure
739  */
740 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
741 {
742 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
743 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
744 	int size, i, node;
745 
746 	if (tx_ring->tx_buffer_info) {
747 		netif_err(adapter, ifup,
748 			  adapter->netdev, "tx_buffer_info info is not NULL");
749 		return -EEXIST;
750 	}
751 
752 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
753 	node = cpu_to_node(ena_irq->cpu);
754 
755 	tx_ring->tx_buffer_info = vzalloc_node(size, node);
756 	if (!tx_ring->tx_buffer_info) {
757 		tx_ring->tx_buffer_info = vzalloc(size);
758 		if (!tx_ring->tx_buffer_info)
759 			goto err_tx_buffer_info;
760 	}
761 
762 	size = sizeof(u16) * tx_ring->ring_size;
763 	tx_ring->free_ids = vzalloc_node(size, node);
764 	if (!tx_ring->free_ids) {
765 		tx_ring->free_ids = vzalloc(size);
766 		if (!tx_ring->free_ids)
767 			goto err_tx_free_ids;
768 	}
769 
770 	size = tx_ring->tx_max_header_size;
771 	tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
772 	if (!tx_ring->push_buf_intermediate_buf) {
773 		tx_ring->push_buf_intermediate_buf = vzalloc(size);
774 		if (!tx_ring->push_buf_intermediate_buf)
775 			goto err_push_buf_intermediate_buf;
776 	}
777 
778 	/* Req id ring for TX out of order completions */
779 	for (i = 0; i < tx_ring->ring_size; i++)
780 		tx_ring->free_ids[i] = i;
781 
782 	/* Reset tx statistics */
783 	memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
784 
785 	tx_ring->next_to_use = 0;
786 	tx_ring->next_to_clean = 0;
787 	tx_ring->cpu = ena_irq->cpu;
788 	return 0;
789 
790 err_push_buf_intermediate_buf:
791 	vfree(tx_ring->free_ids);
792 	tx_ring->free_ids = NULL;
793 err_tx_free_ids:
794 	vfree(tx_ring->tx_buffer_info);
795 	tx_ring->tx_buffer_info = NULL;
796 err_tx_buffer_info:
797 	return -ENOMEM;
798 }
799 
800 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
801  * @adapter: network interface device structure
802  * @qid: queue index
803  *
804  * Free all transmit software resources
805  */
806 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
807 {
808 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
809 
810 	vfree(tx_ring->tx_buffer_info);
811 	tx_ring->tx_buffer_info = NULL;
812 
813 	vfree(tx_ring->free_ids);
814 	tx_ring->free_ids = NULL;
815 
816 	vfree(tx_ring->push_buf_intermediate_buf);
817 	tx_ring->push_buf_intermediate_buf = NULL;
818 }
819 
820 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
821 					   int first_index,
822 					   int count)
823 {
824 	int i, rc = 0;
825 
826 	for (i = first_index; i < first_index + count; i++) {
827 		rc = ena_setup_tx_resources(adapter, i);
828 		if (rc)
829 			goto err_setup_tx;
830 	}
831 
832 	return 0;
833 
834 err_setup_tx:
835 
836 	netif_err(adapter, ifup, adapter->netdev,
837 		  "Tx queue %d: allocation failed\n", i);
838 
839 	/* rewind the index freeing the rings as we go */
840 	while (first_index < i--)
841 		ena_free_tx_resources(adapter, i);
842 	return rc;
843 }
844 
845 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
846 						  int first_index, int count)
847 {
848 	int i;
849 
850 	for (i = first_index; i < first_index + count; i++)
851 		ena_free_tx_resources(adapter, i);
852 }
853 
854 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
855  * @adapter: board private structure
856  *
857  * Free all transmit software resources
858  */
859 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
860 {
861 	ena_free_all_io_tx_resources_in_range(adapter,
862 					      0,
863 					      adapter->xdp_num_queues +
864 					      adapter->num_io_queues);
865 }
866 
867 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
868  * @adapter: network interface device structure
869  * @qid: queue index
870  *
871  * Returns 0 on success, negative on failure
872  */
873 static int ena_setup_rx_resources(struct ena_adapter *adapter,
874 				  u32 qid)
875 {
876 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
877 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
878 	int size, node, i;
879 
880 	if (rx_ring->rx_buffer_info) {
881 		netif_err(adapter, ifup, adapter->netdev,
882 			  "rx_buffer_info is not NULL");
883 		return -EEXIST;
884 	}
885 
886 	/* alloc extra element so in rx path
887 	 * we can always prefetch rx_info + 1
888 	 */
889 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
890 	node = cpu_to_node(ena_irq->cpu);
891 
892 	rx_ring->rx_buffer_info = vzalloc_node(size, node);
893 	if (!rx_ring->rx_buffer_info) {
894 		rx_ring->rx_buffer_info = vzalloc(size);
895 		if (!rx_ring->rx_buffer_info)
896 			return -ENOMEM;
897 	}
898 
899 	size = sizeof(u16) * rx_ring->ring_size;
900 	rx_ring->free_ids = vzalloc_node(size, node);
901 	if (!rx_ring->free_ids) {
902 		rx_ring->free_ids = vzalloc(size);
903 		if (!rx_ring->free_ids) {
904 			vfree(rx_ring->rx_buffer_info);
905 			rx_ring->rx_buffer_info = NULL;
906 			return -ENOMEM;
907 		}
908 	}
909 
910 	/* Req id ring for receiving RX pkts out of order */
911 	for (i = 0; i < rx_ring->ring_size; i++)
912 		rx_ring->free_ids[i] = i;
913 
914 	/* Reset rx statistics */
915 	memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
916 
917 	rx_ring->next_to_clean = 0;
918 	rx_ring->next_to_use = 0;
919 	rx_ring->cpu = ena_irq->cpu;
920 
921 	return 0;
922 }
923 
924 /* ena_free_rx_resources - Free I/O Rx Resources
925  * @adapter: network interface device structure
926  * @qid: queue index
927  *
928  * Free all receive software resources
929  */
930 static void ena_free_rx_resources(struct ena_adapter *adapter,
931 				  u32 qid)
932 {
933 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
934 
935 	vfree(rx_ring->rx_buffer_info);
936 	rx_ring->rx_buffer_info = NULL;
937 
938 	vfree(rx_ring->free_ids);
939 	rx_ring->free_ids = NULL;
940 }
941 
942 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
943  * @adapter: board private structure
944  *
945  * Return 0 on success, negative on failure
946  */
947 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
948 {
949 	int i, rc = 0;
950 
951 	for (i = 0; i < adapter->num_io_queues; i++) {
952 		rc = ena_setup_rx_resources(adapter, i);
953 		if (rc)
954 			goto err_setup_rx;
955 	}
956 
957 	return 0;
958 
959 err_setup_rx:
960 
961 	netif_err(adapter, ifup, adapter->netdev,
962 		  "Rx queue %d: allocation failed\n", i);
963 
964 	/* rewind the index freeing the rings as we go */
965 	while (i--)
966 		ena_free_rx_resources(adapter, i);
967 	return rc;
968 }
969 
970 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
971  * @adapter: board private structure
972  *
973  * Free all receive software resources
974  */
975 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
976 {
977 	int i;
978 
979 	for (i = 0; i < adapter->num_io_queues; i++)
980 		ena_free_rx_resources(adapter, i);
981 }
982 
983 static int ena_alloc_rx_page(struct ena_ring *rx_ring,
984 				    struct ena_rx_buffer *rx_info, gfp_t gfp)
985 {
986 	int headroom = rx_ring->rx_headroom;
987 	struct ena_com_buf *ena_buf;
988 	struct page *page;
989 	dma_addr_t dma;
990 
991 	/* restore page offset value in case it has been changed by device */
992 	rx_info->page_offset = headroom;
993 
994 	/* if previous allocated page is not used */
995 	if (unlikely(rx_info->page))
996 		return 0;
997 
998 	page = alloc_page(gfp);
999 	if (unlikely(!page)) {
1000 		ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1,
1001 				  &rx_ring->syncp);
1002 		return -ENOMEM;
1003 	}
1004 
1005 	/* To enable NIC-side port-mirroring, AKA SPAN port,
1006 	 * we make the buffer readable from the nic as well
1007 	 */
1008 	dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
1009 			   DMA_BIDIRECTIONAL);
1010 	if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
1011 		ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1,
1012 				  &rx_ring->syncp);
1013 
1014 		__free_page(page);
1015 		return -EIO;
1016 	}
1017 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1018 		  "Allocate page %p, rx_info %p\n", page, rx_info);
1019 
1020 	rx_info->page = page;
1021 	ena_buf = &rx_info->ena_buf;
1022 	ena_buf->paddr = dma + headroom;
1023 	ena_buf->len = ENA_PAGE_SIZE - headroom;
1024 
1025 	return 0;
1026 }
1027 
1028 static void ena_unmap_rx_buff(struct ena_ring *rx_ring,
1029 			      struct ena_rx_buffer *rx_info)
1030 {
1031 	struct ena_com_buf *ena_buf = &rx_info->ena_buf;
1032 
1033 	dma_unmap_page(rx_ring->dev, ena_buf->paddr - rx_ring->rx_headroom,
1034 		       ENA_PAGE_SIZE,
1035 		       DMA_BIDIRECTIONAL);
1036 }
1037 
1038 static void ena_free_rx_page(struct ena_ring *rx_ring,
1039 			     struct ena_rx_buffer *rx_info)
1040 {
1041 	struct page *page = rx_info->page;
1042 
1043 	if (unlikely(!page)) {
1044 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1045 			   "Trying to free unallocated buffer\n");
1046 		return;
1047 	}
1048 
1049 	ena_unmap_rx_buff(rx_ring, rx_info);
1050 
1051 	__free_page(page);
1052 	rx_info->page = NULL;
1053 }
1054 
1055 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
1056 {
1057 	u16 next_to_use, req_id;
1058 	u32 i;
1059 	int rc;
1060 
1061 	next_to_use = rx_ring->next_to_use;
1062 
1063 	for (i = 0; i < num; i++) {
1064 		struct ena_rx_buffer *rx_info;
1065 
1066 		req_id = rx_ring->free_ids[next_to_use];
1067 
1068 		rx_info = &rx_ring->rx_buffer_info[req_id];
1069 
1070 		rc = ena_alloc_rx_page(rx_ring, rx_info,
1071 				       GFP_ATOMIC | __GFP_COMP);
1072 		if (unlikely(rc < 0)) {
1073 			netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1074 				   "Failed to allocate buffer for rx queue %d\n",
1075 				   rx_ring->qid);
1076 			break;
1077 		}
1078 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1079 						&rx_info->ena_buf,
1080 						req_id);
1081 		if (unlikely(rc)) {
1082 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1083 				   "Failed to add buffer for rx queue %d\n",
1084 				   rx_ring->qid);
1085 			break;
1086 		}
1087 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1088 						   rx_ring->ring_size);
1089 	}
1090 
1091 	if (unlikely(i < num)) {
1092 		ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1,
1093 				  &rx_ring->syncp);
1094 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1095 			   "Refilled rx qid %d with only %d buffers (from %d)\n",
1096 			   rx_ring->qid, i, num);
1097 	}
1098 
1099 	/* ena_com_write_sq_doorbell issues a wmb() */
1100 	if (likely(i))
1101 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1102 
1103 	rx_ring->next_to_use = next_to_use;
1104 
1105 	return i;
1106 }
1107 
1108 static void ena_free_rx_bufs(struct ena_adapter *adapter,
1109 			     u32 qid)
1110 {
1111 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1112 	u32 i;
1113 
1114 	for (i = 0; i < rx_ring->ring_size; i++) {
1115 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1116 
1117 		if (rx_info->page)
1118 			ena_free_rx_page(rx_ring, rx_info);
1119 	}
1120 }
1121 
1122 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
1123  * @adapter: board private structure
1124  */
1125 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1126 {
1127 	struct ena_ring *rx_ring;
1128 	int i, rc, bufs_num;
1129 
1130 	for (i = 0; i < adapter->num_io_queues; i++) {
1131 		rx_ring = &adapter->rx_ring[i];
1132 		bufs_num = rx_ring->ring_size - 1;
1133 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1134 
1135 		if (unlikely(rc != bufs_num))
1136 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1137 				   "Refilling Queue %d failed. allocated %d buffers from: %d\n",
1138 				   i, rc, bufs_num);
1139 	}
1140 }
1141 
1142 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
1143 {
1144 	int i;
1145 
1146 	for (i = 0; i < adapter->num_io_queues; i++)
1147 		ena_free_rx_bufs(adapter, i);
1148 }
1149 
1150 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
1151 			      struct ena_tx_buffer *tx_info)
1152 {
1153 	struct ena_com_buf *ena_buf;
1154 	u32 cnt;
1155 	int i;
1156 
1157 	ena_buf = tx_info->bufs;
1158 	cnt = tx_info->num_of_bufs;
1159 
1160 	if (unlikely(!cnt))
1161 		return;
1162 
1163 	if (tx_info->map_linear_data) {
1164 		dma_unmap_single(tx_ring->dev,
1165 				 dma_unmap_addr(ena_buf, paddr),
1166 				 dma_unmap_len(ena_buf, len),
1167 				 DMA_TO_DEVICE);
1168 		ena_buf++;
1169 		cnt--;
1170 	}
1171 
1172 	/* unmap remaining mapped pages */
1173 	for (i = 0; i < cnt; i++) {
1174 		dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
1175 			       dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
1176 		ena_buf++;
1177 	}
1178 }
1179 
1180 /* ena_free_tx_bufs - Free Tx Buffers per Queue
1181  * @tx_ring: TX ring for which buffers be freed
1182  */
1183 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
1184 {
1185 	bool print_once = true;
1186 	u32 i;
1187 
1188 	for (i = 0; i < tx_ring->ring_size; i++) {
1189 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1190 
1191 		if (!tx_info->skb)
1192 			continue;
1193 
1194 		if (print_once) {
1195 			netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev,
1196 				     "Free uncompleted tx skb qid %d idx 0x%x\n",
1197 				     tx_ring->qid, i);
1198 			print_once = false;
1199 		} else {
1200 			netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev,
1201 				  "Free uncompleted tx skb qid %d idx 0x%x\n",
1202 				  tx_ring->qid, i);
1203 		}
1204 
1205 		ena_unmap_tx_buff(tx_ring, tx_info);
1206 
1207 		dev_kfree_skb_any(tx_info->skb);
1208 	}
1209 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
1210 						  tx_ring->qid));
1211 }
1212 
1213 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
1214 {
1215 	struct ena_ring *tx_ring;
1216 	int i;
1217 
1218 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1219 		tx_ring = &adapter->tx_ring[i];
1220 		ena_free_tx_bufs(tx_ring);
1221 	}
1222 }
1223 
1224 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1225 {
1226 	u16 ena_qid;
1227 	int i;
1228 
1229 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1230 		ena_qid = ENA_IO_TXQ_IDX(i);
1231 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1232 	}
1233 }
1234 
1235 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1236 {
1237 	u16 ena_qid;
1238 	int i;
1239 
1240 	for (i = 0; i < adapter->num_io_queues; i++) {
1241 		ena_qid = ENA_IO_RXQ_IDX(i);
1242 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
1243 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1244 	}
1245 }
1246 
1247 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
1248 {
1249 	ena_destroy_all_tx_queues(adapter);
1250 	ena_destroy_all_rx_queues(adapter);
1251 }
1252 
1253 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
1254 				 struct ena_tx_buffer *tx_info, bool is_xdp)
1255 {
1256 	if (tx_info)
1257 		netif_err(ring->adapter,
1258 			  tx_done,
1259 			  ring->netdev,
1260 			  "tx_info doesn't have valid %s",
1261 			   is_xdp ? "xdp frame" : "skb");
1262 	else
1263 		netif_err(ring->adapter,
1264 			  tx_done,
1265 			  ring->netdev,
1266 			  "Invalid req_id: %hu\n",
1267 			  req_id);
1268 
1269 	ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp);
1270 
1271 	/* Trigger device reset */
1272 	ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
1273 	set_bit(ENA_FLAG_TRIGGER_RESET, &ring->adapter->flags);
1274 	return -EFAULT;
1275 }
1276 
1277 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
1278 {
1279 	struct ena_tx_buffer *tx_info = NULL;
1280 
1281 	if (likely(req_id < tx_ring->ring_size)) {
1282 		tx_info = &tx_ring->tx_buffer_info[req_id];
1283 		if (likely(tx_info->skb))
1284 			return 0;
1285 	}
1286 
1287 	return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
1288 }
1289 
1290 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id)
1291 {
1292 	struct ena_tx_buffer *tx_info = NULL;
1293 
1294 	if (likely(req_id < xdp_ring->ring_size)) {
1295 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1296 		if (likely(tx_info->xdpf))
1297 			return 0;
1298 	}
1299 
1300 	return handle_invalid_req_id(xdp_ring, req_id, tx_info, true);
1301 }
1302 
1303 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
1304 {
1305 	struct netdev_queue *txq;
1306 	bool above_thresh;
1307 	u32 tx_bytes = 0;
1308 	u32 total_done = 0;
1309 	u16 next_to_clean;
1310 	u16 req_id;
1311 	int tx_pkts = 0;
1312 	int rc;
1313 
1314 	next_to_clean = tx_ring->next_to_clean;
1315 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
1316 
1317 	while (tx_pkts < budget) {
1318 		struct ena_tx_buffer *tx_info;
1319 		struct sk_buff *skb;
1320 
1321 		rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
1322 						&req_id);
1323 		if (rc)
1324 			break;
1325 
1326 		rc = validate_tx_req_id(tx_ring, req_id);
1327 		if (rc)
1328 			break;
1329 
1330 		tx_info = &tx_ring->tx_buffer_info[req_id];
1331 		skb = tx_info->skb;
1332 
1333 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
1334 		prefetch(&skb->end);
1335 
1336 		tx_info->skb = NULL;
1337 		tx_info->last_jiffies = 0;
1338 
1339 		ena_unmap_tx_buff(tx_ring, tx_info);
1340 
1341 		netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1342 			  "tx_poll: q %d skb %p completed\n", tx_ring->qid,
1343 			  skb);
1344 
1345 		tx_bytes += skb->len;
1346 		dev_kfree_skb(skb);
1347 		tx_pkts++;
1348 		total_done += tx_info->tx_descs;
1349 
1350 		tx_ring->free_ids[next_to_clean] = req_id;
1351 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1352 						     tx_ring->ring_size);
1353 	}
1354 
1355 	tx_ring->next_to_clean = next_to_clean;
1356 	ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
1357 	ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
1358 
1359 	netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1360 
1361 	netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1362 		  "tx_poll: q %d done. total pkts: %d\n",
1363 		  tx_ring->qid, tx_pkts);
1364 
1365 	/* need to make the rings circular update visible to
1366 	 * ena_start_xmit() before checking for netif_queue_stopped().
1367 	 */
1368 	smp_mb();
1369 
1370 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1371 						    ENA_TX_WAKEUP_THRESH);
1372 	if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
1373 		__netif_tx_lock(txq, smp_processor_id());
1374 		above_thresh =
1375 			ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1376 						     ENA_TX_WAKEUP_THRESH);
1377 		if (netif_tx_queue_stopped(txq) && above_thresh &&
1378 		    test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
1379 			netif_tx_wake_queue(txq);
1380 			ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
1381 					  &tx_ring->syncp);
1382 		}
1383 		__netif_tx_unlock(txq);
1384 	}
1385 
1386 	return tx_pkts;
1387 }
1388 
1389 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags)
1390 {
1391 	struct sk_buff *skb;
1392 
1393 	if (frags)
1394 		skb = napi_get_frags(rx_ring->napi);
1395 	else
1396 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1397 						rx_ring->rx_copybreak);
1398 
1399 	if (unlikely(!skb)) {
1400 		ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1,
1401 				  &rx_ring->syncp);
1402 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1403 			  "Failed to allocate skb. frags: %d\n", frags);
1404 		return NULL;
1405 	}
1406 
1407 	return skb;
1408 }
1409 
1410 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
1411 				  struct ena_com_rx_buf_info *ena_bufs,
1412 				  u32 descs,
1413 				  u16 *next_to_clean)
1414 {
1415 	struct sk_buff *skb;
1416 	struct ena_rx_buffer *rx_info;
1417 	u16 len, req_id, buf = 0;
1418 	void *va;
1419 
1420 	len = ena_bufs[buf].len;
1421 	req_id = ena_bufs[buf].req_id;
1422 
1423 	rx_info = &rx_ring->rx_buffer_info[req_id];
1424 
1425 	if (unlikely(!rx_info->page)) {
1426 		netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
1427 			  "Page is NULL\n");
1428 		return NULL;
1429 	}
1430 
1431 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1432 		  "rx_info %p page %p\n",
1433 		  rx_info, rx_info->page);
1434 
1435 	/* save virt address of first buffer */
1436 	va = page_address(rx_info->page) + rx_info->page_offset;
1437 
1438 	prefetch(va);
1439 
1440 	if (len <= rx_ring->rx_copybreak) {
1441 		skb = ena_alloc_skb(rx_ring, false);
1442 		if (unlikely(!skb))
1443 			return NULL;
1444 
1445 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1446 			  "RX allocated small packet. len %d. data_len %d\n",
1447 			  skb->len, skb->data_len);
1448 
1449 		/* sync this buffer for CPU use */
1450 		dma_sync_single_for_cpu(rx_ring->dev,
1451 					dma_unmap_addr(&rx_info->ena_buf, paddr),
1452 					len,
1453 					DMA_FROM_DEVICE);
1454 		skb_copy_to_linear_data(skb, va, len);
1455 		dma_sync_single_for_device(rx_ring->dev,
1456 					   dma_unmap_addr(&rx_info->ena_buf, paddr),
1457 					   len,
1458 					   DMA_FROM_DEVICE);
1459 
1460 		skb_put(skb, len);
1461 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1462 		rx_ring->free_ids[*next_to_clean] = req_id;
1463 		*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
1464 						     rx_ring->ring_size);
1465 		return skb;
1466 	}
1467 
1468 	skb = ena_alloc_skb(rx_ring, true);
1469 	if (unlikely(!skb))
1470 		return NULL;
1471 
1472 	do {
1473 		ena_unmap_rx_buff(rx_ring, rx_info);
1474 
1475 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1476 				rx_info->page_offset, len, ENA_PAGE_SIZE);
1477 
1478 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1479 			  "RX skb updated. len %d. data_len %d\n",
1480 			  skb->len, skb->data_len);
1481 
1482 		rx_info->page = NULL;
1483 
1484 		rx_ring->free_ids[*next_to_clean] = req_id;
1485 		*next_to_clean =
1486 			ENA_RX_RING_IDX_NEXT(*next_to_clean,
1487 					     rx_ring->ring_size);
1488 		if (likely(--descs == 0))
1489 			break;
1490 
1491 		buf++;
1492 		len = ena_bufs[buf].len;
1493 		req_id = ena_bufs[buf].req_id;
1494 
1495 		rx_info = &rx_ring->rx_buffer_info[req_id];
1496 	} while (1);
1497 
1498 	return skb;
1499 }
1500 
1501 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1502  * @adapter: structure containing adapter specific data
1503  * @ena_rx_ctx: received packet context/metadata
1504  * @skb: skb currently being received and modified
1505  */
1506 static void ena_rx_checksum(struct ena_ring *rx_ring,
1507 				   struct ena_com_rx_ctx *ena_rx_ctx,
1508 				   struct sk_buff *skb)
1509 {
1510 	/* Rx csum disabled */
1511 	if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1512 		skb->ip_summed = CHECKSUM_NONE;
1513 		return;
1514 	}
1515 
1516 	/* For fragmented packets the checksum isn't valid */
1517 	if (ena_rx_ctx->frag) {
1518 		skb->ip_summed = CHECKSUM_NONE;
1519 		return;
1520 	}
1521 
1522 	/* if IP and error */
1523 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1524 		     (ena_rx_ctx->l3_csum_err))) {
1525 		/* ipv4 checksum error */
1526 		skb->ip_summed = CHECKSUM_NONE;
1527 		ena_increase_stat(&rx_ring->rx_stats.bad_csum, 1,
1528 				  &rx_ring->syncp);
1529 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1530 			  "RX IPv4 header checksum error\n");
1531 		return;
1532 	}
1533 
1534 	/* if TCP/UDP */
1535 	if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1536 		   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1537 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
1538 			/* TCP/UDP checksum error */
1539 			ena_increase_stat(&rx_ring->rx_stats.bad_csum, 1,
1540 					  &rx_ring->syncp);
1541 			netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1542 				  "RX L4 checksum error\n");
1543 			skb->ip_summed = CHECKSUM_NONE;
1544 			return;
1545 		}
1546 
1547 		if (likely(ena_rx_ctx->l4_csum_checked)) {
1548 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1549 			ena_increase_stat(&rx_ring->rx_stats.csum_good, 1,
1550 					  &rx_ring->syncp);
1551 		} else {
1552 			ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1,
1553 					  &rx_ring->syncp);
1554 			skb->ip_summed = CHECKSUM_NONE;
1555 		}
1556 	} else {
1557 		skb->ip_summed = CHECKSUM_NONE;
1558 		return;
1559 	}
1560 
1561 }
1562 
1563 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1564 			    struct ena_com_rx_ctx *ena_rx_ctx,
1565 			    struct sk_buff *skb)
1566 {
1567 	enum pkt_hash_types hash_type;
1568 
1569 	if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1570 		if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1571 			   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1572 
1573 			hash_type = PKT_HASH_TYPE_L4;
1574 		else
1575 			hash_type = PKT_HASH_TYPE_NONE;
1576 
1577 		/* Override hash type if the packet is fragmented */
1578 		if (ena_rx_ctx->frag)
1579 			hash_type = PKT_HASH_TYPE_NONE;
1580 
1581 		skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1582 	}
1583 }
1584 
1585 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp)
1586 {
1587 	struct ena_rx_buffer *rx_info;
1588 	int ret;
1589 
1590 	rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1591 	xdp_prepare_buff(xdp, page_address(rx_info->page),
1592 			 rx_info->page_offset,
1593 			 rx_ring->ena_bufs[0].len, false);
1594 	/* If for some reason we received a bigger packet than
1595 	 * we expect, then we simply drop it
1596 	 */
1597 	if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU))
1598 		return XDP_DROP;
1599 
1600 	ret = ena_xdp_execute(rx_ring, xdp);
1601 
1602 	/* The xdp program might expand the headers */
1603 	if (ret == XDP_PASS) {
1604 		rx_info->page_offset = xdp->data - xdp->data_hard_start;
1605 		rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1606 	}
1607 
1608 	return ret;
1609 }
1610 /* ena_clean_rx_irq - Cleanup RX irq
1611  * @rx_ring: RX ring to clean
1612  * @napi: napi handler
1613  * @budget: how many packets driver is allowed to clean
1614  *
1615  * Returns the number of cleaned buffers.
1616  */
1617 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1618 			    u32 budget)
1619 {
1620 	u16 next_to_clean = rx_ring->next_to_clean;
1621 	struct ena_com_rx_ctx ena_rx_ctx;
1622 	struct ena_rx_buffer *rx_info;
1623 	struct ena_adapter *adapter;
1624 	u32 res_budget, work_done;
1625 	int rx_copybreak_pkt = 0;
1626 	int refill_threshold;
1627 	struct sk_buff *skb;
1628 	int refill_required;
1629 	struct xdp_buff xdp;
1630 	int xdp_flags = 0;
1631 	int total_len = 0;
1632 	int xdp_verdict;
1633 	int rc = 0;
1634 	int i;
1635 
1636 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1637 		  "%s qid %d\n", __func__, rx_ring->qid);
1638 	res_budget = budget;
1639 	xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq);
1640 
1641 	do {
1642 		xdp_verdict = XDP_PASS;
1643 		skb = NULL;
1644 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1645 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1646 		ena_rx_ctx.descs = 0;
1647 		ena_rx_ctx.pkt_offset = 0;
1648 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1649 				    rx_ring->ena_com_io_sq,
1650 				    &ena_rx_ctx);
1651 		if (unlikely(rc))
1652 			goto error;
1653 
1654 		if (unlikely(ena_rx_ctx.descs == 0))
1655 			break;
1656 
1657 		/* First descriptor might have an offset set by the device */
1658 		rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1659 		rx_info->page_offset += ena_rx_ctx.pkt_offset;
1660 
1661 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1662 			  "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1663 			  rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1664 			  ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1665 
1666 		if (ena_xdp_present_ring(rx_ring))
1667 			xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp);
1668 
1669 		/* allocate skb and fill it */
1670 		if (xdp_verdict == XDP_PASS)
1671 			skb = ena_rx_skb(rx_ring,
1672 					 rx_ring->ena_bufs,
1673 					 ena_rx_ctx.descs,
1674 					 &next_to_clean);
1675 
1676 		if (unlikely(!skb)) {
1677 			for (i = 0; i < ena_rx_ctx.descs; i++) {
1678 				int req_id = rx_ring->ena_bufs[i].req_id;
1679 
1680 				rx_ring->free_ids[next_to_clean] = req_id;
1681 				next_to_clean =
1682 					ENA_RX_RING_IDX_NEXT(next_to_clean,
1683 							     rx_ring->ring_size);
1684 
1685 				/* Packets was passed for transmission, unmap it
1686 				 * from RX side.
1687 				 */
1688 				if (xdp_verdict == XDP_TX || xdp_verdict == XDP_REDIRECT) {
1689 					ena_unmap_rx_buff(rx_ring,
1690 							  &rx_ring->rx_buffer_info[req_id]);
1691 					rx_ring->rx_buffer_info[req_id].page = NULL;
1692 				}
1693 			}
1694 			if (xdp_verdict != XDP_PASS) {
1695 				xdp_flags |= xdp_verdict;
1696 				res_budget--;
1697 				continue;
1698 			}
1699 			break;
1700 		}
1701 
1702 		ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1703 
1704 		ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1705 
1706 		skb_record_rx_queue(skb, rx_ring->qid);
1707 
1708 		if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
1709 			total_len += rx_ring->ena_bufs[0].len;
1710 			rx_copybreak_pkt++;
1711 			napi_gro_receive(napi, skb);
1712 		} else {
1713 			total_len += skb->len;
1714 			napi_gro_frags(napi);
1715 		}
1716 
1717 		res_budget--;
1718 	} while (likely(res_budget));
1719 
1720 	work_done = budget - res_budget;
1721 	rx_ring->per_napi_packets += work_done;
1722 	u64_stats_update_begin(&rx_ring->syncp);
1723 	rx_ring->rx_stats.bytes += total_len;
1724 	rx_ring->rx_stats.cnt += work_done;
1725 	rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1726 	u64_stats_update_end(&rx_ring->syncp);
1727 
1728 	rx_ring->next_to_clean = next_to_clean;
1729 
1730 	refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
1731 	refill_threshold =
1732 		min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1733 		      ENA_RX_REFILL_THRESH_PACKET);
1734 
1735 	/* Optimization, try to batch new rx buffers */
1736 	if (refill_required > refill_threshold) {
1737 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1738 		ena_refill_rx_bufs(rx_ring, refill_required);
1739 	}
1740 
1741 	if (xdp_flags & XDP_REDIRECT)
1742 		xdp_do_flush_map();
1743 
1744 	return work_done;
1745 
1746 error:
1747 	adapter = netdev_priv(rx_ring->netdev);
1748 
1749 	if (rc == -ENOSPC) {
1750 		ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1,
1751 				  &rx_ring->syncp);
1752 		adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
1753 	} else {
1754 		ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1,
1755 				  &rx_ring->syncp);
1756 		adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
1757 	}
1758 
1759 	set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
1760 
1761 	return 0;
1762 }
1763 
1764 static void ena_dim_work(struct work_struct *w)
1765 {
1766 	struct dim *dim = container_of(w, struct dim, work);
1767 	struct dim_cq_moder cur_moder =
1768 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1769 	struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1770 
1771 	ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1772 	dim->state = DIM_START_MEASURE;
1773 }
1774 
1775 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1776 {
1777 	struct dim_sample dim_sample;
1778 	struct ena_ring *rx_ring = ena_napi->rx_ring;
1779 
1780 	if (!rx_ring->per_napi_packets)
1781 		return;
1782 
1783 	rx_ring->non_empty_napi_events++;
1784 
1785 	dim_update_sample(rx_ring->non_empty_napi_events,
1786 			  rx_ring->rx_stats.cnt,
1787 			  rx_ring->rx_stats.bytes,
1788 			  &dim_sample);
1789 
1790 	net_dim(&ena_napi->dim, dim_sample);
1791 
1792 	rx_ring->per_napi_packets = 0;
1793 }
1794 
1795 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
1796 					struct ena_ring *rx_ring)
1797 {
1798 	struct ena_eth_io_intr_reg intr_reg;
1799 	u32 rx_interval = 0;
1800 	/* Rx ring can be NULL when for XDP tx queues which don't have an
1801 	 * accompanying rx_ring pair.
1802 	 */
1803 	if (rx_ring)
1804 		rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1805 			rx_ring->smoothed_interval :
1806 			ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1807 
1808 	/* Update intr register: rx intr delay,
1809 	 * tx intr delay and interrupt unmask
1810 	 */
1811 	ena_com_update_intr_reg(&intr_reg,
1812 				rx_interval,
1813 				tx_ring->smoothed_interval,
1814 				true);
1815 
1816 	ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1,
1817 			  &tx_ring->syncp);
1818 
1819 	/* It is a shared MSI-X.
1820 	 * Tx and Rx CQ have pointer to it.
1821 	 * So we use one of them to reach the intr reg
1822 	 * The Tx ring is used because the rx_ring is NULL for XDP queues
1823 	 */
1824 	ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1825 }
1826 
1827 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1828 					     struct ena_ring *rx_ring)
1829 {
1830 	int cpu = get_cpu();
1831 	int numa_node;
1832 
1833 	/* Check only one ring since the 2 rings are running on the same cpu */
1834 	if (likely(tx_ring->cpu == cpu))
1835 		goto out;
1836 
1837 	numa_node = cpu_to_node(cpu);
1838 	put_cpu();
1839 
1840 	if (numa_node != NUMA_NO_NODE) {
1841 		ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1842 		if (rx_ring)
1843 			ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1844 						 numa_node);
1845 	}
1846 
1847 	tx_ring->cpu = cpu;
1848 	if (rx_ring)
1849 		rx_ring->cpu = cpu;
1850 
1851 	return;
1852 out:
1853 	put_cpu();
1854 }
1855 
1856 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget)
1857 {
1858 	u32 total_done = 0;
1859 	u16 next_to_clean;
1860 	u32 tx_bytes = 0;
1861 	int tx_pkts = 0;
1862 	u16 req_id;
1863 	int rc;
1864 
1865 	if (unlikely(!xdp_ring))
1866 		return 0;
1867 	next_to_clean = xdp_ring->next_to_clean;
1868 
1869 	while (tx_pkts < budget) {
1870 		struct ena_tx_buffer *tx_info;
1871 		struct xdp_frame *xdpf;
1872 
1873 		rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq,
1874 						&req_id);
1875 		if (rc)
1876 			break;
1877 
1878 		rc = validate_xdp_req_id(xdp_ring, req_id);
1879 		if (rc)
1880 			break;
1881 
1882 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1883 		xdpf = tx_info->xdpf;
1884 
1885 		tx_info->xdpf = NULL;
1886 		tx_info->last_jiffies = 0;
1887 		ena_unmap_tx_buff(xdp_ring, tx_info);
1888 
1889 		netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1890 			  "tx_poll: q %d skb %p completed\n", xdp_ring->qid,
1891 			  xdpf);
1892 
1893 		tx_bytes += xdpf->len;
1894 		tx_pkts++;
1895 		total_done += tx_info->tx_descs;
1896 
1897 		xdp_return_frame(xdpf);
1898 		xdp_ring->free_ids[next_to_clean] = req_id;
1899 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1900 						     xdp_ring->ring_size);
1901 	}
1902 
1903 	xdp_ring->next_to_clean = next_to_clean;
1904 	ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done);
1905 	ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq);
1906 
1907 	netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1908 		  "tx_poll: q %d done. total pkts: %d\n",
1909 		  xdp_ring->qid, tx_pkts);
1910 
1911 	return tx_pkts;
1912 }
1913 
1914 static int ena_io_poll(struct napi_struct *napi, int budget)
1915 {
1916 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1917 	struct ena_ring *tx_ring, *rx_ring;
1918 	int tx_work_done;
1919 	int rx_work_done = 0;
1920 	int tx_budget;
1921 	int napi_comp_call = 0;
1922 	int ret;
1923 
1924 	tx_ring = ena_napi->tx_ring;
1925 	rx_ring = ena_napi->rx_ring;
1926 
1927 	tx_ring->first_interrupt = ena_napi->first_interrupt;
1928 	rx_ring->first_interrupt = ena_napi->first_interrupt;
1929 
1930 	tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1931 
1932 	if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1933 	    test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1934 		napi_complete_done(napi, 0);
1935 		return 0;
1936 	}
1937 
1938 	tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1939 	/* On netpoll the budget is zero and the handler should only clean the
1940 	 * tx completions.
1941 	 */
1942 	if (likely(budget))
1943 		rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1944 
1945 	/* If the device is about to reset or down, avoid unmask
1946 	 * the interrupt and return 0 so NAPI won't reschedule
1947 	 */
1948 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1949 		     test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1950 		napi_complete_done(napi, 0);
1951 		ret = 0;
1952 
1953 	} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1954 		napi_comp_call = 1;
1955 
1956 		/* Update numa and unmask the interrupt only when schedule
1957 		 * from the interrupt context (vs from sk_busy_loop)
1958 		 */
1959 		if (napi_complete_done(napi, rx_work_done) &&
1960 		    READ_ONCE(ena_napi->interrupts_masked)) {
1961 			smp_rmb(); /* make sure interrupts_masked is read */
1962 			WRITE_ONCE(ena_napi->interrupts_masked, false);
1963 			/* We apply adaptive moderation on Rx path only.
1964 			 * Tx uses static interrupt moderation.
1965 			 */
1966 			if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1967 				ena_adjust_adaptive_rx_intr_moderation(ena_napi);
1968 
1969 			ena_unmask_interrupt(tx_ring, rx_ring);
1970 		}
1971 
1972 		ena_update_ring_numa_node(tx_ring, rx_ring);
1973 
1974 		ret = rx_work_done;
1975 	} else {
1976 		ret = budget;
1977 	}
1978 
1979 	u64_stats_update_begin(&tx_ring->syncp);
1980 	tx_ring->tx_stats.napi_comp += napi_comp_call;
1981 	tx_ring->tx_stats.tx_poll++;
1982 	u64_stats_update_end(&tx_ring->syncp);
1983 
1984 	return ret;
1985 }
1986 
1987 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1988 {
1989 	struct ena_adapter *adapter = (struct ena_adapter *)data;
1990 
1991 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1992 
1993 	/* Don't call the aenq handler before probe is done */
1994 	if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1995 		ena_com_aenq_intr_handler(adapter->ena_dev, data);
1996 
1997 	return IRQ_HANDLED;
1998 }
1999 
2000 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
2001  * @irq: interrupt number
2002  * @data: pointer to a network interface private napi device structure
2003  */
2004 static irqreturn_t ena_intr_msix_io(int irq, void *data)
2005 {
2006 	struct ena_napi *ena_napi = data;
2007 
2008 	ena_napi->first_interrupt = true;
2009 
2010 	WRITE_ONCE(ena_napi->interrupts_masked, true);
2011 	smp_wmb(); /* write interrupts_masked before calling napi */
2012 
2013 	napi_schedule_irqoff(&ena_napi->napi);
2014 
2015 	return IRQ_HANDLED;
2016 }
2017 
2018 /* Reserve a single MSI-X vector for management (admin + aenq).
2019  * plus reserve one vector for each potential io queue.
2020  * the number of potential io queues is the minimum of what the device
2021  * supports and the number of vCPUs.
2022  */
2023 static int ena_enable_msix(struct ena_adapter *adapter)
2024 {
2025 	int msix_vecs, irq_cnt;
2026 
2027 	if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2028 		netif_err(adapter, probe, adapter->netdev,
2029 			  "Error, MSI-X is already enabled\n");
2030 		return -EPERM;
2031 	}
2032 
2033 	/* Reserved the max msix vectors we might need */
2034 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
2035 	netif_dbg(adapter, probe, adapter->netdev,
2036 		  "Trying to enable MSI-X, vectors %d\n", msix_vecs);
2037 
2038 	irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
2039 					msix_vecs, PCI_IRQ_MSIX);
2040 
2041 	if (irq_cnt < 0) {
2042 		netif_err(adapter, probe, adapter->netdev,
2043 			  "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
2044 		return -ENOSPC;
2045 	}
2046 
2047 	if (irq_cnt != msix_vecs) {
2048 		netif_notice(adapter, probe, adapter->netdev,
2049 			     "Enable only %d MSI-X (out of %d), reduce the number of queues\n",
2050 			     irq_cnt, msix_vecs);
2051 		adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
2052 	}
2053 
2054 	if (ena_init_rx_cpu_rmap(adapter))
2055 		netif_warn(adapter, probe, adapter->netdev,
2056 			   "Failed to map IRQs to CPUs\n");
2057 
2058 	adapter->msix_vecs = irq_cnt;
2059 	set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
2060 
2061 	return 0;
2062 }
2063 
2064 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
2065 {
2066 	u32 cpu;
2067 
2068 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
2069 		 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
2070 		 pci_name(adapter->pdev));
2071 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
2072 		ena_intr_msix_mgmnt;
2073 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
2074 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
2075 		pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
2076 	cpu = cpumask_first(cpu_online_mask);
2077 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
2078 	cpumask_set_cpu(cpu,
2079 			&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
2080 }
2081 
2082 static void ena_setup_io_intr(struct ena_adapter *adapter)
2083 {
2084 	struct net_device *netdev;
2085 	int irq_idx, i, cpu;
2086 	int io_queue_count;
2087 
2088 	netdev = adapter->netdev;
2089 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2090 
2091 	for (i = 0; i < io_queue_count; i++) {
2092 		irq_idx = ENA_IO_IRQ_IDX(i);
2093 		cpu = i % num_online_cpus();
2094 
2095 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
2096 			 "%s-Tx-Rx-%d", netdev->name, i);
2097 		adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
2098 		adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
2099 		adapter->irq_tbl[irq_idx].vector =
2100 			pci_irq_vector(adapter->pdev, irq_idx);
2101 		adapter->irq_tbl[irq_idx].cpu = cpu;
2102 
2103 		cpumask_set_cpu(cpu,
2104 				&adapter->irq_tbl[irq_idx].affinity_hint_mask);
2105 	}
2106 }
2107 
2108 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
2109 {
2110 	unsigned long flags = 0;
2111 	struct ena_irq *irq;
2112 	int rc;
2113 
2114 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2115 	rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2116 			 irq->data);
2117 	if (rc) {
2118 		netif_err(adapter, probe, adapter->netdev,
2119 			  "Failed to request admin irq\n");
2120 		return rc;
2121 	}
2122 
2123 	netif_dbg(adapter, probe, adapter->netdev,
2124 		  "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
2125 		  irq->affinity_hint_mask.bits[0], irq->vector);
2126 
2127 	irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2128 
2129 	return rc;
2130 }
2131 
2132 static int ena_request_io_irq(struct ena_adapter *adapter)
2133 {
2134 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2135 	unsigned long flags = 0;
2136 	struct ena_irq *irq;
2137 	int rc = 0, i, k;
2138 
2139 	if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2140 		netif_err(adapter, ifup, adapter->netdev,
2141 			  "Failed to request I/O IRQ: MSI-X is not enabled\n");
2142 		return -EINVAL;
2143 	}
2144 
2145 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2146 		irq = &adapter->irq_tbl[i];
2147 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2148 				 irq->data);
2149 		if (rc) {
2150 			netif_err(adapter, ifup, adapter->netdev,
2151 				  "Failed to request I/O IRQ. index %d rc %d\n",
2152 				   i, rc);
2153 			goto err;
2154 		}
2155 
2156 		netif_dbg(adapter, ifup, adapter->netdev,
2157 			  "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
2158 			  i, irq->affinity_hint_mask.bits[0], irq->vector);
2159 
2160 		irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2161 	}
2162 
2163 	return rc;
2164 
2165 err:
2166 	for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
2167 		irq = &adapter->irq_tbl[k];
2168 		free_irq(irq->vector, irq->data);
2169 	}
2170 
2171 	return rc;
2172 }
2173 
2174 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
2175 {
2176 	struct ena_irq *irq;
2177 
2178 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2179 	synchronize_irq(irq->vector);
2180 	irq_set_affinity_hint(irq->vector, NULL);
2181 	free_irq(irq->vector, irq->data);
2182 }
2183 
2184 static void ena_free_io_irq(struct ena_adapter *adapter)
2185 {
2186 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2187 	struct ena_irq *irq;
2188 	int i;
2189 
2190 #ifdef CONFIG_RFS_ACCEL
2191 	if (adapter->msix_vecs >= 1) {
2192 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2193 		adapter->netdev->rx_cpu_rmap = NULL;
2194 	}
2195 #endif /* CONFIG_RFS_ACCEL */
2196 
2197 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2198 		irq = &adapter->irq_tbl[i];
2199 		irq_set_affinity_hint(irq->vector, NULL);
2200 		free_irq(irq->vector, irq->data);
2201 	}
2202 }
2203 
2204 static void ena_disable_msix(struct ena_adapter *adapter)
2205 {
2206 	if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
2207 		pci_free_irq_vectors(adapter->pdev);
2208 }
2209 
2210 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
2211 {
2212 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2213 	int i;
2214 
2215 	if (!netif_running(adapter->netdev))
2216 		return;
2217 
2218 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++)
2219 		synchronize_irq(adapter->irq_tbl[i].vector);
2220 }
2221 
2222 static void ena_del_napi_in_range(struct ena_adapter *adapter,
2223 				  int first_index,
2224 				  int count)
2225 {
2226 	int i;
2227 
2228 	for (i = first_index; i < first_index + count; i++) {
2229 		netif_napi_del(&adapter->ena_napi[i].napi);
2230 
2231 		WARN_ON(!ENA_IS_XDP_INDEX(adapter, i) &&
2232 			adapter->ena_napi[i].xdp_ring);
2233 	}
2234 }
2235 
2236 static void ena_init_napi_in_range(struct ena_adapter *adapter,
2237 				   int first_index, int count)
2238 {
2239 	int i;
2240 
2241 	for (i = first_index; i < first_index + count; i++) {
2242 		struct ena_napi *napi = &adapter->ena_napi[i];
2243 
2244 		netif_napi_add(adapter->netdev,
2245 			       &napi->napi,
2246 			       ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll,
2247 			       ENA_NAPI_BUDGET);
2248 
2249 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
2250 			napi->rx_ring = &adapter->rx_ring[i];
2251 			napi->tx_ring = &adapter->tx_ring[i];
2252 		} else {
2253 			napi->xdp_ring = &adapter->tx_ring[i];
2254 		}
2255 		napi->qid = i;
2256 	}
2257 }
2258 
2259 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
2260 				      int first_index,
2261 				      int count)
2262 {
2263 	int i;
2264 
2265 	for (i = first_index; i < first_index + count; i++)
2266 		napi_disable(&adapter->ena_napi[i].napi);
2267 }
2268 
2269 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
2270 				     int first_index,
2271 				     int count)
2272 {
2273 	int i;
2274 
2275 	for (i = first_index; i < first_index + count; i++)
2276 		napi_enable(&adapter->ena_napi[i].napi);
2277 }
2278 
2279 /* Configure the Rx forwarding */
2280 static int ena_rss_configure(struct ena_adapter *adapter)
2281 {
2282 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2283 	int rc;
2284 
2285 	/* In case the RSS table wasn't initialized by probe */
2286 	if (!ena_dev->rss.tbl_log_size) {
2287 		rc = ena_rss_init_default(adapter);
2288 		if (rc && (rc != -EOPNOTSUPP)) {
2289 			netif_err(adapter, ifup, adapter->netdev,
2290 				  "Failed to init RSS rc: %d\n", rc);
2291 			return rc;
2292 		}
2293 	}
2294 
2295 	/* Set indirect table */
2296 	rc = ena_com_indirect_table_set(ena_dev);
2297 	if (unlikely(rc && rc != -EOPNOTSUPP))
2298 		return rc;
2299 
2300 	/* Configure hash function (if supported) */
2301 	rc = ena_com_set_hash_function(ena_dev);
2302 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2303 		return rc;
2304 
2305 	/* Configure hash inputs (if supported) */
2306 	rc = ena_com_set_hash_ctrl(ena_dev);
2307 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2308 		return rc;
2309 
2310 	return 0;
2311 }
2312 
2313 static int ena_up_complete(struct ena_adapter *adapter)
2314 {
2315 	int rc;
2316 
2317 	rc = ena_rss_configure(adapter);
2318 	if (rc)
2319 		return rc;
2320 
2321 	ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
2322 
2323 	ena_refill_all_rx_bufs(adapter);
2324 
2325 	/* enable transmits */
2326 	netif_tx_start_all_queues(adapter->netdev);
2327 
2328 	ena_napi_enable_in_range(adapter,
2329 				 0,
2330 				 adapter->xdp_num_queues + adapter->num_io_queues);
2331 
2332 	return 0;
2333 }
2334 
2335 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
2336 {
2337 	struct ena_com_create_io_ctx ctx;
2338 	struct ena_com_dev *ena_dev;
2339 	struct ena_ring *tx_ring;
2340 	u32 msix_vector;
2341 	u16 ena_qid;
2342 	int rc;
2343 
2344 	ena_dev = adapter->ena_dev;
2345 
2346 	tx_ring = &adapter->tx_ring[qid];
2347 	msix_vector = ENA_IO_IRQ_IDX(qid);
2348 	ena_qid = ENA_IO_TXQ_IDX(qid);
2349 
2350 	memset(&ctx, 0x0, sizeof(ctx));
2351 
2352 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
2353 	ctx.qid = ena_qid;
2354 	ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
2355 	ctx.msix_vector = msix_vector;
2356 	ctx.queue_size = tx_ring->ring_size;
2357 	ctx.numa_node = cpu_to_node(tx_ring->cpu);
2358 
2359 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2360 	if (rc) {
2361 		netif_err(adapter, ifup, adapter->netdev,
2362 			  "Failed to create I/O TX queue num %d rc: %d\n",
2363 			  qid, rc);
2364 		return rc;
2365 	}
2366 
2367 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2368 				     &tx_ring->ena_com_io_sq,
2369 				     &tx_ring->ena_com_io_cq);
2370 	if (rc) {
2371 		netif_err(adapter, ifup, adapter->netdev,
2372 			  "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
2373 			  qid, rc);
2374 		ena_com_destroy_io_queue(ena_dev, ena_qid);
2375 		return rc;
2376 	}
2377 
2378 	ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
2379 	return rc;
2380 }
2381 
2382 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
2383 					    int first_index, int count)
2384 {
2385 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2386 	int rc, i;
2387 
2388 	for (i = first_index; i < first_index + count; i++) {
2389 		rc = ena_create_io_tx_queue(adapter, i);
2390 		if (rc)
2391 			goto create_err;
2392 	}
2393 
2394 	return 0;
2395 
2396 create_err:
2397 	while (i-- > first_index)
2398 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
2399 
2400 	return rc;
2401 }
2402 
2403 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
2404 {
2405 	struct ena_com_dev *ena_dev;
2406 	struct ena_com_create_io_ctx ctx;
2407 	struct ena_ring *rx_ring;
2408 	u32 msix_vector;
2409 	u16 ena_qid;
2410 	int rc;
2411 
2412 	ena_dev = adapter->ena_dev;
2413 
2414 	rx_ring = &adapter->rx_ring[qid];
2415 	msix_vector = ENA_IO_IRQ_IDX(qid);
2416 	ena_qid = ENA_IO_RXQ_IDX(qid);
2417 
2418 	memset(&ctx, 0x0, sizeof(ctx));
2419 
2420 	ctx.qid = ena_qid;
2421 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
2422 	ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2423 	ctx.msix_vector = msix_vector;
2424 	ctx.queue_size = rx_ring->ring_size;
2425 	ctx.numa_node = cpu_to_node(rx_ring->cpu);
2426 
2427 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2428 	if (rc) {
2429 		netif_err(adapter, ifup, adapter->netdev,
2430 			  "Failed to create I/O RX queue num %d rc: %d\n",
2431 			  qid, rc);
2432 		return rc;
2433 	}
2434 
2435 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2436 				     &rx_ring->ena_com_io_sq,
2437 				     &rx_ring->ena_com_io_cq);
2438 	if (rc) {
2439 		netif_err(adapter, ifup, adapter->netdev,
2440 			  "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
2441 			  qid, rc);
2442 		goto err;
2443 	}
2444 
2445 	ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
2446 
2447 	return rc;
2448 err:
2449 	ena_com_destroy_io_queue(ena_dev, ena_qid);
2450 	return rc;
2451 }
2452 
2453 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
2454 {
2455 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2456 	int rc, i;
2457 
2458 	for (i = 0; i < adapter->num_io_queues; i++) {
2459 		rc = ena_create_io_rx_queue(adapter, i);
2460 		if (rc)
2461 			goto create_err;
2462 		INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
2463 	}
2464 
2465 	return 0;
2466 
2467 create_err:
2468 	while (i--) {
2469 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
2470 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
2471 	}
2472 
2473 	return rc;
2474 }
2475 
2476 static void set_io_rings_size(struct ena_adapter *adapter,
2477 			      int new_tx_size,
2478 			      int new_rx_size)
2479 {
2480 	int i;
2481 
2482 	for (i = 0; i < adapter->num_io_queues; i++) {
2483 		adapter->tx_ring[i].ring_size = new_tx_size;
2484 		adapter->rx_ring[i].ring_size = new_rx_size;
2485 	}
2486 }
2487 
2488 /* This function allows queue allocation to backoff when the system is
2489  * low on memory. If there is not enough memory to allocate io queues
2490  * the driver will try to allocate smaller queues.
2491  *
2492  * The backoff algorithm is as follows:
2493  *  1. Try to allocate TX and RX and if successful.
2494  *  1.1. return success
2495  *
2496  *  2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2497  *
2498  *  3. If TX or RX is smaller than 256
2499  *  3.1. return failure.
2500  *  4. else
2501  *  4.1. go back to 1.
2502  */
2503 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2504 {
2505 	int rc, cur_rx_ring_size, cur_tx_ring_size;
2506 	int new_rx_ring_size, new_tx_ring_size;
2507 
2508 	/* current queue sizes might be set to smaller than the requested
2509 	 * ones due to past queue allocation failures.
2510 	 */
2511 	set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2512 			  adapter->requested_rx_ring_size);
2513 
2514 	while (1) {
2515 		if (ena_xdp_present(adapter)) {
2516 			rc = ena_setup_and_create_all_xdp_queues(adapter);
2517 
2518 			if (rc)
2519 				goto err_setup_tx;
2520 		}
2521 		rc = ena_setup_tx_resources_in_range(adapter,
2522 						     0,
2523 						     adapter->num_io_queues);
2524 		if (rc)
2525 			goto err_setup_tx;
2526 
2527 		rc = ena_create_io_tx_queues_in_range(adapter,
2528 						      0,
2529 						      adapter->num_io_queues);
2530 		if (rc)
2531 			goto err_create_tx_queues;
2532 
2533 		rc = ena_setup_all_rx_resources(adapter);
2534 		if (rc)
2535 			goto err_setup_rx;
2536 
2537 		rc = ena_create_all_io_rx_queues(adapter);
2538 		if (rc)
2539 			goto err_create_rx_queues;
2540 
2541 		return 0;
2542 
2543 err_create_rx_queues:
2544 		ena_free_all_io_rx_resources(adapter);
2545 err_setup_rx:
2546 		ena_destroy_all_tx_queues(adapter);
2547 err_create_tx_queues:
2548 		ena_free_all_io_tx_resources(adapter);
2549 err_setup_tx:
2550 		if (rc != -ENOMEM) {
2551 			netif_err(adapter, ifup, adapter->netdev,
2552 				  "Queue creation failed with error code %d\n",
2553 				  rc);
2554 			return rc;
2555 		}
2556 
2557 		cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2558 		cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2559 
2560 		netif_err(adapter, ifup, adapter->netdev,
2561 			  "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2562 			  cur_tx_ring_size, cur_rx_ring_size);
2563 
2564 		new_tx_ring_size = cur_tx_ring_size;
2565 		new_rx_ring_size = cur_rx_ring_size;
2566 
2567 		/* Decrease the size of the larger queue, or
2568 		 * decrease both if they are the same size.
2569 		 */
2570 		if (cur_rx_ring_size <= cur_tx_ring_size)
2571 			new_tx_ring_size = cur_tx_ring_size / 2;
2572 		if (cur_rx_ring_size >= cur_tx_ring_size)
2573 			new_rx_ring_size = cur_rx_ring_size / 2;
2574 
2575 		if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2576 		    new_rx_ring_size < ENA_MIN_RING_SIZE) {
2577 			netif_err(adapter, ifup, adapter->netdev,
2578 				  "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2579 				  ENA_MIN_RING_SIZE);
2580 			return rc;
2581 		}
2582 
2583 		netif_err(adapter, ifup, adapter->netdev,
2584 			  "Retrying queue creation with sizes TX=%d, RX=%d\n",
2585 			  new_tx_ring_size,
2586 			  new_rx_ring_size);
2587 
2588 		set_io_rings_size(adapter, new_tx_ring_size,
2589 				  new_rx_ring_size);
2590 	}
2591 }
2592 
2593 static int ena_up(struct ena_adapter *adapter)
2594 {
2595 	int io_queue_count, rc, i;
2596 
2597 	netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
2598 
2599 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2600 	ena_setup_io_intr(adapter);
2601 
2602 	/* napi poll functions should be initialized before running
2603 	 * request_irq(), to handle a rare condition where there is a pending
2604 	 * interrupt, causing the ISR to fire immediately while the poll
2605 	 * function wasn't set yet, causing a null dereference
2606 	 */
2607 	ena_init_napi_in_range(adapter, 0, io_queue_count);
2608 
2609 	rc = ena_request_io_irq(adapter);
2610 	if (rc)
2611 		goto err_req_irq;
2612 
2613 	rc = create_queues_with_size_backoff(adapter);
2614 	if (rc)
2615 		goto err_create_queues_with_backoff;
2616 
2617 	rc = ena_up_complete(adapter);
2618 	if (rc)
2619 		goto err_up;
2620 
2621 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2622 		netif_carrier_on(adapter->netdev);
2623 
2624 	ena_increase_stat(&adapter->dev_stats.interface_up, 1,
2625 			  &adapter->syncp);
2626 
2627 	set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2628 
2629 	/* Enable completion queues interrupt */
2630 	for (i = 0; i < adapter->num_io_queues; i++)
2631 		ena_unmask_interrupt(&adapter->tx_ring[i],
2632 				     &adapter->rx_ring[i]);
2633 
2634 	/* schedule napi in case we had pending packets
2635 	 * from the last time we disable napi
2636 	 */
2637 	for (i = 0; i < io_queue_count; i++)
2638 		napi_schedule(&adapter->ena_napi[i].napi);
2639 
2640 	return rc;
2641 
2642 err_up:
2643 	ena_destroy_all_tx_queues(adapter);
2644 	ena_free_all_io_tx_resources(adapter);
2645 	ena_destroy_all_rx_queues(adapter);
2646 	ena_free_all_io_rx_resources(adapter);
2647 err_create_queues_with_backoff:
2648 	ena_free_io_irq(adapter);
2649 err_req_irq:
2650 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2651 
2652 	return rc;
2653 }
2654 
2655 static void ena_down(struct ena_adapter *adapter)
2656 {
2657 	int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2658 
2659 	netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2660 
2661 	clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2662 
2663 	ena_increase_stat(&adapter->dev_stats.interface_down, 1,
2664 			  &adapter->syncp);
2665 
2666 	netif_carrier_off(adapter->netdev);
2667 	netif_tx_disable(adapter->netdev);
2668 
2669 	/* After this point the napi handler won't enable the tx queue */
2670 	ena_napi_disable_in_range(adapter, 0, io_queue_count);
2671 
2672 	/* After destroy the queue there won't be any new interrupts */
2673 
2674 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2675 		int rc;
2676 
2677 		rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2678 		if (rc)
2679 			netif_err(adapter, ifdown, adapter->netdev,
2680 				  "Device reset failed\n");
2681 		/* stop submitting admin commands on a device that was reset */
2682 		ena_com_set_admin_running_state(adapter->ena_dev, false);
2683 	}
2684 
2685 	ena_destroy_all_io_queues(adapter);
2686 
2687 	ena_disable_io_intr_sync(adapter);
2688 	ena_free_io_irq(adapter);
2689 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2690 
2691 	ena_free_all_tx_bufs(adapter);
2692 	ena_free_all_rx_bufs(adapter);
2693 	ena_free_all_io_tx_resources(adapter);
2694 	ena_free_all_io_rx_resources(adapter);
2695 }
2696 
2697 /* ena_open - Called when a network interface is made active
2698  * @netdev: network interface device structure
2699  *
2700  * Returns 0 on success, negative value on failure
2701  *
2702  * The open entry point is called when a network interface is made
2703  * active by the system (IFF_UP).  At this point all resources needed
2704  * for transmit and receive operations are allocated, the interrupt
2705  * handler is registered with the OS, the watchdog timer is started,
2706  * and the stack is notified that the interface is ready.
2707  */
2708 static int ena_open(struct net_device *netdev)
2709 {
2710 	struct ena_adapter *adapter = netdev_priv(netdev);
2711 	int rc;
2712 
2713 	/* Notify the stack of the actual queue counts. */
2714 	rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2715 	if (rc) {
2716 		netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2717 		return rc;
2718 	}
2719 
2720 	rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2721 	if (rc) {
2722 		netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2723 		return rc;
2724 	}
2725 
2726 	rc = ena_up(adapter);
2727 	if (rc)
2728 		return rc;
2729 
2730 	return rc;
2731 }
2732 
2733 /* ena_close - Disables a network interface
2734  * @netdev: network interface device structure
2735  *
2736  * Returns 0, this is not allowed to fail
2737  *
2738  * The close entry point is called when an interface is de-activated
2739  * by the OS.  The hardware is still under the drivers control, but
2740  * needs to be disabled.  A global MAC reset is issued to stop the
2741  * hardware, and all transmit and receive resources are freed.
2742  */
2743 static int ena_close(struct net_device *netdev)
2744 {
2745 	struct ena_adapter *adapter = netdev_priv(netdev);
2746 
2747 	netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2748 
2749 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2750 		return 0;
2751 
2752 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2753 		ena_down(adapter);
2754 
2755 	/* Check for device status and issue reset if needed*/
2756 	check_for_admin_com_state(adapter);
2757 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2758 		netif_err(adapter, ifdown, adapter->netdev,
2759 			  "Destroy failure, restarting device\n");
2760 		ena_dump_stats_to_dmesg(adapter);
2761 		/* rtnl lock already obtained in dev_ioctl() layer */
2762 		ena_destroy_device(adapter, false);
2763 		ena_restore_device(adapter);
2764 	}
2765 
2766 	return 0;
2767 }
2768 
2769 int ena_update_queue_sizes(struct ena_adapter *adapter,
2770 			   u32 new_tx_size,
2771 			   u32 new_rx_size)
2772 {
2773 	bool dev_was_up;
2774 
2775 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2776 	ena_close(adapter->netdev);
2777 	adapter->requested_tx_ring_size = new_tx_size;
2778 	adapter->requested_rx_ring_size = new_rx_size;
2779 	ena_init_io_rings(adapter,
2780 			  0,
2781 			  adapter->xdp_num_queues +
2782 			  adapter->num_io_queues);
2783 	return dev_was_up ? ena_up(adapter) : 0;
2784 }
2785 
2786 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2787 {
2788 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2789 	int prev_channel_count;
2790 	bool dev_was_up;
2791 
2792 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2793 	ena_close(adapter->netdev);
2794 	prev_channel_count = adapter->num_io_queues;
2795 	adapter->num_io_queues = new_channel_count;
2796 	if (ena_xdp_present(adapter) &&
2797 	    ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2798 		adapter->xdp_first_ring = new_channel_count;
2799 		adapter->xdp_num_queues = new_channel_count;
2800 		if (prev_channel_count > new_channel_count)
2801 			ena_xdp_exchange_program_rx_in_range(adapter,
2802 							     NULL,
2803 							     new_channel_count,
2804 							     prev_channel_count);
2805 		else
2806 			ena_xdp_exchange_program_rx_in_range(adapter,
2807 							     adapter->xdp_bpf_prog,
2808 							     prev_channel_count,
2809 							     new_channel_count);
2810 	}
2811 
2812 	/* We need to destroy the rss table so that the indirection
2813 	 * table will be reinitialized by ena_up()
2814 	 */
2815 	ena_com_rss_destroy(ena_dev);
2816 	ena_init_io_rings(adapter,
2817 			  0,
2818 			  adapter->xdp_num_queues +
2819 			  adapter->num_io_queues);
2820 	return dev_was_up ? ena_open(adapter->netdev) : 0;
2821 }
2822 
2823 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx,
2824 			struct sk_buff *skb,
2825 			bool disable_meta_caching)
2826 {
2827 	u32 mss = skb_shinfo(skb)->gso_size;
2828 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2829 	u8 l4_protocol = 0;
2830 
2831 	if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2832 		ena_tx_ctx->l4_csum_enable = 1;
2833 		if (mss) {
2834 			ena_tx_ctx->tso_enable = 1;
2835 			ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2836 			ena_tx_ctx->l4_csum_partial = 0;
2837 		} else {
2838 			ena_tx_ctx->tso_enable = 0;
2839 			ena_meta->l4_hdr_len = 0;
2840 			ena_tx_ctx->l4_csum_partial = 1;
2841 		}
2842 
2843 		switch (ip_hdr(skb)->version) {
2844 		case IPVERSION:
2845 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2846 			if (ip_hdr(skb)->frag_off & htons(IP_DF))
2847 				ena_tx_ctx->df = 1;
2848 			if (mss)
2849 				ena_tx_ctx->l3_csum_enable = 1;
2850 			l4_protocol = ip_hdr(skb)->protocol;
2851 			break;
2852 		case 6:
2853 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2854 			l4_protocol = ipv6_hdr(skb)->nexthdr;
2855 			break;
2856 		default:
2857 			break;
2858 		}
2859 
2860 		if (l4_protocol == IPPROTO_TCP)
2861 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2862 		else
2863 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2864 
2865 		ena_meta->mss = mss;
2866 		ena_meta->l3_hdr_len = skb_network_header_len(skb);
2867 		ena_meta->l3_hdr_offset = skb_network_offset(skb);
2868 		ena_tx_ctx->meta_valid = 1;
2869 	} else if (disable_meta_caching) {
2870 		memset(ena_meta, 0, sizeof(*ena_meta));
2871 		ena_tx_ctx->meta_valid = 1;
2872 	} else {
2873 		ena_tx_ctx->meta_valid = 0;
2874 	}
2875 }
2876 
2877 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
2878 				       struct sk_buff *skb)
2879 {
2880 	int num_frags, header_len, rc;
2881 
2882 	num_frags = skb_shinfo(skb)->nr_frags;
2883 	header_len = skb_headlen(skb);
2884 
2885 	if (num_frags < tx_ring->sgl_size)
2886 		return 0;
2887 
2888 	if ((num_frags == tx_ring->sgl_size) &&
2889 	    (header_len < tx_ring->tx_max_header_size))
2890 		return 0;
2891 
2892 	ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp);
2893 
2894 	rc = skb_linearize(skb);
2895 	if (unlikely(rc)) {
2896 		ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1,
2897 				  &tx_ring->syncp);
2898 	}
2899 
2900 	return rc;
2901 }
2902 
2903 static int ena_tx_map_skb(struct ena_ring *tx_ring,
2904 			  struct ena_tx_buffer *tx_info,
2905 			  struct sk_buff *skb,
2906 			  void **push_hdr,
2907 			  u16 *header_len)
2908 {
2909 	struct ena_adapter *adapter = tx_ring->adapter;
2910 	struct ena_com_buf *ena_buf;
2911 	dma_addr_t dma;
2912 	u32 skb_head_len, frag_len, last_frag;
2913 	u16 push_len = 0;
2914 	u16 delta = 0;
2915 	int i = 0;
2916 
2917 	skb_head_len = skb_headlen(skb);
2918 	tx_info->skb = skb;
2919 	ena_buf = tx_info->bufs;
2920 
2921 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2922 		/* When the device is LLQ mode, the driver will copy
2923 		 * the header into the device memory space.
2924 		 * the ena_com layer assume the header is in a linear
2925 		 * memory space.
2926 		 * This assumption might be wrong since part of the header
2927 		 * can be in the fragmented buffers.
2928 		 * Use skb_header_pointer to make sure the header is in a
2929 		 * linear memory space.
2930 		 */
2931 
2932 		push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
2933 		*push_hdr = skb_header_pointer(skb, 0, push_len,
2934 					       tx_ring->push_buf_intermediate_buf);
2935 		*header_len = push_len;
2936 		if (unlikely(skb->data != *push_hdr)) {
2937 			ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1,
2938 					  &tx_ring->syncp);
2939 
2940 			delta = push_len - skb_head_len;
2941 		}
2942 	} else {
2943 		*push_hdr = NULL;
2944 		*header_len = min_t(u32, skb_head_len,
2945 				    tx_ring->tx_max_header_size);
2946 	}
2947 
2948 	netif_dbg(adapter, tx_queued, adapter->netdev,
2949 		  "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
2950 		  *push_hdr, push_len);
2951 
2952 	if (skb_head_len > push_len) {
2953 		dma = dma_map_single(tx_ring->dev, skb->data + push_len,
2954 				     skb_head_len - push_len, DMA_TO_DEVICE);
2955 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2956 			goto error_report_dma_error;
2957 
2958 		ena_buf->paddr = dma;
2959 		ena_buf->len = skb_head_len - push_len;
2960 
2961 		ena_buf++;
2962 		tx_info->num_of_bufs++;
2963 		tx_info->map_linear_data = 1;
2964 	} else {
2965 		tx_info->map_linear_data = 0;
2966 	}
2967 
2968 	last_frag = skb_shinfo(skb)->nr_frags;
2969 
2970 	for (i = 0; i < last_frag; i++) {
2971 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2972 
2973 		frag_len = skb_frag_size(frag);
2974 
2975 		if (unlikely(delta >= frag_len)) {
2976 			delta -= frag_len;
2977 			continue;
2978 		}
2979 
2980 		dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
2981 				       frag_len - delta, DMA_TO_DEVICE);
2982 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2983 			goto error_report_dma_error;
2984 
2985 		ena_buf->paddr = dma;
2986 		ena_buf->len = frag_len - delta;
2987 		ena_buf++;
2988 		tx_info->num_of_bufs++;
2989 		delta = 0;
2990 	}
2991 
2992 	return 0;
2993 
2994 error_report_dma_error:
2995 	ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1,
2996 			  &tx_ring->syncp);
2997 	netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n");
2998 
2999 	tx_info->skb = NULL;
3000 
3001 	tx_info->num_of_bufs += i;
3002 	ena_unmap_tx_buff(tx_ring, tx_info);
3003 
3004 	return -EINVAL;
3005 }
3006 
3007 /* Called with netif_tx_lock. */
3008 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
3009 {
3010 	struct ena_adapter *adapter = netdev_priv(dev);
3011 	struct ena_tx_buffer *tx_info;
3012 	struct ena_com_tx_ctx ena_tx_ctx;
3013 	struct ena_ring *tx_ring;
3014 	struct netdev_queue *txq;
3015 	void *push_hdr;
3016 	u16 next_to_use, req_id, header_len;
3017 	int qid, rc;
3018 
3019 	netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
3020 	/*  Determine which tx ring we will be placed on */
3021 	qid = skb_get_queue_mapping(skb);
3022 	tx_ring = &adapter->tx_ring[qid];
3023 	txq = netdev_get_tx_queue(dev, qid);
3024 
3025 	rc = ena_check_and_linearize_skb(tx_ring, skb);
3026 	if (unlikely(rc))
3027 		goto error_drop_packet;
3028 
3029 	skb_tx_timestamp(skb);
3030 
3031 	next_to_use = tx_ring->next_to_use;
3032 	req_id = tx_ring->free_ids[next_to_use];
3033 	tx_info = &tx_ring->tx_buffer_info[req_id];
3034 	tx_info->num_of_bufs = 0;
3035 
3036 	WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
3037 
3038 	rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
3039 	if (unlikely(rc))
3040 		goto error_drop_packet;
3041 
3042 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
3043 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3044 	ena_tx_ctx.push_header = push_hdr;
3045 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3046 	ena_tx_ctx.req_id = req_id;
3047 	ena_tx_ctx.header_len = header_len;
3048 
3049 	/* set flags and meta data */
3050 	ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching);
3051 
3052 	rc = ena_xmit_common(dev,
3053 			     tx_ring,
3054 			     tx_info,
3055 			     &ena_tx_ctx,
3056 			     next_to_use,
3057 			     skb->len);
3058 	if (rc)
3059 		goto error_unmap_dma;
3060 
3061 	netdev_tx_sent_queue(txq, skb->len);
3062 
3063 	/* stop the queue when no more space available, the packet can have up
3064 	 * to sgl_size + 2. one for the meta descriptor and one for header
3065 	 * (if the header is larger than tx_max_header_size).
3066 	 */
3067 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3068 						   tx_ring->sgl_size + 2))) {
3069 		netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
3070 			  __func__, qid);
3071 
3072 		netif_tx_stop_queue(txq);
3073 		ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1,
3074 				  &tx_ring->syncp);
3075 
3076 		/* There is a rare condition where this function decide to
3077 		 * stop the queue but meanwhile clean_tx_irq updates
3078 		 * next_to_completion and terminates.
3079 		 * The queue will remain stopped forever.
3080 		 * To solve this issue add a mb() to make sure that
3081 		 * netif_tx_stop_queue() write is vissible before checking if
3082 		 * there is additional space in the queue.
3083 		 */
3084 		smp_mb();
3085 
3086 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3087 						 ENA_TX_WAKEUP_THRESH)) {
3088 			netif_tx_wake_queue(txq);
3089 			ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
3090 					  &tx_ring->syncp);
3091 		}
3092 	}
3093 
3094 	if (netif_xmit_stopped(txq) || !netdev_xmit_more()) {
3095 		/* trigger the dma engine. ena_com_write_sq_doorbell()
3096 		 * has a mb
3097 		 */
3098 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3099 		ena_increase_stat(&tx_ring->tx_stats.doorbells, 1,
3100 				  &tx_ring->syncp);
3101 	}
3102 
3103 	return NETDEV_TX_OK;
3104 
3105 error_unmap_dma:
3106 	ena_unmap_tx_buff(tx_ring, tx_info);
3107 	tx_info->skb = NULL;
3108 
3109 error_drop_packet:
3110 	dev_kfree_skb(skb);
3111 	return NETDEV_TX_OK;
3112 }
3113 
3114 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
3115 			    struct net_device *sb_dev)
3116 {
3117 	u16 qid;
3118 	/* we suspect that this is good for in--kernel network services that
3119 	 * want to loop incoming skb rx to tx in normal user generated traffic,
3120 	 * most probably we will not get to this
3121 	 */
3122 	if (skb_rx_queue_recorded(skb))
3123 		qid = skb_get_rx_queue(skb);
3124 	else
3125 		qid = netdev_pick_tx(dev, skb, NULL);
3126 
3127 	return qid;
3128 }
3129 
3130 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3131 {
3132 	struct device *dev = &pdev->dev;
3133 	struct ena_admin_host_info *host_info;
3134 	int rc;
3135 
3136 	/* Allocate only the host info */
3137 	rc = ena_com_allocate_host_info(ena_dev);
3138 	if (rc) {
3139 		dev_err(dev, "Cannot allocate host info\n");
3140 		return;
3141 	}
3142 
3143 	host_info = ena_dev->host_attr.host_info;
3144 
3145 	host_info->bdf = (pdev->bus->number << 8) | pdev->devfn;
3146 	host_info->os_type = ENA_ADMIN_OS_LINUX;
3147 	host_info->kernel_ver = LINUX_VERSION_CODE;
3148 	strlcpy(host_info->kernel_ver_str, utsname()->version,
3149 		sizeof(host_info->kernel_ver_str) - 1);
3150 	host_info->os_dist = 0;
3151 	strncpy(host_info->os_dist_str, utsname()->release,
3152 		sizeof(host_info->os_dist_str) - 1);
3153 	host_info->driver_version =
3154 		(DRV_MODULE_GEN_MAJOR) |
3155 		(DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3156 		(DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
3157 		("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
3158 	host_info->num_cpus = num_online_cpus();
3159 
3160 	host_info->driver_supported_features =
3161 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
3162 		ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK |
3163 		ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK |
3164 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
3165 
3166 	rc = ena_com_set_host_attributes(ena_dev);
3167 	if (rc) {
3168 		if (rc == -EOPNOTSUPP)
3169 			dev_warn(dev, "Cannot set host attributes\n");
3170 		else
3171 			dev_err(dev, "Cannot set host attributes\n");
3172 
3173 		goto err;
3174 	}
3175 
3176 	return;
3177 
3178 err:
3179 	ena_com_delete_host_info(ena_dev);
3180 }
3181 
3182 static void ena_config_debug_area(struct ena_adapter *adapter)
3183 {
3184 	u32 debug_area_size;
3185 	int rc, ss_count;
3186 
3187 	ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
3188 	if (ss_count <= 0) {
3189 		netif_err(adapter, drv, adapter->netdev,
3190 			  "SS count is negative\n");
3191 		return;
3192 	}
3193 
3194 	/* allocate 32 bytes for each string and 64bit for the value */
3195 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
3196 
3197 	rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
3198 	if (rc) {
3199 		netif_err(adapter, drv, adapter->netdev,
3200 			  "Cannot allocate debug area\n");
3201 		return;
3202 	}
3203 
3204 	rc = ena_com_set_host_attributes(adapter->ena_dev);
3205 	if (rc) {
3206 		if (rc == -EOPNOTSUPP)
3207 			netif_warn(adapter, drv, adapter->netdev,
3208 				   "Cannot set host attributes\n");
3209 		else
3210 			netif_err(adapter, drv, adapter->netdev,
3211 				  "Cannot set host attributes\n");
3212 		goto err;
3213 	}
3214 
3215 	return;
3216 err:
3217 	ena_com_delete_debug_area(adapter->ena_dev);
3218 }
3219 
3220 int ena_update_hw_stats(struct ena_adapter *adapter)
3221 {
3222 	int rc = 0;
3223 
3224 	rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats);
3225 	if (rc) {
3226 		dev_info_once(&adapter->pdev->dev, "Failed to get ENI stats\n");
3227 		return rc;
3228 	}
3229 
3230 	return 0;
3231 }
3232 
3233 static void ena_get_stats64(struct net_device *netdev,
3234 			    struct rtnl_link_stats64 *stats)
3235 {
3236 	struct ena_adapter *adapter = netdev_priv(netdev);
3237 	struct ena_ring *rx_ring, *tx_ring;
3238 	unsigned int start;
3239 	u64 rx_drops;
3240 	u64 tx_drops;
3241 	int i;
3242 
3243 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3244 		return;
3245 
3246 	for (i = 0; i < adapter->num_io_queues; i++) {
3247 		u64 bytes, packets;
3248 
3249 		tx_ring = &adapter->tx_ring[i];
3250 
3251 		do {
3252 			start = u64_stats_fetch_begin_irq(&tx_ring->syncp);
3253 			packets = tx_ring->tx_stats.cnt;
3254 			bytes = tx_ring->tx_stats.bytes;
3255 		} while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start));
3256 
3257 		stats->tx_packets += packets;
3258 		stats->tx_bytes += bytes;
3259 
3260 		rx_ring = &adapter->rx_ring[i];
3261 
3262 		do {
3263 			start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
3264 			packets = rx_ring->rx_stats.cnt;
3265 			bytes = rx_ring->rx_stats.bytes;
3266 		} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
3267 
3268 		stats->rx_packets += packets;
3269 		stats->rx_bytes += bytes;
3270 	}
3271 
3272 	do {
3273 		start = u64_stats_fetch_begin_irq(&adapter->syncp);
3274 		rx_drops = adapter->dev_stats.rx_drops;
3275 		tx_drops = adapter->dev_stats.tx_drops;
3276 	} while (u64_stats_fetch_retry_irq(&adapter->syncp, start));
3277 
3278 	stats->rx_dropped = rx_drops;
3279 	stats->tx_dropped = tx_drops;
3280 
3281 	stats->multicast = 0;
3282 	stats->collisions = 0;
3283 
3284 	stats->rx_length_errors = 0;
3285 	stats->rx_crc_errors = 0;
3286 	stats->rx_frame_errors = 0;
3287 	stats->rx_fifo_errors = 0;
3288 	stats->rx_missed_errors = 0;
3289 	stats->tx_window_errors = 0;
3290 
3291 	stats->rx_errors = 0;
3292 	stats->tx_errors = 0;
3293 }
3294 
3295 static const struct net_device_ops ena_netdev_ops = {
3296 	.ndo_open		= ena_open,
3297 	.ndo_stop		= ena_close,
3298 	.ndo_start_xmit		= ena_start_xmit,
3299 	.ndo_select_queue	= ena_select_queue,
3300 	.ndo_get_stats64	= ena_get_stats64,
3301 	.ndo_tx_timeout		= ena_tx_timeout,
3302 	.ndo_change_mtu		= ena_change_mtu,
3303 	.ndo_set_mac_address	= NULL,
3304 	.ndo_validate_addr	= eth_validate_addr,
3305 	.ndo_bpf		= ena_xdp,
3306 	.ndo_xdp_xmit		= ena_xdp_xmit,
3307 };
3308 
3309 static int ena_device_validate_params(struct ena_adapter *adapter,
3310 				      struct ena_com_dev_get_features_ctx *get_feat_ctx)
3311 {
3312 	struct net_device *netdev = adapter->netdev;
3313 	int rc;
3314 
3315 	rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
3316 			      adapter->mac_addr);
3317 	if (!rc) {
3318 		netif_err(adapter, drv, netdev,
3319 			  "Error, mac address are different\n");
3320 		return -EINVAL;
3321 	}
3322 
3323 	if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
3324 		netif_err(adapter, drv, netdev,
3325 			  "Error, device max mtu is smaller than netdev MTU\n");
3326 		return -EINVAL;
3327 	}
3328 
3329 	return 0;
3330 }
3331 
3332 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config)
3333 {
3334 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
3335 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
3336 	llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
3337 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
3338 	llq_config->llq_ring_entry_size_value = 128;
3339 }
3340 
3341 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3342 					   struct ena_com_dev *ena_dev,
3343 					   struct ena_admin_feature_llq_desc *llq,
3344 					   struct ena_llq_configurations *llq_default_configurations)
3345 {
3346 	int rc;
3347 	u32 llq_feature_mask;
3348 
3349 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3350 	if (!(ena_dev->supported_features & llq_feature_mask)) {
3351 		dev_err(&pdev->dev,
3352 			"LLQ is not supported Fallback to host mode policy.\n");
3353 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3354 		return 0;
3355 	}
3356 
3357 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3358 	if (unlikely(rc)) {
3359 		dev_err(&pdev->dev,
3360 			"Failed to configure the device mode.  Fallback to host mode policy.\n");
3361 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3362 	}
3363 
3364 	return 0;
3365 }
3366 
3367 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
3368 			       int bars)
3369 {
3370 	bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR));
3371 
3372 	if (!has_mem_bar) {
3373 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3374 			dev_err(&pdev->dev,
3375 				"ENA device does not expose LLQ bar. Fallback to host mode policy.\n");
3376 			ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3377 		}
3378 
3379 		return 0;
3380 	}
3381 
3382 	ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3383 					   pci_resource_start(pdev, ENA_MEM_BAR),
3384 					   pci_resource_len(pdev, ENA_MEM_BAR));
3385 
3386 	if (!ena_dev->mem_bar)
3387 		return -EFAULT;
3388 
3389 	return 0;
3390 }
3391 
3392 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
3393 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
3394 			   bool *wd_state)
3395 {
3396 	struct ena_llq_configurations llq_config;
3397 	struct device *dev = &pdev->dev;
3398 	bool readless_supported;
3399 	u32 aenq_groups;
3400 	int dma_width;
3401 	int rc;
3402 
3403 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3404 	if (rc) {
3405 		dev_err(dev, "Failed to init mmio read less\n");
3406 		return rc;
3407 	}
3408 
3409 	/* The PCIe configuration space revision id indicate if mmio reg
3410 	 * read is disabled
3411 	 */
3412 	readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3413 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3414 
3415 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3416 	if (rc) {
3417 		dev_err(dev, "Can not reset device\n");
3418 		goto err_mmio_read_less;
3419 	}
3420 
3421 	rc = ena_com_validate_version(ena_dev);
3422 	if (rc) {
3423 		dev_err(dev, "Device version is too low\n");
3424 		goto err_mmio_read_less;
3425 	}
3426 
3427 	dma_width = ena_com_get_dma_width(ena_dev);
3428 	if (dma_width < 0) {
3429 		dev_err(dev, "Invalid dma width value %d", dma_width);
3430 		rc = dma_width;
3431 		goto err_mmio_read_less;
3432 	}
3433 
3434 	rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width));
3435 	if (rc) {
3436 		dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc);
3437 		goto err_mmio_read_less;
3438 	}
3439 
3440 	/* ENA admin level init */
3441 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3442 	if (rc) {
3443 		dev_err(dev,
3444 			"Can not initialize ena admin queue with device\n");
3445 		goto err_mmio_read_less;
3446 	}
3447 
3448 	/* To enable the msix interrupts the driver needs to know the number
3449 	 * of queues. So the driver uses polling mode to retrieve this
3450 	 * information
3451 	 */
3452 	ena_com_set_admin_polling_mode(ena_dev, true);
3453 
3454 	ena_config_host_info(ena_dev, pdev);
3455 
3456 	/* Get Device Attributes*/
3457 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3458 	if (rc) {
3459 		dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3460 		goto err_admin_init;
3461 	}
3462 
3463 	/* Try to turn all the available aenq groups */
3464 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3465 		BIT(ENA_ADMIN_FATAL_ERROR) |
3466 		BIT(ENA_ADMIN_WARNING) |
3467 		BIT(ENA_ADMIN_NOTIFICATION) |
3468 		BIT(ENA_ADMIN_KEEP_ALIVE);
3469 
3470 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3471 
3472 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3473 	if (rc) {
3474 		dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3475 		goto err_admin_init;
3476 	}
3477 
3478 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3479 
3480 	set_default_llq_configurations(&llq_config);
3481 
3482 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq,
3483 					     &llq_config);
3484 	if (rc) {
3485 		dev_err(dev, "ENA device init failed\n");
3486 		goto err_admin_init;
3487 	}
3488 
3489 	return 0;
3490 
3491 err_admin_init:
3492 	ena_com_delete_host_info(ena_dev);
3493 	ena_com_admin_destroy(ena_dev);
3494 err_mmio_read_less:
3495 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3496 
3497 	return rc;
3498 }
3499 
3500 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3501 {
3502 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3503 	struct device *dev = &adapter->pdev->dev;
3504 	int rc;
3505 
3506 	rc = ena_enable_msix(adapter);
3507 	if (rc) {
3508 		dev_err(dev, "Can not reserve msix vectors\n");
3509 		return rc;
3510 	}
3511 
3512 	ena_setup_mgmnt_intr(adapter);
3513 
3514 	rc = ena_request_mgmnt_irq(adapter);
3515 	if (rc) {
3516 		dev_err(dev, "Can not setup management interrupts\n");
3517 		goto err_disable_msix;
3518 	}
3519 
3520 	ena_com_set_admin_polling_mode(ena_dev, false);
3521 
3522 	ena_com_admin_aenq_enable(ena_dev);
3523 
3524 	return 0;
3525 
3526 err_disable_msix:
3527 	ena_disable_msix(adapter);
3528 
3529 	return rc;
3530 }
3531 
3532 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3533 {
3534 	struct net_device *netdev = adapter->netdev;
3535 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3536 	bool dev_up;
3537 
3538 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3539 		return;
3540 
3541 	netif_carrier_off(netdev);
3542 
3543 	del_timer_sync(&adapter->timer_service);
3544 
3545 	dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3546 	adapter->dev_up_before_reset = dev_up;
3547 	if (!graceful)
3548 		ena_com_set_admin_running_state(ena_dev, false);
3549 
3550 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3551 		ena_down(adapter);
3552 
3553 	/* Stop the device from sending AENQ events (in case reset flag is set
3554 	 *  and device is up, ena_down() already reset the device.
3555 	 */
3556 	if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3557 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3558 
3559 	ena_free_mgmnt_irq(adapter);
3560 
3561 	ena_disable_msix(adapter);
3562 
3563 	ena_com_abort_admin_commands(ena_dev);
3564 
3565 	ena_com_wait_for_abort_completion(ena_dev);
3566 
3567 	ena_com_admin_destroy(ena_dev);
3568 
3569 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3570 
3571 	/* return reset reason to default value */
3572 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3573 
3574 	clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3575 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3576 }
3577 
3578 static int ena_restore_device(struct ena_adapter *adapter)
3579 {
3580 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3581 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3582 	struct pci_dev *pdev = adapter->pdev;
3583 	bool wd_state;
3584 	int rc;
3585 
3586 	set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3587 	rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
3588 	if (rc) {
3589 		dev_err(&pdev->dev, "Can not initialize device\n");
3590 		goto err;
3591 	}
3592 	adapter->wd_state = wd_state;
3593 
3594 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
3595 	if (rc) {
3596 		dev_err(&pdev->dev, "Validation of device parameters failed\n");
3597 		goto err_device_destroy;
3598 	}
3599 
3600 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3601 	if (rc) {
3602 		dev_err(&pdev->dev, "Enable MSI-X failed\n");
3603 		goto err_device_destroy;
3604 	}
3605 	/* If the interface was up before the reset bring it up */
3606 	if (adapter->dev_up_before_reset) {
3607 		rc = ena_up(adapter);
3608 		if (rc) {
3609 			dev_err(&pdev->dev, "Failed to create I/O queues\n");
3610 			goto err_disable_msix;
3611 		}
3612 	}
3613 
3614 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3615 
3616 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3617 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3618 		netif_carrier_on(adapter->netdev);
3619 
3620 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3621 	adapter->last_keep_alive_jiffies = jiffies;
3622 
3623 	dev_err(&pdev->dev, "Device reset completed successfully\n");
3624 
3625 	return rc;
3626 err_disable_msix:
3627 	ena_free_mgmnt_irq(adapter);
3628 	ena_disable_msix(adapter);
3629 err_device_destroy:
3630 	ena_com_abort_admin_commands(ena_dev);
3631 	ena_com_wait_for_abort_completion(ena_dev);
3632 	ena_com_admin_destroy(ena_dev);
3633 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3634 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3635 err:
3636 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3637 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3638 	dev_err(&pdev->dev,
3639 		"Reset attempt failed. Can not reset the device\n");
3640 
3641 	return rc;
3642 }
3643 
3644 static void ena_fw_reset_device(struct work_struct *work)
3645 {
3646 	struct ena_adapter *adapter =
3647 		container_of(work, struct ena_adapter, reset_task);
3648 
3649 	rtnl_lock();
3650 
3651 	if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3652 		ena_destroy_device(adapter, false);
3653 		ena_restore_device(adapter);
3654 	}
3655 
3656 	rtnl_unlock();
3657 }
3658 
3659 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3660 					struct ena_ring *rx_ring)
3661 {
3662 	if (likely(rx_ring->first_interrupt))
3663 		return 0;
3664 
3665 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3666 		return 0;
3667 
3668 	rx_ring->no_interrupt_event_cnt++;
3669 
3670 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3671 		netif_err(adapter, rx_err, adapter->netdev,
3672 			  "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3673 			  rx_ring->qid);
3674 		adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
3675 		smp_mb__before_atomic();
3676 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3677 		return -EIO;
3678 	}
3679 
3680 	return 0;
3681 }
3682 
3683 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3684 					  struct ena_ring *tx_ring)
3685 {
3686 	struct ena_tx_buffer *tx_buf;
3687 	unsigned long last_jiffies;
3688 	u32 missed_tx = 0;
3689 	int i, rc = 0;
3690 
3691 	for (i = 0; i < tx_ring->ring_size; i++) {
3692 		tx_buf = &tx_ring->tx_buffer_info[i];
3693 		last_jiffies = tx_buf->last_jiffies;
3694 
3695 		if (last_jiffies == 0)
3696 			/* no pending Tx at this location */
3697 			continue;
3698 
3699 		if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies +
3700 			     2 * adapter->missing_tx_completion_to))) {
3701 			/* If after graceful period interrupt is still not
3702 			 * received, we schedule a reset
3703 			 */
3704 			netif_err(adapter, tx_err, adapter->netdev,
3705 				  "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3706 				  tx_ring->qid);
3707 			adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
3708 			smp_mb__before_atomic();
3709 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3710 			return -EIO;
3711 		}
3712 
3713 		if (unlikely(time_is_before_jiffies(last_jiffies +
3714 				adapter->missing_tx_completion_to))) {
3715 			if (!tx_buf->print_once)
3716 				netif_notice(adapter, tx_err, adapter->netdev,
3717 					     "Found a Tx that wasn't completed on time, qid %d, index %d.\n",
3718 					     tx_ring->qid, i);
3719 
3720 			tx_buf->print_once = 1;
3721 			missed_tx++;
3722 		}
3723 	}
3724 
3725 	if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3726 		netif_err(adapter, tx_err, adapter->netdev,
3727 			  "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
3728 			  missed_tx,
3729 			  adapter->missing_tx_completion_threshold);
3730 		adapter->reset_reason =
3731 			ENA_REGS_RESET_MISS_TX_CMPL;
3732 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3733 		rc = -EIO;
3734 	}
3735 
3736 	ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx,
3737 			  &tx_ring->syncp);
3738 
3739 	return rc;
3740 }
3741 
3742 static void check_for_missing_completions(struct ena_adapter *adapter)
3743 {
3744 	struct ena_ring *tx_ring;
3745 	struct ena_ring *rx_ring;
3746 	int i, budget, rc;
3747 	int io_queue_count;
3748 
3749 	io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
3750 	/* Make sure the driver doesn't turn the device in other process */
3751 	smp_rmb();
3752 
3753 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3754 		return;
3755 
3756 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3757 		return;
3758 
3759 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
3760 		return;
3761 
3762 	budget = ENA_MONITORED_TX_QUEUES;
3763 
3764 	for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) {
3765 		tx_ring = &adapter->tx_ring[i];
3766 		rx_ring = &adapter->rx_ring[i];
3767 
3768 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
3769 		if (unlikely(rc))
3770 			return;
3771 
3772 		rc =  !ENA_IS_XDP_INDEX(adapter, i) ?
3773 			check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
3774 		if (unlikely(rc))
3775 			return;
3776 
3777 		budget--;
3778 		if (!budget)
3779 			break;
3780 	}
3781 
3782 	adapter->last_monitored_tx_qid = i % io_queue_count;
3783 }
3784 
3785 /* trigger napi schedule after 2 consecutive detections */
3786 #define EMPTY_RX_REFILL 2
3787 /* For the rare case where the device runs out of Rx descriptors and the
3788  * napi handler failed to refill new Rx descriptors (due to a lack of memory
3789  * for example).
3790  * This case will lead to a deadlock:
3791  * The device won't send interrupts since all the new Rx packets will be dropped
3792  * The napi handler won't allocate new Rx descriptors so the device will be
3793  * able to send new packets.
3794  *
3795  * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
3796  * It is recommended to have at least 512MB, with a minimum of 128MB for
3797  * constrained environment).
3798  *
3799  * When such a situation is detected - Reschedule napi
3800  */
3801 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
3802 {
3803 	struct ena_ring *rx_ring;
3804 	int i, refill_required;
3805 
3806 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3807 		return;
3808 
3809 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3810 		return;
3811 
3812 	for (i = 0; i < adapter->num_io_queues; i++) {
3813 		rx_ring = &adapter->rx_ring[i];
3814 
3815 		refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
3816 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3817 			rx_ring->empty_rx_queue++;
3818 
3819 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3820 				ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1,
3821 						  &rx_ring->syncp);
3822 
3823 				netif_err(adapter, drv, adapter->netdev,
3824 					  "Trigger refill for ring %d\n", i);
3825 
3826 				napi_schedule(rx_ring->napi);
3827 				rx_ring->empty_rx_queue = 0;
3828 			}
3829 		} else {
3830 			rx_ring->empty_rx_queue = 0;
3831 		}
3832 	}
3833 }
3834 
3835 /* Check for keep alive expiration */
3836 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3837 {
3838 	unsigned long keep_alive_expired;
3839 
3840 	if (!adapter->wd_state)
3841 		return;
3842 
3843 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3844 		return;
3845 
3846 	keep_alive_expired = adapter->last_keep_alive_jiffies +
3847 			     adapter->keep_alive_timeout;
3848 	if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
3849 		netif_err(adapter, drv, adapter->netdev,
3850 			  "Keep alive watchdog timeout.\n");
3851 		ena_increase_stat(&adapter->dev_stats.wd_expired, 1,
3852 				  &adapter->syncp);
3853 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3854 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3855 	}
3856 }
3857 
3858 static void check_for_admin_com_state(struct ena_adapter *adapter)
3859 {
3860 	if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
3861 		netif_err(adapter, drv, adapter->netdev,
3862 			  "ENA admin queue is not in running state!\n");
3863 		ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1,
3864 				  &adapter->syncp);
3865 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3866 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3867 	}
3868 }
3869 
3870 static void ena_update_hints(struct ena_adapter *adapter,
3871 			     struct ena_admin_ena_hw_hints *hints)
3872 {
3873 	struct net_device *netdev = adapter->netdev;
3874 
3875 	if (hints->admin_completion_tx_timeout)
3876 		adapter->ena_dev->admin_queue.completion_timeout =
3877 			hints->admin_completion_tx_timeout * 1000;
3878 
3879 	if (hints->mmio_read_timeout)
3880 		/* convert to usec */
3881 		adapter->ena_dev->mmio_read.reg_read_to =
3882 			hints->mmio_read_timeout * 1000;
3883 
3884 	if (hints->missed_tx_completion_count_threshold_to_reset)
3885 		adapter->missing_tx_completion_threshold =
3886 			hints->missed_tx_completion_count_threshold_to_reset;
3887 
3888 	if (hints->missing_tx_completion_timeout) {
3889 		if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3890 			adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
3891 		else
3892 			adapter->missing_tx_completion_to =
3893 				msecs_to_jiffies(hints->missing_tx_completion_timeout);
3894 	}
3895 
3896 	if (hints->netdev_wd_timeout)
3897 		netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
3898 
3899 	if (hints->driver_watchdog_timeout) {
3900 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3901 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3902 		else
3903 			adapter->keep_alive_timeout =
3904 				msecs_to_jiffies(hints->driver_watchdog_timeout);
3905 	}
3906 }
3907 
3908 static void ena_update_host_info(struct ena_admin_host_info *host_info,
3909 				 struct net_device *netdev)
3910 {
3911 	host_info->supported_network_features[0] =
3912 		netdev->features & GENMASK_ULL(31, 0);
3913 	host_info->supported_network_features[1] =
3914 		(netdev->features & GENMASK_ULL(63, 32)) >> 32;
3915 }
3916 
3917 static void ena_timer_service(struct timer_list *t)
3918 {
3919 	struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
3920 	u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
3921 	struct ena_admin_host_info *host_info =
3922 		adapter->ena_dev->host_attr.host_info;
3923 
3924 	check_for_missing_keep_alive(adapter);
3925 
3926 	check_for_admin_com_state(adapter);
3927 
3928 	check_for_missing_completions(adapter);
3929 
3930 	check_for_empty_rx_ring(adapter);
3931 
3932 	if (debug_area)
3933 		ena_dump_stats_to_buf(adapter, debug_area);
3934 
3935 	if (host_info)
3936 		ena_update_host_info(host_info, adapter->netdev);
3937 
3938 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3939 		netif_err(adapter, drv, adapter->netdev,
3940 			  "Trigger reset is on\n");
3941 		ena_dump_stats_to_dmesg(adapter);
3942 		queue_work(ena_wq, &adapter->reset_task);
3943 		return;
3944 	}
3945 
3946 	/* Reset the timer */
3947 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3948 }
3949 
3950 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev,
3951 				     struct ena_com_dev *ena_dev,
3952 				     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3953 {
3954 	u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
3955 
3956 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3957 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3958 			&get_feat_ctx->max_queue_ext.max_queue_ext;
3959 		io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
3960 				  max_queue_ext->max_rx_cq_num);
3961 
3962 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
3963 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
3964 	} else {
3965 		struct ena_admin_queue_feature_desc *max_queues =
3966 			&get_feat_ctx->max_queues;
3967 		io_tx_sq_num = max_queues->max_sq_num;
3968 		io_tx_cq_num = max_queues->max_cq_num;
3969 		io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
3970 	}
3971 
3972 	/* In case of LLQ use the llq fields for the tx SQ/CQ */
3973 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3974 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
3975 
3976 	max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
3977 	max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
3978 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
3979 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
3980 	/* 1 IRQ for mgmnt and 1 IRQs for each IO direction */
3981 	max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
3982 	if (unlikely(!max_num_io_queues)) {
3983 		dev_err(&pdev->dev, "The device doesn't have io queues\n");
3984 		return -EFAULT;
3985 	}
3986 
3987 	return max_num_io_queues;
3988 }
3989 
3990 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
3991 				 struct net_device *netdev)
3992 {
3993 	netdev_features_t dev_features = 0;
3994 
3995 	/* Set offload features */
3996 	if (feat->offload.tx &
3997 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
3998 		dev_features |= NETIF_F_IP_CSUM;
3999 
4000 	if (feat->offload.tx &
4001 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
4002 		dev_features |= NETIF_F_IPV6_CSUM;
4003 
4004 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
4005 		dev_features |= NETIF_F_TSO;
4006 
4007 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
4008 		dev_features |= NETIF_F_TSO6;
4009 
4010 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
4011 		dev_features |= NETIF_F_TSO_ECN;
4012 
4013 	if (feat->offload.rx_supported &
4014 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
4015 		dev_features |= NETIF_F_RXCSUM;
4016 
4017 	if (feat->offload.rx_supported &
4018 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
4019 		dev_features |= NETIF_F_RXCSUM;
4020 
4021 	netdev->features =
4022 		dev_features |
4023 		NETIF_F_SG |
4024 		NETIF_F_RXHASH |
4025 		NETIF_F_HIGHDMA;
4026 
4027 	netdev->hw_features |= netdev->features;
4028 	netdev->vlan_features |= netdev->features;
4029 }
4030 
4031 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
4032 				     struct ena_com_dev_get_features_ctx *feat)
4033 {
4034 	struct net_device *netdev = adapter->netdev;
4035 
4036 	/* Copy mac address */
4037 	if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
4038 		eth_hw_addr_random(netdev);
4039 		ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
4040 	} else {
4041 		ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
4042 		ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
4043 	}
4044 
4045 	/* Set offload features */
4046 	ena_set_dev_offloads(feat, netdev);
4047 
4048 	adapter->max_mtu = feat->dev_attr.max_mtu;
4049 	netdev->max_mtu = adapter->max_mtu;
4050 	netdev->min_mtu = ENA_MIN_MTU;
4051 }
4052 
4053 static int ena_rss_init_default(struct ena_adapter *adapter)
4054 {
4055 	struct ena_com_dev *ena_dev = adapter->ena_dev;
4056 	struct device *dev = &adapter->pdev->dev;
4057 	int rc, i;
4058 	u32 val;
4059 
4060 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
4061 	if (unlikely(rc)) {
4062 		dev_err(dev, "Cannot init indirect table\n");
4063 		goto err_rss_init;
4064 	}
4065 
4066 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
4067 		val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
4068 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
4069 						       ENA_IO_RXQ_IDX(val));
4070 		if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4071 			dev_err(dev, "Cannot fill indirect table\n");
4072 			goto err_fill_indir;
4073 		}
4074 	}
4075 
4076 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL,
4077 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
4078 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4079 		dev_err(dev, "Cannot fill hash function\n");
4080 		goto err_fill_indir;
4081 	}
4082 
4083 	rc = ena_com_set_default_hash_ctrl(ena_dev);
4084 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4085 		dev_err(dev, "Cannot fill hash control\n");
4086 		goto err_fill_indir;
4087 	}
4088 
4089 	return 0;
4090 
4091 err_fill_indir:
4092 	ena_com_rss_destroy(ena_dev);
4093 err_rss_init:
4094 
4095 	return rc;
4096 }
4097 
4098 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
4099 {
4100 	int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4101 
4102 	pci_release_selected_regions(pdev, release_bars);
4103 }
4104 
4105 
4106 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx)
4107 {
4108 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
4109 	struct ena_com_dev *ena_dev = ctx->ena_dev;
4110 	u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
4111 	u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
4112 	u32 max_tx_queue_size;
4113 	u32 max_rx_queue_size;
4114 
4115 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
4116 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
4117 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
4118 		max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
4119 					  max_queue_ext->max_rx_sq_depth);
4120 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
4121 
4122 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4123 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4124 						  llq->max_llq_depth);
4125 		else
4126 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4127 						  max_queue_ext->max_tx_sq_depth);
4128 
4129 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4130 					     max_queue_ext->max_per_packet_tx_descs);
4131 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4132 					     max_queue_ext->max_per_packet_rx_descs);
4133 	} else {
4134 		struct ena_admin_queue_feature_desc *max_queues =
4135 			&ctx->get_feat_ctx->max_queues;
4136 		max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
4137 					  max_queues->max_sq_depth);
4138 		max_tx_queue_size = max_queues->max_cq_depth;
4139 
4140 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4141 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4142 						  llq->max_llq_depth);
4143 		else
4144 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4145 						  max_queues->max_sq_depth);
4146 
4147 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4148 					     max_queues->max_packet_tx_descs);
4149 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4150 					     max_queues->max_packet_rx_descs);
4151 	}
4152 
4153 	max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
4154 	max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
4155 
4156 	tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
4157 				  max_tx_queue_size);
4158 	rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
4159 				  max_rx_queue_size);
4160 
4161 	tx_queue_size = rounddown_pow_of_two(tx_queue_size);
4162 	rx_queue_size = rounddown_pow_of_two(rx_queue_size);
4163 
4164 	ctx->max_tx_queue_size = max_tx_queue_size;
4165 	ctx->max_rx_queue_size = max_rx_queue_size;
4166 	ctx->tx_queue_size = tx_queue_size;
4167 	ctx->rx_queue_size = rx_queue_size;
4168 
4169 	return 0;
4170 }
4171 
4172 /* ena_probe - Device Initialization Routine
4173  * @pdev: PCI device information struct
4174  * @ent: entry in ena_pci_tbl
4175  *
4176  * Returns 0 on success, negative on failure
4177  *
4178  * ena_probe initializes an adapter identified by a pci_dev structure.
4179  * The OS initialization, configuring of the adapter private structure,
4180  * and a hardware reset occur.
4181  */
4182 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4183 {
4184 	struct ena_calc_queue_size_ctx calc_queue_ctx = {};
4185 	struct ena_com_dev_get_features_ctx get_feat_ctx;
4186 	struct ena_com_dev *ena_dev = NULL;
4187 	struct ena_adapter *adapter;
4188 	struct net_device *netdev;
4189 	static int adapters_found;
4190 	u32 max_num_io_queues;
4191 	bool wd_state;
4192 	int bars, rc;
4193 
4194 	dev_dbg(&pdev->dev, "%s\n", __func__);
4195 
4196 	rc = pci_enable_device_mem(pdev);
4197 	if (rc) {
4198 		dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
4199 		return rc;
4200 	}
4201 
4202 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS));
4203 	if (rc) {
4204 		dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc);
4205 		goto err_disable_device;
4206 	}
4207 
4208 	pci_set_master(pdev);
4209 
4210 	ena_dev = vzalloc(sizeof(*ena_dev));
4211 	if (!ena_dev) {
4212 		rc = -ENOMEM;
4213 		goto err_disable_device;
4214 	}
4215 
4216 	bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4217 	rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
4218 	if (rc) {
4219 		dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
4220 			rc);
4221 		goto err_free_ena_dev;
4222 	}
4223 
4224 	ena_dev->reg_bar = devm_ioremap(&pdev->dev,
4225 					pci_resource_start(pdev, ENA_REG_BAR),
4226 					pci_resource_len(pdev, ENA_REG_BAR));
4227 	if (!ena_dev->reg_bar) {
4228 		dev_err(&pdev->dev, "Failed to remap regs bar\n");
4229 		rc = -EFAULT;
4230 		goto err_free_region;
4231 	}
4232 
4233 	ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US;
4234 
4235 	ena_dev->dmadev = &pdev->dev;
4236 
4237 	netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS);
4238 	if (!netdev) {
4239 		dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
4240 		rc = -ENOMEM;
4241 		goto err_free_region;
4242 	}
4243 
4244 	SET_NETDEV_DEV(netdev, &pdev->dev);
4245 	adapter = netdev_priv(netdev);
4246 	adapter->ena_dev = ena_dev;
4247 	adapter->netdev = netdev;
4248 	adapter->pdev = pdev;
4249 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4250 
4251 	ena_dev->net_device = netdev;
4252 
4253 	pci_set_drvdata(pdev, adapter);
4254 
4255 	rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
4256 	if (rc) {
4257 		dev_err(&pdev->dev, "ENA device init failed\n");
4258 		if (rc == -ETIME)
4259 			rc = -EPROBE_DEFER;
4260 		goto err_netdev_destroy;
4261 	}
4262 
4263 	rc = ena_map_llq_mem_bar(pdev, ena_dev, bars);
4264 	if (rc) {
4265 		dev_err(&pdev->dev, "ENA llq bar mapping failed\n");
4266 		goto err_device_destroy;
4267 	}
4268 
4269 	calc_queue_ctx.ena_dev = ena_dev;
4270 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
4271 	calc_queue_ctx.pdev = pdev;
4272 
4273 	/* Initial TX and RX interrupt delay. Assumes 1 usec granularity.
4274 	 * Updated during device initialization with the real granularity
4275 	 */
4276 	ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
4277 	ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
4278 	ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
4279 	max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
4280 	rc = ena_calc_io_queue_size(&calc_queue_ctx);
4281 	if (rc || !max_num_io_queues) {
4282 		rc = -EFAULT;
4283 		goto err_device_destroy;
4284 	}
4285 
4286 	ena_set_conf_feat_params(adapter, &get_feat_ctx);
4287 
4288 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
4289 
4290 	adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size;
4291 	adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size;
4292 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
4293 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
4294 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
4295 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
4296 
4297 	adapter->num_io_queues = max_num_io_queues;
4298 	adapter->max_num_io_queues = max_num_io_queues;
4299 	adapter->last_monitored_tx_qid = 0;
4300 
4301 	adapter->xdp_first_ring = 0;
4302 	adapter->xdp_num_queues = 0;
4303 
4304 	adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
4305 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4306 		adapter->disable_meta_caching =
4307 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
4308 			   BIT(ENA_ADMIN_DISABLE_META_CACHING));
4309 
4310 	adapter->wd_state = wd_state;
4311 
4312 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
4313 
4314 	rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
4315 	if (rc) {
4316 		dev_err(&pdev->dev,
4317 			"Failed to query interrupt moderation feature\n");
4318 		goto err_device_destroy;
4319 	}
4320 	ena_init_io_rings(adapter,
4321 			  0,
4322 			  adapter->xdp_num_queues +
4323 			  adapter->num_io_queues);
4324 
4325 	netdev->netdev_ops = &ena_netdev_ops;
4326 	netdev->watchdog_timeo = TX_TIMEOUT;
4327 	ena_set_ethtool_ops(netdev);
4328 
4329 	netdev->priv_flags |= IFF_UNICAST_FLT;
4330 
4331 	u64_stats_init(&adapter->syncp);
4332 
4333 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
4334 	if (rc) {
4335 		dev_err(&pdev->dev,
4336 			"Failed to enable and set the admin interrupts\n");
4337 		goto err_worker_destroy;
4338 	}
4339 	rc = ena_rss_init_default(adapter);
4340 	if (rc && (rc != -EOPNOTSUPP)) {
4341 		dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
4342 		goto err_free_msix;
4343 	}
4344 
4345 	ena_config_debug_area(adapter);
4346 
4347 	if (!ena_update_hw_stats(adapter))
4348 		adapter->eni_stats_supported = true;
4349 	else
4350 		adapter->eni_stats_supported = false;
4351 
4352 	memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
4353 
4354 	netif_carrier_off(netdev);
4355 
4356 	rc = register_netdev(netdev);
4357 	if (rc) {
4358 		dev_err(&pdev->dev, "Cannot register net device\n");
4359 		goto err_rss;
4360 	}
4361 
4362 	INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
4363 
4364 	adapter->last_keep_alive_jiffies = jiffies;
4365 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
4366 	adapter->missing_tx_completion_to = TX_TIMEOUT;
4367 	adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
4368 
4369 	ena_update_hints(adapter, &get_feat_ctx.hw_hints);
4370 
4371 	timer_setup(&adapter->timer_service, ena_timer_service, 0);
4372 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4373 
4374 	dev_info(&pdev->dev,
4375 		 "%s found at mem %lx, mac addr %pM\n",
4376 		 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
4377 		 netdev->dev_addr);
4378 
4379 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
4380 
4381 	adapters_found++;
4382 
4383 	return 0;
4384 
4385 err_rss:
4386 	ena_com_delete_debug_area(ena_dev);
4387 	ena_com_rss_destroy(ena_dev);
4388 err_free_msix:
4389 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
4390 	/* stop submitting admin commands on a device that was reset */
4391 	ena_com_set_admin_running_state(ena_dev, false);
4392 	ena_free_mgmnt_irq(adapter);
4393 	ena_disable_msix(adapter);
4394 err_worker_destroy:
4395 	del_timer(&adapter->timer_service);
4396 err_device_destroy:
4397 	ena_com_delete_host_info(ena_dev);
4398 	ena_com_admin_destroy(ena_dev);
4399 err_netdev_destroy:
4400 	free_netdev(netdev);
4401 err_free_region:
4402 	ena_release_bars(ena_dev, pdev);
4403 err_free_ena_dev:
4404 	vfree(ena_dev);
4405 err_disable_device:
4406 	pci_disable_device(pdev);
4407 	return rc;
4408 }
4409 
4410 /*****************************************************************************/
4411 
4412 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines
4413  * @pdev: PCI device information struct
4414  * @shutdown: Is it a shutdown operation? If false, means it is a removal
4415  *
4416  * __ena_shutoff is a helper routine that does the real work on shutdown and
4417  * removal paths; the difference between those paths is with regards to whether
4418  * dettach or unregister the netdevice.
4419  */
4420 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown)
4421 {
4422 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4423 	struct ena_com_dev *ena_dev;
4424 	struct net_device *netdev;
4425 
4426 	ena_dev = adapter->ena_dev;
4427 	netdev = adapter->netdev;
4428 
4429 #ifdef CONFIG_RFS_ACCEL
4430 	if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
4431 		free_irq_cpu_rmap(netdev->rx_cpu_rmap);
4432 		netdev->rx_cpu_rmap = NULL;
4433 	}
4434 #endif /* CONFIG_RFS_ACCEL */
4435 
4436 	/* Make sure timer and reset routine won't be called after
4437 	 * freeing device resources.
4438 	 */
4439 	del_timer_sync(&adapter->timer_service);
4440 	cancel_work_sync(&adapter->reset_task);
4441 
4442 	rtnl_lock(); /* lock released inside the below if-else block */
4443 	adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN;
4444 	ena_destroy_device(adapter, true);
4445 	if (shutdown) {
4446 		netif_device_detach(netdev);
4447 		dev_close(netdev);
4448 		rtnl_unlock();
4449 	} else {
4450 		rtnl_unlock();
4451 		unregister_netdev(netdev);
4452 		free_netdev(netdev);
4453 	}
4454 
4455 	ena_com_rss_destroy(ena_dev);
4456 
4457 	ena_com_delete_debug_area(ena_dev);
4458 
4459 	ena_com_delete_host_info(ena_dev);
4460 
4461 	ena_release_bars(ena_dev, pdev);
4462 
4463 	pci_disable_device(pdev);
4464 
4465 	vfree(ena_dev);
4466 }
4467 
4468 /* ena_remove - Device Removal Routine
4469  * @pdev: PCI device information struct
4470  *
4471  * ena_remove is called by the PCI subsystem to alert the driver
4472  * that it should release a PCI device.
4473  */
4474 
4475 static void ena_remove(struct pci_dev *pdev)
4476 {
4477 	__ena_shutoff(pdev, false);
4478 }
4479 
4480 /* ena_shutdown - Device Shutdown Routine
4481  * @pdev: PCI device information struct
4482  *
4483  * ena_shutdown is called by the PCI subsystem to alert the driver that
4484  * a shutdown/reboot (or kexec) is happening and device must be disabled.
4485  */
4486 
4487 static void ena_shutdown(struct pci_dev *pdev)
4488 {
4489 	__ena_shutoff(pdev, true);
4490 }
4491 
4492 /* ena_suspend - PM suspend callback
4493  * @dev_d: Device information struct
4494  */
4495 static int __maybe_unused ena_suspend(struct device *dev_d)
4496 {
4497 	struct pci_dev *pdev = to_pci_dev(dev_d);
4498 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4499 
4500 	ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp);
4501 
4502 	rtnl_lock();
4503 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4504 		dev_err(&pdev->dev,
4505 			"Ignoring device reset request as the device is being suspended\n");
4506 		clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4507 	}
4508 	ena_destroy_device(adapter, true);
4509 	rtnl_unlock();
4510 	return 0;
4511 }
4512 
4513 /* ena_resume - PM resume callback
4514  * @dev_d: Device information struct
4515  */
4516 static int __maybe_unused ena_resume(struct device *dev_d)
4517 {
4518 	struct ena_adapter *adapter = dev_get_drvdata(dev_d);
4519 	int rc;
4520 
4521 	ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp);
4522 
4523 	rtnl_lock();
4524 	rc = ena_restore_device(adapter);
4525 	rtnl_unlock();
4526 	return rc;
4527 }
4528 
4529 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume);
4530 
4531 static struct pci_driver ena_pci_driver = {
4532 	.name		= DRV_MODULE_NAME,
4533 	.id_table	= ena_pci_tbl,
4534 	.probe		= ena_probe,
4535 	.remove		= ena_remove,
4536 	.shutdown	= ena_shutdown,
4537 	.driver.pm	= &ena_pm_ops,
4538 	.sriov_configure = pci_sriov_configure_simple,
4539 };
4540 
4541 static int __init ena_init(void)
4542 {
4543 	ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4544 	if (!ena_wq) {
4545 		pr_err("Failed to create workqueue\n");
4546 		return -ENOMEM;
4547 	}
4548 
4549 	return pci_register_driver(&ena_pci_driver);
4550 }
4551 
4552 static void __exit ena_cleanup(void)
4553 {
4554 	pci_unregister_driver(&ena_pci_driver);
4555 
4556 	if (ena_wq) {
4557 		destroy_workqueue(ena_wq);
4558 		ena_wq = NULL;
4559 	}
4560 }
4561 
4562 /******************************************************************************
4563  ******************************** AENQ Handlers *******************************
4564  *****************************************************************************/
4565 /* ena_update_on_link_change:
4566  * Notify the network interface about the change in link status
4567  */
4568 static void ena_update_on_link_change(void *adapter_data,
4569 				      struct ena_admin_aenq_entry *aenq_e)
4570 {
4571 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4572 	struct ena_admin_aenq_link_change_desc *aenq_desc =
4573 		(struct ena_admin_aenq_link_change_desc *)aenq_e;
4574 	int status = aenq_desc->flags &
4575 		ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4576 
4577 	if (status) {
4578 		netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
4579 		set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4580 		if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4581 			netif_carrier_on(adapter->netdev);
4582 	} else {
4583 		clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4584 		netif_carrier_off(adapter->netdev);
4585 	}
4586 }
4587 
4588 static void ena_keep_alive_wd(void *adapter_data,
4589 			      struct ena_admin_aenq_entry *aenq_e)
4590 {
4591 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4592 	struct ena_admin_aenq_keep_alive_desc *desc;
4593 	u64 rx_drops;
4594 	u64 tx_drops;
4595 
4596 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4597 	adapter->last_keep_alive_jiffies = jiffies;
4598 
4599 	rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4600 	tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low;
4601 
4602 	u64_stats_update_begin(&adapter->syncp);
4603 	/* These stats are accumulated by the device, so the counters indicate
4604 	 * all drops since last reset.
4605 	 */
4606 	adapter->dev_stats.rx_drops = rx_drops;
4607 	adapter->dev_stats.tx_drops = tx_drops;
4608 	u64_stats_update_end(&adapter->syncp);
4609 }
4610 
4611 static void ena_notification(void *adapter_data,
4612 			     struct ena_admin_aenq_entry *aenq_e)
4613 {
4614 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4615 	struct ena_admin_ena_hw_hints *hints;
4616 
4617 	WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4618 	     "Invalid group(%x) expected %x\n",
4619 	     aenq_e->aenq_common_desc.group,
4620 	     ENA_ADMIN_NOTIFICATION);
4621 
4622 	switch (aenq_e->aenq_common_desc.syndrome) {
4623 	case ENA_ADMIN_UPDATE_HINTS:
4624 		hints = (struct ena_admin_ena_hw_hints *)
4625 			(&aenq_e->inline_data_w4);
4626 		ena_update_hints(adapter, hints);
4627 		break;
4628 	default:
4629 		netif_err(adapter, drv, adapter->netdev,
4630 			  "Invalid aenq notification link state %d\n",
4631 			  aenq_e->aenq_common_desc.syndrome);
4632 	}
4633 }
4634 
4635 /* This handler will called for unknown event group or unimplemented handlers*/
4636 static void unimplemented_aenq_handler(void *data,
4637 				       struct ena_admin_aenq_entry *aenq_e)
4638 {
4639 	struct ena_adapter *adapter = (struct ena_adapter *)data;
4640 
4641 	netif_err(adapter, drv, adapter->netdev,
4642 		  "Unknown event was received or event with unimplemented handler\n");
4643 }
4644 
4645 static struct ena_aenq_handlers aenq_handlers = {
4646 	.handlers = {
4647 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4648 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4649 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4650 	},
4651 	.unimplemented_handler = unimplemented_aenq_handler
4652 };
4653 
4654 module_init(ena_init);
4655 module_exit(ena_cleanup);
4656