1 /*
2  * Copyright 2015 Amazon.com, Inc. or its affiliates.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #ifdef CONFIG_RFS_ACCEL
36 #include <linux/cpu_rmap.h>
37 #endif /* CONFIG_RFS_ACCEL */
38 #include <linux/ethtool.h>
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/numa.h>
42 #include <linux/pci.h>
43 #include <linux/utsname.h>
44 #include <linux/version.h>
45 #include <linux/vmalloc.h>
46 #include <net/ip.h>
47 
48 #include "ena_netdev.h"
49 #include <linux/bpf_trace.h>
50 #include "ena_pci_id_tbl.h"
51 
52 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
53 MODULE_DESCRIPTION(DEVICE_NAME);
54 MODULE_LICENSE("GPL");
55 
56 /* Time in jiffies before concluding the transmitter is hung. */
57 #define TX_TIMEOUT  (5 * HZ)
58 
59 #define ENA_NAPI_BUDGET 64
60 
61 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
62 		NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66 
67 static struct ena_aenq_handlers aenq_handlers;
68 
69 static struct workqueue_struct *ena_wq;
70 
71 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
72 
73 static int ena_rss_init_default(struct ena_adapter *adapter);
74 static void check_for_admin_com_state(struct ena_adapter *adapter);
75 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
76 static int ena_restore_device(struct ena_adapter *adapter);
77 
78 static void ena_init_io_rings(struct ena_adapter *adapter,
79 			      int first_index, int count);
80 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index,
81 				   int count);
82 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index,
83 				  int count);
84 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid);
85 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
86 					   int first_index,
87 					   int count);
88 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid);
89 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid);
90 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget);
91 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter);
92 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter);
93 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
94 				      int first_index, int count);
95 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
96 				     int first_index, int count);
97 static int ena_up(struct ena_adapter *adapter);
98 static void ena_down(struct ena_adapter *adapter);
99 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
100 				 struct ena_ring *rx_ring);
101 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
102 				      struct ena_ring *rx_ring);
103 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
104 			      struct ena_tx_buffer *tx_info);
105 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
106 					    int first_index, int count);
107 
108 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
109 {
110 	struct ena_adapter *adapter = netdev_priv(dev);
111 
112 	/* Change the state of the device to trigger reset
113 	 * Check that we are not in the middle or a trigger already
114 	 */
115 
116 	if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
117 		return;
118 
119 	adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD;
120 	u64_stats_update_begin(&adapter->syncp);
121 	adapter->dev_stats.tx_timeout++;
122 	u64_stats_update_end(&adapter->syncp);
123 
124 	netif_err(adapter, tx_err, dev, "Transmit time out\n");
125 }
126 
127 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
128 {
129 	int i;
130 
131 	for (i = 0; i < adapter->num_io_queues; i++)
132 		adapter->rx_ring[i].mtu = mtu;
133 }
134 
135 static int ena_change_mtu(struct net_device *dev, int new_mtu)
136 {
137 	struct ena_adapter *adapter = netdev_priv(dev);
138 	int ret;
139 
140 	ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
141 	if (!ret) {
142 		netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu);
143 		update_rx_ring_mtu(adapter, new_mtu);
144 		dev->mtu = new_mtu;
145 	} else {
146 		netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
147 			  new_mtu);
148 	}
149 
150 	return ret;
151 }
152 
153 static int ena_xmit_common(struct net_device *dev,
154 			   struct ena_ring *ring,
155 			   struct ena_tx_buffer *tx_info,
156 			   struct ena_com_tx_ctx *ena_tx_ctx,
157 			   u16 next_to_use,
158 			   u32 bytes)
159 {
160 	struct ena_adapter *adapter = netdev_priv(dev);
161 	int rc, nb_hw_desc;
162 
163 	if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
164 						ena_tx_ctx))) {
165 		netif_dbg(adapter, tx_queued, dev,
166 			  "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
167 			  ring->qid);
168 		ena_com_write_sq_doorbell(ring->ena_com_io_sq);
169 	}
170 
171 	/* prepare the packet's descriptors to dma engine */
172 	rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
173 				&nb_hw_desc);
174 
175 	/* In case there isn't enough space in the queue for the packet,
176 	 * we simply drop it. All other failure reasons of
177 	 * ena_com_prepare_tx() are fatal and therefore require a device reset.
178 	 */
179 	if (unlikely(rc)) {
180 		netif_err(adapter, tx_queued, dev,
181 			  "failed to prepare tx bufs\n");
182 		u64_stats_update_begin(&ring->syncp);
183 		ring->tx_stats.prepare_ctx_err++;
184 		u64_stats_update_end(&ring->syncp);
185 		if (rc != -ENOMEM) {
186 			adapter->reset_reason =
187 				ENA_REGS_RESET_DRIVER_INVALID_STATE;
188 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
189 		}
190 		return rc;
191 	}
192 
193 	u64_stats_update_begin(&ring->syncp);
194 	ring->tx_stats.cnt++;
195 	ring->tx_stats.bytes += bytes;
196 	u64_stats_update_end(&ring->syncp);
197 
198 	tx_info->tx_descs = nb_hw_desc;
199 	tx_info->last_jiffies = jiffies;
200 	tx_info->print_once = 0;
201 
202 	ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
203 						 ring->ring_size);
204 	return 0;
205 }
206 
207 /* This is the XDP napi callback. XDP queues use a separate napi callback
208  * than Rx/Tx queues.
209  */
210 static int ena_xdp_io_poll(struct napi_struct *napi, int budget)
211 {
212 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
213 	u32 xdp_work_done, xdp_budget;
214 	struct ena_ring *xdp_ring;
215 	int napi_comp_call = 0;
216 	int ret;
217 
218 	xdp_ring = ena_napi->xdp_ring;
219 	xdp_ring->first_interrupt = ena_napi->first_interrupt;
220 
221 	xdp_budget = budget;
222 
223 	if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) ||
224 	    test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) {
225 		napi_complete_done(napi, 0);
226 		return 0;
227 	}
228 
229 	xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget);
230 
231 	/* If the device is about to reset or down, avoid unmask
232 	 * the interrupt and return 0 so NAPI won't reschedule
233 	 */
234 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) {
235 		napi_complete_done(napi, 0);
236 		ret = 0;
237 	} else if (xdp_budget > xdp_work_done) {
238 		napi_comp_call = 1;
239 		if (napi_complete_done(napi, xdp_work_done))
240 			ena_unmask_interrupt(xdp_ring, NULL);
241 		ena_update_ring_numa_node(xdp_ring, NULL);
242 		ret = xdp_work_done;
243 	} else {
244 		ret = xdp_budget;
245 	}
246 
247 	u64_stats_update_begin(&xdp_ring->syncp);
248 	xdp_ring->tx_stats.napi_comp += napi_comp_call;
249 	xdp_ring->tx_stats.tx_poll++;
250 	u64_stats_update_end(&xdp_ring->syncp);
251 
252 	return ret;
253 }
254 
255 static int ena_xdp_tx_map_buff(struct ena_ring *xdp_ring,
256 			       struct ena_tx_buffer *tx_info,
257 			       struct xdp_buff *xdp,
258 			       void **push_hdr,
259 			       u32 *push_len)
260 {
261 	struct ena_adapter *adapter = xdp_ring->adapter;
262 	struct ena_com_buf *ena_buf;
263 	dma_addr_t dma = 0;
264 	u32 size;
265 
266 	tx_info->xdpf = xdp_convert_buff_to_frame(xdp);
267 	size = tx_info->xdpf->len;
268 	ena_buf = tx_info->bufs;
269 
270 	/* llq push buffer */
271 	*push_len = min_t(u32, size, xdp_ring->tx_max_header_size);
272 	*push_hdr = tx_info->xdpf->data;
273 
274 	if (size - *push_len > 0) {
275 		dma = dma_map_single(xdp_ring->dev,
276 				     *push_hdr + *push_len,
277 				     size - *push_len,
278 				     DMA_TO_DEVICE);
279 		if (unlikely(dma_mapping_error(xdp_ring->dev, dma)))
280 			goto error_report_dma_error;
281 
282 		tx_info->map_linear_data = 1;
283 		tx_info->num_of_bufs = 1;
284 	}
285 
286 	ena_buf->paddr = dma;
287 	ena_buf->len = size;
288 
289 	return 0;
290 
291 error_report_dma_error:
292 	u64_stats_update_begin(&xdp_ring->syncp);
293 	xdp_ring->tx_stats.dma_mapping_err++;
294 	u64_stats_update_end(&xdp_ring->syncp);
295 	netdev_warn(adapter->netdev, "failed to map xdp buff\n");
296 
297 	xdp_return_frame_rx_napi(tx_info->xdpf);
298 	tx_info->xdpf = NULL;
299 	tx_info->num_of_bufs = 0;
300 
301 	return -EINVAL;
302 }
303 
304 static int ena_xdp_xmit_buff(struct net_device *dev,
305 			     struct xdp_buff *xdp,
306 			     int qid,
307 			     struct ena_rx_buffer *rx_info)
308 {
309 	struct ena_adapter *adapter = netdev_priv(dev);
310 	struct ena_com_tx_ctx ena_tx_ctx = {};
311 	struct ena_tx_buffer *tx_info;
312 	struct ena_ring *xdp_ring;
313 	u16 next_to_use, req_id;
314 	int rc;
315 	void *push_hdr;
316 	u32 push_len;
317 
318 	xdp_ring = &adapter->tx_ring[qid];
319 	next_to_use = xdp_ring->next_to_use;
320 	req_id = xdp_ring->free_ids[next_to_use];
321 	tx_info = &xdp_ring->tx_buffer_info[req_id];
322 	tx_info->num_of_bufs = 0;
323 	page_ref_inc(rx_info->page);
324 	tx_info->xdp_rx_page = rx_info->page;
325 
326 	rc = ena_xdp_tx_map_buff(xdp_ring, tx_info, xdp, &push_hdr, &push_len);
327 	if (unlikely(rc))
328 		goto error_drop_packet;
329 
330 	ena_tx_ctx.ena_bufs = tx_info->bufs;
331 	ena_tx_ctx.push_header = push_hdr;
332 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
333 	ena_tx_ctx.req_id = req_id;
334 	ena_tx_ctx.header_len = push_len;
335 
336 	rc = ena_xmit_common(dev,
337 			     xdp_ring,
338 			     tx_info,
339 			     &ena_tx_ctx,
340 			     next_to_use,
341 			     xdp->data_end - xdp->data);
342 	if (rc)
343 		goto error_unmap_dma;
344 	/* trigger the dma engine. ena_com_write_sq_doorbell()
345 	 * has a mb
346 	 */
347 	ena_com_write_sq_doorbell(xdp_ring->ena_com_io_sq);
348 	u64_stats_update_begin(&xdp_ring->syncp);
349 	xdp_ring->tx_stats.doorbells++;
350 	u64_stats_update_end(&xdp_ring->syncp);
351 
352 	return NETDEV_TX_OK;
353 
354 error_unmap_dma:
355 	ena_unmap_tx_buff(xdp_ring, tx_info);
356 	tx_info->xdpf = NULL;
357 error_drop_packet:
358 	__free_page(tx_info->xdp_rx_page);
359 	return NETDEV_TX_OK;
360 }
361 
362 static int ena_xdp_execute(struct ena_ring *rx_ring,
363 			   struct xdp_buff *xdp,
364 			   struct ena_rx_buffer *rx_info)
365 {
366 	struct bpf_prog *xdp_prog;
367 	u32 verdict = XDP_PASS;
368 
369 	rcu_read_lock();
370 	xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog);
371 
372 	if (!xdp_prog)
373 		goto out;
374 
375 	verdict = bpf_prog_run_xdp(xdp_prog, xdp);
376 
377 	if (verdict == XDP_TX)
378 		ena_xdp_xmit_buff(rx_ring->netdev,
379 				  xdp,
380 				  rx_ring->qid + rx_ring->adapter->num_io_queues,
381 				  rx_info);
382 	else if (unlikely(verdict == XDP_ABORTED))
383 		trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
384 	else if (unlikely(verdict > XDP_TX))
385 		bpf_warn_invalid_xdp_action(verdict);
386 out:
387 	rcu_read_unlock();
388 	return verdict;
389 }
390 
391 static void ena_init_all_xdp_queues(struct ena_adapter *adapter)
392 {
393 	adapter->xdp_first_ring = adapter->num_io_queues;
394 	adapter->xdp_num_queues = adapter->num_io_queues;
395 
396 	ena_init_io_rings(adapter,
397 			  adapter->xdp_first_ring,
398 			  adapter->xdp_num_queues);
399 }
400 
401 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter)
402 {
403 	int rc = 0;
404 
405 	rc = ena_setup_tx_resources_in_range(adapter, adapter->xdp_first_ring,
406 					     adapter->xdp_num_queues);
407 	if (rc)
408 		goto setup_err;
409 
410 	rc = ena_create_io_tx_queues_in_range(adapter,
411 					      adapter->xdp_first_ring,
412 					      adapter->xdp_num_queues);
413 	if (rc)
414 		goto create_err;
415 
416 	return 0;
417 
418 create_err:
419 	ena_free_all_io_tx_resources(adapter);
420 setup_err:
421 	return rc;
422 }
423 
424 /* Provides a way for both kernel and bpf-prog to know
425  * more about the RX-queue a given XDP frame arrived on.
426  */
427 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring)
428 {
429 	int rc;
430 
431 	rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid);
432 
433 	if (rc) {
434 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
435 			  "Failed to register xdp rx queue info. RX queue num %d rc: %d\n",
436 			  rx_ring->qid, rc);
437 		goto err;
438 	}
439 
440 	rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED,
441 					NULL);
442 
443 	if (rc) {
444 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
445 			  "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n",
446 			  rx_ring->qid, rc);
447 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
448 	}
449 
450 err:
451 	return rc;
452 }
453 
454 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring)
455 {
456 	xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq);
457 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
458 }
459 
460 static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter,
461 						 struct bpf_prog *prog,
462 						 int first, int count)
463 {
464 	struct ena_ring *rx_ring;
465 	int i = 0;
466 
467 	for (i = first; i < count; i++) {
468 		rx_ring = &adapter->rx_ring[i];
469 		xchg(&rx_ring->xdp_bpf_prog, prog);
470 		if (prog) {
471 			ena_xdp_register_rxq_info(rx_ring);
472 			rx_ring->rx_headroom = XDP_PACKET_HEADROOM;
473 		} else {
474 			ena_xdp_unregister_rxq_info(rx_ring);
475 			rx_ring->rx_headroom = 0;
476 		}
477 	}
478 }
479 
480 static void ena_xdp_exchange_program(struct ena_adapter *adapter,
481 				     struct bpf_prog *prog)
482 {
483 	struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog);
484 
485 	ena_xdp_exchange_program_rx_in_range(adapter,
486 					     prog,
487 					     0,
488 					     adapter->num_io_queues);
489 
490 	if (old_bpf_prog)
491 		bpf_prog_put(old_bpf_prog);
492 }
493 
494 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter)
495 {
496 	bool was_up;
497 	int rc;
498 
499 	was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
500 
501 	if (was_up)
502 		ena_down(adapter);
503 
504 	adapter->xdp_first_ring = 0;
505 	adapter->xdp_num_queues = 0;
506 	ena_xdp_exchange_program(adapter, NULL);
507 	if (was_up) {
508 		rc = ena_up(adapter);
509 		if (rc)
510 			return rc;
511 	}
512 	return 0;
513 }
514 
515 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf)
516 {
517 	struct ena_adapter *adapter = netdev_priv(netdev);
518 	struct bpf_prog *prog = bpf->prog;
519 	struct bpf_prog *old_bpf_prog;
520 	int rc, prev_mtu;
521 	bool is_up;
522 
523 	is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
524 	rc = ena_xdp_allowed(adapter);
525 	if (rc == ENA_XDP_ALLOWED) {
526 		old_bpf_prog = adapter->xdp_bpf_prog;
527 		if (prog) {
528 			if (!is_up) {
529 				ena_init_all_xdp_queues(adapter);
530 			} else if (!old_bpf_prog) {
531 				ena_down(adapter);
532 				ena_init_all_xdp_queues(adapter);
533 			}
534 			ena_xdp_exchange_program(adapter, prog);
535 
536 			if (is_up && !old_bpf_prog) {
537 				rc = ena_up(adapter);
538 				if (rc)
539 					return rc;
540 			}
541 		} else if (old_bpf_prog) {
542 			rc = ena_destroy_and_free_all_xdp_queues(adapter);
543 			if (rc)
544 				return rc;
545 		}
546 
547 		prev_mtu = netdev->max_mtu;
548 		netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu;
549 
550 		if (!old_bpf_prog)
551 			netif_info(adapter, drv, adapter->netdev,
552 				   "xdp program set, changing the max_mtu from %d to %d",
553 				   prev_mtu, netdev->max_mtu);
554 
555 	} else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) {
556 		netif_err(adapter, drv, adapter->netdev,
557 			  "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on",
558 			  netdev->mtu, ENA_XDP_MAX_MTU);
559 		NL_SET_ERR_MSG_MOD(bpf->extack,
560 				   "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info");
561 		return -EINVAL;
562 	} else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) {
563 		netif_err(adapter, drv, adapter->netdev,
564 			  "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n",
565 			  adapter->num_io_queues, adapter->max_num_io_queues);
566 		NL_SET_ERR_MSG_MOD(bpf->extack,
567 				   "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info");
568 		return -EINVAL;
569 	}
570 
571 	return 0;
572 }
573 
574 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp
575  * program as well as to query the current xdp program id.
576  */
577 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf)
578 {
579 	switch (bpf->command) {
580 	case XDP_SETUP_PROG:
581 		return ena_xdp_set(netdev, bpf);
582 	default:
583 		return -EINVAL;
584 	}
585 	return 0;
586 }
587 
588 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
589 {
590 #ifdef CONFIG_RFS_ACCEL
591 	u32 i;
592 	int rc;
593 
594 	adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
595 	if (!adapter->netdev->rx_cpu_rmap)
596 		return -ENOMEM;
597 	for (i = 0; i < adapter->num_io_queues; i++) {
598 		int irq_idx = ENA_IO_IRQ_IDX(i);
599 
600 		rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
601 				      pci_irq_vector(adapter->pdev, irq_idx));
602 		if (rc) {
603 			free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
604 			adapter->netdev->rx_cpu_rmap = NULL;
605 			return rc;
606 		}
607 	}
608 #endif /* CONFIG_RFS_ACCEL */
609 	return 0;
610 }
611 
612 static void ena_init_io_rings_common(struct ena_adapter *adapter,
613 				     struct ena_ring *ring, u16 qid)
614 {
615 	ring->qid = qid;
616 	ring->pdev = adapter->pdev;
617 	ring->dev = &adapter->pdev->dev;
618 	ring->netdev = adapter->netdev;
619 	ring->napi = &adapter->ena_napi[qid].napi;
620 	ring->adapter = adapter;
621 	ring->ena_dev = adapter->ena_dev;
622 	ring->per_napi_packets = 0;
623 	ring->cpu = 0;
624 	ring->first_interrupt = false;
625 	ring->no_interrupt_event_cnt = 0;
626 	u64_stats_init(&ring->syncp);
627 }
628 
629 static void ena_init_io_rings(struct ena_adapter *adapter,
630 			      int first_index, int count)
631 {
632 	struct ena_com_dev *ena_dev;
633 	struct ena_ring *txr, *rxr;
634 	int i;
635 
636 	ena_dev = adapter->ena_dev;
637 
638 	for (i = first_index; i < first_index + count; i++) {
639 		txr = &adapter->tx_ring[i];
640 		rxr = &adapter->rx_ring[i];
641 
642 		/* TX common ring state */
643 		ena_init_io_rings_common(adapter, txr, i);
644 
645 		/* TX specific ring state */
646 		txr->ring_size = adapter->requested_tx_ring_size;
647 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
648 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
649 		txr->sgl_size = adapter->max_tx_sgl_size;
650 		txr->smoothed_interval =
651 			ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
652 		txr->disable_meta_caching = adapter->disable_meta_caching;
653 
654 		/* Don't init RX queues for xdp queues */
655 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
656 			/* RX common ring state */
657 			ena_init_io_rings_common(adapter, rxr, i);
658 
659 			/* RX specific ring state */
660 			rxr->ring_size = adapter->requested_rx_ring_size;
661 			rxr->rx_copybreak = adapter->rx_copybreak;
662 			rxr->sgl_size = adapter->max_rx_sgl_size;
663 			rxr->smoothed_interval =
664 				ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
665 			rxr->empty_rx_queue = 0;
666 			adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
667 		}
668 	}
669 }
670 
671 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
672  * @adapter: network interface device structure
673  * @qid: queue index
674  *
675  * Return 0 on success, negative on failure
676  */
677 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
678 {
679 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
680 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
681 	int size, i, node;
682 
683 	if (tx_ring->tx_buffer_info) {
684 		netif_err(adapter, ifup,
685 			  adapter->netdev, "tx_buffer_info info is not NULL");
686 		return -EEXIST;
687 	}
688 
689 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
690 	node = cpu_to_node(ena_irq->cpu);
691 
692 	tx_ring->tx_buffer_info = vzalloc_node(size, node);
693 	if (!tx_ring->tx_buffer_info) {
694 		tx_ring->tx_buffer_info = vzalloc(size);
695 		if (!tx_ring->tx_buffer_info)
696 			goto err_tx_buffer_info;
697 	}
698 
699 	size = sizeof(u16) * tx_ring->ring_size;
700 	tx_ring->free_ids = vzalloc_node(size, node);
701 	if (!tx_ring->free_ids) {
702 		tx_ring->free_ids = vzalloc(size);
703 		if (!tx_ring->free_ids)
704 			goto err_tx_free_ids;
705 	}
706 
707 	size = tx_ring->tx_max_header_size;
708 	tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
709 	if (!tx_ring->push_buf_intermediate_buf) {
710 		tx_ring->push_buf_intermediate_buf = vzalloc(size);
711 		if (!tx_ring->push_buf_intermediate_buf)
712 			goto err_push_buf_intermediate_buf;
713 	}
714 
715 	/* Req id ring for TX out of order completions */
716 	for (i = 0; i < tx_ring->ring_size; i++)
717 		tx_ring->free_ids[i] = i;
718 
719 	/* Reset tx statistics */
720 	memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
721 
722 	tx_ring->next_to_use = 0;
723 	tx_ring->next_to_clean = 0;
724 	tx_ring->cpu = ena_irq->cpu;
725 	return 0;
726 
727 err_push_buf_intermediate_buf:
728 	vfree(tx_ring->free_ids);
729 	tx_ring->free_ids = NULL;
730 err_tx_free_ids:
731 	vfree(tx_ring->tx_buffer_info);
732 	tx_ring->tx_buffer_info = NULL;
733 err_tx_buffer_info:
734 	return -ENOMEM;
735 }
736 
737 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
738  * @adapter: network interface device structure
739  * @qid: queue index
740  *
741  * Free all transmit software resources
742  */
743 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
744 {
745 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
746 
747 	vfree(tx_ring->tx_buffer_info);
748 	tx_ring->tx_buffer_info = NULL;
749 
750 	vfree(tx_ring->free_ids);
751 	tx_ring->free_ids = NULL;
752 
753 	vfree(tx_ring->push_buf_intermediate_buf);
754 	tx_ring->push_buf_intermediate_buf = NULL;
755 }
756 
757 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
758 					   int first_index,
759 					   int count)
760 {
761 	int i, rc = 0;
762 
763 	for (i = first_index; i < first_index + count; i++) {
764 		rc = ena_setup_tx_resources(adapter, i);
765 		if (rc)
766 			goto err_setup_tx;
767 	}
768 
769 	return 0;
770 
771 err_setup_tx:
772 
773 	netif_err(adapter, ifup, adapter->netdev,
774 		  "Tx queue %d: allocation failed\n", i);
775 
776 	/* rewind the index freeing the rings as we go */
777 	while (first_index < i--)
778 		ena_free_tx_resources(adapter, i);
779 	return rc;
780 }
781 
782 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
783 						  int first_index, int count)
784 {
785 	int i;
786 
787 	for (i = first_index; i < first_index + count; i++)
788 		ena_free_tx_resources(adapter, i);
789 }
790 
791 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
792  * @adapter: board private structure
793  *
794  * Free all transmit software resources
795  */
796 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
797 {
798 	ena_free_all_io_tx_resources_in_range(adapter,
799 					      0,
800 					      adapter->xdp_num_queues +
801 					      adapter->num_io_queues);
802 }
803 
804 static int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id)
805 {
806 	if (likely(req_id < rx_ring->ring_size))
807 		return 0;
808 
809 	netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
810 		  "Invalid rx req_id: %hu\n", req_id);
811 
812 	u64_stats_update_begin(&rx_ring->syncp);
813 	rx_ring->rx_stats.bad_req_id++;
814 	u64_stats_update_end(&rx_ring->syncp);
815 
816 	/* Trigger device reset */
817 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
818 	set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags);
819 	return -EFAULT;
820 }
821 
822 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
823  * @adapter: network interface device structure
824  * @qid: queue index
825  *
826  * Returns 0 on success, negative on failure
827  */
828 static int ena_setup_rx_resources(struct ena_adapter *adapter,
829 				  u32 qid)
830 {
831 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
832 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
833 	int size, node, i;
834 
835 	if (rx_ring->rx_buffer_info) {
836 		netif_err(adapter, ifup, adapter->netdev,
837 			  "rx_buffer_info is not NULL");
838 		return -EEXIST;
839 	}
840 
841 	/* alloc extra element so in rx path
842 	 * we can always prefetch rx_info + 1
843 	 */
844 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
845 	node = cpu_to_node(ena_irq->cpu);
846 
847 	rx_ring->rx_buffer_info = vzalloc_node(size, node);
848 	if (!rx_ring->rx_buffer_info) {
849 		rx_ring->rx_buffer_info = vzalloc(size);
850 		if (!rx_ring->rx_buffer_info)
851 			return -ENOMEM;
852 	}
853 
854 	size = sizeof(u16) * rx_ring->ring_size;
855 	rx_ring->free_ids = vzalloc_node(size, node);
856 	if (!rx_ring->free_ids) {
857 		rx_ring->free_ids = vzalloc(size);
858 		if (!rx_ring->free_ids) {
859 			vfree(rx_ring->rx_buffer_info);
860 			rx_ring->rx_buffer_info = NULL;
861 			return -ENOMEM;
862 		}
863 	}
864 
865 	/* Req id ring for receiving RX pkts out of order */
866 	for (i = 0; i < rx_ring->ring_size; i++)
867 		rx_ring->free_ids[i] = i;
868 
869 	/* Reset rx statistics */
870 	memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
871 
872 	rx_ring->next_to_clean = 0;
873 	rx_ring->next_to_use = 0;
874 	rx_ring->cpu = ena_irq->cpu;
875 
876 	return 0;
877 }
878 
879 /* ena_free_rx_resources - Free I/O Rx Resources
880  * @adapter: network interface device structure
881  * @qid: queue index
882  *
883  * Free all receive software resources
884  */
885 static void ena_free_rx_resources(struct ena_adapter *adapter,
886 				  u32 qid)
887 {
888 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
889 
890 	vfree(rx_ring->rx_buffer_info);
891 	rx_ring->rx_buffer_info = NULL;
892 
893 	vfree(rx_ring->free_ids);
894 	rx_ring->free_ids = NULL;
895 }
896 
897 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
898  * @adapter: board private structure
899  *
900  * Return 0 on success, negative on failure
901  */
902 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
903 {
904 	int i, rc = 0;
905 
906 	for (i = 0; i < adapter->num_io_queues; i++) {
907 		rc = ena_setup_rx_resources(adapter, i);
908 		if (rc)
909 			goto err_setup_rx;
910 	}
911 
912 	return 0;
913 
914 err_setup_rx:
915 
916 	netif_err(adapter, ifup, adapter->netdev,
917 		  "Rx queue %d: allocation failed\n", i);
918 
919 	/* rewind the index freeing the rings as we go */
920 	while (i--)
921 		ena_free_rx_resources(adapter, i);
922 	return rc;
923 }
924 
925 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
926  * @adapter: board private structure
927  *
928  * Free all receive software resources
929  */
930 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
931 {
932 	int i;
933 
934 	for (i = 0; i < adapter->num_io_queues; i++)
935 		ena_free_rx_resources(adapter, i);
936 }
937 
938 static int ena_alloc_rx_page(struct ena_ring *rx_ring,
939 				    struct ena_rx_buffer *rx_info, gfp_t gfp)
940 {
941 	struct ena_com_buf *ena_buf;
942 	struct page *page;
943 	dma_addr_t dma;
944 
945 	/* if previous allocated page is not used */
946 	if (unlikely(rx_info->page))
947 		return 0;
948 
949 	page = alloc_page(gfp);
950 	if (unlikely(!page)) {
951 		u64_stats_update_begin(&rx_ring->syncp);
952 		rx_ring->rx_stats.page_alloc_fail++;
953 		u64_stats_update_end(&rx_ring->syncp);
954 		return -ENOMEM;
955 	}
956 
957 	/* To enable NIC-side port-mirroring, AKA SPAN port,
958 	 * we make the buffer readable from the nic as well
959 	 */
960 	dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
961 			   DMA_BIDIRECTIONAL);
962 	if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
963 		u64_stats_update_begin(&rx_ring->syncp);
964 		rx_ring->rx_stats.dma_mapping_err++;
965 		u64_stats_update_end(&rx_ring->syncp);
966 
967 		__free_page(page);
968 		return -EIO;
969 	}
970 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
971 		  "alloc page %p, rx_info %p\n", page, rx_info);
972 
973 	rx_info->page = page;
974 	rx_info->page_offset = 0;
975 	ena_buf = &rx_info->ena_buf;
976 	ena_buf->paddr = dma + rx_ring->rx_headroom;
977 	ena_buf->len = ENA_PAGE_SIZE - rx_ring->rx_headroom;
978 
979 	return 0;
980 }
981 
982 static void ena_free_rx_page(struct ena_ring *rx_ring,
983 			     struct ena_rx_buffer *rx_info)
984 {
985 	struct page *page = rx_info->page;
986 	struct ena_com_buf *ena_buf = &rx_info->ena_buf;
987 
988 	if (unlikely(!page)) {
989 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
990 			   "Trying to free unallocated buffer\n");
991 		return;
992 	}
993 
994 	dma_unmap_page(rx_ring->dev, ena_buf->paddr - rx_ring->rx_headroom,
995 		       ENA_PAGE_SIZE,
996 		       DMA_BIDIRECTIONAL);
997 
998 	__free_page(page);
999 	rx_info->page = NULL;
1000 }
1001 
1002 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
1003 {
1004 	u16 next_to_use, req_id;
1005 	u32 i;
1006 	int rc;
1007 
1008 	next_to_use = rx_ring->next_to_use;
1009 
1010 	for (i = 0; i < num; i++) {
1011 		struct ena_rx_buffer *rx_info;
1012 
1013 		req_id = rx_ring->free_ids[next_to_use];
1014 
1015 		rx_info = &rx_ring->rx_buffer_info[req_id];
1016 
1017 		rc = ena_alloc_rx_page(rx_ring, rx_info,
1018 				       GFP_ATOMIC | __GFP_COMP);
1019 		if (unlikely(rc < 0)) {
1020 			netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1021 				   "failed to alloc buffer for rx queue %d\n",
1022 				   rx_ring->qid);
1023 			break;
1024 		}
1025 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1026 						&rx_info->ena_buf,
1027 						req_id);
1028 		if (unlikely(rc)) {
1029 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1030 				   "failed to add buffer for rx queue %d\n",
1031 				   rx_ring->qid);
1032 			break;
1033 		}
1034 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1035 						   rx_ring->ring_size);
1036 	}
1037 
1038 	if (unlikely(i < num)) {
1039 		u64_stats_update_begin(&rx_ring->syncp);
1040 		rx_ring->rx_stats.refil_partial++;
1041 		u64_stats_update_end(&rx_ring->syncp);
1042 		netdev_warn(rx_ring->netdev,
1043 			    "refilled rx qid %d with only %d buffers (from %d)\n",
1044 			    rx_ring->qid, i, num);
1045 	}
1046 
1047 	/* ena_com_write_sq_doorbell issues a wmb() */
1048 	if (likely(i))
1049 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1050 
1051 	rx_ring->next_to_use = next_to_use;
1052 
1053 	return i;
1054 }
1055 
1056 static void ena_free_rx_bufs(struct ena_adapter *adapter,
1057 			     u32 qid)
1058 {
1059 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1060 	u32 i;
1061 
1062 	for (i = 0; i < rx_ring->ring_size; i++) {
1063 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1064 
1065 		if (rx_info->page)
1066 			ena_free_rx_page(rx_ring, rx_info);
1067 	}
1068 }
1069 
1070 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
1071  * @adapter: board private structure
1072  */
1073 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1074 {
1075 	struct ena_ring *rx_ring;
1076 	int i, rc, bufs_num;
1077 
1078 	for (i = 0; i < adapter->num_io_queues; i++) {
1079 		rx_ring = &adapter->rx_ring[i];
1080 		bufs_num = rx_ring->ring_size - 1;
1081 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1082 
1083 		if (unlikely(rc != bufs_num))
1084 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1085 				   "refilling Queue %d failed. allocated %d buffers from: %d\n",
1086 				   i, rc, bufs_num);
1087 	}
1088 }
1089 
1090 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
1091 {
1092 	int i;
1093 
1094 	for (i = 0; i < adapter->num_io_queues; i++)
1095 		ena_free_rx_bufs(adapter, i);
1096 }
1097 
1098 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
1099 			      struct ena_tx_buffer *tx_info)
1100 {
1101 	struct ena_com_buf *ena_buf;
1102 	u32 cnt;
1103 	int i;
1104 
1105 	ena_buf = tx_info->bufs;
1106 	cnt = tx_info->num_of_bufs;
1107 
1108 	if (unlikely(!cnt))
1109 		return;
1110 
1111 	if (tx_info->map_linear_data) {
1112 		dma_unmap_single(tx_ring->dev,
1113 				 dma_unmap_addr(ena_buf, paddr),
1114 				 dma_unmap_len(ena_buf, len),
1115 				 DMA_TO_DEVICE);
1116 		ena_buf++;
1117 		cnt--;
1118 	}
1119 
1120 	/* unmap remaining mapped pages */
1121 	for (i = 0; i < cnt; i++) {
1122 		dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
1123 			       dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
1124 		ena_buf++;
1125 	}
1126 }
1127 
1128 /* ena_free_tx_bufs - Free Tx Buffers per Queue
1129  * @tx_ring: TX ring for which buffers be freed
1130  */
1131 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
1132 {
1133 	bool print_once = true;
1134 	u32 i;
1135 
1136 	for (i = 0; i < tx_ring->ring_size; i++) {
1137 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1138 
1139 		if (!tx_info->skb)
1140 			continue;
1141 
1142 		if (print_once) {
1143 			netdev_notice(tx_ring->netdev,
1144 				      "free uncompleted tx skb qid %d idx 0x%x\n",
1145 				      tx_ring->qid, i);
1146 			print_once = false;
1147 		} else {
1148 			netdev_dbg(tx_ring->netdev,
1149 				   "free uncompleted tx skb qid %d idx 0x%x\n",
1150 				   tx_ring->qid, i);
1151 		}
1152 
1153 		ena_unmap_tx_buff(tx_ring, tx_info);
1154 
1155 		dev_kfree_skb_any(tx_info->skb);
1156 	}
1157 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
1158 						  tx_ring->qid));
1159 }
1160 
1161 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
1162 {
1163 	struct ena_ring *tx_ring;
1164 	int i;
1165 
1166 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1167 		tx_ring = &adapter->tx_ring[i];
1168 		ena_free_tx_bufs(tx_ring);
1169 	}
1170 }
1171 
1172 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1173 {
1174 	u16 ena_qid;
1175 	int i;
1176 
1177 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1178 		ena_qid = ENA_IO_TXQ_IDX(i);
1179 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1180 	}
1181 }
1182 
1183 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1184 {
1185 	u16 ena_qid;
1186 	int i;
1187 
1188 	for (i = 0; i < adapter->num_io_queues; i++) {
1189 		ena_qid = ENA_IO_RXQ_IDX(i);
1190 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
1191 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1192 	}
1193 }
1194 
1195 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
1196 {
1197 	ena_destroy_all_tx_queues(adapter);
1198 	ena_destroy_all_rx_queues(adapter);
1199 }
1200 
1201 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
1202 				 struct ena_tx_buffer *tx_info, bool is_xdp)
1203 {
1204 	if (tx_info)
1205 		netif_err(ring->adapter,
1206 			  tx_done,
1207 			  ring->netdev,
1208 			  "tx_info doesn't have valid %s",
1209 			   is_xdp ? "xdp frame" : "skb");
1210 	else
1211 		netif_err(ring->adapter,
1212 			  tx_done,
1213 			  ring->netdev,
1214 			  "Invalid req_id: %hu\n",
1215 			  req_id);
1216 
1217 	u64_stats_update_begin(&ring->syncp);
1218 	ring->tx_stats.bad_req_id++;
1219 	u64_stats_update_end(&ring->syncp);
1220 
1221 	/* Trigger device reset */
1222 	ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
1223 	set_bit(ENA_FLAG_TRIGGER_RESET, &ring->adapter->flags);
1224 	return -EFAULT;
1225 }
1226 
1227 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
1228 {
1229 	struct ena_tx_buffer *tx_info = NULL;
1230 
1231 	if (likely(req_id < tx_ring->ring_size)) {
1232 		tx_info = &tx_ring->tx_buffer_info[req_id];
1233 		if (likely(tx_info->skb))
1234 			return 0;
1235 	}
1236 
1237 	return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
1238 }
1239 
1240 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id)
1241 {
1242 	struct ena_tx_buffer *tx_info = NULL;
1243 
1244 	if (likely(req_id < xdp_ring->ring_size)) {
1245 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1246 		if (likely(tx_info->xdpf))
1247 			return 0;
1248 	}
1249 
1250 	return handle_invalid_req_id(xdp_ring, req_id, tx_info, true);
1251 }
1252 
1253 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
1254 {
1255 	struct netdev_queue *txq;
1256 	bool above_thresh;
1257 	u32 tx_bytes = 0;
1258 	u32 total_done = 0;
1259 	u16 next_to_clean;
1260 	u16 req_id;
1261 	int tx_pkts = 0;
1262 	int rc;
1263 
1264 	next_to_clean = tx_ring->next_to_clean;
1265 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
1266 
1267 	while (tx_pkts < budget) {
1268 		struct ena_tx_buffer *tx_info;
1269 		struct sk_buff *skb;
1270 
1271 		rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
1272 						&req_id);
1273 		if (rc)
1274 			break;
1275 
1276 		rc = validate_tx_req_id(tx_ring, req_id);
1277 		if (rc)
1278 			break;
1279 
1280 		tx_info = &tx_ring->tx_buffer_info[req_id];
1281 		skb = tx_info->skb;
1282 
1283 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
1284 		prefetch(&skb->end);
1285 
1286 		tx_info->skb = NULL;
1287 		tx_info->last_jiffies = 0;
1288 
1289 		ena_unmap_tx_buff(tx_ring, tx_info);
1290 
1291 		netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1292 			  "tx_poll: q %d skb %p completed\n", tx_ring->qid,
1293 			  skb);
1294 
1295 		tx_bytes += skb->len;
1296 		dev_kfree_skb(skb);
1297 		tx_pkts++;
1298 		total_done += tx_info->tx_descs;
1299 
1300 		tx_ring->free_ids[next_to_clean] = req_id;
1301 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1302 						     tx_ring->ring_size);
1303 	}
1304 
1305 	tx_ring->next_to_clean = next_to_clean;
1306 	ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
1307 	ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
1308 
1309 	netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1310 
1311 	netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1312 		  "tx_poll: q %d done. total pkts: %d\n",
1313 		  tx_ring->qid, tx_pkts);
1314 
1315 	/* need to make the rings circular update visible to
1316 	 * ena_start_xmit() before checking for netif_queue_stopped().
1317 	 */
1318 	smp_mb();
1319 
1320 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1321 						    ENA_TX_WAKEUP_THRESH);
1322 	if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
1323 		__netif_tx_lock(txq, smp_processor_id());
1324 		above_thresh =
1325 			ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1326 						     ENA_TX_WAKEUP_THRESH);
1327 		if (netif_tx_queue_stopped(txq) && above_thresh &&
1328 		    test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
1329 			netif_tx_wake_queue(txq);
1330 			u64_stats_update_begin(&tx_ring->syncp);
1331 			tx_ring->tx_stats.queue_wakeup++;
1332 			u64_stats_update_end(&tx_ring->syncp);
1333 		}
1334 		__netif_tx_unlock(txq);
1335 	}
1336 
1337 	return tx_pkts;
1338 }
1339 
1340 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags)
1341 {
1342 	struct sk_buff *skb;
1343 
1344 	if (frags)
1345 		skb = napi_get_frags(rx_ring->napi);
1346 	else
1347 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1348 						rx_ring->rx_copybreak);
1349 
1350 	if (unlikely(!skb)) {
1351 		u64_stats_update_begin(&rx_ring->syncp);
1352 		rx_ring->rx_stats.skb_alloc_fail++;
1353 		u64_stats_update_end(&rx_ring->syncp);
1354 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1355 			  "Failed to allocate skb. frags: %d\n", frags);
1356 		return NULL;
1357 	}
1358 
1359 	return skb;
1360 }
1361 
1362 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
1363 				  struct ena_com_rx_buf_info *ena_bufs,
1364 				  u32 descs,
1365 				  u16 *next_to_clean)
1366 {
1367 	struct sk_buff *skb;
1368 	struct ena_rx_buffer *rx_info;
1369 	u16 len, req_id, buf = 0;
1370 	void *va;
1371 	int rc;
1372 
1373 	len = ena_bufs[buf].len;
1374 	req_id = ena_bufs[buf].req_id;
1375 
1376 	rc = validate_rx_req_id(rx_ring, req_id);
1377 	if (unlikely(rc < 0))
1378 		return NULL;
1379 
1380 	rx_info = &rx_ring->rx_buffer_info[req_id];
1381 
1382 	if (unlikely(!rx_info->page)) {
1383 		netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
1384 			  "Page is NULL\n");
1385 		return NULL;
1386 	}
1387 
1388 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1389 		  "rx_info %p page %p\n",
1390 		  rx_info, rx_info->page);
1391 
1392 	/* save virt address of first buffer */
1393 	va = page_address(rx_info->page) + rx_info->page_offset;
1394 	prefetch(va + NET_IP_ALIGN);
1395 
1396 	if (len <= rx_ring->rx_copybreak) {
1397 		skb = ena_alloc_skb(rx_ring, false);
1398 		if (unlikely(!skb))
1399 			return NULL;
1400 
1401 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1402 			  "rx allocated small packet. len %d. data_len %d\n",
1403 			  skb->len, skb->data_len);
1404 
1405 		/* sync this buffer for CPU use */
1406 		dma_sync_single_for_cpu(rx_ring->dev,
1407 					dma_unmap_addr(&rx_info->ena_buf, paddr),
1408 					len,
1409 					DMA_FROM_DEVICE);
1410 		skb_copy_to_linear_data(skb, va, len);
1411 		dma_sync_single_for_device(rx_ring->dev,
1412 					   dma_unmap_addr(&rx_info->ena_buf, paddr),
1413 					   len,
1414 					   DMA_FROM_DEVICE);
1415 
1416 		skb_put(skb, len);
1417 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1418 		rx_ring->free_ids[*next_to_clean] = req_id;
1419 		*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
1420 						     rx_ring->ring_size);
1421 		return skb;
1422 	}
1423 
1424 	skb = ena_alloc_skb(rx_ring, true);
1425 	if (unlikely(!skb))
1426 		return NULL;
1427 
1428 	do {
1429 		dma_unmap_page(rx_ring->dev,
1430 			       dma_unmap_addr(&rx_info->ena_buf, paddr),
1431 			       ENA_PAGE_SIZE, DMA_BIDIRECTIONAL);
1432 
1433 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1434 				rx_info->page_offset, len, ENA_PAGE_SIZE);
1435 		/* The offset is non zero only for the first buffer */
1436 		rx_info->page_offset = 0;
1437 
1438 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1439 			  "rx skb updated. len %d. data_len %d\n",
1440 			  skb->len, skb->data_len);
1441 
1442 		rx_info->page = NULL;
1443 
1444 		rx_ring->free_ids[*next_to_clean] = req_id;
1445 		*next_to_clean =
1446 			ENA_RX_RING_IDX_NEXT(*next_to_clean,
1447 					     rx_ring->ring_size);
1448 		if (likely(--descs == 0))
1449 			break;
1450 
1451 		buf++;
1452 		len = ena_bufs[buf].len;
1453 		req_id = ena_bufs[buf].req_id;
1454 
1455 		rc = validate_rx_req_id(rx_ring, req_id);
1456 		if (unlikely(rc < 0))
1457 			return NULL;
1458 
1459 		rx_info = &rx_ring->rx_buffer_info[req_id];
1460 	} while (1);
1461 
1462 	return skb;
1463 }
1464 
1465 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1466  * @adapter: structure containing adapter specific data
1467  * @ena_rx_ctx: received packet context/metadata
1468  * @skb: skb currently being received and modified
1469  */
1470 static void ena_rx_checksum(struct ena_ring *rx_ring,
1471 				   struct ena_com_rx_ctx *ena_rx_ctx,
1472 				   struct sk_buff *skb)
1473 {
1474 	/* Rx csum disabled */
1475 	if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1476 		skb->ip_summed = CHECKSUM_NONE;
1477 		return;
1478 	}
1479 
1480 	/* For fragmented packets the checksum isn't valid */
1481 	if (ena_rx_ctx->frag) {
1482 		skb->ip_summed = CHECKSUM_NONE;
1483 		return;
1484 	}
1485 
1486 	/* if IP and error */
1487 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1488 		     (ena_rx_ctx->l3_csum_err))) {
1489 		/* ipv4 checksum error */
1490 		skb->ip_summed = CHECKSUM_NONE;
1491 		u64_stats_update_begin(&rx_ring->syncp);
1492 		rx_ring->rx_stats.bad_csum++;
1493 		u64_stats_update_end(&rx_ring->syncp);
1494 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1495 			  "RX IPv4 header checksum error\n");
1496 		return;
1497 	}
1498 
1499 	/* if TCP/UDP */
1500 	if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1501 		   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1502 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
1503 			/* TCP/UDP checksum error */
1504 			u64_stats_update_begin(&rx_ring->syncp);
1505 			rx_ring->rx_stats.bad_csum++;
1506 			u64_stats_update_end(&rx_ring->syncp);
1507 			netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1508 				  "RX L4 checksum error\n");
1509 			skb->ip_summed = CHECKSUM_NONE;
1510 			return;
1511 		}
1512 
1513 		if (likely(ena_rx_ctx->l4_csum_checked)) {
1514 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1515 			u64_stats_update_begin(&rx_ring->syncp);
1516 			rx_ring->rx_stats.csum_good++;
1517 			u64_stats_update_end(&rx_ring->syncp);
1518 		} else {
1519 			u64_stats_update_begin(&rx_ring->syncp);
1520 			rx_ring->rx_stats.csum_unchecked++;
1521 			u64_stats_update_end(&rx_ring->syncp);
1522 			skb->ip_summed = CHECKSUM_NONE;
1523 		}
1524 	} else {
1525 		skb->ip_summed = CHECKSUM_NONE;
1526 		return;
1527 	}
1528 
1529 }
1530 
1531 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1532 			    struct ena_com_rx_ctx *ena_rx_ctx,
1533 			    struct sk_buff *skb)
1534 {
1535 	enum pkt_hash_types hash_type;
1536 
1537 	if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1538 		if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1539 			   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1540 
1541 			hash_type = PKT_HASH_TYPE_L4;
1542 		else
1543 			hash_type = PKT_HASH_TYPE_NONE;
1544 
1545 		/* Override hash type if the packet is fragmented */
1546 		if (ena_rx_ctx->frag)
1547 			hash_type = PKT_HASH_TYPE_NONE;
1548 
1549 		skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1550 	}
1551 }
1552 
1553 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp)
1554 {
1555 	struct ena_rx_buffer *rx_info;
1556 	int ret;
1557 
1558 	rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1559 	xdp->data = page_address(rx_info->page) +
1560 		rx_info->page_offset + rx_ring->rx_headroom;
1561 	xdp_set_data_meta_invalid(xdp);
1562 	xdp->data_hard_start = page_address(rx_info->page);
1563 	xdp->data_end = xdp->data + rx_ring->ena_bufs[0].len;
1564 	/* If for some reason we received a bigger packet than
1565 	 * we expect, then we simply drop it
1566 	 */
1567 	if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU))
1568 		return XDP_DROP;
1569 
1570 	ret = ena_xdp_execute(rx_ring, xdp, rx_info);
1571 
1572 	/* The xdp program might expand the headers */
1573 	if (ret == XDP_PASS) {
1574 		rx_info->page_offset = xdp->data - xdp->data_hard_start;
1575 		rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1576 	}
1577 
1578 	return ret;
1579 }
1580 /* ena_clean_rx_irq - Cleanup RX irq
1581  * @rx_ring: RX ring to clean
1582  * @napi: napi handler
1583  * @budget: how many packets driver is allowed to clean
1584  *
1585  * Returns the number of cleaned buffers.
1586  */
1587 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1588 			    u32 budget)
1589 {
1590 	u16 next_to_clean = rx_ring->next_to_clean;
1591 	struct ena_com_rx_ctx ena_rx_ctx;
1592 	struct ena_rx_buffer *rx_info;
1593 	struct ena_adapter *adapter;
1594 	u32 res_budget, work_done;
1595 	int rx_copybreak_pkt = 0;
1596 	int refill_threshold;
1597 	struct sk_buff *skb;
1598 	int refill_required;
1599 	struct xdp_buff xdp;
1600 	int total_len = 0;
1601 	int xdp_verdict;
1602 	int rc = 0;
1603 	int i;
1604 
1605 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1606 		  "%s qid %d\n", __func__, rx_ring->qid);
1607 	res_budget = budget;
1608 	xdp.rxq = &rx_ring->xdp_rxq;
1609 	xdp.frame_sz = ENA_PAGE_SIZE;
1610 
1611 	do {
1612 		xdp_verdict = XDP_PASS;
1613 		skb = NULL;
1614 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1615 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1616 		ena_rx_ctx.descs = 0;
1617 		ena_rx_ctx.pkt_offset = 0;
1618 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1619 				    rx_ring->ena_com_io_sq,
1620 				    &ena_rx_ctx);
1621 		if (unlikely(rc))
1622 			goto error;
1623 
1624 		if (unlikely(ena_rx_ctx.descs == 0))
1625 			break;
1626 
1627 		rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1628 		rx_info->page_offset = ena_rx_ctx.pkt_offset;
1629 
1630 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1631 			  "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1632 			  rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1633 			  ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1634 
1635 		if (ena_xdp_present_ring(rx_ring))
1636 			xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp);
1637 
1638 		/* allocate skb and fill it */
1639 		if (xdp_verdict == XDP_PASS)
1640 			skb = ena_rx_skb(rx_ring,
1641 					 rx_ring->ena_bufs,
1642 					 ena_rx_ctx.descs,
1643 					 &next_to_clean);
1644 
1645 		if (unlikely(!skb)) {
1646 			if (xdp_verdict == XDP_TX)
1647 				ena_free_rx_page(rx_ring,
1648 						 &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]);
1649 			for (i = 0; i < ena_rx_ctx.descs; i++) {
1650 				rx_ring->free_ids[next_to_clean] =
1651 					rx_ring->ena_bufs[i].req_id;
1652 				next_to_clean =
1653 					ENA_RX_RING_IDX_NEXT(next_to_clean,
1654 							     rx_ring->ring_size);
1655 			}
1656 			if (xdp_verdict != XDP_PASS) {
1657 				res_budget--;
1658 				continue;
1659 			}
1660 			break;
1661 		}
1662 
1663 		ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1664 
1665 		ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1666 
1667 		skb_record_rx_queue(skb, rx_ring->qid);
1668 
1669 		if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
1670 			total_len += rx_ring->ena_bufs[0].len;
1671 			rx_copybreak_pkt++;
1672 			napi_gro_receive(napi, skb);
1673 		} else {
1674 			total_len += skb->len;
1675 			napi_gro_frags(napi);
1676 		}
1677 
1678 		res_budget--;
1679 	} while (likely(res_budget));
1680 
1681 	work_done = budget - res_budget;
1682 	rx_ring->per_napi_packets += work_done;
1683 	u64_stats_update_begin(&rx_ring->syncp);
1684 	rx_ring->rx_stats.bytes += total_len;
1685 	rx_ring->rx_stats.cnt += work_done;
1686 	rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1687 	u64_stats_update_end(&rx_ring->syncp);
1688 
1689 	rx_ring->next_to_clean = next_to_clean;
1690 
1691 	refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
1692 	refill_threshold =
1693 		min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1694 		      ENA_RX_REFILL_THRESH_PACKET);
1695 
1696 	/* Optimization, try to batch new rx buffers */
1697 	if (refill_required > refill_threshold) {
1698 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1699 		ena_refill_rx_bufs(rx_ring, refill_required);
1700 	}
1701 
1702 	return work_done;
1703 
1704 error:
1705 	adapter = netdev_priv(rx_ring->netdev);
1706 
1707 	u64_stats_update_begin(&rx_ring->syncp);
1708 	rx_ring->rx_stats.bad_desc_num++;
1709 	u64_stats_update_end(&rx_ring->syncp);
1710 
1711 	/* Too many desc from the device. Trigger reset */
1712 	adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
1713 	set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
1714 
1715 	return 0;
1716 }
1717 
1718 static void ena_dim_work(struct work_struct *w)
1719 {
1720 	struct dim *dim = container_of(w, struct dim, work);
1721 	struct dim_cq_moder cur_moder =
1722 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1723 	struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1724 
1725 	ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1726 	dim->state = DIM_START_MEASURE;
1727 }
1728 
1729 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1730 {
1731 	struct dim_sample dim_sample;
1732 	struct ena_ring *rx_ring = ena_napi->rx_ring;
1733 
1734 	if (!rx_ring->per_napi_packets)
1735 		return;
1736 
1737 	rx_ring->non_empty_napi_events++;
1738 
1739 	dim_update_sample(rx_ring->non_empty_napi_events,
1740 			  rx_ring->rx_stats.cnt,
1741 			  rx_ring->rx_stats.bytes,
1742 			  &dim_sample);
1743 
1744 	net_dim(&ena_napi->dim, dim_sample);
1745 
1746 	rx_ring->per_napi_packets = 0;
1747 }
1748 
1749 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
1750 					struct ena_ring *rx_ring)
1751 {
1752 	struct ena_eth_io_intr_reg intr_reg;
1753 	u32 rx_interval = 0;
1754 	/* Rx ring can be NULL when for XDP tx queues which don't have an
1755 	 * accompanying rx_ring pair.
1756 	 */
1757 	if (rx_ring)
1758 		rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1759 			rx_ring->smoothed_interval :
1760 			ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1761 
1762 	/* Update intr register: rx intr delay,
1763 	 * tx intr delay and interrupt unmask
1764 	 */
1765 	ena_com_update_intr_reg(&intr_reg,
1766 				rx_interval,
1767 				tx_ring->smoothed_interval,
1768 				true);
1769 
1770 	u64_stats_update_begin(&tx_ring->syncp);
1771 	tx_ring->tx_stats.unmask_interrupt++;
1772 	u64_stats_update_end(&tx_ring->syncp);
1773 	/* It is a shared MSI-X.
1774 	 * Tx and Rx CQ have pointer to it.
1775 	 * So we use one of them to reach the intr reg
1776 	 * The Tx ring is used because the rx_ring is NULL for XDP queues
1777 	 */
1778 	ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1779 }
1780 
1781 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1782 					     struct ena_ring *rx_ring)
1783 {
1784 	int cpu = get_cpu();
1785 	int numa_node;
1786 
1787 	/* Check only one ring since the 2 rings are running on the same cpu */
1788 	if (likely(tx_ring->cpu == cpu))
1789 		goto out;
1790 
1791 	numa_node = cpu_to_node(cpu);
1792 	put_cpu();
1793 
1794 	if (numa_node != NUMA_NO_NODE) {
1795 		ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1796 		if (rx_ring)
1797 			ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1798 						 numa_node);
1799 	}
1800 
1801 	tx_ring->cpu = cpu;
1802 	if (rx_ring)
1803 		rx_ring->cpu = cpu;
1804 
1805 	return;
1806 out:
1807 	put_cpu();
1808 }
1809 
1810 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget)
1811 {
1812 	u32 total_done = 0;
1813 	u16 next_to_clean;
1814 	u32 tx_bytes = 0;
1815 	int tx_pkts = 0;
1816 	u16 req_id;
1817 	int rc;
1818 
1819 	if (unlikely(!xdp_ring))
1820 		return 0;
1821 	next_to_clean = xdp_ring->next_to_clean;
1822 
1823 	while (tx_pkts < budget) {
1824 		struct ena_tx_buffer *tx_info;
1825 		struct xdp_frame *xdpf;
1826 
1827 		rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq,
1828 						&req_id);
1829 		if (rc)
1830 			break;
1831 
1832 		rc = validate_xdp_req_id(xdp_ring, req_id);
1833 		if (rc)
1834 			break;
1835 
1836 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1837 		xdpf = tx_info->xdpf;
1838 
1839 		tx_info->xdpf = NULL;
1840 		tx_info->last_jiffies = 0;
1841 		ena_unmap_tx_buff(xdp_ring, tx_info);
1842 
1843 		netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1844 			  "tx_poll: q %d skb %p completed\n", xdp_ring->qid,
1845 			  xdpf);
1846 
1847 		tx_bytes += xdpf->len;
1848 		tx_pkts++;
1849 		total_done += tx_info->tx_descs;
1850 
1851 		__free_page(tx_info->xdp_rx_page);
1852 		xdp_ring->free_ids[next_to_clean] = req_id;
1853 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1854 						     xdp_ring->ring_size);
1855 	}
1856 
1857 	xdp_ring->next_to_clean = next_to_clean;
1858 	ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done);
1859 	ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq);
1860 
1861 	netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1862 		  "tx_poll: q %d done. total pkts: %d\n",
1863 		  xdp_ring->qid, tx_pkts);
1864 
1865 	return tx_pkts;
1866 }
1867 
1868 static int ena_io_poll(struct napi_struct *napi, int budget)
1869 {
1870 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1871 	struct ena_ring *tx_ring, *rx_ring;
1872 	int tx_work_done;
1873 	int rx_work_done = 0;
1874 	int tx_budget;
1875 	int napi_comp_call = 0;
1876 	int ret;
1877 
1878 	tx_ring = ena_napi->tx_ring;
1879 	rx_ring = ena_napi->rx_ring;
1880 
1881 	tx_ring->first_interrupt = ena_napi->first_interrupt;
1882 	rx_ring->first_interrupt = ena_napi->first_interrupt;
1883 
1884 	tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1885 
1886 	if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1887 	    test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1888 		napi_complete_done(napi, 0);
1889 		return 0;
1890 	}
1891 
1892 	tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1893 	/* On netpoll the budget is zero and the handler should only clean the
1894 	 * tx completions.
1895 	 */
1896 	if (likely(budget))
1897 		rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1898 
1899 	/* If the device is about to reset or down, avoid unmask
1900 	 * the interrupt and return 0 so NAPI won't reschedule
1901 	 */
1902 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1903 		     test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1904 		napi_complete_done(napi, 0);
1905 		ret = 0;
1906 
1907 	} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1908 		napi_comp_call = 1;
1909 
1910 		/* Update numa and unmask the interrupt only when schedule
1911 		 * from the interrupt context (vs from sk_busy_loop)
1912 		 */
1913 		if (napi_complete_done(napi, rx_work_done) &&
1914 		    READ_ONCE(ena_napi->interrupts_masked)) {
1915 			smp_rmb(); /* make sure interrupts_masked is read */
1916 			WRITE_ONCE(ena_napi->interrupts_masked, false);
1917 			/* We apply adaptive moderation on Rx path only.
1918 			 * Tx uses static interrupt moderation.
1919 			 */
1920 			if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1921 				ena_adjust_adaptive_rx_intr_moderation(ena_napi);
1922 
1923 			ena_unmask_interrupt(tx_ring, rx_ring);
1924 		}
1925 
1926 		ena_update_ring_numa_node(tx_ring, rx_ring);
1927 
1928 		ret = rx_work_done;
1929 	} else {
1930 		ret = budget;
1931 	}
1932 
1933 	u64_stats_update_begin(&tx_ring->syncp);
1934 	tx_ring->tx_stats.napi_comp += napi_comp_call;
1935 	tx_ring->tx_stats.tx_poll++;
1936 	u64_stats_update_end(&tx_ring->syncp);
1937 
1938 	return ret;
1939 }
1940 
1941 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1942 {
1943 	struct ena_adapter *adapter = (struct ena_adapter *)data;
1944 
1945 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1946 
1947 	/* Don't call the aenq handler before probe is done */
1948 	if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1949 		ena_com_aenq_intr_handler(adapter->ena_dev, data);
1950 
1951 	return IRQ_HANDLED;
1952 }
1953 
1954 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1955  * @irq: interrupt number
1956  * @data: pointer to a network interface private napi device structure
1957  */
1958 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1959 {
1960 	struct ena_napi *ena_napi = data;
1961 
1962 	ena_napi->first_interrupt = true;
1963 
1964 	WRITE_ONCE(ena_napi->interrupts_masked, true);
1965 	smp_wmb(); /* write interrupts_masked before calling napi */
1966 
1967 	napi_schedule_irqoff(&ena_napi->napi);
1968 
1969 	return IRQ_HANDLED;
1970 }
1971 
1972 /* Reserve a single MSI-X vector for management (admin + aenq).
1973  * plus reserve one vector for each potential io queue.
1974  * the number of potential io queues is the minimum of what the device
1975  * supports and the number of vCPUs.
1976  */
1977 static int ena_enable_msix(struct ena_adapter *adapter)
1978 {
1979 	int msix_vecs, irq_cnt;
1980 
1981 	if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1982 		netif_err(adapter, probe, adapter->netdev,
1983 			  "Error, MSI-X is already enabled\n");
1984 		return -EPERM;
1985 	}
1986 
1987 	/* Reserved the max msix vectors we might need */
1988 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
1989 	netif_dbg(adapter, probe, adapter->netdev,
1990 		  "trying to enable MSI-X, vectors %d\n", msix_vecs);
1991 
1992 	irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
1993 					msix_vecs, PCI_IRQ_MSIX);
1994 
1995 	if (irq_cnt < 0) {
1996 		netif_err(adapter, probe, adapter->netdev,
1997 			  "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
1998 		return -ENOSPC;
1999 	}
2000 
2001 	if (irq_cnt != msix_vecs) {
2002 		netif_notice(adapter, probe, adapter->netdev,
2003 			     "enable only %d MSI-X (out of %d), reduce the number of queues\n",
2004 			     irq_cnt, msix_vecs);
2005 		adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
2006 	}
2007 
2008 	if (ena_init_rx_cpu_rmap(adapter))
2009 		netif_warn(adapter, probe, adapter->netdev,
2010 			   "Failed to map IRQs to CPUs\n");
2011 
2012 	adapter->msix_vecs = irq_cnt;
2013 	set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
2014 
2015 	return 0;
2016 }
2017 
2018 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
2019 {
2020 	u32 cpu;
2021 
2022 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
2023 		 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
2024 		 pci_name(adapter->pdev));
2025 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
2026 		ena_intr_msix_mgmnt;
2027 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
2028 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
2029 		pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
2030 	cpu = cpumask_first(cpu_online_mask);
2031 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
2032 	cpumask_set_cpu(cpu,
2033 			&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
2034 }
2035 
2036 static void ena_setup_io_intr(struct ena_adapter *adapter)
2037 {
2038 	struct net_device *netdev;
2039 	int irq_idx, i, cpu;
2040 	int io_queue_count;
2041 
2042 	netdev = adapter->netdev;
2043 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2044 
2045 	for (i = 0; i < io_queue_count; i++) {
2046 		irq_idx = ENA_IO_IRQ_IDX(i);
2047 		cpu = i % num_online_cpus();
2048 
2049 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
2050 			 "%s-Tx-Rx-%d", netdev->name, i);
2051 		adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
2052 		adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
2053 		adapter->irq_tbl[irq_idx].vector =
2054 			pci_irq_vector(adapter->pdev, irq_idx);
2055 		adapter->irq_tbl[irq_idx].cpu = cpu;
2056 
2057 		cpumask_set_cpu(cpu,
2058 				&adapter->irq_tbl[irq_idx].affinity_hint_mask);
2059 	}
2060 }
2061 
2062 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
2063 {
2064 	unsigned long flags = 0;
2065 	struct ena_irq *irq;
2066 	int rc;
2067 
2068 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2069 	rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2070 			 irq->data);
2071 	if (rc) {
2072 		netif_err(adapter, probe, adapter->netdev,
2073 			  "failed to request admin irq\n");
2074 		return rc;
2075 	}
2076 
2077 	netif_dbg(adapter, probe, adapter->netdev,
2078 		  "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
2079 		  irq->affinity_hint_mask.bits[0], irq->vector);
2080 
2081 	irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2082 
2083 	return rc;
2084 }
2085 
2086 static int ena_request_io_irq(struct ena_adapter *adapter)
2087 {
2088 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2089 	unsigned long flags = 0;
2090 	struct ena_irq *irq;
2091 	int rc = 0, i, k;
2092 
2093 	if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2094 		netif_err(adapter, ifup, adapter->netdev,
2095 			  "Failed to request I/O IRQ: MSI-X is not enabled\n");
2096 		return -EINVAL;
2097 	}
2098 
2099 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2100 		irq = &adapter->irq_tbl[i];
2101 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2102 				 irq->data);
2103 		if (rc) {
2104 			netif_err(adapter, ifup, adapter->netdev,
2105 				  "Failed to request I/O IRQ. index %d rc %d\n",
2106 				   i, rc);
2107 			goto err;
2108 		}
2109 
2110 		netif_dbg(adapter, ifup, adapter->netdev,
2111 			  "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
2112 			  i, irq->affinity_hint_mask.bits[0], irq->vector);
2113 
2114 		irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2115 	}
2116 
2117 	return rc;
2118 
2119 err:
2120 	for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
2121 		irq = &adapter->irq_tbl[k];
2122 		free_irq(irq->vector, irq->data);
2123 	}
2124 
2125 	return rc;
2126 }
2127 
2128 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
2129 {
2130 	struct ena_irq *irq;
2131 
2132 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2133 	synchronize_irq(irq->vector);
2134 	irq_set_affinity_hint(irq->vector, NULL);
2135 	free_irq(irq->vector, irq->data);
2136 }
2137 
2138 static void ena_free_io_irq(struct ena_adapter *adapter)
2139 {
2140 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2141 	struct ena_irq *irq;
2142 	int i;
2143 
2144 #ifdef CONFIG_RFS_ACCEL
2145 	if (adapter->msix_vecs >= 1) {
2146 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2147 		adapter->netdev->rx_cpu_rmap = NULL;
2148 	}
2149 #endif /* CONFIG_RFS_ACCEL */
2150 
2151 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2152 		irq = &adapter->irq_tbl[i];
2153 		irq_set_affinity_hint(irq->vector, NULL);
2154 		free_irq(irq->vector, irq->data);
2155 	}
2156 }
2157 
2158 static void ena_disable_msix(struct ena_adapter *adapter)
2159 {
2160 	if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
2161 		pci_free_irq_vectors(adapter->pdev);
2162 }
2163 
2164 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
2165 {
2166 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2167 	int i;
2168 
2169 	if (!netif_running(adapter->netdev))
2170 		return;
2171 
2172 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++)
2173 		synchronize_irq(adapter->irq_tbl[i].vector);
2174 }
2175 
2176 static void ena_del_napi_in_range(struct ena_adapter *adapter,
2177 				  int first_index,
2178 				  int count)
2179 {
2180 	int i;
2181 
2182 	for (i = first_index; i < first_index + count; i++) {
2183 		netif_napi_del(&adapter->ena_napi[i].napi);
2184 
2185 		WARN_ON(!ENA_IS_XDP_INDEX(adapter, i) &&
2186 			adapter->ena_napi[i].xdp_ring);
2187 	}
2188 }
2189 
2190 static void ena_init_napi_in_range(struct ena_adapter *adapter,
2191 				   int first_index, int count)
2192 {
2193 	int i;
2194 
2195 	for (i = first_index; i < first_index + count; i++) {
2196 		struct ena_napi *napi = &adapter->ena_napi[i];
2197 
2198 		netif_napi_add(adapter->netdev,
2199 			       &napi->napi,
2200 			       ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll,
2201 			       ENA_NAPI_BUDGET);
2202 
2203 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
2204 			napi->rx_ring = &adapter->rx_ring[i];
2205 			napi->tx_ring = &adapter->tx_ring[i];
2206 		} else {
2207 			napi->xdp_ring = &adapter->tx_ring[i];
2208 		}
2209 		napi->qid = i;
2210 	}
2211 }
2212 
2213 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
2214 				      int first_index,
2215 				      int count)
2216 {
2217 	int i;
2218 
2219 	for (i = first_index; i < first_index + count; i++)
2220 		napi_disable(&adapter->ena_napi[i].napi);
2221 }
2222 
2223 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
2224 				     int first_index,
2225 				     int count)
2226 {
2227 	int i;
2228 
2229 	for (i = first_index; i < first_index + count; i++)
2230 		napi_enable(&adapter->ena_napi[i].napi);
2231 }
2232 
2233 /* Configure the Rx forwarding */
2234 static int ena_rss_configure(struct ena_adapter *adapter)
2235 {
2236 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2237 	int rc;
2238 
2239 	/* In case the RSS table wasn't initialized by probe */
2240 	if (!ena_dev->rss.tbl_log_size) {
2241 		rc = ena_rss_init_default(adapter);
2242 		if (rc && (rc != -EOPNOTSUPP)) {
2243 			netif_err(adapter, ifup, adapter->netdev,
2244 				  "Failed to init RSS rc: %d\n", rc);
2245 			return rc;
2246 		}
2247 	}
2248 
2249 	/* Set indirect table */
2250 	rc = ena_com_indirect_table_set(ena_dev);
2251 	if (unlikely(rc && rc != -EOPNOTSUPP))
2252 		return rc;
2253 
2254 	/* Configure hash function (if supported) */
2255 	rc = ena_com_set_hash_function(ena_dev);
2256 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2257 		return rc;
2258 
2259 	/* Configure hash inputs (if supported) */
2260 	rc = ena_com_set_hash_ctrl(ena_dev);
2261 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2262 		return rc;
2263 
2264 	return 0;
2265 }
2266 
2267 static int ena_up_complete(struct ena_adapter *adapter)
2268 {
2269 	int rc;
2270 
2271 	rc = ena_rss_configure(adapter);
2272 	if (rc)
2273 		return rc;
2274 
2275 	ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
2276 
2277 	ena_refill_all_rx_bufs(adapter);
2278 
2279 	/* enable transmits */
2280 	netif_tx_start_all_queues(adapter->netdev);
2281 
2282 	ena_napi_enable_in_range(adapter,
2283 				 0,
2284 				 adapter->xdp_num_queues + adapter->num_io_queues);
2285 
2286 	return 0;
2287 }
2288 
2289 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
2290 {
2291 	struct ena_com_create_io_ctx ctx;
2292 	struct ena_com_dev *ena_dev;
2293 	struct ena_ring *tx_ring;
2294 	u32 msix_vector;
2295 	u16 ena_qid;
2296 	int rc;
2297 
2298 	ena_dev = adapter->ena_dev;
2299 
2300 	tx_ring = &adapter->tx_ring[qid];
2301 	msix_vector = ENA_IO_IRQ_IDX(qid);
2302 	ena_qid = ENA_IO_TXQ_IDX(qid);
2303 
2304 	memset(&ctx, 0x0, sizeof(ctx));
2305 
2306 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
2307 	ctx.qid = ena_qid;
2308 	ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
2309 	ctx.msix_vector = msix_vector;
2310 	ctx.queue_size = tx_ring->ring_size;
2311 	ctx.numa_node = cpu_to_node(tx_ring->cpu);
2312 
2313 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2314 	if (rc) {
2315 		netif_err(adapter, ifup, adapter->netdev,
2316 			  "Failed to create I/O TX queue num %d rc: %d\n",
2317 			  qid, rc);
2318 		return rc;
2319 	}
2320 
2321 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2322 				     &tx_ring->ena_com_io_sq,
2323 				     &tx_ring->ena_com_io_cq);
2324 	if (rc) {
2325 		netif_err(adapter, ifup, adapter->netdev,
2326 			  "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
2327 			  qid, rc);
2328 		ena_com_destroy_io_queue(ena_dev, ena_qid);
2329 		return rc;
2330 	}
2331 
2332 	ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
2333 	return rc;
2334 }
2335 
2336 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
2337 					    int first_index, int count)
2338 {
2339 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2340 	int rc, i;
2341 
2342 	for (i = first_index; i < first_index + count; i++) {
2343 		rc = ena_create_io_tx_queue(adapter, i);
2344 		if (rc)
2345 			goto create_err;
2346 	}
2347 
2348 	return 0;
2349 
2350 create_err:
2351 	while (i-- > first_index)
2352 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
2353 
2354 	return rc;
2355 }
2356 
2357 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
2358 {
2359 	struct ena_com_dev *ena_dev;
2360 	struct ena_com_create_io_ctx ctx;
2361 	struct ena_ring *rx_ring;
2362 	u32 msix_vector;
2363 	u16 ena_qid;
2364 	int rc;
2365 
2366 	ena_dev = adapter->ena_dev;
2367 
2368 	rx_ring = &adapter->rx_ring[qid];
2369 	msix_vector = ENA_IO_IRQ_IDX(qid);
2370 	ena_qid = ENA_IO_RXQ_IDX(qid);
2371 
2372 	memset(&ctx, 0x0, sizeof(ctx));
2373 
2374 	ctx.qid = ena_qid;
2375 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
2376 	ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2377 	ctx.msix_vector = msix_vector;
2378 	ctx.queue_size = rx_ring->ring_size;
2379 	ctx.numa_node = cpu_to_node(rx_ring->cpu);
2380 
2381 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2382 	if (rc) {
2383 		netif_err(adapter, ifup, adapter->netdev,
2384 			  "Failed to create I/O RX queue num %d rc: %d\n",
2385 			  qid, rc);
2386 		return rc;
2387 	}
2388 
2389 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2390 				     &rx_ring->ena_com_io_sq,
2391 				     &rx_ring->ena_com_io_cq);
2392 	if (rc) {
2393 		netif_err(adapter, ifup, adapter->netdev,
2394 			  "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
2395 			  qid, rc);
2396 		goto err;
2397 	}
2398 
2399 	ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
2400 
2401 	return rc;
2402 err:
2403 	ena_com_destroy_io_queue(ena_dev, ena_qid);
2404 	return rc;
2405 }
2406 
2407 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
2408 {
2409 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2410 	int rc, i;
2411 
2412 	for (i = 0; i < adapter->num_io_queues; i++) {
2413 		rc = ena_create_io_rx_queue(adapter, i);
2414 		if (rc)
2415 			goto create_err;
2416 		INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
2417 	}
2418 
2419 	return 0;
2420 
2421 create_err:
2422 	while (i--) {
2423 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
2424 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
2425 	}
2426 
2427 	return rc;
2428 }
2429 
2430 static void set_io_rings_size(struct ena_adapter *adapter,
2431 			      int new_tx_size,
2432 			      int new_rx_size)
2433 {
2434 	int i;
2435 
2436 	for (i = 0; i < adapter->num_io_queues; i++) {
2437 		adapter->tx_ring[i].ring_size = new_tx_size;
2438 		adapter->rx_ring[i].ring_size = new_rx_size;
2439 	}
2440 }
2441 
2442 /* This function allows queue allocation to backoff when the system is
2443  * low on memory. If there is not enough memory to allocate io queues
2444  * the driver will try to allocate smaller queues.
2445  *
2446  * The backoff algorithm is as follows:
2447  *  1. Try to allocate TX and RX and if successful.
2448  *  1.1. return success
2449  *
2450  *  2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2451  *
2452  *  3. If TX or RX is smaller than 256
2453  *  3.1. return failure.
2454  *  4. else
2455  *  4.1. go back to 1.
2456  */
2457 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2458 {
2459 	int rc, cur_rx_ring_size, cur_tx_ring_size;
2460 	int new_rx_ring_size, new_tx_ring_size;
2461 
2462 	/* current queue sizes might be set to smaller than the requested
2463 	 * ones due to past queue allocation failures.
2464 	 */
2465 	set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2466 			  adapter->requested_rx_ring_size);
2467 
2468 	while (1) {
2469 		if (ena_xdp_present(adapter)) {
2470 			rc = ena_setup_and_create_all_xdp_queues(adapter);
2471 
2472 			if (rc)
2473 				goto err_setup_tx;
2474 		}
2475 		rc = ena_setup_tx_resources_in_range(adapter,
2476 						     0,
2477 						     adapter->num_io_queues);
2478 		if (rc)
2479 			goto err_setup_tx;
2480 
2481 		rc = ena_create_io_tx_queues_in_range(adapter,
2482 						      0,
2483 						      adapter->num_io_queues);
2484 		if (rc)
2485 			goto err_create_tx_queues;
2486 
2487 		rc = ena_setup_all_rx_resources(adapter);
2488 		if (rc)
2489 			goto err_setup_rx;
2490 
2491 		rc = ena_create_all_io_rx_queues(adapter);
2492 		if (rc)
2493 			goto err_create_rx_queues;
2494 
2495 		return 0;
2496 
2497 err_create_rx_queues:
2498 		ena_free_all_io_rx_resources(adapter);
2499 err_setup_rx:
2500 		ena_destroy_all_tx_queues(adapter);
2501 err_create_tx_queues:
2502 		ena_free_all_io_tx_resources(adapter);
2503 err_setup_tx:
2504 		if (rc != -ENOMEM) {
2505 			netif_err(adapter, ifup, adapter->netdev,
2506 				  "Queue creation failed with error code %d\n",
2507 				  rc);
2508 			return rc;
2509 		}
2510 
2511 		cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2512 		cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2513 
2514 		netif_err(adapter, ifup, adapter->netdev,
2515 			  "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2516 			  cur_tx_ring_size, cur_rx_ring_size);
2517 
2518 		new_tx_ring_size = cur_tx_ring_size;
2519 		new_rx_ring_size = cur_rx_ring_size;
2520 
2521 		/* Decrease the size of the larger queue, or
2522 		 * decrease both if they are the same size.
2523 		 */
2524 		if (cur_rx_ring_size <= cur_tx_ring_size)
2525 			new_tx_ring_size = cur_tx_ring_size / 2;
2526 		if (cur_rx_ring_size >= cur_tx_ring_size)
2527 			new_rx_ring_size = cur_rx_ring_size / 2;
2528 
2529 		if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2530 		    new_rx_ring_size < ENA_MIN_RING_SIZE) {
2531 			netif_err(adapter, ifup, adapter->netdev,
2532 				  "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2533 				  ENA_MIN_RING_SIZE);
2534 			return rc;
2535 		}
2536 
2537 		netif_err(adapter, ifup, adapter->netdev,
2538 			  "Retrying queue creation with sizes TX=%d, RX=%d\n",
2539 			  new_tx_ring_size,
2540 			  new_rx_ring_size);
2541 
2542 		set_io_rings_size(adapter, new_tx_ring_size,
2543 				  new_rx_ring_size);
2544 	}
2545 }
2546 
2547 static int ena_up(struct ena_adapter *adapter)
2548 {
2549 	int io_queue_count, rc, i;
2550 
2551 	netdev_dbg(adapter->netdev, "%s\n", __func__);
2552 
2553 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2554 	ena_setup_io_intr(adapter);
2555 
2556 	/* napi poll functions should be initialized before running
2557 	 * request_irq(), to handle a rare condition where there is a pending
2558 	 * interrupt, causing the ISR to fire immediately while the poll
2559 	 * function wasn't set yet, causing a null dereference
2560 	 */
2561 	ena_init_napi_in_range(adapter, 0, io_queue_count);
2562 
2563 	rc = ena_request_io_irq(adapter);
2564 	if (rc)
2565 		goto err_req_irq;
2566 
2567 	rc = create_queues_with_size_backoff(adapter);
2568 	if (rc)
2569 		goto err_create_queues_with_backoff;
2570 
2571 	rc = ena_up_complete(adapter);
2572 	if (rc)
2573 		goto err_up;
2574 
2575 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2576 		netif_carrier_on(adapter->netdev);
2577 
2578 	u64_stats_update_begin(&adapter->syncp);
2579 	adapter->dev_stats.interface_up++;
2580 	u64_stats_update_end(&adapter->syncp);
2581 
2582 	set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2583 
2584 	/* Enable completion queues interrupt */
2585 	for (i = 0; i < adapter->num_io_queues; i++)
2586 		ena_unmask_interrupt(&adapter->tx_ring[i],
2587 				     &adapter->rx_ring[i]);
2588 
2589 	/* schedule napi in case we had pending packets
2590 	 * from the last time we disable napi
2591 	 */
2592 	for (i = 0; i < io_queue_count; i++)
2593 		napi_schedule(&adapter->ena_napi[i].napi);
2594 
2595 	return rc;
2596 
2597 err_up:
2598 	ena_destroy_all_tx_queues(adapter);
2599 	ena_free_all_io_tx_resources(adapter);
2600 	ena_destroy_all_rx_queues(adapter);
2601 	ena_free_all_io_rx_resources(adapter);
2602 err_create_queues_with_backoff:
2603 	ena_free_io_irq(adapter);
2604 err_req_irq:
2605 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2606 
2607 	return rc;
2608 }
2609 
2610 static void ena_down(struct ena_adapter *adapter)
2611 {
2612 	int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2613 
2614 	netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2615 
2616 	clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2617 
2618 	u64_stats_update_begin(&adapter->syncp);
2619 	adapter->dev_stats.interface_down++;
2620 	u64_stats_update_end(&adapter->syncp);
2621 
2622 	netif_carrier_off(adapter->netdev);
2623 	netif_tx_disable(adapter->netdev);
2624 
2625 	/* After this point the napi handler won't enable the tx queue */
2626 	ena_napi_disable_in_range(adapter, 0, io_queue_count);
2627 
2628 	/* After destroy the queue there won't be any new interrupts */
2629 
2630 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2631 		int rc;
2632 
2633 		rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2634 		if (rc)
2635 			dev_err(&adapter->pdev->dev, "Device reset failed\n");
2636 		/* stop submitting admin commands on a device that was reset */
2637 		ena_com_set_admin_running_state(adapter->ena_dev, false);
2638 	}
2639 
2640 	ena_destroy_all_io_queues(adapter);
2641 
2642 	ena_disable_io_intr_sync(adapter);
2643 	ena_free_io_irq(adapter);
2644 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2645 
2646 	ena_free_all_tx_bufs(adapter);
2647 	ena_free_all_rx_bufs(adapter);
2648 	ena_free_all_io_tx_resources(adapter);
2649 	ena_free_all_io_rx_resources(adapter);
2650 }
2651 
2652 /* ena_open - Called when a network interface is made active
2653  * @netdev: network interface device structure
2654  *
2655  * Returns 0 on success, negative value on failure
2656  *
2657  * The open entry point is called when a network interface is made
2658  * active by the system (IFF_UP).  At this point all resources needed
2659  * for transmit and receive operations are allocated, the interrupt
2660  * handler is registered with the OS, the watchdog timer is started,
2661  * and the stack is notified that the interface is ready.
2662  */
2663 static int ena_open(struct net_device *netdev)
2664 {
2665 	struct ena_adapter *adapter = netdev_priv(netdev);
2666 	int rc;
2667 
2668 	/* Notify the stack of the actual queue counts. */
2669 	rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2670 	if (rc) {
2671 		netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2672 		return rc;
2673 	}
2674 
2675 	rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2676 	if (rc) {
2677 		netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2678 		return rc;
2679 	}
2680 
2681 	rc = ena_up(adapter);
2682 	if (rc)
2683 		return rc;
2684 
2685 	return rc;
2686 }
2687 
2688 /* ena_close - Disables a network interface
2689  * @netdev: network interface device structure
2690  *
2691  * Returns 0, this is not allowed to fail
2692  *
2693  * The close entry point is called when an interface is de-activated
2694  * by the OS.  The hardware is still under the drivers control, but
2695  * needs to be disabled.  A global MAC reset is issued to stop the
2696  * hardware, and all transmit and receive resources are freed.
2697  */
2698 static int ena_close(struct net_device *netdev)
2699 {
2700 	struct ena_adapter *adapter = netdev_priv(netdev);
2701 
2702 	netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2703 
2704 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2705 		return 0;
2706 
2707 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2708 		ena_down(adapter);
2709 
2710 	/* Check for device status and issue reset if needed*/
2711 	check_for_admin_com_state(adapter);
2712 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2713 		netif_err(adapter, ifdown, adapter->netdev,
2714 			  "Destroy failure, restarting device\n");
2715 		ena_dump_stats_to_dmesg(adapter);
2716 		/* rtnl lock already obtained in dev_ioctl() layer */
2717 		ena_destroy_device(adapter, false);
2718 		ena_restore_device(adapter);
2719 	}
2720 
2721 	return 0;
2722 }
2723 
2724 int ena_update_queue_sizes(struct ena_adapter *adapter,
2725 			   u32 new_tx_size,
2726 			   u32 new_rx_size)
2727 {
2728 	bool dev_was_up;
2729 
2730 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2731 	ena_close(adapter->netdev);
2732 	adapter->requested_tx_ring_size = new_tx_size;
2733 	adapter->requested_rx_ring_size = new_rx_size;
2734 	ena_init_io_rings(adapter,
2735 			  0,
2736 			  adapter->xdp_num_queues +
2737 			  adapter->num_io_queues);
2738 	return dev_was_up ? ena_up(adapter) : 0;
2739 }
2740 
2741 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2742 {
2743 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2744 	int prev_channel_count;
2745 	bool dev_was_up;
2746 
2747 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2748 	ena_close(adapter->netdev);
2749 	prev_channel_count = adapter->num_io_queues;
2750 	adapter->num_io_queues = new_channel_count;
2751 	if (ena_xdp_present(adapter) &&
2752 	    ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2753 		adapter->xdp_first_ring = new_channel_count;
2754 		adapter->xdp_num_queues = new_channel_count;
2755 		if (prev_channel_count > new_channel_count)
2756 			ena_xdp_exchange_program_rx_in_range(adapter,
2757 							     NULL,
2758 							     new_channel_count,
2759 							     prev_channel_count);
2760 		else
2761 			ena_xdp_exchange_program_rx_in_range(adapter,
2762 							     adapter->xdp_bpf_prog,
2763 							     prev_channel_count,
2764 							     new_channel_count);
2765 	}
2766 
2767 	/* We need to destroy the rss table so that the indirection
2768 	 * table will be reinitialized by ena_up()
2769 	 */
2770 	ena_com_rss_destroy(ena_dev);
2771 	ena_init_io_rings(adapter,
2772 			  0,
2773 			  adapter->xdp_num_queues +
2774 			  adapter->num_io_queues);
2775 	return dev_was_up ? ena_open(adapter->netdev) : 0;
2776 }
2777 
2778 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx,
2779 			struct sk_buff *skb,
2780 			bool disable_meta_caching)
2781 {
2782 	u32 mss = skb_shinfo(skb)->gso_size;
2783 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2784 	u8 l4_protocol = 0;
2785 
2786 	if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2787 		ena_tx_ctx->l4_csum_enable = 1;
2788 		if (mss) {
2789 			ena_tx_ctx->tso_enable = 1;
2790 			ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2791 			ena_tx_ctx->l4_csum_partial = 0;
2792 		} else {
2793 			ena_tx_ctx->tso_enable = 0;
2794 			ena_meta->l4_hdr_len = 0;
2795 			ena_tx_ctx->l4_csum_partial = 1;
2796 		}
2797 
2798 		switch (ip_hdr(skb)->version) {
2799 		case IPVERSION:
2800 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2801 			if (ip_hdr(skb)->frag_off & htons(IP_DF))
2802 				ena_tx_ctx->df = 1;
2803 			if (mss)
2804 				ena_tx_ctx->l3_csum_enable = 1;
2805 			l4_protocol = ip_hdr(skb)->protocol;
2806 			break;
2807 		case 6:
2808 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2809 			l4_protocol = ipv6_hdr(skb)->nexthdr;
2810 			break;
2811 		default:
2812 			break;
2813 		}
2814 
2815 		if (l4_protocol == IPPROTO_TCP)
2816 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2817 		else
2818 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2819 
2820 		ena_meta->mss = mss;
2821 		ena_meta->l3_hdr_len = skb_network_header_len(skb);
2822 		ena_meta->l3_hdr_offset = skb_network_offset(skb);
2823 		ena_tx_ctx->meta_valid = 1;
2824 	} else if (disable_meta_caching) {
2825 		memset(ena_meta, 0, sizeof(*ena_meta));
2826 		ena_tx_ctx->meta_valid = 1;
2827 	} else {
2828 		ena_tx_ctx->meta_valid = 0;
2829 	}
2830 }
2831 
2832 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
2833 				       struct sk_buff *skb)
2834 {
2835 	int num_frags, header_len, rc;
2836 
2837 	num_frags = skb_shinfo(skb)->nr_frags;
2838 	header_len = skb_headlen(skb);
2839 
2840 	if (num_frags < tx_ring->sgl_size)
2841 		return 0;
2842 
2843 	if ((num_frags == tx_ring->sgl_size) &&
2844 	    (header_len < tx_ring->tx_max_header_size))
2845 		return 0;
2846 
2847 	u64_stats_update_begin(&tx_ring->syncp);
2848 	tx_ring->tx_stats.linearize++;
2849 	u64_stats_update_end(&tx_ring->syncp);
2850 
2851 	rc = skb_linearize(skb);
2852 	if (unlikely(rc)) {
2853 		u64_stats_update_begin(&tx_ring->syncp);
2854 		tx_ring->tx_stats.linearize_failed++;
2855 		u64_stats_update_end(&tx_ring->syncp);
2856 	}
2857 
2858 	return rc;
2859 }
2860 
2861 static int ena_tx_map_skb(struct ena_ring *tx_ring,
2862 			  struct ena_tx_buffer *tx_info,
2863 			  struct sk_buff *skb,
2864 			  void **push_hdr,
2865 			  u16 *header_len)
2866 {
2867 	struct ena_adapter *adapter = tx_ring->adapter;
2868 	struct ena_com_buf *ena_buf;
2869 	dma_addr_t dma;
2870 	u32 skb_head_len, frag_len, last_frag;
2871 	u16 push_len = 0;
2872 	u16 delta = 0;
2873 	int i = 0;
2874 
2875 	skb_head_len = skb_headlen(skb);
2876 	tx_info->skb = skb;
2877 	ena_buf = tx_info->bufs;
2878 
2879 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2880 		/* When the device is LLQ mode, the driver will copy
2881 		 * the header into the device memory space.
2882 		 * the ena_com layer assume the header is in a linear
2883 		 * memory space.
2884 		 * This assumption might be wrong since part of the header
2885 		 * can be in the fragmented buffers.
2886 		 * Use skb_header_pointer to make sure the header is in a
2887 		 * linear memory space.
2888 		 */
2889 
2890 		push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
2891 		*push_hdr = skb_header_pointer(skb, 0, push_len,
2892 					       tx_ring->push_buf_intermediate_buf);
2893 		*header_len = push_len;
2894 		if (unlikely(skb->data != *push_hdr)) {
2895 			u64_stats_update_begin(&tx_ring->syncp);
2896 			tx_ring->tx_stats.llq_buffer_copy++;
2897 			u64_stats_update_end(&tx_ring->syncp);
2898 
2899 			delta = push_len - skb_head_len;
2900 		}
2901 	} else {
2902 		*push_hdr = NULL;
2903 		*header_len = min_t(u32, skb_head_len,
2904 				    tx_ring->tx_max_header_size);
2905 	}
2906 
2907 	netif_dbg(adapter, tx_queued, adapter->netdev,
2908 		  "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
2909 		  *push_hdr, push_len);
2910 
2911 	if (skb_head_len > push_len) {
2912 		dma = dma_map_single(tx_ring->dev, skb->data + push_len,
2913 				     skb_head_len - push_len, DMA_TO_DEVICE);
2914 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2915 			goto error_report_dma_error;
2916 
2917 		ena_buf->paddr = dma;
2918 		ena_buf->len = skb_head_len - push_len;
2919 
2920 		ena_buf++;
2921 		tx_info->num_of_bufs++;
2922 		tx_info->map_linear_data = 1;
2923 	} else {
2924 		tx_info->map_linear_data = 0;
2925 	}
2926 
2927 	last_frag = skb_shinfo(skb)->nr_frags;
2928 
2929 	for (i = 0; i < last_frag; i++) {
2930 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2931 
2932 		frag_len = skb_frag_size(frag);
2933 
2934 		if (unlikely(delta >= frag_len)) {
2935 			delta -= frag_len;
2936 			continue;
2937 		}
2938 
2939 		dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
2940 				       frag_len - delta, DMA_TO_DEVICE);
2941 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2942 			goto error_report_dma_error;
2943 
2944 		ena_buf->paddr = dma;
2945 		ena_buf->len = frag_len - delta;
2946 		ena_buf++;
2947 		tx_info->num_of_bufs++;
2948 		delta = 0;
2949 	}
2950 
2951 	return 0;
2952 
2953 error_report_dma_error:
2954 	u64_stats_update_begin(&tx_ring->syncp);
2955 	tx_ring->tx_stats.dma_mapping_err++;
2956 	u64_stats_update_end(&tx_ring->syncp);
2957 	netdev_warn(adapter->netdev, "failed to map skb\n");
2958 
2959 	tx_info->skb = NULL;
2960 
2961 	tx_info->num_of_bufs += i;
2962 	ena_unmap_tx_buff(tx_ring, tx_info);
2963 
2964 	return -EINVAL;
2965 }
2966 
2967 /* Called with netif_tx_lock. */
2968 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
2969 {
2970 	struct ena_adapter *adapter = netdev_priv(dev);
2971 	struct ena_tx_buffer *tx_info;
2972 	struct ena_com_tx_ctx ena_tx_ctx;
2973 	struct ena_ring *tx_ring;
2974 	struct netdev_queue *txq;
2975 	void *push_hdr;
2976 	u16 next_to_use, req_id, header_len;
2977 	int qid, rc;
2978 
2979 	netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
2980 	/*  Determine which tx ring we will be placed on */
2981 	qid = skb_get_queue_mapping(skb);
2982 	tx_ring = &adapter->tx_ring[qid];
2983 	txq = netdev_get_tx_queue(dev, qid);
2984 
2985 	rc = ena_check_and_linearize_skb(tx_ring, skb);
2986 	if (unlikely(rc))
2987 		goto error_drop_packet;
2988 
2989 	skb_tx_timestamp(skb);
2990 
2991 	next_to_use = tx_ring->next_to_use;
2992 	req_id = tx_ring->free_ids[next_to_use];
2993 	tx_info = &tx_ring->tx_buffer_info[req_id];
2994 	tx_info->num_of_bufs = 0;
2995 
2996 	WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
2997 
2998 	rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
2999 	if (unlikely(rc))
3000 		goto error_drop_packet;
3001 
3002 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
3003 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3004 	ena_tx_ctx.push_header = push_hdr;
3005 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3006 	ena_tx_ctx.req_id = req_id;
3007 	ena_tx_ctx.header_len = header_len;
3008 
3009 	/* set flags and meta data */
3010 	ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching);
3011 
3012 	rc = ena_xmit_common(dev,
3013 			     tx_ring,
3014 			     tx_info,
3015 			     &ena_tx_ctx,
3016 			     next_to_use,
3017 			     skb->len);
3018 	if (rc)
3019 		goto error_unmap_dma;
3020 
3021 	netdev_tx_sent_queue(txq, skb->len);
3022 
3023 	/* stop the queue when no more space available, the packet can have up
3024 	 * to sgl_size + 2. one for the meta descriptor and one for header
3025 	 * (if the header is larger than tx_max_header_size).
3026 	 */
3027 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3028 						   tx_ring->sgl_size + 2))) {
3029 		netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
3030 			  __func__, qid);
3031 
3032 		netif_tx_stop_queue(txq);
3033 		u64_stats_update_begin(&tx_ring->syncp);
3034 		tx_ring->tx_stats.queue_stop++;
3035 		u64_stats_update_end(&tx_ring->syncp);
3036 
3037 		/* There is a rare condition where this function decide to
3038 		 * stop the queue but meanwhile clean_tx_irq updates
3039 		 * next_to_completion and terminates.
3040 		 * The queue will remain stopped forever.
3041 		 * To solve this issue add a mb() to make sure that
3042 		 * netif_tx_stop_queue() write is vissible before checking if
3043 		 * there is additional space in the queue.
3044 		 */
3045 		smp_mb();
3046 
3047 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3048 						 ENA_TX_WAKEUP_THRESH)) {
3049 			netif_tx_wake_queue(txq);
3050 			u64_stats_update_begin(&tx_ring->syncp);
3051 			tx_ring->tx_stats.queue_wakeup++;
3052 			u64_stats_update_end(&tx_ring->syncp);
3053 		}
3054 	}
3055 
3056 	if (netif_xmit_stopped(txq) || !netdev_xmit_more()) {
3057 		/* trigger the dma engine. ena_com_write_sq_doorbell()
3058 		 * has a mb
3059 		 */
3060 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3061 		u64_stats_update_begin(&tx_ring->syncp);
3062 		tx_ring->tx_stats.doorbells++;
3063 		u64_stats_update_end(&tx_ring->syncp);
3064 	}
3065 
3066 	return NETDEV_TX_OK;
3067 
3068 error_unmap_dma:
3069 	ena_unmap_tx_buff(tx_ring, tx_info);
3070 	tx_info->skb = NULL;
3071 
3072 error_drop_packet:
3073 	dev_kfree_skb(skb);
3074 	return NETDEV_TX_OK;
3075 }
3076 
3077 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
3078 			    struct net_device *sb_dev)
3079 {
3080 	u16 qid;
3081 	/* we suspect that this is good for in--kernel network services that
3082 	 * want to loop incoming skb rx to tx in normal user generated traffic,
3083 	 * most probably we will not get to this
3084 	 */
3085 	if (skb_rx_queue_recorded(skb))
3086 		qid = skb_get_rx_queue(skb);
3087 	else
3088 		qid = netdev_pick_tx(dev, skb, NULL);
3089 
3090 	return qid;
3091 }
3092 
3093 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3094 {
3095 	struct ena_admin_host_info *host_info;
3096 	int rc;
3097 
3098 	/* Allocate only the host info */
3099 	rc = ena_com_allocate_host_info(ena_dev);
3100 	if (rc) {
3101 		pr_err("Cannot allocate host info\n");
3102 		return;
3103 	}
3104 
3105 	host_info = ena_dev->host_attr.host_info;
3106 
3107 	host_info->bdf = (pdev->bus->number << 8) | pdev->devfn;
3108 	host_info->os_type = ENA_ADMIN_OS_LINUX;
3109 	host_info->kernel_ver = LINUX_VERSION_CODE;
3110 	strlcpy(host_info->kernel_ver_str, utsname()->version,
3111 		sizeof(host_info->kernel_ver_str) - 1);
3112 	host_info->os_dist = 0;
3113 	strncpy(host_info->os_dist_str, utsname()->release,
3114 		sizeof(host_info->os_dist_str) - 1);
3115 	host_info->driver_version =
3116 		(DRV_MODULE_GEN_MAJOR) |
3117 		(DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3118 		(DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
3119 		("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
3120 	host_info->num_cpus = num_online_cpus();
3121 
3122 	host_info->driver_supported_features =
3123 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
3124 		ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK |
3125 		ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK |
3126 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
3127 
3128 	rc = ena_com_set_host_attributes(ena_dev);
3129 	if (rc) {
3130 		if (rc == -EOPNOTSUPP)
3131 			pr_warn("Cannot set host attributes\n");
3132 		else
3133 			pr_err("Cannot set host attributes\n");
3134 
3135 		goto err;
3136 	}
3137 
3138 	return;
3139 
3140 err:
3141 	ena_com_delete_host_info(ena_dev);
3142 }
3143 
3144 static void ena_config_debug_area(struct ena_adapter *adapter)
3145 {
3146 	u32 debug_area_size;
3147 	int rc, ss_count;
3148 
3149 	ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
3150 	if (ss_count <= 0) {
3151 		netif_err(adapter, drv, adapter->netdev,
3152 			  "SS count is negative\n");
3153 		return;
3154 	}
3155 
3156 	/* allocate 32 bytes for each string and 64bit for the value */
3157 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
3158 
3159 	rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
3160 	if (rc) {
3161 		pr_err("Cannot allocate debug area\n");
3162 		return;
3163 	}
3164 
3165 	rc = ena_com_set_host_attributes(adapter->ena_dev);
3166 	if (rc) {
3167 		if (rc == -EOPNOTSUPP)
3168 			netif_warn(adapter, drv, adapter->netdev,
3169 				   "Cannot set host attributes\n");
3170 		else
3171 			netif_err(adapter, drv, adapter->netdev,
3172 				  "Cannot set host attributes\n");
3173 		goto err;
3174 	}
3175 
3176 	return;
3177 err:
3178 	ena_com_delete_debug_area(adapter->ena_dev);
3179 }
3180 
3181 static void ena_get_stats64(struct net_device *netdev,
3182 			    struct rtnl_link_stats64 *stats)
3183 {
3184 	struct ena_adapter *adapter = netdev_priv(netdev);
3185 	struct ena_ring *rx_ring, *tx_ring;
3186 	unsigned int start;
3187 	u64 rx_drops;
3188 	u64 tx_drops;
3189 	int i;
3190 
3191 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3192 		return;
3193 
3194 	for (i = 0; i < adapter->num_io_queues; i++) {
3195 		u64 bytes, packets;
3196 
3197 		tx_ring = &adapter->tx_ring[i];
3198 
3199 		do {
3200 			start = u64_stats_fetch_begin_irq(&tx_ring->syncp);
3201 			packets = tx_ring->tx_stats.cnt;
3202 			bytes = tx_ring->tx_stats.bytes;
3203 		} while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start));
3204 
3205 		stats->tx_packets += packets;
3206 		stats->tx_bytes += bytes;
3207 
3208 		rx_ring = &adapter->rx_ring[i];
3209 
3210 		do {
3211 			start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
3212 			packets = rx_ring->rx_stats.cnt;
3213 			bytes = rx_ring->rx_stats.bytes;
3214 		} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
3215 
3216 		stats->rx_packets += packets;
3217 		stats->rx_bytes += bytes;
3218 	}
3219 
3220 	do {
3221 		start = u64_stats_fetch_begin_irq(&adapter->syncp);
3222 		rx_drops = adapter->dev_stats.rx_drops;
3223 		tx_drops = adapter->dev_stats.tx_drops;
3224 	} while (u64_stats_fetch_retry_irq(&adapter->syncp, start));
3225 
3226 	stats->rx_dropped = rx_drops;
3227 	stats->tx_dropped = tx_drops;
3228 
3229 	stats->multicast = 0;
3230 	stats->collisions = 0;
3231 
3232 	stats->rx_length_errors = 0;
3233 	stats->rx_crc_errors = 0;
3234 	stats->rx_frame_errors = 0;
3235 	stats->rx_fifo_errors = 0;
3236 	stats->rx_missed_errors = 0;
3237 	stats->tx_window_errors = 0;
3238 
3239 	stats->rx_errors = 0;
3240 	stats->tx_errors = 0;
3241 }
3242 
3243 static const struct net_device_ops ena_netdev_ops = {
3244 	.ndo_open		= ena_open,
3245 	.ndo_stop		= ena_close,
3246 	.ndo_start_xmit		= ena_start_xmit,
3247 	.ndo_select_queue	= ena_select_queue,
3248 	.ndo_get_stats64	= ena_get_stats64,
3249 	.ndo_tx_timeout		= ena_tx_timeout,
3250 	.ndo_change_mtu		= ena_change_mtu,
3251 	.ndo_set_mac_address	= NULL,
3252 	.ndo_validate_addr	= eth_validate_addr,
3253 	.ndo_bpf		= ena_xdp,
3254 };
3255 
3256 static int ena_device_validate_params(struct ena_adapter *adapter,
3257 				      struct ena_com_dev_get_features_ctx *get_feat_ctx)
3258 {
3259 	struct net_device *netdev = adapter->netdev;
3260 	int rc;
3261 
3262 	rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
3263 			      adapter->mac_addr);
3264 	if (!rc) {
3265 		netif_err(adapter, drv, netdev,
3266 			  "Error, mac address are different\n");
3267 		return -EINVAL;
3268 	}
3269 
3270 	if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
3271 		netif_err(adapter, drv, netdev,
3272 			  "Error, device max mtu is smaller than netdev MTU\n");
3273 		return -EINVAL;
3274 	}
3275 
3276 	return 0;
3277 }
3278 
3279 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config)
3280 {
3281 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
3282 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
3283 	llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
3284 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
3285 	llq_config->llq_ring_entry_size_value = 128;
3286 }
3287 
3288 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3289 					   struct ena_com_dev *ena_dev,
3290 					   struct ena_admin_feature_llq_desc *llq,
3291 					   struct ena_llq_configurations *llq_default_configurations)
3292 {
3293 	int rc;
3294 	u32 llq_feature_mask;
3295 
3296 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3297 	if (!(ena_dev->supported_features & llq_feature_mask)) {
3298 		dev_err(&pdev->dev,
3299 			"LLQ is not supported Fallback to host mode policy.\n");
3300 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3301 		return 0;
3302 	}
3303 
3304 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3305 	if (unlikely(rc)) {
3306 		dev_err(&pdev->dev,
3307 			"Failed to configure the device mode.  Fallback to host mode policy.\n");
3308 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3309 	}
3310 
3311 	return 0;
3312 }
3313 
3314 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
3315 			       int bars)
3316 {
3317 	bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR));
3318 
3319 	if (!has_mem_bar) {
3320 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3321 			dev_err(&pdev->dev,
3322 				"ENA device does not expose LLQ bar. Fallback to host mode policy.\n");
3323 			ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3324 		}
3325 
3326 		return 0;
3327 	}
3328 
3329 	ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3330 					   pci_resource_start(pdev, ENA_MEM_BAR),
3331 					   pci_resource_len(pdev, ENA_MEM_BAR));
3332 
3333 	if (!ena_dev->mem_bar)
3334 		return -EFAULT;
3335 
3336 	return 0;
3337 }
3338 
3339 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
3340 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
3341 			   bool *wd_state)
3342 {
3343 	struct ena_llq_configurations llq_config;
3344 	struct device *dev = &pdev->dev;
3345 	bool readless_supported;
3346 	u32 aenq_groups;
3347 	int dma_width;
3348 	int rc;
3349 
3350 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3351 	if (rc) {
3352 		dev_err(dev, "failed to init mmio read less\n");
3353 		return rc;
3354 	}
3355 
3356 	/* The PCIe configuration space revision id indicate if mmio reg
3357 	 * read is disabled
3358 	 */
3359 	readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3360 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3361 
3362 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3363 	if (rc) {
3364 		dev_err(dev, "Can not reset device\n");
3365 		goto err_mmio_read_less;
3366 	}
3367 
3368 	rc = ena_com_validate_version(ena_dev);
3369 	if (rc) {
3370 		dev_err(dev, "device version is too low\n");
3371 		goto err_mmio_read_less;
3372 	}
3373 
3374 	dma_width = ena_com_get_dma_width(ena_dev);
3375 	if (dma_width < 0) {
3376 		dev_err(dev, "Invalid dma width value %d", dma_width);
3377 		rc = dma_width;
3378 		goto err_mmio_read_less;
3379 	}
3380 
3381 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width));
3382 	if (rc) {
3383 		dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc);
3384 		goto err_mmio_read_less;
3385 	}
3386 
3387 	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width));
3388 	if (rc) {
3389 		dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n",
3390 			rc);
3391 		goto err_mmio_read_less;
3392 	}
3393 
3394 	/* ENA admin level init */
3395 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3396 	if (rc) {
3397 		dev_err(dev,
3398 			"Can not initialize ena admin queue with device\n");
3399 		goto err_mmio_read_less;
3400 	}
3401 
3402 	/* To enable the msix interrupts the driver needs to know the number
3403 	 * of queues. So the driver uses polling mode to retrieve this
3404 	 * information
3405 	 */
3406 	ena_com_set_admin_polling_mode(ena_dev, true);
3407 
3408 	ena_config_host_info(ena_dev, pdev);
3409 
3410 	/* Get Device Attributes*/
3411 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3412 	if (rc) {
3413 		dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3414 		goto err_admin_init;
3415 	}
3416 
3417 	/* Try to turn all the available aenq groups */
3418 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3419 		BIT(ENA_ADMIN_FATAL_ERROR) |
3420 		BIT(ENA_ADMIN_WARNING) |
3421 		BIT(ENA_ADMIN_NOTIFICATION) |
3422 		BIT(ENA_ADMIN_KEEP_ALIVE);
3423 
3424 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3425 
3426 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3427 	if (rc) {
3428 		dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3429 		goto err_admin_init;
3430 	}
3431 
3432 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3433 
3434 	set_default_llq_configurations(&llq_config);
3435 
3436 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq,
3437 					     &llq_config);
3438 	if (rc) {
3439 		dev_err(&pdev->dev, "ena device init failed\n");
3440 		goto err_admin_init;
3441 	}
3442 
3443 	return 0;
3444 
3445 err_admin_init:
3446 	ena_com_delete_host_info(ena_dev);
3447 	ena_com_admin_destroy(ena_dev);
3448 err_mmio_read_less:
3449 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3450 
3451 	return rc;
3452 }
3453 
3454 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3455 {
3456 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3457 	struct device *dev = &adapter->pdev->dev;
3458 	int rc;
3459 
3460 	rc = ena_enable_msix(adapter);
3461 	if (rc) {
3462 		dev_err(dev, "Can not reserve msix vectors\n");
3463 		return rc;
3464 	}
3465 
3466 	ena_setup_mgmnt_intr(adapter);
3467 
3468 	rc = ena_request_mgmnt_irq(adapter);
3469 	if (rc) {
3470 		dev_err(dev, "Can not setup management interrupts\n");
3471 		goto err_disable_msix;
3472 	}
3473 
3474 	ena_com_set_admin_polling_mode(ena_dev, false);
3475 
3476 	ena_com_admin_aenq_enable(ena_dev);
3477 
3478 	return 0;
3479 
3480 err_disable_msix:
3481 	ena_disable_msix(adapter);
3482 
3483 	return rc;
3484 }
3485 
3486 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3487 {
3488 	struct net_device *netdev = adapter->netdev;
3489 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3490 	bool dev_up;
3491 
3492 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3493 		return;
3494 
3495 	netif_carrier_off(netdev);
3496 
3497 	del_timer_sync(&adapter->timer_service);
3498 
3499 	dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3500 	adapter->dev_up_before_reset = dev_up;
3501 	if (!graceful)
3502 		ena_com_set_admin_running_state(ena_dev, false);
3503 
3504 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3505 		ena_down(adapter);
3506 
3507 	/* Stop the device from sending AENQ events (in case reset flag is set
3508 	 *  and device is up, ena_down() already reset the device.
3509 	 */
3510 	if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3511 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3512 
3513 	ena_free_mgmnt_irq(adapter);
3514 
3515 	ena_disable_msix(adapter);
3516 
3517 	ena_com_abort_admin_commands(ena_dev);
3518 
3519 	ena_com_wait_for_abort_completion(ena_dev);
3520 
3521 	ena_com_admin_destroy(ena_dev);
3522 
3523 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3524 
3525 	/* return reset reason to default value */
3526 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3527 
3528 	clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3529 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3530 }
3531 
3532 static int ena_restore_device(struct ena_adapter *adapter)
3533 {
3534 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3535 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3536 	struct pci_dev *pdev = adapter->pdev;
3537 	bool wd_state;
3538 	int rc;
3539 
3540 	set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3541 	rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
3542 	if (rc) {
3543 		dev_err(&pdev->dev, "Can not initialize device\n");
3544 		goto err;
3545 	}
3546 	adapter->wd_state = wd_state;
3547 
3548 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
3549 	if (rc) {
3550 		dev_err(&pdev->dev, "Validation of device parameters failed\n");
3551 		goto err_device_destroy;
3552 	}
3553 
3554 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3555 	if (rc) {
3556 		dev_err(&pdev->dev, "Enable MSI-X failed\n");
3557 		goto err_device_destroy;
3558 	}
3559 	/* If the interface was up before the reset bring it up */
3560 	if (adapter->dev_up_before_reset) {
3561 		rc = ena_up(adapter);
3562 		if (rc) {
3563 			dev_err(&pdev->dev, "Failed to create I/O queues\n");
3564 			goto err_disable_msix;
3565 		}
3566 	}
3567 
3568 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3569 
3570 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3571 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3572 		netif_carrier_on(adapter->netdev);
3573 
3574 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3575 	dev_err(&pdev->dev, "Device reset completed successfully\n");
3576 	adapter->last_keep_alive_jiffies = jiffies;
3577 
3578 	return rc;
3579 err_disable_msix:
3580 	ena_free_mgmnt_irq(adapter);
3581 	ena_disable_msix(adapter);
3582 err_device_destroy:
3583 	ena_com_abort_admin_commands(ena_dev);
3584 	ena_com_wait_for_abort_completion(ena_dev);
3585 	ena_com_admin_destroy(ena_dev);
3586 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3587 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3588 err:
3589 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3590 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3591 	dev_err(&pdev->dev,
3592 		"Reset attempt failed. Can not reset the device\n");
3593 
3594 	return rc;
3595 }
3596 
3597 static void ena_fw_reset_device(struct work_struct *work)
3598 {
3599 	struct ena_adapter *adapter =
3600 		container_of(work, struct ena_adapter, reset_task);
3601 
3602 	rtnl_lock();
3603 
3604 	if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3605 		ena_destroy_device(adapter, false);
3606 		ena_restore_device(adapter);
3607 	}
3608 
3609 	rtnl_unlock();
3610 }
3611 
3612 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3613 					struct ena_ring *rx_ring)
3614 {
3615 	if (likely(rx_ring->first_interrupt))
3616 		return 0;
3617 
3618 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3619 		return 0;
3620 
3621 	rx_ring->no_interrupt_event_cnt++;
3622 
3623 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3624 		netif_err(adapter, rx_err, adapter->netdev,
3625 			  "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3626 			  rx_ring->qid);
3627 		adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
3628 		smp_mb__before_atomic();
3629 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3630 		return -EIO;
3631 	}
3632 
3633 	return 0;
3634 }
3635 
3636 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3637 					  struct ena_ring *tx_ring)
3638 {
3639 	struct ena_tx_buffer *tx_buf;
3640 	unsigned long last_jiffies;
3641 	u32 missed_tx = 0;
3642 	int i, rc = 0;
3643 
3644 	for (i = 0; i < tx_ring->ring_size; i++) {
3645 		tx_buf = &tx_ring->tx_buffer_info[i];
3646 		last_jiffies = tx_buf->last_jiffies;
3647 
3648 		if (last_jiffies == 0)
3649 			/* no pending Tx at this location */
3650 			continue;
3651 
3652 		if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies +
3653 			     2 * adapter->missing_tx_completion_to))) {
3654 			/* If after graceful period interrupt is still not
3655 			 * received, we schedule a reset
3656 			 */
3657 			netif_err(adapter, tx_err, adapter->netdev,
3658 				  "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3659 				  tx_ring->qid);
3660 			adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
3661 			smp_mb__before_atomic();
3662 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3663 			return -EIO;
3664 		}
3665 
3666 		if (unlikely(time_is_before_jiffies(last_jiffies +
3667 				adapter->missing_tx_completion_to))) {
3668 			if (!tx_buf->print_once)
3669 				netif_notice(adapter, tx_err, adapter->netdev,
3670 					     "Found a Tx that wasn't completed on time, qid %d, index %d.\n",
3671 					     tx_ring->qid, i);
3672 
3673 			tx_buf->print_once = 1;
3674 			missed_tx++;
3675 		}
3676 	}
3677 
3678 	if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3679 		netif_err(adapter, tx_err, adapter->netdev,
3680 			  "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
3681 			  missed_tx,
3682 			  adapter->missing_tx_completion_threshold);
3683 		adapter->reset_reason =
3684 			ENA_REGS_RESET_MISS_TX_CMPL;
3685 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3686 		rc = -EIO;
3687 	}
3688 
3689 	u64_stats_update_begin(&tx_ring->syncp);
3690 	tx_ring->tx_stats.missed_tx += missed_tx;
3691 	u64_stats_update_end(&tx_ring->syncp);
3692 
3693 	return rc;
3694 }
3695 
3696 static void check_for_missing_completions(struct ena_adapter *adapter)
3697 {
3698 	struct ena_ring *tx_ring;
3699 	struct ena_ring *rx_ring;
3700 	int i, budget, rc;
3701 	int io_queue_count;
3702 
3703 	io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
3704 	/* Make sure the driver doesn't turn the device in other process */
3705 	smp_rmb();
3706 
3707 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3708 		return;
3709 
3710 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3711 		return;
3712 
3713 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
3714 		return;
3715 
3716 	budget = ENA_MONITORED_TX_QUEUES;
3717 
3718 	for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) {
3719 		tx_ring = &adapter->tx_ring[i];
3720 		rx_ring = &adapter->rx_ring[i];
3721 
3722 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
3723 		if (unlikely(rc))
3724 			return;
3725 
3726 		rc =  !ENA_IS_XDP_INDEX(adapter, i) ?
3727 			check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
3728 		if (unlikely(rc))
3729 			return;
3730 
3731 		budget--;
3732 		if (!budget)
3733 			break;
3734 	}
3735 
3736 	adapter->last_monitored_tx_qid = i % io_queue_count;
3737 }
3738 
3739 /* trigger napi schedule after 2 consecutive detections */
3740 #define EMPTY_RX_REFILL 2
3741 /* For the rare case where the device runs out of Rx descriptors and the
3742  * napi handler failed to refill new Rx descriptors (due to a lack of memory
3743  * for example).
3744  * This case will lead to a deadlock:
3745  * The device won't send interrupts since all the new Rx packets will be dropped
3746  * The napi handler won't allocate new Rx descriptors so the device will be
3747  * able to send new packets.
3748  *
3749  * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
3750  * It is recommended to have at least 512MB, with a minimum of 128MB for
3751  * constrained environment).
3752  *
3753  * When such a situation is detected - Reschedule napi
3754  */
3755 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
3756 {
3757 	struct ena_ring *rx_ring;
3758 	int i, refill_required;
3759 
3760 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3761 		return;
3762 
3763 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3764 		return;
3765 
3766 	for (i = 0; i < adapter->num_io_queues; i++) {
3767 		rx_ring = &adapter->rx_ring[i];
3768 
3769 		refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
3770 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3771 			rx_ring->empty_rx_queue++;
3772 
3773 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3774 				u64_stats_update_begin(&rx_ring->syncp);
3775 				rx_ring->rx_stats.empty_rx_ring++;
3776 				u64_stats_update_end(&rx_ring->syncp);
3777 
3778 				netif_err(adapter, drv, adapter->netdev,
3779 					  "trigger refill for ring %d\n", i);
3780 
3781 				napi_schedule(rx_ring->napi);
3782 				rx_ring->empty_rx_queue = 0;
3783 			}
3784 		} else {
3785 			rx_ring->empty_rx_queue = 0;
3786 		}
3787 	}
3788 }
3789 
3790 /* Check for keep alive expiration */
3791 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3792 {
3793 	unsigned long keep_alive_expired;
3794 
3795 	if (!adapter->wd_state)
3796 		return;
3797 
3798 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3799 		return;
3800 
3801 	keep_alive_expired = adapter->last_keep_alive_jiffies +
3802 			     adapter->keep_alive_timeout;
3803 	if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
3804 		netif_err(adapter, drv, adapter->netdev,
3805 			  "Keep alive watchdog timeout.\n");
3806 		u64_stats_update_begin(&adapter->syncp);
3807 		adapter->dev_stats.wd_expired++;
3808 		u64_stats_update_end(&adapter->syncp);
3809 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3810 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3811 	}
3812 }
3813 
3814 static void check_for_admin_com_state(struct ena_adapter *adapter)
3815 {
3816 	if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
3817 		netif_err(adapter, drv, adapter->netdev,
3818 			  "ENA admin queue is not in running state!\n");
3819 		u64_stats_update_begin(&adapter->syncp);
3820 		adapter->dev_stats.admin_q_pause++;
3821 		u64_stats_update_end(&adapter->syncp);
3822 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3823 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3824 	}
3825 }
3826 
3827 static void ena_update_hints(struct ena_adapter *adapter,
3828 			     struct ena_admin_ena_hw_hints *hints)
3829 {
3830 	struct net_device *netdev = adapter->netdev;
3831 
3832 	if (hints->admin_completion_tx_timeout)
3833 		adapter->ena_dev->admin_queue.completion_timeout =
3834 			hints->admin_completion_tx_timeout * 1000;
3835 
3836 	if (hints->mmio_read_timeout)
3837 		/* convert to usec */
3838 		adapter->ena_dev->mmio_read.reg_read_to =
3839 			hints->mmio_read_timeout * 1000;
3840 
3841 	if (hints->missed_tx_completion_count_threshold_to_reset)
3842 		adapter->missing_tx_completion_threshold =
3843 			hints->missed_tx_completion_count_threshold_to_reset;
3844 
3845 	if (hints->missing_tx_completion_timeout) {
3846 		if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3847 			adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
3848 		else
3849 			adapter->missing_tx_completion_to =
3850 				msecs_to_jiffies(hints->missing_tx_completion_timeout);
3851 	}
3852 
3853 	if (hints->netdev_wd_timeout)
3854 		netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
3855 
3856 	if (hints->driver_watchdog_timeout) {
3857 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3858 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3859 		else
3860 			adapter->keep_alive_timeout =
3861 				msecs_to_jiffies(hints->driver_watchdog_timeout);
3862 	}
3863 }
3864 
3865 static void ena_update_host_info(struct ena_admin_host_info *host_info,
3866 				 struct net_device *netdev)
3867 {
3868 	host_info->supported_network_features[0] =
3869 		netdev->features & GENMASK_ULL(31, 0);
3870 	host_info->supported_network_features[1] =
3871 		(netdev->features & GENMASK_ULL(63, 32)) >> 32;
3872 }
3873 
3874 static void ena_timer_service(struct timer_list *t)
3875 {
3876 	struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
3877 	u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
3878 	struct ena_admin_host_info *host_info =
3879 		adapter->ena_dev->host_attr.host_info;
3880 
3881 	check_for_missing_keep_alive(adapter);
3882 
3883 	check_for_admin_com_state(adapter);
3884 
3885 	check_for_missing_completions(adapter);
3886 
3887 	check_for_empty_rx_ring(adapter);
3888 
3889 	if (debug_area)
3890 		ena_dump_stats_to_buf(adapter, debug_area);
3891 
3892 	if (host_info)
3893 		ena_update_host_info(host_info, adapter->netdev);
3894 
3895 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3896 		netif_err(adapter, drv, adapter->netdev,
3897 			  "Trigger reset is on\n");
3898 		ena_dump_stats_to_dmesg(adapter);
3899 		queue_work(ena_wq, &adapter->reset_task);
3900 		return;
3901 	}
3902 
3903 	/* Reset the timer */
3904 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3905 }
3906 
3907 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev,
3908 				     struct ena_com_dev *ena_dev,
3909 				     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3910 {
3911 	u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
3912 
3913 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3914 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3915 			&get_feat_ctx->max_queue_ext.max_queue_ext;
3916 		io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
3917 				  max_queue_ext->max_rx_cq_num);
3918 
3919 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
3920 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
3921 	} else {
3922 		struct ena_admin_queue_feature_desc *max_queues =
3923 			&get_feat_ctx->max_queues;
3924 		io_tx_sq_num = max_queues->max_sq_num;
3925 		io_tx_cq_num = max_queues->max_cq_num;
3926 		io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
3927 	}
3928 
3929 	/* In case of LLQ use the llq fields for the tx SQ/CQ */
3930 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3931 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
3932 
3933 	max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
3934 	max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
3935 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
3936 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
3937 	/* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */
3938 	max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
3939 	if (unlikely(!max_num_io_queues)) {
3940 		dev_err(&pdev->dev, "The device doesn't have io queues\n");
3941 		return -EFAULT;
3942 	}
3943 
3944 	return max_num_io_queues;
3945 }
3946 
3947 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
3948 				 struct net_device *netdev)
3949 {
3950 	netdev_features_t dev_features = 0;
3951 
3952 	/* Set offload features */
3953 	if (feat->offload.tx &
3954 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
3955 		dev_features |= NETIF_F_IP_CSUM;
3956 
3957 	if (feat->offload.tx &
3958 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
3959 		dev_features |= NETIF_F_IPV6_CSUM;
3960 
3961 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
3962 		dev_features |= NETIF_F_TSO;
3963 
3964 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
3965 		dev_features |= NETIF_F_TSO6;
3966 
3967 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
3968 		dev_features |= NETIF_F_TSO_ECN;
3969 
3970 	if (feat->offload.rx_supported &
3971 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
3972 		dev_features |= NETIF_F_RXCSUM;
3973 
3974 	if (feat->offload.rx_supported &
3975 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
3976 		dev_features |= NETIF_F_RXCSUM;
3977 
3978 	netdev->features =
3979 		dev_features |
3980 		NETIF_F_SG |
3981 		NETIF_F_RXHASH |
3982 		NETIF_F_HIGHDMA;
3983 
3984 	netdev->hw_features |= netdev->features;
3985 	netdev->vlan_features |= netdev->features;
3986 }
3987 
3988 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
3989 				     struct ena_com_dev_get_features_ctx *feat)
3990 {
3991 	struct net_device *netdev = adapter->netdev;
3992 
3993 	/* Copy mac address */
3994 	if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
3995 		eth_hw_addr_random(netdev);
3996 		ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
3997 	} else {
3998 		ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
3999 		ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
4000 	}
4001 
4002 	/* Set offload features */
4003 	ena_set_dev_offloads(feat, netdev);
4004 
4005 	adapter->max_mtu = feat->dev_attr.max_mtu;
4006 	netdev->max_mtu = adapter->max_mtu;
4007 	netdev->min_mtu = ENA_MIN_MTU;
4008 }
4009 
4010 static int ena_rss_init_default(struct ena_adapter *adapter)
4011 {
4012 	struct ena_com_dev *ena_dev = adapter->ena_dev;
4013 	struct device *dev = &adapter->pdev->dev;
4014 	int rc, i;
4015 	u32 val;
4016 
4017 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
4018 	if (unlikely(rc)) {
4019 		dev_err(dev, "Cannot init indirect table\n");
4020 		goto err_rss_init;
4021 	}
4022 
4023 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
4024 		val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
4025 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
4026 						       ENA_IO_RXQ_IDX(val));
4027 		if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4028 			dev_err(dev, "Cannot fill indirect table\n");
4029 			goto err_fill_indir;
4030 		}
4031 	}
4032 
4033 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL,
4034 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
4035 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4036 		dev_err(dev, "Cannot fill hash function\n");
4037 		goto err_fill_indir;
4038 	}
4039 
4040 	rc = ena_com_set_default_hash_ctrl(ena_dev);
4041 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4042 		dev_err(dev, "Cannot fill hash control\n");
4043 		goto err_fill_indir;
4044 	}
4045 
4046 	return 0;
4047 
4048 err_fill_indir:
4049 	ena_com_rss_destroy(ena_dev);
4050 err_rss_init:
4051 
4052 	return rc;
4053 }
4054 
4055 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
4056 {
4057 	int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4058 
4059 	pci_release_selected_regions(pdev, release_bars);
4060 }
4061 
4062 
4063 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx)
4064 {
4065 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
4066 	struct ena_com_dev *ena_dev = ctx->ena_dev;
4067 	u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
4068 	u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
4069 	u32 max_tx_queue_size;
4070 	u32 max_rx_queue_size;
4071 
4072 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
4073 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
4074 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
4075 		max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
4076 					  max_queue_ext->max_rx_sq_depth);
4077 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
4078 
4079 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4080 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4081 						  llq->max_llq_depth);
4082 		else
4083 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4084 						  max_queue_ext->max_tx_sq_depth);
4085 
4086 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4087 					     max_queue_ext->max_per_packet_tx_descs);
4088 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4089 					     max_queue_ext->max_per_packet_rx_descs);
4090 	} else {
4091 		struct ena_admin_queue_feature_desc *max_queues =
4092 			&ctx->get_feat_ctx->max_queues;
4093 		max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
4094 					  max_queues->max_sq_depth);
4095 		max_tx_queue_size = max_queues->max_cq_depth;
4096 
4097 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4098 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4099 						  llq->max_llq_depth);
4100 		else
4101 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4102 						  max_queues->max_sq_depth);
4103 
4104 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4105 					     max_queues->max_packet_tx_descs);
4106 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4107 					     max_queues->max_packet_rx_descs);
4108 	}
4109 
4110 	max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
4111 	max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
4112 
4113 	tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
4114 				  max_tx_queue_size);
4115 	rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
4116 				  max_rx_queue_size);
4117 
4118 	tx_queue_size = rounddown_pow_of_two(tx_queue_size);
4119 	rx_queue_size = rounddown_pow_of_two(rx_queue_size);
4120 
4121 	ctx->max_tx_queue_size = max_tx_queue_size;
4122 	ctx->max_rx_queue_size = max_rx_queue_size;
4123 	ctx->tx_queue_size = tx_queue_size;
4124 	ctx->rx_queue_size = rx_queue_size;
4125 
4126 	return 0;
4127 }
4128 
4129 /* ena_probe - Device Initialization Routine
4130  * @pdev: PCI device information struct
4131  * @ent: entry in ena_pci_tbl
4132  *
4133  * Returns 0 on success, negative on failure
4134  *
4135  * ena_probe initializes an adapter identified by a pci_dev structure.
4136  * The OS initialization, configuring of the adapter private structure,
4137  * and a hardware reset occur.
4138  */
4139 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4140 {
4141 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
4142 	struct ena_com_dev_get_features_ctx get_feat_ctx;
4143 	struct ena_com_dev *ena_dev = NULL;
4144 	struct ena_adapter *adapter;
4145 	struct net_device *netdev;
4146 	static int adapters_found;
4147 	u32 max_num_io_queues;
4148 	char *queue_type_str;
4149 	bool wd_state;
4150 	int bars, rc;
4151 
4152 	dev_dbg(&pdev->dev, "%s\n", __func__);
4153 
4154 	rc = pci_enable_device_mem(pdev);
4155 	if (rc) {
4156 		dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
4157 		return rc;
4158 	}
4159 
4160 	pci_set_master(pdev);
4161 
4162 	ena_dev = vzalloc(sizeof(*ena_dev));
4163 	if (!ena_dev) {
4164 		rc = -ENOMEM;
4165 		goto err_disable_device;
4166 	}
4167 
4168 	bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4169 	rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
4170 	if (rc) {
4171 		dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
4172 			rc);
4173 		goto err_free_ena_dev;
4174 	}
4175 
4176 	ena_dev->reg_bar = devm_ioremap(&pdev->dev,
4177 					pci_resource_start(pdev, ENA_REG_BAR),
4178 					pci_resource_len(pdev, ENA_REG_BAR));
4179 	if (!ena_dev->reg_bar) {
4180 		dev_err(&pdev->dev, "failed to remap regs bar\n");
4181 		rc = -EFAULT;
4182 		goto err_free_region;
4183 	}
4184 
4185 	ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US;
4186 
4187 	ena_dev->dmadev = &pdev->dev;
4188 
4189 	rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
4190 	if (rc) {
4191 		dev_err(&pdev->dev, "ena device init failed\n");
4192 		if (rc == -ETIME)
4193 			rc = -EPROBE_DEFER;
4194 		goto err_free_region;
4195 	}
4196 
4197 	rc = ena_map_llq_mem_bar(pdev, ena_dev, bars);
4198 	if (rc) {
4199 		dev_err(&pdev->dev, "ena llq bar mapping failed\n");
4200 		goto err_free_ena_dev;
4201 	}
4202 
4203 	calc_queue_ctx.ena_dev = ena_dev;
4204 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
4205 	calc_queue_ctx.pdev = pdev;
4206 
4207 	/* Initial TX and RX interrupt delay. Assumes 1 usec granularity.
4208 	 * Updated during device initialization with the real granularity
4209 	 */
4210 	ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
4211 	ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
4212 	ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
4213 	max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
4214 	rc = ena_calc_io_queue_size(&calc_queue_ctx);
4215 	if (rc || !max_num_io_queues) {
4216 		rc = -EFAULT;
4217 		goto err_device_destroy;
4218 	}
4219 
4220 	/* dev zeroed in init_etherdev */
4221 	netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues);
4222 	if (!netdev) {
4223 		dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
4224 		rc = -ENOMEM;
4225 		goto err_device_destroy;
4226 	}
4227 
4228 	SET_NETDEV_DEV(netdev, &pdev->dev);
4229 
4230 	adapter = netdev_priv(netdev);
4231 	pci_set_drvdata(pdev, adapter);
4232 
4233 	adapter->ena_dev = ena_dev;
4234 	adapter->netdev = netdev;
4235 	adapter->pdev = pdev;
4236 
4237 	ena_set_conf_feat_params(adapter, &get_feat_ctx);
4238 
4239 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4240 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
4241 
4242 	adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size;
4243 	adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size;
4244 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
4245 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
4246 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
4247 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
4248 
4249 	adapter->num_io_queues = max_num_io_queues;
4250 	adapter->max_num_io_queues = max_num_io_queues;
4251 	adapter->last_monitored_tx_qid = 0;
4252 
4253 	adapter->xdp_first_ring = 0;
4254 	adapter->xdp_num_queues = 0;
4255 
4256 	adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
4257 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4258 		adapter->disable_meta_caching =
4259 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
4260 			   BIT(ENA_ADMIN_DISABLE_META_CACHING));
4261 
4262 	adapter->wd_state = wd_state;
4263 
4264 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
4265 
4266 	rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
4267 	if (rc) {
4268 		dev_err(&pdev->dev,
4269 			"Failed to query interrupt moderation feature\n");
4270 		goto err_netdev_destroy;
4271 	}
4272 	ena_init_io_rings(adapter,
4273 			  0,
4274 			  adapter->xdp_num_queues +
4275 			  adapter->num_io_queues);
4276 
4277 	netdev->netdev_ops = &ena_netdev_ops;
4278 	netdev->watchdog_timeo = TX_TIMEOUT;
4279 	ena_set_ethtool_ops(netdev);
4280 
4281 	netdev->priv_flags |= IFF_UNICAST_FLT;
4282 
4283 	u64_stats_init(&adapter->syncp);
4284 
4285 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
4286 	if (rc) {
4287 		dev_err(&pdev->dev,
4288 			"Failed to enable and set the admin interrupts\n");
4289 		goto err_worker_destroy;
4290 	}
4291 	rc = ena_rss_init_default(adapter);
4292 	if (rc && (rc != -EOPNOTSUPP)) {
4293 		dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
4294 		goto err_free_msix;
4295 	}
4296 
4297 	ena_config_debug_area(adapter);
4298 
4299 	memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
4300 
4301 	netif_carrier_off(netdev);
4302 
4303 	rc = register_netdev(netdev);
4304 	if (rc) {
4305 		dev_err(&pdev->dev, "Cannot register net device\n");
4306 		goto err_rss;
4307 	}
4308 
4309 	INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
4310 
4311 	adapter->last_keep_alive_jiffies = jiffies;
4312 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
4313 	adapter->missing_tx_completion_to = TX_TIMEOUT;
4314 	adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
4315 
4316 	ena_update_hints(adapter, &get_feat_ctx.hw_hints);
4317 
4318 	timer_setup(&adapter->timer_service, ena_timer_service, 0);
4319 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4320 
4321 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
4322 		queue_type_str = "Regular";
4323 	else
4324 		queue_type_str = "Low Latency";
4325 
4326 	dev_info(&pdev->dev,
4327 		 "%s found at mem %lx, mac addr %pM, Placement policy: %s\n",
4328 		 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
4329 		 netdev->dev_addr, queue_type_str);
4330 
4331 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
4332 
4333 	adapters_found++;
4334 
4335 	return 0;
4336 
4337 err_rss:
4338 	ena_com_delete_debug_area(ena_dev);
4339 	ena_com_rss_destroy(ena_dev);
4340 err_free_msix:
4341 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
4342 	/* stop submitting admin commands on a device that was reset */
4343 	ena_com_set_admin_running_state(ena_dev, false);
4344 	ena_free_mgmnt_irq(adapter);
4345 	ena_disable_msix(adapter);
4346 err_worker_destroy:
4347 	del_timer(&adapter->timer_service);
4348 err_netdev_destroy:
4349 	free_netdev(netdev);
4350 err_device_destroy:
4351 	ena_com_delete_host_info(ena_dev);
4352 	ena_com_admin_destroy(ena_dev);
4353 err_free_region:
4354 	ena_release_bars(ena_dev, pdev);
4355 err_free_ena_dev:
4356 	vfree(ena_dev);
4357 err_disable_device:
4358 	pci_disable_device(pdev);
4359 	return rc;
4360 }
4361 
4362 /*****************************************************************************/
4363 
4364 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines
4365  * @pdev: PCI device information struct
4366  * @shutdown: Is it a shutdown operation? If false, means it is a removal
4367  *
4368  * __ena_shutoff is a helper routine that does the real work on shutdown and
4369  * removal paths; the difference between those paths is with regards to whether
4370  * dettach or unregister the netdevice.
4371  */
4372 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown)
4373 {
4374 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4375 	struct ena_com_dev *ena_dev;
4376 	struct net_device *netdev;
4377 
4378 	ena_dev = adapter->ena_dev;
4379 	netdev = adapter->netdev;
4380 
4381 #ifdef CONFIG_RFS_ACCEL
4382 	if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
4383 		free_irq_cpu_rmap(netdev->rx_cpu_rmap);
4384 		netdev->rx_cpu_rmap = NULL;
4385 	}
4386 #endif /* CONFIG_RFS_ACCEL */
4387 
4388 	/* Make sure timer and reset routine won't be called after
4389 	 * freeing device resources.
4390 	 */
4391 	del_timer_sync(&adapter->timer_service);
4392 	cancel_work_sync(&adapter->reset_task);
4393 
4394 	rtnl_lock(); /* lock released inside the below if-else block */
4395 	adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN;
4396 	ena_destroy_device(adapter, true);
4397 	if (shutdown) {
4398 		netif_device_detach(netdev);
4399 		dev_close(netdev);
4400 		rtnl_unlock();
4401 	} else {
4402 		rtnl_unlock();
4403 		unregister_netdev(netdev);
4404 		free_netdev(netdev);
4405 	}
4406 
4407 	ena_com_rss_destroy(ena_dev);
4408 
4409 	ena_com_delete_debug_area(ena_dev);
4410 
4411 	ena_com_delete_host_info(ena_dev);
4412 
4413 	ena_release_bars(ena_dev, pdev);
4414 
4415 	pci_disable_device(pdev);
4416 
4417 	vfree(ena_dev);
4418 }
4419 
4420 /* ena_remove - Device Removal Routine
4421  * @pdev: PCI device information struct
4422  *
4423  * ena_remove is called by the PCI subsystem to alert the driver
4424  * that it should release a PCI device.
4425  */
4426 
4427 static void ena_remove(struct pci_dev *pdev)
4428 {
4429 	__ena_shutoff(pdev, false);
4430 }
4431 
4432 /* ena_shutdown - Device Shutdown Routine
4433  * @pdev: PCI device information struct
4434  *
4435  * ena_shutdown is called by the PCI subsystem to alert the driver that
4436  * a shutdown/reboot (or kexec) is happening and device must be disabled.
4437  */
4438 
4439 static void ena_shutdown(struct pci_dev *pdev)
4440 {
4441 	__ena_shutoff(pdev, true);
4442 }
4443 
4444 /* ena_suspend - PM suspend callback
4445  * @dev_d: Device information struct
4446  */
4447 static int __maybe_unused ena_suspend(struct device *dev_d)
4448 {
4449 	struct pci_dev *pdev = to_pci_dev(dev_d);
4450 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4451 
4452 	u64_stats_update_begin(&adapter->syncp);
4453 	adapter->dev_stats.suspend++;
4454 	u64_stats_update_end(&adapter->syncp);
4455 
4456 	rtnl_lock();
4457 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4458 		dev_err(&pdev->dev,
4459 			"ignoring device reset request as the device is being suspended\n");
4460 		clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4461 	}
4462 	ena_destroy_device(adapter, true);
4463 	rtnl_unlock();
4464 	return 0;
4465 }
4466 
4467 /* ena_resume - PM resume callback
4468  * @dev_d: Device information struct
4469  */
4470 static int __maybe_unused ena_resume(struct device *dev_d)
4471 {
4472 	struct ena_adapter *adapter = dev_get_drvdata(dev_d);
4473 	int rc;
4474 
4475 	u64_stats_update_begin(&adapter->syncp);
4476 	adapter->dev_stats.resume++;
4477 	u64_stats_update_end(&adapter->syncp);
4478 
4479 	rtnl_lock();
4480 	rc = ena_restore_device(adapter);
4481 	rtnl_unlock();
4482 	return rc;
4483 }
4484 
4485 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume);
4486 
4487 static struct pci_driver ena_pci_driver = {
4488 	.name		= DRV_MODULE_NAME,
4489 	.id_table	= ena_pci_tbl,
4490 	.probe		= ena_probe,
4491 	.remove		= ena_remove,
4492 	.shutdown	= ena_shutdown,
4493 	.driver.pm	= &ena_pm_ops,
4494 	.sriov_configure = pci_sriov_configure_simple,
4495 };
4496 
4497 static int __init ena_init(void)
4498 {
4499 	ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4500 	if (!ena_wq) {
4501 		pr_err("Failed to create workqueue\n");
4502 		return -ENOMEM;
4503 	}
4504 
4505 	return pci_register_driver(&ena_pci_driver);
4506 }
4507 
4508 static void __exit ena_cleanup(void)
4509 {
4510 	pci_unregister_driver(&ena_pci_driver);
4511 
4512 	if (ena_wq) {
4513 		destroy_workqueue(ena_wq);
4514 		ena_wq = NULL;
4515 	}
4516 }
4517 
4518 /******************************************************************************
4519  ******************************** AENQ Handlers *******************************
4520  *****************************************************************************/
4521 /* ena_update_on_link_change:
4522  * Notify the network interface about the change in link status
4523  */
4524 static void ena_update_on_link_change(void *adapter_data,
4525 				      struct ena_admin_aenq_entry *aenq_e)
4526 {
4527 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4528 	struct ena_admin_aenq_link_change_desc *aenq_desc =
4529 		(struct ena_admin_aenq_link_change_desc *)aenq_e;
4530 	int status = aenq_desc->flags &
4531 		ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4532 
4533 	if (status) {
4534 		netdev_dbg(adapter->netdev, "%s\n", __func__);
4535 		set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4536 		if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4537 			netif_carrier_on(adapter->netdev);
4538 	} else {
4539 		clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4540 		netif_carrier_off(adapter->netdev);
4541 	}
4542 }
4543 
4544 static void ena_keep_alive_wd(void *adapter_data,
4545 			      struct ena_admin_aenq_entry *aenq_e)
4546 {
4547 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4548 	struct ena_admin_aenq_keep_alive_desc *desc;
4549 	u64 rx_drops;
4550 	u64 tx_drops;
4551 
4552 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4553 	adapter->last_keep_alive_jiffies = jiffies;
4554 
4555 	rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4556 	tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low;
4557 
4558 	u64_stats_update_begin(&adapter->syncp);
4559 	/* These stats are accumulated by the device, so the counters indicate
4560 	 * all drops since last reset.
4561 	 */
4562 	adapter->dev_stats.rx_drops = rx_drops;
4563 	adapter->dev_stats.tx_drops = tx_drops;
4564 	u64_stats_update_end(&adapter->syncp);
4565 }
4566 
4567 static void ena_notification(void *adapter_data,
4568 			     struct ena_admin_aenq_entry *aenq_e)
4569 {
4570 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4571 	struct ena_admin_ena_hw_hints *hints;
4572 
4573 	WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4574 	     "Invalid group(%x) expected %x\n",
4575 	     aenq_e->aenq_common_desc.group,
4576 	     ENA_ADMIN_NOTIFICATION);
4577 
4578 	switch (aenq_e->aenq_common_desc.syndrom) {
4579 	case ENA_ADMIN_UPDATE_HINTS:
4580 		hints = (struct ena_admin_ena_hw_hints *)
4581 			(&aenq_e->inline_data_w4);
4582 		ena_update_hints(adapter, hints);
4583 		break;
4584 	default:
4585 		netif_err(adapter, drv, adapter->netdev,
4586 			  "Invalid aenq notification link state %d\n",
4587 			  aenq_e->aenq_common_desc.syndrom);
4588 	}
4589 }
4590 
4591 /* This handler will called for unknown event group or unimplemented handlers*/
4592 static void unimplemented_aenq_handler(void *data,
4593 				       struct ena_admin_aenq_entry *aenq_e)
4594 {
4595 	struct ena_adapter *adapter = (struct ena_adapter *)data;
4596 
4597 	netif_err(adapter, drv, adapter->netdev,
4598 		  "Unknown event was received or event with unimplemented handler\n");
4599 }
4600 
4601 static struct ena_aenq_handlers aenq_handlers = {
4602 	.handlers = {
4603 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4604 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4605 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4606 	},
4607 	.unimplemented_handler = unimplemented_aenq_handler
4608 };
4609 
4610 module_init(ena_init);
4611 module_exit(ena_cleanup);
4612