1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #ifdef CONFIG_RFS_ACCEL 9 #include <linux/cpu_rmap.h> 10 #endif /* CONFIG_RFS_ACCEL */ 11 #include <linux/ethtool.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/numa.h> 15 #include <linux/pci.h> 16 #include <linux/utsname.h> 17 #include <linux/version.h> 18 #include <linux/vmalloc.h> 19 #include <net/ip.h> 20 21 #include "ena_netdev.h" 22 #include "ena_pci_id_tbl.h" 23 #include "ena_xdp.h" 24 25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 26 MODULE_DESCRIPTION(DEVICE_NAME); 27 MODULE_LICENSE("GPL"); 28 29 /* Time in jiffies before concluding the transmitter is hung. */ 30 #define TX_TIMEOUT (5 * HZ) 31 32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus()) 33 34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 35 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 36 37 static struct ena_aenq_handlers aenq_handlers; 38 39 static struct workqueue_struct *ena_wq; 40 41 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 42 43 static int ena_rss_init_default(struct ena_adapter *adapter); 44 static void check_for_admin_com_state(struct ena_adapter *adapter); 45 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful); 46 static int ena_restore_device(struct ena_adapter *adapter); 47 48 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) 49 { 50 struct ena_adapter *adapter = netdev_priv(dev); 51 52 /* Change the state of the device to trigger reset 53 * Check that we are not in the middle or a trigger already 54 */ 55 56 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 57 return; 58 59 ena_reset_device(adapter, ENA_REGS_RESET_OS_NETDEV_WD); 60 ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp); 61 62 netif_err(adapter, tx_err, dev, "Transmit time out\n"); 63 } 64 65 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 66 { 67 int i; 68 69 for (i = 0; i < adapter->num_io_queues; i++) 70 adapter->rx_ring[i].mtu = mtu; 71 } 72 73 static int ena_change_mtu(struct net_device *dev, int new_mtu) 74 { 75 struct ena_adapter *adapter = netdev_priv(dev); 76 int ret; 77 78 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 79 if (!ret) { 80 netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu); 81 update_rx_ring_mtu(adapter, new_mtu); 82 dev->mtu = new_mtu; 83 } else { 84 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 85 new_mtu); 86 } 87 88 return ret; 89 } 90 91 int ena_xmit_common(struct ena_adapter *adapter, 92 struct ena_ring *ring, 93 struct ena_tx_buffer *tx_info, 94 struct ena_com_tx_ctx *ena_tx_ctx, 95 u16 next_to_use, 96 u32 bytes) 97 { 98 int rc, nb_hw_desc; 99 100 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, 101 ena_tx_ctx))) { 102 netif_dbg(adapter, tx_queued, adapter->netdev, 103 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 104 ring->qid); 105 ena_ring_tx_doorbell(ring); 106 } 107 108 /* prepare the packet's descriptors to dma engine */ 109 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, 110 &nb_hw_desc); 111 112 /* In case there isn't enough space in the queue for the packet, 113 * we simply drop it. All other failure reasons of 114 * ena_com_prepare_tx() are fatal and therefore require a device reset. 115 */ 116 if (unlikely(rc)) { 117 netif_err(adapter, tx_queued, adapter->netdev, 118 "Failed to prepare tx bufs\n"); 119 ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1, &ring->syncp); 120 if (rc != -ENOMEM) 121 ena_reset_device(adapter, ENA_REGS_RESET_DRIVER_INVALID_STATE); 122 return rc; 123 } 124 125 u64_stats_update_begin(&ring->syncp); 126 ring->tx_stats.cnt++; 127 ring->tx_stats.bytes += bytes; 128 u64_stats_update_end(&ring->syncp); 129 130 tx_info->tx_descs = nb_hw_desc; 131 tx_info->last_jiffies = jiffies; 132 tx_info->print_once = 0; 133 134 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 135 ring->ring_size); 136 return 0; 137 } 138 139 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 140 { 141 #ifdef CONFIG_RFS_ACCEL 142 u32 i; 143 int rc; 144 145 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); 146 if (!adapter->netdev->rx_cpu_rmap) 147 return -ENOMEM; 148 for (i = 0; i < adapter->num_io_queues; i++) { 149 int irq_idx = ENA_IO_IRQ_IDX(i); 150 151 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 152 pci_irq_vector(adapter->pdev, irq_idx)); 153 if (rc) { 154 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 155 adapter->netdev->rx_cpu_rmap = NULL; 156 return rc; 157 } 158 } 159 #endif /* CONFIG_RFS_ACCEL */ 160 return 0; 161 } 162 163 static void ena_init_io_rings_common(struct ena_adapter *adapter, 164 struct ena_ring *ring, u16 qid) 165 { 166 ring->qid = qid; 167 ring->pdev = adapter->pdev; 168 ring->dev = &adapter->pdev->dev; 169 ring->netdev = adapter->netdev; 170 ring->napi = &adapter->ena_napi[qid].napi; 171 ring->adapter = adapter; 172 ring->ena_dev = adapter->ena_dev; 173 ring->per_napi_packets = 0; 174 ring->cpu = 0; 175 ring->numa_node = 0; 176 ring->no_interrupt_event_cnt = 0; 177 u64_stats_init(&ring->syncp); 178 } 179 180 void ena_init_io_rings(struct ena_adapter *adapter, 181 int first_index, int count) 182 { 183 struct ena_com_dev *ena_dev; 184 struct ena_ring *txr, *rxr; 185 int i; 186 187 ena_dev = adapter->ena_dev; 188 189 for (i = first_index; i < first_index + count; i++) { 190 txr = &adapter->tx_ring[i]; 191 rxr = &adapter->rx_ring[i]; 192 193 /* TX common ring state */ 194 ena_init_io_rings_common(adapter, txr, i); 195 196 /* TX specific ring state */ 197 txr->ring_size = adapter->requested_tx_ring_size; 198 txr->tx_max_header_size = ena_dev->tx_max_header_size; 199 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 200 txr->sgl_size = adapter->max_tx_sgl_size; 201 txr->smoothed_interval = 202 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 203 txr->disable_meta_caching = adapter->disable_meta_caching; 204 spin_lock_init(&txr->xdp_tx_lock); 205 206 /* Don't init RX queues for xdp queues */ 207 if (!ENA_IS_XDP_INDEX(adapter, i)) { 208 /* RX common ring state */ 209 ena_init_io_rings_common(adapter, rxr, i); 210 211 /* RX specific ring state */ 212 rxr->ring_size = adapter->requested_rx_ring_size; 213 rxr->rx_copybreak = adapter->rx_copybreak; 214 rxr->sgl_size = adapter->max_rx_sgl_size; 215 rxr->smoothed_interval = 216 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 217 rxr->empty_rx_queue = 0; 218 rxr->rx_headroom = NET_SKB_PAD; 219 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 220 rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues]; 221 } 222 } 223 } 224 225 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 226 * @adapter: network interface device structure 227 * @qid: queue index 228 * 229 * Return 0 on success, negative on failure 230 */ 231 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 232 { 233 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 234 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 235 int size, i, node; 236 237 if (tx_ring->tx_buffer_info) { 238 netif_err(adapter, ifup, 239 adapter->netdev, "tx_buffer_info info is not NULL"); 240 return -EEXIST; 241 } 242 243 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 244 node = cpu_to_node(ena_irq->cpu); 245 246 tx_ring->tx_buffer_info = vzalloc_node(size, node); 247 if (!tx_ring->tx_buffer_info) { 248 tx_ring->tx_buffer_info = vzalloc(size); 249 if (!tx_ring->tx_buffer_info) 250 goto err_tx_buffer_info; 251 } 252 253 size = sizeof(u16) * tx_ring->ring_size; 254 tx_ring->free_ids = vzalloc_node(size, node); 255 if (!tx_ring->free_ids) { 256 tx_ring->free_ids = vzalloc(size); 257 if (!tx_ring->free_ids) 258 goto err_tx_free_ids; 259 } 260 261 size = tx_ring->tx_max_header_size; 262 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 263 if (!tx_ring->push_buf_intermediate_buf) { 264 tx_ring->push_buf_intermediate_buf = vzalloc(size); 265 if (!tx_ring->push_buf_intermediate_buf) 266 goto err_push_buf_intermediate_buf; 267 } 268 269 /* Req id ring for TX out of order completions */ 270 for (i = 0; i < tx_ring->ring_size; i++) 271 tx_ring->free_ids[i] = i; 272 273 /* Reset tx statistics */ 274 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 275 276 tx_ring->next_to_use = 0; 277 tx_ring->next_to_clean = 0; 278 tx_ring->cpu = ena_irq->cpu; 279 tx_ring->numa_node = node; 280 return 0; 281 282 err_push_buf_intermediate_buf: 283 vfree(tx_ring->free_ids); 284 tx_ring->free_ids = NULL; 285 err_tx_free_ids: 286 vfree(tx_ring->tx_buffer_info); 287 tx_ring->tx_buffer_info = NULL; 288 err_tx_buffer_info: 289 return -ENOMEM; 290 } 291 292 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 293 * @adapter: network interface device structure 294 * @qid: queue index 295 * 296 * Free all transmit software resources 297 */ 298 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 299 { 300 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 301 302 vfree(tx_ring->tx_buffer_info); 303 tx_ring->tx_buffer_info = NULL; 304 305 vfree(tx_ring->free_ids); 306 tx_ring->free_ids = NULL; 307 308 vfree(tx_ring->push_buf_intermediate_buf); 309 tx_ring->push_buf_intermediate_buf = NULL; 310 } 311 312 int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 313 int first_index, int count) 314 { 315 int i, rc = 0; 316 317 for (i = first_index; i < first_index + count; i++) { 318 rc = ena_setup_tx_resources(adapter, i); 319 if (rc) 320 goto err_setup_tx; 321 } 322 323 return 0; 324 325 err_setup_tx: 326 327 netif_err(adapter, ifup, adapter->netdev, 328 "Tx queue %d: allocation failed\n", i); 329 330 /* rewind the index freeing the rings as we go */ 331 while (first_index < i--) 332 ena_free_tx_resources(adapter, i); 333 return rc; 334 } 335 336 void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 337 int first_index, int count) 338 { 339 int i; 340 341 for (i = first_index; i < first_index + count; i++) 342 ena_free_tx_resources(adapter, i); 343 } 344 345 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 346 * @adapter: board private structure 347 * 348 * Free all transmit software resources 349 */ 350 void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 351 { 352 ena_free_all_io_tx_resources_in_range(adapter, 353 0, 354 adapter->xdp_num_queues + 355 adapter->num_io_queues); 356 } 357 358 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 359 * @adapter: network interface device structure 360 * @qid: queue index 361 * 362 * Returns 0 on success, negative on failure 363 */ 364 static int ena_setup_rx_resources(struct ena_adapter *adapter, 365 u32 qid) 366 { 367 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 368 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 369 int size, node, i; 370 371 if (rx_ring->rx_buffer_info) { 372 netif_err(adapter, ifup, adapter->netdev, 373 "rx_buffer_info is not NULL"); 374 return -EEXIST; 375 } 376 377 /* alloc extra element so in rx path 378 * we can always prefetch rx_info + 1 379 */ 380 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 381 node = cpu_to_node(ena_irq->cpu); 382 383 rx_ring->rx_buffer_info = vzalloc_node(size, node); 384 if (!rx_ring->rx_buffer_info) { 385 rx_ring->rx_buffer_info = vzalloc(size); 386 if (!rx_ring->rx_buffer_info) 387 return -ENOMEM; 388 } 389 390 size = sizeof(u16) * rx_ring->ring_size; 391 rx_ring->free_ids = vzalloc_node(size, node); 392 if (!rx_ring->free_ids) { 393 rx_ring->free_ids = vzalloc(size); 394 if (!rx_ring->free_ids) { 395 vfree(rx_ring->rx_buffer_info); 396 rx_ring->rx_buffer_info = NULL; 397 return -ENOMEM; 398 } 399 } 400 401 /* Req id ring for receiving RX pkts out of order */ 402 for (i = 0; i < rx_ring->ring_size; i++) 403 rx_ring->free_ids[i] = i; 404 405 /* Reset rx statistics */ 406 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 407 408 rx_ring->next_to_clean = 0; 409 rx_ring->next_to_use = 0; 410 rx_ring->cpu = ena_irq->cpu; 411 rx_ring->numa_node = node; 412 413 return 0; 414 } 415 416 /* ena_free_rx_resources - Free I/O Rx Resources 417 * @adapter: network interface device structure 418 * @qid: queue index 419 * 420 * Free all receive software resources 421 */ 422 static void ena_free_rx_resources(struct ena_adapter *adapter, 423 u32 qid) 424 { 425 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 426 427 vfree(rx_ring->rx_buffer_info); 428 rx_ring->rx_buffer_info = NULL; 429 430 vfree(rx_ring->free_ids); 431 rx_ring->free_ids = NULL; 432 } 433 434 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 435 * @adapter: board private structure 436 * 437 * Return 0 on success, negative on failure 438 */ 439 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 440 { 441 int i, rc = 0; 442 443 for (i = 0; i < adapter->num_io_queues; i++) { 444 rc = ena_setup_rx_resources(adapter, i); 445 if (rc) 446 goto err_setup_rx; 447 } 448 449 return 0; 450 451 err_setup_rx: 452 453 netif_err(adapter, ifup, adapter->netdev, 454 "Rx queue %d: allocation failed\n", i); 455 456 /* rewind the index freeing the rings as we go */ 457 while (i--) 458 ena_free_rx_resources(adapter, i); 459 return rc; 460 } 461 462 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 463 * @adapter: board private structure 464 * 465 * Free all receive software resources 466 */ 467 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 468 { 469 int i; 470 471 for (i = 0; i < adapter->num_io_queues; i++) 472 ena_free_rx_resources(adapter, i); 473 } 474 475 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring, 476 dma_addr_t *dma) 477 { 478 struct page *page; 479 480 /* This would allocate the page on the same NUMA node the executing code 481 * is running on. 482 */ 483 page = dev_alloc_page(); 484 if (!page) { 485 ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1, &rx_ring->syncp); 486 return ERR_PTR(-ENOSPC); 487 } 488 489 /* To enable NIC-side port-mirroring, AKA SPAN port, 490 * we make the buffer readable from the nic as well 491 */ 492 *dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 493 DMA_BIDIRECTIONAL); 494 if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) { 495 ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1, 496 &rx_ring->syncp); 497 __free_page(page); 498 return ERR_PTR(-EIO); 499 } 500 501 return page; 502 } 503 504 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring, 505 struct ena_rx_buffer *rx_info) 506 { 507 int headroom = rx_ring->rx_headroom; 508 struct ena_com_buf *ena_buf; 509 struct page *page; 510 dma_addr_t dma; 511 int tailroom; 512 513 /* restore page offset value in case it has been changed by device */ 514 rx_info->buf_offset = headroom; 515 516 /* if previous allocated page is not used */ 517 if (unlikely(rx_info->page)) 518 return 0; 519 520 /* We handle DMA here */ 521 page = ena_alloc_map_page(rx_ring, &dma); 522 if (unlikely(IS_ERR(page))) 523 return PTR_ERR(page); 524 525 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 526 "Allocate page %p, rx_info %p\n", page, rx_info); 527 528 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 529 530 rx_info->page = page; 531 rx_info->dma_addr = dma; 532 rx_info->page_offset = 0; 533 ena_buf = &rx_info->ena_buf; 534 ena_buf->paddr = dma + headroom; 535 ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom; 536 537 return 0; 538 } 539 540 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring, 541 struct ena_rx_buffer *rx_info, 542 unsigned long attrs) 543 { 544 dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE, DMA_BIDIRECTIONAL, 545 attrs); 546 } 547 548 static void ena_free_rx_page(struct ena_ring *rx_ring, 549 struct ena_rx_buffer *rx_info) 550 { 551 struct page *page = rx_info->page; 552 553 if (unlikely(!page)) { 554 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 555 "Trying to free unallocated buffer\n"); 556 return; 557 } 558 559 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0); 560 561 __free_page(page); 562 rx_info->page = NULL; 563 } 564 565 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 566 { 567 u16 next_to_use, req_id; 568 u32 i; 569 int rc; 570 571 next_to_use = rx_ring->next_to_use; 572 573 for (i = 0; i < num; i++) { 574 struct ena_rx_buffer *rx_info; 575 576 req_id = rx_ring->free_ids[next_to_use]; 577 578 rx_info = &rx_ring->rx_buffer_info[req_id]; 579 580 rc = ena_alloc_rx_buffer(rx_ring, rx_info); 581 if (unlikely(rc < 0)) { 582 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 583 "Failed to allocate buffer for rx queue %d\n", 584 rx_ring->qid); 585 break; 586 } 587 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 588 &rx_info->ena_buf, 589 req_id); 590 if (unlikely(rc)) { 591 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 592 "Failed to add buffer for rx queue %d\n", 593 rx_ring->qid); 594 break; 595 } 596 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 597 rx_ring->ring_size); 598 } 599 600 if (unlikely(i < num)) { 601 ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1, 602 &rx_ring->syncp); 603 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 604 "Refilled rx qid %d with only %d buffers (from %d)\n", 605 rx_ring->qid, i, num); 606 } 607 608 /* ena_com_write_sq_doorbell issues a wmb() */ 609 if (likely(i)) 610 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 611 612 rx_ring->next_to_use = next_to_use; 613 614 return i; 615 } 616 617 static void ena_free_rx_bufs(struct ena_adapter *adapter, 618 u32 qid) 619 { 620 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 621 u32 i; 622 623 for (i = 0; i < rx_ring->ring_size; i++) { 624 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 625 626 if (rx_info->page) 627 ena_free_rx_page(rx_ring, rx_info); 628 } 629 } 630 631 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 632 * @adapter: board private structure 633 */ 634 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 635 { 636 struct ena_ring *rx_ring; 637 int i, rc, bufs_num; 638 639 for (i = 0; i < adapter->num_io_queues; i++) { 640 rx_ring = &adapter->rx_ring[i]; 641 bufs_num = rx_ring->ring_size - 1; 642 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 643 644 if (unlikely(rc != bufs_num)) 645 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 646 "Refilling Queue %d failed. allocated %d buffers from: %d\n", 647 i, rc, bufs_num); 648 } 649 } 650 651 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 652 { 653 int i; 654 655 for (i = 0; i < adapter->num_io_queues; i++) 656 ena_free_rx_bufs(adapter, i); 657 } 658 659 void ena_unmap_tx_buff(struct ena_ring *tx_ring, 660 struct ena_tx_buffer *tx_info) 661 { 662 struct ena_com_buf *ena_buf; 663 u32 cnt; 664 int i; 665 666 ena_buf = tx_info->bufs; 667 cnt = tx_info->num_of_bufs; 668 669 if (unlikely(!cnt)) 670 return; 671 672 if (tx_info->map_linear_data) { 673 dma_unmap_single(tx_ring->dev, 674 dma_unmap_addr(ena_buf, paddr), 675 dma_unmap_len(ena_buf, len), 676 DMA_TO_DEVICE); 677 ena_buf++; 678 cnt--; 679 } 680 681 /* unmap remaining mapped pages */ 682 for (i = 0; i < cnt; i++) { 683 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 684 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 685 ena_buf++; 686 } 687 } 688 689 /* ena_free_tx_bufs - Free Tx Buffers per Queue 690 * @tx_ring: TX ring for which buffers be freed 691 */ 692 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 693 { 694 bool print_once = true; 695 bool is_xdp_ring; 696 u32 i; 697 698 is_xdp_ring = ENA_IS_XDP_INDEX(tx_ring->adapter, tx_ring->qid); 699 700 for (i = 0; i < tx_ring->ring_size; i++) { 701 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 702 703 if (!tx_info->skb) 704 continue; 705 706 if (print_once) { 707 netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev, 708 "Free uncompleted tx skb qid %d idx 0x%x\n", 709 tx_ring->qid, i); 710 print_once = false; 711 } else { 712 netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev, 713 "Free uncompleted tx skb qid %d idx 0x%x\n", 714 tx_ring->qid, i); 715 } 716 717 ena_unmap_tx_buff(tx_ring, tx_info); 718 719 if (is_xdp_ring) 720 xdp_return_frame(tx_info->xdpf); 721 else 722 dev_kfree_skb_any(tx_info->skb); 723 } 724 725 if (!is_xdp_ring) 726 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 727 tx_ring->qid)); 728 } 729 730 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 731 { 732 struct ena_ring *tx_ring; 733 int i; 734 735 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 736 tx_ring = &adapter->tx_ring[i]; 737 ena_free_tx_bufs(tx_ring); 738 } 739 } 740 741 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 742 { 743 u16 ena_qid; 744 int i; 745 746 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 747 ena_qid = ENA_IO_TXQ_IDX(i); 748 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 749 } 750 } 751 752 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 753 { 754 u16 ena_qid; 755 int i; 756 757 for (i = 0; i < adapter->num_io_queues; i++) { 758 ena_qid = ENA_IO_RXQ_IDX(i); 759 cancel_work_sync(&adapter->ena_napi[i].dim.work); 760 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 761 } 762 } 763 764 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 765 { 766 ena_destroy_all_tx_queues(adapter); 767 ena_destroy_all_rx_queues(adapter); 768 } 769 770 int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, 771 struct ena_tx_buffer *tx_info, bool is_xdp) 772 { 773 if (tx_info) 774 netif_err(ring->adapter, 775 tx_done, 776 ring->netdev, 777 "tx_info doesn't have valid %s. qid %u req_id %u", 778 is_xdp ? "xdp frame" : "skb", ring->qid, req_id); 779 else 780 netif_err(ring->adapter, 781 tx_done, 782 ring->netdev, 783 "Invalid req_id %u in qid %u\n", 784 req_id, ring->qid); 785 786 ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp); 787 ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID); 788 789 return -EFAULT; 790 } 791 792 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 793 { 794 struct ena_tx_buffer *tx_info; 795 796 tx_info = &tx_ring->tx_buffer_info[req_id]; 797 if (likely(tx_info->skb)) 798 return 0; 799 800 return handle_invalid_req_id(tx_ring, req_id, tx_info, false); 801 } 802 803 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 804 { 805 struct netdev_queue *txq; 806 bool above_thresh; 807 u32 tx_bytes = 0; 808 u32 total_done = 0; 809 u16 next_to_clean; 810 u16 req_id; 811 int tx_pkts = 0; 812 int rc; 813 814 next_to_clean = tx_ring->next_to_clean; 815 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 816 817 while (tx_pkts < budget) { 818 struct ena_tx_buffer *tx_info; 819 struct sk_buff *skb; 820 821 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 822 &req_id); 823 if (rc) { 824 if (unlikely(rc == -EINVAL)) 825 handle_invalid_req_id(tx_ring, req_id, NULL, false); 826 break; 827 } 828 829 /* validate that the request id points to a valid skb */ 830 rc = validate_tx_req_id(tx_ring, req_id); 831 if (rc) 832 break; 833 834 tx_info = &tx_ring->tx_buffer_info[req_id]; 835 skb = tx_info->skb; 836 837 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 838 prefetch(&skb->end); 839 840 tx_info->skb = NULL; 841 tx_info->last_jiffies = 0; 842 843 ena_unmap_tx_buff(tx_ring, tx_info); 844 845 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 846 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 847 skb); 848 849 tx_bytes += skb->len; 850 dev_kfree_skb(skb); 851 tx_pkts++; 852 total_done += tx_info->tx_descs; 853 854 tx_ring->free_ids[next_to_clean] = req_id; 855 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 856 tx_ring->ring_size); 857 } 858 859 tx_ring->next_to_clean = next_to_clean; 860 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 861 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); 862 863 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 864 865 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 866 "tx_poll: q %d done. total pkts: %d\n", 867 tx_ring->qid, tx_pkts); 868 869 /* need to make the rings circular update visible to 870 * ena_start_xmit() before checking for netif_queue_stopped(). 871 */ 872 smp_mb(); 873 874 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 875 ENA_TX_WAKEUP_THRESH); 876 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 877 __netif_tx_lock(txq, smp_processor_id()); 878 above_thresh = 879 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 880 ENA_TX_WAKEUP_THRESH); 881 if (netif_tx_queue_stopped(txq) && above_thresh && 882 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 883 netif_tx_wake_queue(txq); 884 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 885 &tx_ring->syncp); 886 } 887 __netif_tx_unlock(txq); 888 } 889 890 return tx_pkts; 891 } 892 893 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len) 894 { 895 struct sk_buff *skb; 896 897 if (!first_frag) 898 skb = napi_alloc_skb(rx_ring->napi, len); 899 else 900 skb = napi_build_skb(first_frag, len); 901 902 if (unlikely(!skb)) { 903 ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1, 904 &rx_ring->syncp); 905 906 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 907 "Failed to allocate skb. first_frag %s\n", 908 first_frag ? "provided" : "not provided"); 909 } 910 911 return skb; 912 } 913 914 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len, 915 u16 len, int pkt_offset) 916 { 917 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 918 919 /* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer 920 * for data + headroom + tailroom. 921 */ 922 if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) { 923 page_ref_inc(rx_info->page); 924 rx_info->page_offset += buf_len; 925 ena_buf->paddr += buf_len; 926 ena_buf->len -= buf_len; 927 return true; 928 } 929 930 return false; 931 } 932 933 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 934 struct ena_com_rx_buf_info *ena_bufs, 935 u32 descs, 936 u16 *next_to_clean) 937 { 938 int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 939 bool is_xdp_loaded = ena_xdp_present_ring(rx_ring); 940 struct ena_rx_buffer *rx_info; 941 struct ena_adapter *adapter; 942 int page_offset, pkt_offset; 943 dma_addr_t pre_reuse_paddr; 944 u16 len, req_id, buf = 0; 945 bool reuse_rx_buf_page; 946 struct sk_buff *skb; 947 void *buf_addr; 948 int buf_offset; 949 u16 buf_len; 950 951 len = ena_bufs[buf].len; 952 req_id = ena_bufs[buf].req_id; 953 954 rx_info = &rx_ring->rx_buffer_info[req_id]; 955 956 if (unlikely(!rx_info->page)) { 957 adapter = rx_ring->adapter; 958 netif_err(adapter, rx_err, rx_ring->netdev, 959 "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id); 960 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp); 961 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 962 return NULL; 963 } 964 965 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 966 "rx_info %p page %p\n", 967 rx_info, rx_info->page); 968 969 buf_offset = rx_info->buf_offset; 970 pkt_offset = buf_offset - rx_ring->rx_headroom; 971 page_offset = rx_info->page_offset; 972 buf_addr = page_address(rx_info->page) + page_offset; 973 974 if (len <= rx_ring->rx_copybreak) { 975 skb = ena_alloc_skb(rx_ring, NULL, len); 976 if (unlikely(!skb)) 977 return NULL; 978 979 skb_copy_to_linear_data(skb, buf_addr + buf_offset, len); 980 dma_sync_single_for_device(rx_ring->dev, 981 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 982 len, 983 DMA_FROM_DEVICE); 984 985 skb_put(skb, len); 986 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 987 "RX allocated small packet. len %d.\n", skb->len); 988 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 989 rx_ring->free_ids[*next_to_clean] = req_id; 990 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 991 rx_ring->ring_size); 992 return skb; 993 } 994 995 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 996 997 /* If XDP isn't loaded try to reuse part of the RX buffer */ 998 reuse_rx_buf_page = !is_xdp_loaded && 999 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1000 1001 if (!reuse_rx_buf_page) 1002 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1003 1004 skb = ena_alloc_skb(rx_ring, buf_addr, buf_len); 1005 if (unlikely(!skb)) 1006 return NULL; 1007 1008 /* Populate skb's linear part */ 1009 skb_reserve(skb, buf_offset); 1010 skb_put(skb, len); 1011 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1012 1013 do { 1014 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1015 "RX skb updated. len %d. data_len %d\n", 1016 skb->len, skb->data_len); 1017 1018 if (!reuse_rx_buf_page) 1019 rx_info->page = NULL; 1020 1021 rx_ring->free_ids[*next_to_clean] = req_id; 1022 *next_to_clean = 1023 ENA_RX_RING_IDX_NEXT(*next_to_clean, 1024 rx_ring->ring_size); 1025 if (likely(--descs == 0)) 1026 break; 1027 1028 buf++; 1029 len = ena_bufs[buf].len; 1030 req_id = ena_bufs[buf].req_id; 1031 1032 rx_info = &rx_ring->rx_buffer_info[req_id]; 1033 1034 /* rx_info->buf_offset includes rx_ring->rx_headroom */ 1035 buf_offset = rx_info->buf_offset; 1036 pkt_offset = buf_offset - rx_ring->rx_headroom; 1037 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 1038 page_offset = rx_info->page_offset; 1039 1040 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr); 1041 1042 reuse_rx_buf_page = !is_xdp_loaded && 1043 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1044 1045 dma_sync_single_for_cpu(rx_ring->dev, 1046 pre_reuse_paddr + pkt_offset, 1047 len, 1048 DMA_FROM_DEVICE); 1049 1050 if (!reuse_rx_buf_page) 1051 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1052 1053 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 1054 page_offset + buf_offset, len, buf_len); 1055 1056 } while (1); 1057 1058 return skb; 1059 } 1060 1061 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 1062 * @adapter: structure containing adapter specific data 1063 * @ena_rx_ctx: received packet context/metadata 1064 * @skb: skb currently being received and modified 1065 */ 1066 static void ena_rx_checksum(struct ena_ring *rx_ring, 1067 struct ena_com_rx_ctx *ena_rx_ctx, 1068 struct sk_buff *skb) 1069 { 1070 /* Rx csum disabled */ 1071 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 1072 skb->ip_summed = CHECKSUM_NONE; 1073 return; 1074 } 1075 1076 /* For fragmented packets the checksum isn't valid */ 1077 if (ena_rx_ctx->frag) { 1078 skb->ip_summed = CHECKSUM_NONE; 1079 return; 1080 } 1081 1082 /* if IP and error */ 1083 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1084 (ena_rx_ctx->l3_csum_err))) { 1085 /* ipv4 checksum error */ 1086 skb->ip_summed = CHECKSUM_NONE; 1087 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1088 &rx_ring->syncp); 1089 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1090 "RX IPv4 header checksum error\n"); 1091 return; 1092 } 1093 1094 /* if TCP/UDP */ 1095 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1096 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 1097 if (unlikely(ena_rx_ctx->l4_csum_err)) { 1098 /* TCP/UDP checksum error */ 1099 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1100 &rx_ring->syncp); 1101 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1102 "RX L4 checksum error\n"); 1103 skb->ip_summed = CHECKSUM_NONE; 1104 return; 1105 } 1106 1107 if (likely(ena_rx_ctx->l4_csum_checked)) { 1108 skb->ip_summed = CHECKSUM_UNNECESSARY; 1109 ena_increase_stat(&rx_ring->rx_stats.csum_good, 1, 1110 &rx_ring->syncp); 1111 } else { 1112 ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1, 1113 &rx_ring->syncp); 1114 skb->ip_summed = CHECKSUM_NONE; 1115 } 1116 } else { 1117 skb->ip_summed = CHECKSUM_NONE; 1118 return; 1119 } 1120 1121 } 1122 1123 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1124 struct ena_com_rx_ctx *ena_rx_ctx, 1125 struct sk_buff *skb) 1126 { 1127 enum pkt_hash_types hash_type; 1128 1129 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1130 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1131 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1132 1133 hash_type = PKT_HASH_TYPE_L4; 1134 else 1135 hash_type = PKT_HASH_TYPE_NONE; 1136 1137 /* Override hash type if the packet is fragmented */ 1138 if (ena_rx_ctx->frag) 1139 hash_type = PKT_HASH_TYPE_NONE; 1140 1141 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1142 } 1143 } 1144 1145 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs) 1146 { 1147 struct ena_rx_buffer *rx_info; 1148 int ret; 1149 1150 /* XDP multi-buffer packets not supported */ 1151 if (unlikely(num_descs > 1)) { 1152 netdev_err_once(rx_ring->adapter->netdev, 1153 "xdp: dropped unsupported multi-buffer packets\n"); 1154 ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp); 1155 return ENA_XDP_DROP; 1156 } 1157 1158 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1159 xdp_prepare_buff(xdp, page_address(rx_info->page), 1160 rx_info->buf_offset, 1161 rx_ring->ena_bufs[0].len, false); 1162 1163 ret = ena_xdp_execute(rx_ring, xdp); 1164 1165 /* The xdp program might expand the headers */ 1166 if (ret == ENA_XDP_PASS) { 1167 rx_info->buf_offset = xdp->data - xdp->data_hard_start; 1168 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; 1169 } 1170 1171 return ret; 1172 } 1173 1174 /* ena_clean_rx_irq - Cleanup RX irq 1175 * @rx_ring: RX ring to clean 1176 * @napi: napi handler 1177 * @budget: how many packets driver is allowed to clean 1178 * 1179 * Returns the number of cleaned buffers. 1180 */ 1181 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1182 u32 budget) 1183 { 1184 u16 next_to_clean = rx_ring->next_to_clean; 1185 struct ena_com_rx_ctx ena_rx_ctx; 1186 struct ena_rx_buffer *rx_info; 1187 struct ena_adapter *adapter; 1188 u32 res_budget, work_done; 1189 int rx_copybreak_pkt = 0; 1190 int refill_threshold; 1191 struct sk_buff *skb; 1192 int refill_required; 1193 struct xdp_buff xdp; 1194 int xdp_flags = 0; 1195 int total_len = 0; 1196 int xdp_verdict; 1197 u8 pkt_offset; 1198 int rc = 0; 1199 int i; 1200 1201 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1202 "%s qid %d\n", __func__, rx_ring->qid); 1203 res_budget = budget; 1204 xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq); 1205 1206 do { 1207 xdp_verdict = ENA_XDP_PASS; 1208 skb = NULL; 1209 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1210 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1211 ena_rx_ctx.descs = 0; 1212 ena_rx_ctx.pkt_offset = 0; 1213 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1214 rx_ring->ena_com_io_sq, 1215 &ena_rx_ctx); 1216 if (unlikely(rc)) 1217 goto error; 1218 1219 if (unlikely(ena_rx_ctx.descs == 0)) 1220 break; 1221 1222 /* First descriptor might have an offset set by the device */ 1223 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1224 pkt_offset = ena_rx_ctx.pkt_offset; 1225 rx_info->buf_offset += pkt_offset; 1226 1227 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1228 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1229 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1230 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1231 1232 dma_sync_single_for_cpu(rx_ring->dev, 1233 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 1234 rx_ring->ena_bufs[0].len, 1235 DMA_FROM_DEVICE); 1236 1237 if (ena_xdp_present_ring(rx_ring)) 1238 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs); 1239 1240 /* allocate skb and fill it */ 1241 if (xdp_verdict == ENA_XDP_PASS) 1242 skb = ena_rx_skb(rx_ring, 1243 rx_ring->ena_bufs, 1244 ena_rx_ctx.descs, 1245 &next_to_clean); 1246 1247 if (unlikely(!skb)) { 1248 for (i = 0; i < ena_rx_ctx.descs; i++) { 1249 int req_id = rx_ring->ena_bufs[i].req_id; 1250 1251 rx_ring->free_ids[next_to_clean] = req_id; 1252 next_to_clean = 1253 ENA_RX_RING_IDX_NEXT(next_to_clean, 1254 rx_ring->ring_size); 1255 1256 /* Packets was passed for transmission, unmap it 1257 * from RX side. 1258 */ 1259 if (xdp_verdict & ENA_XDP_FORWARDED) { 1260 ena_unmap_rx_buff_attrs(rx_ring, 1261 &rx_ring->rx_buffer_info[req_id], 1262 DMA_ATTR_SKIP_CPU_SYNC); 1263 rx_ring->rx_buffer_info[req_id].page = NULL; 1264 } 1265 } 1266 if (xdp_verdict != ENA_XDP_PASS) { 1267 xdp_flags |= xdp_verdict; 1268 total_len += ena_rx_ctx.ena_bufs[0].len; 1269 res_budget--; 1270 continue; 1271 } 1272 break; 1273 } 1274 1275 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1276 1277 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1278 1279 skb_record_rx_queue(skb, rx_ring->qid); 1280 1281 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) 1282 rx_copybreak_pkt++; 1283 1284 total_len += skb->len; 1285 1286 napi_gro_receive(napi, skb); 1287 1288 res_budget--; 1289 } while (likely(res_budget)); 1290 1291 work_done = budget - res_budget; 1292 rx_ring->per_napi_packets += work_done; 1293 u64_stats_update_begin(&rx_ring->syncp); 1294 rx_ring->rx_stats.bytes += total_len; 1295 rx_ring->rx_stats.cnt += work_done; 1296 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1297 u64_stats_update_end(&rx_ring->syncp); 1298 1299 rx_ring->next_to_clean = next_to_clean; 1300 1301 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 1302 refill_threshold = 1303 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1304 ENA_RX_REFILL_THRESH_PACKET); 1305 1306 /* Optimization, try to batch new rx buffers */ 1307 if (refill_required > refill_threshold) { 1308 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 1309 ena_refill_rx_bufs(rx_ring, refill_required); 1310 } 1311 1312 if (xdp_flags & ENA_XDP_REDIRECT) 1313 xdp_do_flush_map(); 1314 1315 return work_done; 1316 1317 error: 1318 if (xdp_flags & ENA_XDP_REDIRECT) 1319 xdp_do_flush(); 1320 1321 adapter = netdev_priv(rx_ring->netdev); 1322 1323 if (rc == -ENOSPC) { 1324 ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1, &rx_ring->syncp); 1325 ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS); 1326 } else { 1327 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, 1328 &rx_ring->syncp); 1329 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 1330 } 1331 return 0; 1332 } 1333 1334 static void ena_dim_work(struct work_struct *w) 1335 { 1336 struct dim *dim = container_of(w, struct dim, work); 1337 struct dim_cq_moder cur_moder = 1338 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1339 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1340 1341 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1342 dim->state = DIM_START_MEASURE; 1343 } 1344 1345 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1346 { 1347 struct dim_sample dim_sample; 1348 struct ena_ring *rx_ring = ena_napi->rx_ring; 1349 1350 if (!rx_ring->per_napi_packets) 1351 return; 1352 1353 rx_ring->non_empty_napi_events++; 1354 1355 dim_update_sample(rx_ring->non_empty_napi_events, 1356 rx_ring->rx_stats.cnt, 1357 rx_ring->rx_stats.bytes, 1358 &dim_sample); 1359 1360 net_dim(&ena_napi->dim, dim_sample); 1361 1362 rx_ring->per_napi_packets = 0; 1363 } 1364 1365 void ena_unmask_interrupt(struct ena_ring *tx_ring, 1366 struct ena_ring *rx_ring) 1367 { 1368 u32 rx_interval = tx_ring->smoothed_interval; 1369 struct ena_eth_io_intr_reg intr_reg; 1370 1371 /* Rx ring can be NULL when for XDP tx queues which don't have an 1372 * accompanying rx_ring pair. 1373 */ 1374 if (rx_ring) 1375 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1376 rx_ring->smoothed_interval : 1377 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1378 1379 /* Update intr register: rx intr delay, 1380 * tx intr delay and interrupt unmask 1381 */ 1382 ena_com_update_intr_reg(&intr_reg, 1383 rx_interval, 1384 tx_ring->smoothed_interval, 1385 true); 1386 1387 ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1, 1388 &tx_ring->syncp); 1389 1390 /* It is a shared MSI-X. 1391 * Tx and Rx CQ have pointer to it. 1392 * So we use one of them to reach the intr reg 1393 * The Tx ring is used because the rx_ring is NULL for XDP queues 1394 */ 1395 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); 1396 } 1397 1398 void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1399 struct ena_ring *rx_ring) 1400 { 1401 int cpu = get_cpu(); 1402 int numa_node; 1403 1404 /* Check only one ring since the 2 rings are running on the same cpu */ 1405 if (likely(tx_ring->cpu == cpu)) 1406 goto out; 1407 1408 tx_ring->cpu = cpu; 1409 if (rx_ring) 1410 rx_ring->cpu = cpu; 1411 1412 numa_node = cpu_to_node(cpu); 1413 1414 if (likely(tx_ring->numa_node == numa_node)) 1415 goto out; 1416 1417 put_cpu(); 1418 1419 if (numa_node != NUMA_NO_NODE) { 1420 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1421 tx_ring->numa_node = numa_node; 1422 if (rx_ring) { 1423 rx_ring->numa_node = numa_node; 1424 ena_com_update_numa_node(rx_ring->ena_com_io_cq, 1425 numa_node); 1426 } 1427 } 1428 1429 return; 1430 out: 1431 put_cpu(); 1432 } 1433 1434 static int ena_io_poll(struct napi_struct *napi, int budget) 1435 { 1436 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1437 struct ena_ring *tx_ring, *rx_ring; 1438 int tx_work_done; 1439 int rx_work_done = 0; 1440 int tx_budget; 1441 int napi_comp_call = 0; 1442 int ret; 1443 1444 tx_ring = ena_napi->tx_ring; 1445 rx_ring = ena_napi->rx_ring; 1446 1447 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1448 1449 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1450 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1451 napi_complete_done(napi, 0); 1452 return 0; 1453 } 1454 1455 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1456 /* On netpoll the budget is zero and the handler should only clean the 1457 * tx completions. 1458 */ 1459 if (likely(budget)) 1460 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1461 1462 /* If the device is about to reset or down, avoid unmask 1463 * the interrupt and return 0 so NAPI won't reschedule 1464 */ 1465 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1466 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1467 napi_complete_done(napi, 0); 1468 ret = 0; 1469 1470 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1471 napi_comp_call = 1; 1472 1473 /* Update numa and unmask the interrupt only when schedule 1474 * from the interrupt context (vs from sk_busy_loop) 1475 */ 1476 if (napi_complete_done(napi, rx_work_done) && 1477 READ_ONCE(ena_napi->interrupts_masked)) { 1478 smp_rmb(); /* make sure interrupts_masked is read */ 1479 WRITE_ONCE(ena_napi->interrupts_masked, false); 1480 /* We apply adaptive moderation on Rx path only. 1481 * Tx uses static interrupt moderation. 1482 */ 1483 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1484 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1485 1486 ena_update_ring_numa_node(tx_ring, rx_ring); 1487 ena_unmask_interrupt(tx_ring, rx_ring); 1488 } 1489 1490 ret = rx_work_done; 1491 } else { 1492 ret = budget; 1493 } 1494 1495 u64_stats_update_begin(&tx_ring->syncp); 1496 tx_ring->tx_stats.napi_comp += napi_comp_call; 1497 tx_ring->tx_stats.tx_poll++; 1498 u64_stats_update_end(&tx_ring->syncp); 1499 1500 tx_ring->tx_stats.last_napi_jiffies = jiffies; 1501 1502 return ret; 1503 } 1504 1505 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1506 { 1507 struct ena_adapter *adapter = (struct ena_adapter *)data; 1508 1509 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1510 1511 /* Don't call the aenq handler before probe is done */ 1512 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1513 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1514 1515 return IRQ_HANDLED; 1516 } 1517 1518 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1519 * @irq: interrupt number 1520 * @data: pointer to a network interface private napi device structure 1521 */ 1522 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1523 { 1524 struct ena_napi *ena_napi = data; 1525 1526 /* Used to check HW health */ 1527 WRITE_ONCE(ena_napi->first_interrupt, true); 1528 1529 WRITE_ONCE(ena_napi->interrupts_masked, true); 1530 smp_wmb(); /* write interrupts_masked before calling napi */ 1531 1532 napi_schedule_irqoff(&ena_napi->napi); 1533 1534 return IRQ_HANDLED; 1535 } 1536 1537 /* Reserve a single MSI-X vector for management (admin + aenq). 1538 * plus reserve one vector for each potential io queue. 1539 * the number of potential io queues is the minimum of what the device 1540 * supports and the number of vCPUs. 1541 */ 1542 static int ena_enable_msix(struct ena_adapter *adapter) 1543 { 1544 int msix_vecs, irq_cnt; 1545 1546 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1547 netif_err(adapter, probe, adapter->netdev, 1548 "Error, MSI-X is already enabled\n"); 1549 return -EPERM; 1550 } 1551 1552 /* Reserved the max msix vectors we might need */ 1553 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); 1554 netif_dbg(adapter, probe, adapter->netdev, 1555 "Trying to enable MSI-X, vectors %d\n", msix_vecs); 1556 1557 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1558 msix_vecs, PCI_IRQ_MSIX); 1559 1560 if (irq_cnt < 0) { 1561 netif_err(adapter, probe, adapter->netdev, 1562 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1563 return -ENOSPC; 1564 } 1565 1566 if (irq_cnt != msix_vecs) { 1567 netif_notice(adapter, probe, adapter->netdev, 1568 "Enable only %d MSI-X (out of %d), reduce the number of queues\n", 1569 irq_cnt, msix_vecs); 1570 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 1571 } 1572 1573 if (ena_init_rx_cpu_rmap(adapter)) 1574 netif_warn(adapter, probe, adapter->netdev, 1575 "Failed to map IRQs to CPUs\n"); 1576 1577 adapter->msix_vecs = irq_cnt; 1578 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 1579 1580 return 0; 1581 } 1582 1583 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 1584 { 1585 u32 cpu; 1586 1587 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 1588 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 1589 pci_name(adapter->pdev)); 1590 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 1591 ena_intr_msix_mgmnt; 1592 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 1593 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 1594 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 1595 cpu = cpumask_first(cpu_online_mask); 1596 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 1597 cpumask_set_cpu(cpu, 1598 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 1599 } 1600 1601 static void ena_setup_io_intr(struct ena_adapter *adapter) 1602 { 1603 struct net_device *netdev; 1604 int irq_idx, i, cpu; 1605 int io_queue_count; 1606 1607 netdev = adapter->netdev; 1608 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1609 1610 for (i = 0; i < io_queue_count; i++) { 1611 irq_idx = ENA_IO_IRQ_IDX(i); 1612 cpu = i % num_online_cpus(); 1613 1614 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 1615 "%s-Tx-Rx-%d", netdev->name, i); 1616 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 1617 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 1618 adapter->irq_tbl[irq_idx].vector = 1619 pci_irq_vector(adapter->pdev, irq_idx); 1620 adapter->irq_tbl[irq_idx].cpu = cpu; 1621 1622 cpumask_set_cpu(cpu, 1623 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 1624 } 1625 } 1626 1627 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 1628 { 1629 unsigned long flags = 0; 1630 struct ena_irq *irq; 1631 int rc; 1632 1633 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1634 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1635 irq->data); 1636 if (rc) { 1637 netif_err(adapter, probe, adapter->netdev, 1638 "Failed to request admin irq\n"); 1639 return rc; 1640 } 1641 1642 netif_dbg(adapter, probe, adapter->netdev, 1643 "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 1644 irq->affinity_hint_mask.bits[0], irq->vector); 1645 1646 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1647 1648 return rc; 1649 } 1650 1651 static int ena_request_io_irq(struct ena_adapter *adapter) 1652 { 1653 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1654 unsigned long flags = 0; 1655 struct ena_irq *irq; 1656 int rc = 0, i, k; 1657 1658 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1659 netif_err(adapter, ifup, adapter->netdev, 1660 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 1661 return -EINVAL; 1662 } 1663 1664 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1665 irq = &adapter->irq_tbl[i]; 1666 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1667 irq->data); 1668 if (rc) { 1669 netif_err(adapter, ifup, adapter->netdev, 1670 "Failed to request I/O IRQ. index %d rc %d\n", 1671 i, rc); 1672 goto err; 1673 } 1674 1675 netif_dbg(adapter, ifup, adapter->netdev, 1676 "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 1677 i, irq->affinity_hint_mask.bits[0], irq->vector); 1678 1679 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1680 } 1681 1682 return rc; 1683 1684 err: 1685 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 1686 irq = &adapter->irq_tbl[k]; 1687 free_irq(irq->vector, irq->data); 1688 } 1689 1690 return rc; 1691 } 1692 1693 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 1694 { 1695 struct ena_irq *irq; 1696 1697 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1698 synchronize_irq(irq->vector); 1699 irq_set_affinity_hint(irq->vector, NULL); 1700 free_irq(irq->vector, irq->data); 1701 } 1702 1703 static void ena_free_io_irq(struct ena_adapter *adapter) 1704 { 1705 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1706 struct ena_irq *irq; 1707 int i; 1708 1709 #ifdef CONFIG_RFS_ACCEL 1710 if (adapter->msix_vecs >= 1) { 1711 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 1712 adapter->netdev->rx_cpu_rmap = NULL; 1713 } 1714 #endif /* CONFIG_RFS_ACCEL */ 1715 1716 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1717 irq = &adapter->irq_tbl[i]; 1718 irq_set_affinity_hint(irq->vector, NULL); 1719 free_irq(irq->vector, irq->data); 1720 } 1721 } 1722 1723 static void ena_disable_msix(struct ena_adapter *adapter) 1724 { 1725 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 1726 pci_free_irq_vectors(adapter->pdev); 1727 } 1728 1729 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 1730 { 1731 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1732 int i; 1733 1734 if (!netif_running(adapter->netdev)) 1735 return; 1736 1737 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) 1738 synchronize_irq(adapter->irq_tbl[i].vector); 1739 } 1740 1741 static void ena_del_napi_in_range(struct ena_adapter *adapter, 1742 int first_index, 1743 int count) 1744 { 1745 int i; 1746 1747 for (i = first_index; i < first_index + count; i++) { 1748 netif_napi_del(&adapter->ena_napi[i].napi); 1749 1750 WARN_ON(ENA_IS_XDP_INDEX(adapter, i) && 1751 adapter->ena_napi[i].rx_ring); 1752 } 1753 } 1754 1755 static void ena_init_napi_in_range(struct ena_adapter *adapter, 1756 int first_index, int count) 1757 { 1758 int i; 1759 1760 for (i = first_index; i < first_index + count; i++) { 1761 struct ena_napi *napi = &adapter->ena_napi[i]; 1762 1763 netif_napi_add(adapter->netdev, &napi->napi, 1764 ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll); 1765 1766 if (!ENA_IS_XDP_INDEX(adapter, i)) 1767 napi->rx_ring = &adapter->rx_ring[i]; 1768 1769 napi->tx_ring = &adapter->tx_ring[i]; 1770 napi->qid = i; 1771 } 1772 } 1773 1774 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 1775 int first_index, 1776 int count) 1777 { 1778 int i; 1779 1780 for (i = first_index; i < first_index + count; i++) 1781 napi_disable(&adapter->ena_napi[i].napi); 1782 } 1783 1784 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 1785 int first_index, 1786 int count) 1787 { 1788 int i; 1789 1790 for (i = first_index; i < first_index + count; i++) 1791 napi_enable(&adapter->ena_napi[i].napi); 1792 } 1793 1794 /* Configure the Rx forwarding */ 1795 static int ena_rss_configure(struct ena_adapter *adapter) 1796 { 1797 struct ena_com_dev *ena_dev = adapter->ena_dev; 1798 int rc; 1799 1800 /* In case the RSS table wasn't initialized by probe */ 1801 if (!ena_dev->rss.tbl_log_size) { 1802 rc = ena_rss_init_default(adapter); 1803 if (rc && (rc != -EOPNOTSUPP)) { 1804 netif_err(adapter, ifup, adapter->netdev, "Failed to init RSS rc: %d\n", rc); 1805 return rc; 1806 } 1807 } 1808 1809 /* Set indirect table */ 1810 rc = ena_com_indirect_table_set(ena_dev); 1811 if (unlikely(rc && rc != -EOPNOTSUPP)) 1812 return rc; 1813 1814 /* Configure hash function (if supported) */ 1815 rc = ena_com_set_hash_function(ena_dev); 1816 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1817 return rc; 1818 1819 /* Configure hash inputs (if supported) */ 1820 rc = ena_com_set_hash_ctrl(ena_dev); 1821 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1822 return rc; 1823 1824 return 0; 1825 } 1826 1827 static int ena_up_complete(struct ena_adapter *adapter) 1828 { 1829 int rc; 1830 1831 rc = ena_rss_configure(adapter); 1832 if (rc) 1833 return rc; 1834 1835 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 1836 1837 ena_refill_all_rx_bufs(adapter); 1838 1839 /* enable transmits */ 1840 netif_tx_start_all_queues(adapter->netdev); 1841 1842 ena_napi_enable_in_range(adapter, 1843 0, 1844 adapter->xdp_num_queues + adapter->num_io_queues); 1845 1846 return 0; 1847 } 1848 1849 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 1850 { 1851 struct ena_com_create_io_ctx ctx; 1852 struct ena_com_dev *ena_dev; 1853 struct ena_ring *tx_ring; 1854 u32 msix_vector; 1855 u16 ena_qid; 1856 int rc; 1857 1858 ena_dev = adapter->ena_dev; 1859 1860 tx_ring = &adapter->tx_ring[qid]; 1861 msix_vector = ENA_IO_IRQ_IDX(qid); 1862 ena_qid = ENA_IO_TXQ_IDX(qid); 1863 1864 memset(&ctx, 0x0, sizeof(ctx)); 1865 1866 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1867 ctx.qid = ena_qid; 1868 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1869 ctx.msix_vector = msix_vector; 1870 ctx.queue_size = tx_ring->ring_size; 1871 ctx.numa_node = tx_ring->numa_node; 1872 1873 rc = ena_com_create_io_queue(ena_dev, &ctx); 1874 if (rc) { 1875 netif_err(adapter, ifup, adapter->netdev, 1876 "Failed to create I/O TX queue num %d rc: %d\n", 1877 qid, rc); 1878 return rc; 1879 } 1880 1881 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1882 &tx_ring->ena_com_io_sq, 1883 &tx_ring->ena_com_io_cq); 1884 if (rc) { 1885 netif_err(adapter, ifup, adapter->netdev, 1886 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 1887 qid, rc); 1888 ena_com_destroy_io_queue(ena_dev, ena_qid); 1889 return rc; 1890 } 1891 1892 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 1893 return rc; 1894 } 1895 1896 int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 1897 int first_index, int count) 1898 { 1899 struct ena_com_dev *ena_dev = adapter->ena_dev; 1900 int rc, i; 1901 1902 for (i = first_index; i < first_index + count; i++) { 1903 rc = ena_create_io_tx_queue(adapter, i); 1904 if (rc) 1905 goto create_err; 1906 } 1907 1908 return 0; 1909 1910 create_err: 1911 while (i-- > first_index) 1912 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 1913 1914 return rc; 1915 } 1916 1917 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 1918 { 1919 struct ena_com_dev *ena_dev; 1920 struct ena_com_create_io_ctx ctx; 1921 struct ena_ring *rx_ring; 1922 u32 msix_vector; 1923 u16 ena_qid; 1924 int rc; 1925 1926 ena_dev = adapter->ena_dev; 1927 1928 rx_ring = &adapter->rx_ring[qid]; 1929 msix_vector = ENA_IO_IRQ_IDX(qid); 1930 ena_qid = ENA_IO_RXQ_IDX(qid); 1931 1932 memset(&ctx, 0x0, sizeof(ctx)); 1933 1934 ctx.qid = ena_qid; 1935 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1936 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1937 ctx.msix_vector = msix_vector; 1938 ctx.queue_size = rx_ring->ring_size; 1939 ctx.numa_node = rx_ring->numa_node; 1940 1941 rc = ena_com_create_io_queue(ena_dev, &ctx); 1942 if (rc) { 1943 netif_err(adapter, ifup, adapter->netdev, 1944 "Failed to create I/O RX queue num %d rc: %d\n", 1945 qid, rc); 1946 return rc; 1947 } 1948 1949 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1950 &rx_ring->ena_com_io_sq, 1951 &rx_ring->ena_com_io_cq); 1952 if (rc) { 1953 netif_err(adapter, ifup, adapter->netdev, 1954 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 1955 qid, rc); 1956 goto err; 1957 } 1958 1959 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 1960 1961 return rc; 1962 err: 1963 ena_com_destroy_io_queue(ena_dev, ena_qid); 1964 return rc; 1965 } 1966 1967 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 1968 { 1969 struct ena_com_dev *ena_dev = adapter->ena_dev; 1970 int rc, i; 1971 1972 for (i = 0; i < adapter->num_io_queues; i++) { 1973 rc = ena_create_io_rx_queue(adapter, i); 1974 if (rc) 1975 goto create_err; 1976 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 1977 } 1978 1979 return 0; 1980 1981 create_err: 1982 while (i--) { 1983 cancel_work_sync(&adapter->ena_napi[i].dim.work); 1984 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 1985 } 1986 1987 return rc; 1988 } 1989 1990 static void set_io_rings_size(struct ena_adapter *adapter, 1991 int new_tx_size, 1992 int new_rx_size) 1993 { 1994 int i; 1995 1996 for (i = 0; i < adapter->num_io_queues; i++) { 1997 adapter->tx_ring[i].ring_size = new_tx_size; 1998 adapter->rx_ring[i].ring_size = new_rx_size; 1999 } 2000 } 2001 2002 /* This function allows queue allocation to backoff when the system is 2003 * low on memory. If there is not enough memory to allocate io queues 2004 * the driver will try to allocate smaller queues. 2005 * 2006 * The backoff algorithm is as follows: 2007 * 1. Try to allocate TX and RX and if successful. 2008 * 1.1. return success 2009 * 2010 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 2011 * 2012 * 3. If TX or RX is smaller than 256 2013 * 3.1. return failure. 2014 * 4. else 2015 * 4.1. go back to 1. 2016 */ 2017 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 2018 { 2019 int rc, cur_rx_ring_size, cur_tx_ring_size; 2020 int new_rx_ring_size, new_tx_ring_size; 2021 2022 /* current queue sizes might be set to smaller than the requested 2023 * ones due to past queue allocation failures. 2024 */ 2025 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 2026 adapter->requested_rx_ring_size); 2027 2028 while (1) { 2029 if (ena_xdp_present(adapter)) { 2030 rc = ena_setup_and_create_all_xdp_queues(adapter); 2031 2032 if (rc) 2033 goto err_setup_tx; 2034 } 2035 rc = ena_setup_tx_resources_in_range(adapter, 2036 0, 2037 adapter->num_io_queues); 2038 if (rc) 2039 goto err_setup_tx; 2040 2041 rc = ena_create_io_tx_queues_in_range(adapter, 2042 0, 2043 adapter->num_io_queues); 2044 if (rc) 2045 goto err_create_tx_queues; 2046 2047 rc = ena_setup_all_rx_resources(adapter); 2048 if (rc) 2049 goto err_setup_rx; 2050 2051 rc = ena_create_all_io_rx_queues(adapter); 2052 if (rc) 2053 goto err_create_rx_queues; 2054 2055 return 0; 2056 2057 err_create_rx_queues: 2058 ena_free_all_io_rx_resources(adapter); 2059 err_setup_rx: 2060 ena_destroy_all_tx_queues(adapter); 2061 err_create_tx_queues: 2062 ena_free_all_io_tx_resources(adapter); 2063 err_setup_tx: 2064 if (rc != -ENOMEM) { 2065 netif_err(adapter, ifup, adapter->netdev, 2066 "Queue creation failed with error code %d\n", 2067 rc); 2068 return rc; 2069 } 2070 2071 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 2072 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 2073 2074 netif_err(adapter, ifup, adapter->netdev, 2075 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 2076 cur_tx_ring_size, cur_rx_ring_size); 2077 2078 new_tx_ring_size = cur_tx_ring_size; 2079 new_rx_ring_size = cur_rx_ring_size; 2080 2081 /* Decrease the size of the larger queue, or 2082 * decrease both if they are the same size. 2083 */ 2084 if (cur_rx_ring_size <= cur_tx_ring_size) 2085 new_tx_ring_size = cur_tx_ring_size / 2; 2086 if (cur_rx_ring_size >= cur_tx_ring_size) 2087 new_rx_ring_size = cur_rx_ring_size / 2; 2088 2089 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 2090 new_rx_ring_size < ENA_MIN_RING_SIZE) { 2091 netif_err(adapter, ifup, adapter->netdev, 2092 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 2093 ENA_MIN_RING_SIZE); 2094 return rc; 2095 } 2096 2097 netif_err(adapter, ifup, adapter->netdev, 2098 "Retrying queue creation with sizes TX=%d, RX=%d\n", 2099 new_tx_ring_size, 2100 new_rx_ring_size); 2101 2102 set_io_rings_size(adapter, new_tx_ring_size, 2103 new_rx_ring_size); 2104 } 2105 } 2106 2107 int ena_up(struct ena_adapter *adapter) 2108 { 2109 int io_queue_count, rc, i; 2110 2111 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 2112 2113 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2114 ena_setup_io_intr(adapter); 2115 2116 /* napi poll functions should be initialized before running 2117 * request_irq(), to handle a rare condition where there is a pending 2118 * interrupt, causing the ISR to fire immediately while the poll 2119 * function wasn't set yet, causing a null dereference 2120 */ 2121 ena_init_napi_in_range(adapter, 0, io_queue_count); 2122 2123 rc = ena_request_io_irq(adapter); 2124 if (rc) 2125 goto err_req_irq; 2126 2127 rc = create_queues_with_size_backoff(adapter); 2128 if (rc) 2129 goto err_create_queues_with_backoff; 2130 2131 rc = ena_up_complete(adapter); 2132 if (rc) 2133 goto err_up; 2134 2135 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2136 netif_carrier_on(adapter->netdev); 2137 2138 ena_increase_stat(&adapter->dev_stats.interface_up, 1, 2139 &adapter->syncp); 2140 2141 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2142 2143 /* Enable completion queues interrupt */ 2144 for (i = 0; i < adapter->num_io_queues; i++) 2145 ena_unmask_interrupt(&adapter->tx_ring[i], 2146 &adapter->rx_ring[i]); 2147 2148 /* schedule napi in case we had pending packets 2149 * from the last time we disable napi 2150 */ 2151 for (i = 0; i < io_queue_count; i++) 2152 napi_schedule(&adapter->ena_napi[i].napi); 2153 2154 return rc; 2155 2156 err_up: 2157 ena_destroy_all_tx_queues(adapter); 2158 ena_free_all_io_tx_resources(adapter); 2159 ena_destroy_all_rx_queues(adapter); 2160 ena_free_all_io_rx_resources(adapter); 2161 err_create_queues_with_backoff: 2162 ena_free_io_irq(adapter); 2163 err_req_irq: 2164 ena_del_napi_in_range(adapter, 0, io_queue_count); 2165 2166 return rc; 2167 } 2168 2169 void ena_down(struct ena_adapter *adapter) 2170 { 2171 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2172 2173 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__); 2174 2175 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2176 2177 ena_increase_stat(&adapter->dev_stats.interface_down, 1, 2178 &adapter->syncp); 2179 2180 netif_carrier_off(adapter->netdev); 2181 netif_tx_disable(adapter->netdev); 2182 2183 /* After this point the napi handler won't enable the tx queue */ 2184 ena_napi_disable_in_range(adapter, 0, io_queue_count); 2185 2186 /* After destroy the queue there won't be any new interrupts */ 2187 2188 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 2189 int rc; 2190 2191 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2192 if (rc) 2193 netif_err(adapter, ifdown, adapter->netdev, 2194 "Device reset failed\n"); 2195 /* stop submitting admin commands on a device that was reset */ 2196 ena_com_set_admin_running_state(adapter->ena_dev, false); 2197 } 2198 2199 ena_destroy_all_io_queues(adapter); 2200 2201 ena_disable_io_intr_sync(adapter); 2202 ena_free_io_irq(adapter); 2203 ena_del_napi_in_range(adapter, 0, io_queue_count); 2204 2205 ena_free_all_tx_bufs(adapter); 2206 ena_free_all_rx_bufs(adapter); 2207 ena_free_all_io_tx_resources(adapter); 2208 ena_free_all_io_rx_resources(adapter); 2209 } 2210 2211 /* ena_open - Called when a network interface is made active 2212 * @netdev: network interface device structure 2213 * 2214 * Returns 0 on success, negative value on failure 2215 * 2216 * The open entry point is called when a network interface is made 2217 * active by the system (IFF_UP). At this point all resources needed 2218 * for transmit and receive operations are allocated, the interrupt 2219 * handler is registered with the OS, the watchdog timer is started, 2220 * and the stack is notified that the interface is ready. 2221 */ 2222 static int ena_open(struct net_device *netdev) 2223 { 2224 struct ena_adapter *adapter = netdev_priv(netdev); 2225 int rc; 2226 2227 /* Notify the stack of the actual queue counts. */ 2228 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 2229 if (rc) { 2230 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 2231 return rc; 2232 } 2233 2234 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 2235 if (rc) { 2236 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2237 return rc; 2238 } 2239 2240 rc = ena_up(adapter); 2241 if (rc) 2242 return rc; 2243 2244 return rc; 2245 } 2246 2247 /* ena_close - Disables a network interface 2248 * @netdev: network interface device structure 2249 * 2250 * Returns 0, this is not allowed to fail 2251 * 2252 * The close entry point is called when an interface is de-activated 2253 * by the OS. The hardware is still under the drivers control, but 2254 * needs to be disabled. A global MAC reset is issued to stop the 2255 * hardware, and all transmit and receive resources are freed. 2256 */ 2257 static int ena_close(struct net_device *netdev) 2258 { 2259 struct ena_adapter *adapter = netdev_priv(netdev); 2260 2261 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2262 2263 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2264 return 0; 2265 2266 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2267 ena_down(adapter); 2268 2269 /* Check for device status and issue reset if needed*/ 2270 check_for_admin_com_state(adapter); 2271 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2272 netif_err(adapter, ifdown, adapter->netdev, 2273 "Destroy failure, restarting device\n"); 2274 ena_dump_stats_to_dmesg(adapter); 2275 /* rtnl lock already obtained in dev_ioctl() layer */ 2276 ena_destroy_device(adapter, false); 2277 ena_restore_device(adapter); 2278 } 2279 2280 return 0; 2281 } 2282 2283 int ena_update_queue_params(struct ena_adapter *adapter, 2284 u32 new_tx_size, 2285 u32 new_rx_size, 2286 u32 new_llq_header_len) 2287 { 2288 bool dev_was_up, large_llq_changed = false; 2289 int rc = 0; 2290 2291 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2292 ena_close(adapter->netdev); 2293 adapter->requested_tx_ring_size = new_tx_size; 2294 adapter->requested_rx_ring_size = new_rx_size; 2295 ena_init_io_rings(adapter, 2296 0, 2297 adapter->xdp_num_queues + 2298 adapter->num_io_queues); 2299 2300 large_llq_changed = adapter->ena_dev->tx_mem_queue_type == 2301 ENA_ADMIN_PLACEMENT_POLICY_DEV; 2302 large_llq_changed &= 2303 new_llq_header_len != adapter->ena_dev->tx_max_header_size; 2304 2305 /* a check that the configuration is valid is done by caller */ 2306 if (large_llq_changed) { 2307 adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled; 2308 2309 ena_destroy_device(adapter, false); 2310 rc = ena_restore_device(adapter); 2311 } 2312 2313 return dev_was_up && !rc ? ena_up(adapter) : rc; 2314 } 2315 2316 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak) 2317 { 2318 struct ena_ring *rx_ring; 2319 int i; 2320 2321 if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE)) 2322 return -EINVAL; 2323 2324 adapter->rx_copybreak = rx_copybreak; 2325 2326 for (i = 0; i < adapter->num_io_queues; i++) { 2327 rx_ring = &adapter->rx_ring[i]; 2328 rx_ring->rx_copybreak = rx_copybreak; 2329 } 2330 2331 return 0; 2332 } 2333 2334 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2335 { 2336 struct ena_com_dev *ena_dev = adapter->ena_dev; 2337 int prev_channel_count; 2338 bool dev_was_up; 2339 2340 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2341 ena_close(adapter->netdev); 2342 prev_channel_count = adapter->num_io_queues; 2343 adapter->num_io_queues = new_channel_count; 2344 if (ena_xdp_present(adapter) && 2345 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { 2346 adapter->xdp_first_ring = new_channel_count; 2347 adapter->xdp_num_queues = new_channel_count; 2348 if (prev_channel_count > new_channel_count) 2349 ena_xdp_exchange_program_rx_in_range(adapter, 2350 NULL, 2351 new_channel_count, 2352 prev_channel_count); 2353 else 2354 ena_xdp_exchange_program_rx_in_range(adapter, 2355 adapter->xdp_bpf_prog, 2356 prev_channel_count, 2357 new_channel_count); 2358 } 2359 2360 /* We need to destroy the rss table so that the indirection 2361 * table will be reinitialized by ena_up() 2362 */ 2363 ena_com_rss_destroy(ena_dev); 2364 ena_init_io_rings(adapter, 2365 0, 2366 adapter->xdp_num_queues + 2367 adapter->num_io_queues); 2368 return dev_was_up ? ena_open(adapter->netdev) : 0; 2369 } 2370 2371 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, 2372 struct sk_buff *skb, 2373 bool disable_meta_caching) 2374 { 2375 u32 mss = skb_shinfo(skb)->gso_size; 2376 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2377 u8 l4_protocol = 0; 2378 2379 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2380 ena_tx_ctx->l4_csum_enable = 1; 2381 if (mss) { 2382 ena_tx_ctx->tso_enable = 1; 2383 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2384 ena_tx_ctx->l4_csum_partial = 0; 2385 } else { 2386 ena_tx_ctx->tso_enable = 0; 2387 ena_meta->l4_hdr_len = 0; 2388 ena_tx_ctx->l4_csum_partial = 1; 2389 } 2390 2391 switch (ip_hdr(skb)->version) { 2392 case IPVERSION: 2393 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2394 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2395 ena_tx_ctx->df = 1; 2396 if (mss) 2397 ena_tx_ctx->l3_csum_enable = 1; 2398 l4_protocol = ip_hdr(skb)->protocol; 2399 break; 2400 case 6: 2401 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2402 l4_protocol = ipv6_hdr(skb)->nexthdr; 2403 break; 2404 default: 2405 break; 2406 } 2407 2408 if (l4_protocol == IPPROTO_TCP) 2409 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2410 else 2411 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2412 2413 ena_meta->mss = mss; 2414 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2415 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2416 ena_tx_ctx->meta_valid = 1; 2417 } else if (disable_meta_caching) { 2418 memset(ena_meta, 0, sizeof(*ena_meta)); 2419 ena_tx_ctx->meta_valid = 1; 2420 } else { 2421 ena_tx_ctx->meta_valid = 0; 2422 } 2423 } 2424 2425 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2426 struct sk_buff *skb) 2427 { 2428 int num_frags, header_len, rc; 2429 2430 num_frags = skb_shinfo(skb)->nr_frags; 2431 header_len = skb_headlen(skb); 2432 2433 if (num_frags < tx_ring->sgl_size) 2434 return 0; 2435 2436 if ((num_frags == tx_ring->sgl_size) && 2437 (header_len < tx_ring->tx_max_header_size)) 2438 return 0; 2439 2440 ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp); 2441 2442 rc = skb_linearize(skb); 2443 if (unlikely(rc)) { 2444 ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1, 2445 &tx_ring->syncp); 2446 } 2447 2448 return rc; 2449 } 2450 2451 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2452 struct ena_tx_buffer *tx_info, 2453 struct sk_buff *skb, 2454 void **push_hdr, 2455 u16 *header_len) 2456 { 2457 struct ena_adapter *adapter = tx_ring->adapter; 2458 struct ena_com_buf *ena_buf; 2459 dma_addr_t dma; 2460 u32 skb_head_len, frag_len, last_frag; 2461 u16 push_len = 0; 2462 u16 delta = 0; 2463 int i = 0; 2464 2465 skb_head_len = skb_headlen(skb); 2466 tx_info->skb = skb; 2467 ena_buf = tx_info->bufs; 2468 2469 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2470 /* When the device is LLQ mode, the driver will copy 2471 * the header into the device memory space. 2472 * the ena_com layer assume the header is in a linear 2473 * memory space. 2474 * This assumption might be wrong since part of the header 2475 * can be in the fragmented buffers. 2476 * Use skb_header_pointer to make sure the header is in a 2477 * linear memory space. 2478 */ 2479 2480 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2481 *push_hdr = skb_header_pointer(skb, 0, push_len, 2482 tx_ring->push_buf_intermediate_buf); 2483 *header_len = push_len; 2484 if (unlikely(skb->data != *push_hdr)) { 2485 ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1, 2486 &tx_ring->syncp); 2487 2488 delta = push_len - skb_head_len; 2489 } 2490 } else { 2491 *push_hdr = NULL; 2492 *header_len = min_t(u32, skb_head_len, 2493 tx_ring->tx_max_header_size); 2494 } 2495 2496 netif_dbg(adapter, tx_queued, adapter->netdev, 2497 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2498 *push_hdr, push_len); 2499 2500 if (skb_head_len > push_len) { 2501 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2502 skb_head_len - push_len, DMA_TO_DEVICE); 2503 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2504 goto error_report_dma_error; 2505 2506 ena_buf->paddr = dma; 2507 ena_buf->len = skb_head_len - push_len; 2508 2509 ena_buf++; 2510 tx_info->num_of_bufs++; 2511 tx_info->map_linear_data = 1; 2512 } else { 2513 tx_info->map_linear_data = 0; 2514 } 2515 2516 last_frag = skb_shinfo(skb)->nr_frags; 2517 2518 for (i = 0; i < last_frag; i++) { 2519 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2520 2521 frag_len = skb_frag_size(frag); 2522 2523 if (unlikely(delta >= frag_len)) { 2524 delta -= frag_len; 2525 continue; 2526 } 2527 2528 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2529 frag_len - delta, DMA_TO_DEVICE); 2530 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2531 goto error_report_dma_error; 2532 2533 ena_buf->paddr = dma; 2534 ena_buf->len = frag_len - delta; 2535 ena_buf++; 2536 tx_info->num_of_bufs++; 2537 delta = 0; 2538 } 2539 2540 return 0; 2541 2542 error_report_dma_error: 2543 ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1, 2544 &tx_ring->syncp); 2545 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n"); 2546 2547 tx_info->skb = NULL; 2548 2549 tx_info->num_of_bufs += i; 2550 ena_unmap_tx_buff(tx_ring, tx_info); 2551 2552 return -EINVAL; 2553 } 2554 2555 /* Called with netif_tx_lock. */ 2556 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2557 { 2558 struct ena_adapter *adapter = netdev_priv(dev); 2559 struct ena_tx_buffer *tx_info; 2560 struct ena_com_tx_ctx ena_tx_ctx; 2561 struct ena_ring *tx_ring; 2562 struct netdev_queue *txq; 2563 void *push_hdr; 2564 u16 next_to_use, req_id, header_len; 2565 int qid, rc; 2566 2567 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2568 /* Determine which tx ring we will be placed on */ 2569 qid = skb_get_queue_mapping(skb); 2570 tx_ring = &adapter->tx_ring[qid]; 2571 txq = netdev_get_tx_queue(dev, qid); 2572 2573 rc = ena_check_and_linearize_skb(tx_ring, skb); 2574 if (unlikely(rc)) 2575 goto error_drop_packet; 2576 2577 skb_tx_timestamp(skb); 2578 2579 next_to_use = tx_ring->next_to_use; 2580 req_id = tx_ring->free_ids[next_to_use]; 2581 tx_info = &tx_ring->tx_buffer_info[req_id]; 2582 tx_info->num_of_bufs = 0; 2583 2584 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 2585 2586 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 2587 if (unlikely(rc)) 2588 goto error_drop_packet; 2589 2590 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 2591 ena_tx_ctx.ena_bufs = tx_info->bufs; 2592 ena_tx_ctx.push_header = push_hdr; 2593 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2594 ena_tx_ctx.req_id = req_id; 2595 ena_tx_ctx.header_len = header_len; 2596 2597 /* set flags and meta data */ 2598 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching); 2599 2600 rc = ena_xmit_common(adapter, 2601 tx_ring, 2602 tx_info, 2603 &ena_tx_ctx, 2604 next_to_use, 2605 skb->len); 2606 if (rc) 2607 goto error_unmap_dma; 2608 2609 netdev_tx_sent_queue(txq, skb->len); 2610 2611 /* stop the queue when no more space available, the packet can have up 2612 * to sgl_size + 2. one for the meta descriptor and one for header 2613 * (if the header is larger than tx_max_header_size). 2614 */ 2615 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2616 tx_ring->sgl_size + 2))) { 2617 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 2618 __func__, qid); 2619 2620 netif_tx_stop_queue(txq); 2621 ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1, 2622 &tx_ring->syncp); 2623 2624 /* There is a rare condition where this function decide to 2625 * stop the queue but meanwhile clean_tx_irq updates 2626 * next_to_completion and terminates. 2627 * The queue will remain stopped forever. 2628 * To solve this issue add a mb() to make sure that 2629 * netif_tx_stop_queue() write is vissible before checking if 2630 * there is additional space in the queue. 2631 */ 2632 smp_mb(); 2633 2634 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2635 ENA_TX_WAKEUP_THRESH)) { 2636 netif_tx_wake_queue(txq); 2637 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 2638 &tx_ring->syncp); 2639 } 2640 } 2641 2642 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) 2643 /* trigger the dma engine. ena_ring_tx_doorbell() 2644 * calls a memory barrier inside it. 2645 */ 2646 ena_ring_tx_doorbell(tx_ring); 2647 2648 return NETDEV_TX_OK; 2649 2650 error_unmap_dma: 2651 ena_unmap_tx_buff(tx_ring, tx_info); 2652 tx_info->skb = NULL; 2653 2654 error_drop_packet: 2655 dev_kfree_skb(skb); 2656 return NETDEV_TX_OK; 2657 } 2658 2659 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 2660 { 2661 struct device *dev = &pdev->dev; 2662 struct ena_admin_host_info *host_info; 2663 int rc; 2664 2665 /* Allocate only the host info */ 2666 rc = ena_com_allocate_host_info(ena_dev); 2667 if (rc) { 2668 dev_err(dev, "Cannot allocate host info\n"); 2669 return; 2670 } 2671 2672 host_info = ena_dev->host_attr.host_info; 2673 2674 host_info->bdf = pci_dev_id(pdev); 2675 host_info->os_type = ENA_ADMIN_OS_LINUX; 2676 host_info->kernel_ver = LINUX_VERSION_CODE; 2677 strscpy(host_info->kernel_ver_str, utsname()->version, 2678 sizeof(host_info->kernel_ver_str) - 1); 2679 host_info->os_dist = 0; 2680 strncpy(host_info->os_dist_str, utsname()->release, 2681 sizeof(host_info->os_dist_str) - 1); 2682 host_info->driver_version = 2683 (DRV_MODULE_GEN_MAJOR) | 2684 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 2685 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 2686 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 2687 host_info->num_cpus = num_online_cpus(); 2688 2689 host_info->driver_supported_features = 2690 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK | 2691 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK | 2692 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK | 2693 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK | 2694 ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK; 2695 2696 rc = ena_com_set_host_attributes(ena_dev); 2697 if (rc) { 2698 if (rc == -EOPNOTSUPP) 2699 dev_warn(dev, "Cannot set host attributes\n"); 2700 else 2701 dev_err(dev, "Cannot set host attributes\n"); 2702 2703 goto err; 2704 } 2705 2706 return; 2707 2708 err: 2709 ena_com_delete_host_info(ena_dev); 2710 } 2711 2712 static void ena_config_debug_area(struct ena_adapter *adapter) 2713 { 2714 u32 debug_area_size; 2715 int rc, ss_count; 2716 2717 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 2718 if (ss_count <= 0) { 2719 netif_err(adapter, drv, adapter->netdev, 2720 "SS count is negative\n"); 2721 return; 2722 } 2723 2724 /* allocate 32 bytes for each string and 64bit for the value */ 2725 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 2726 2727 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 2728 if (rc) { 2729 netif_err(adapter, drv, adapter->netdev, 2730 "Cannot allocate debug area\n"); 2731 return; 2732 } 2733 2734 rc = ena_com_set_host_attributes(adapter->ena_dev); 2735 if (rc) { 2736 if (rc == -EOPNOTSUPP) 2737 netif_warn(adapter, drv, adapter->netdev, "Cannot set host attributes\n"); 2738 else 2739 netif_err(adapter, drv, adapter->netdev, 2740 "Cannot set host attributes\n"); 2741 goto err; 2742 } 2743 2744 return; 2745 err: 2746 ena_com_delete_debug_area(adapter->ena_dev); 2747 } 2748 2749 int ena_update_hw_stats(struct ena_adapter *adapter) 2750 { 2751 int rc; 2752 2753 rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats); 2754 if (rc) { 2755 netdev_err(adapter->netdev, "Failed to get ENI stats\n"); 2756 return rc; 2757 } 2758 2759 return 0; 2760 } 2761 2762 static void ena_get_stats64(struct net_device *netdev, 2763 struct rtnl_link_stats64 *stats) 2764 { 2765 struct ena_adapter *adapter = netdev_priv(netdev); 2766 struct ena_ring *rx_ring, *tx_ring; 2767 unsigned int start; 2768 u64 rx_drops; 2769 u64 tx_drops; 2770 int i; 2771 2772 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2773 return; 2774 2775 for (i = 0; i < adapter->num_io_queues; i++) { 2776 u64 bytes, packets; 2777 2778 tx_ring = &adapter->tx_ring[i]; 2779 2780 do { 2781 start = u64_stats_fetch_begin(&tx_ring->syncp); 2782 packets = tx_ring->tx_stats.cnt; 2783 bytes = tx_ring->tx_stats.bytes; 2784 } while (u64_stats_fetch_retry(&tx_ring->syncp, start)); 2785 2786 stats->tx_packets += packets; 2787 stats->tx_bytes += bytes; 2788 2789 rx_ring = &adapter->rx_ring[i]; 2790 2791 do { 2792 start = u64_stats_fetch_begin(&rx_ring->syncp); 2793 packets = rx_ring->rx_stats.cnt; 2794 bytes = rx_ring->rx_stats.bytes; 2795 } while (u64_stats_fetch_retry(&rx_ring->syncp, start)); 2796 2797 stats->rx_packets += packets; 2798 stats->rx_bytes += bytes; 2799 } 2800 2801 do { 2802 start = u64_stats_fetch_begin(&adapter->syncp); 2803 rx_drops = adapter->dev_stats.rx_drops; 2804 tx_drops = adapter->dev_stats.tx_drops; 2805 } while (u64_stats_fetch_retry(&adapter->syncp, start)); 2806 2807 stats->rx_dropped = rx_drops; 2808 stats->tx_dropped = tx_drops; 2809 2810 stats->multicast = 0; 2811 stats->collisions = 0; 2812 2813 stats->rx_length_errors = 0; 2814 stats->rx_crc_errors = 0; 2815 stats->rx_frame_errors = 0; 2816 stats->rx_fifo_errors = 0; 2817 stats->rx_missed_errors = 0; 2818 stats->tx_window_errors = 0; 2819 2820 stats->rx_errors = 0; 2821 stats->tx_errors = 0; 2822 } 2823 2824 static const struct net_device_ops ena_netdev_ops = { 2825 .ndo_open = ena_open, 2826 .ndo_stop = ena_close, 2827 .ndo_start_xmit = ena_start_xmit, 2828 .ndo_get_stats64 = ena_get_stats64, 2829 .ndo_tx_timeout = ena_tx_timeout, 2830 .ndo_change_mtu = ena_change_mtu, 2831 .ndo_set_mac_address = NULL, 2832 .ndo_validate_addr = eth_validate_addr, 2833 .ndo_bpf = ena_xdp, 2834 .ndo_xdp_xmit = ena_xdp_xmit, 2835 }; 2836 2837 static void ena_calc_io_queue_size(struct ena_adapter *adapter, 2838 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2839 { 2840 struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq; 2841 struct ena_com_dev *ena_dev = adapter->ena_dev; 2842 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 2843 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 2844 u32 max_tx_queue_size; 2845 u32 max_rx_queue_size; 2846 2847 /* If this function is called after driver load, the ring sizes have already 2848 * been configured. Take it into account when recalculating ring size. 2849 */ 2850 if (adapter->tx_ring->ring_size) 2851 tx_queue_size = adapter->tx_ring->ring_size; 2852 2853 if (adapter->rx_ring->ring_size) 2854 rx_queue_size = adapter->rx_ring->ring_size; 2855 2856 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 2857 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 2858 &get_feat_ctx->max_queue_ext.max_queue_ext; 2859 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 2860 max_queue_ext->max_rx_sq_depth); 2861 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 2862 2863 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2864 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2865 llq->max_llq_depth); 2866 else 2867 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2868 max_queue_ext->max_tx_sq_depth); 2869 2870 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2871 max_queue_ext->max_per_packet_tx_descs); 2872 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2873 max_queue_ext->max_per_packet_rx_descs); 2874 } else { 2875 struct ena_admin_queue_feature_desc *max_queues = 2876 &get_feat_ctx->max_queues; 2877 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 2878 max_queues->max_sq_depth); 2879 max_tx_queue_size = max_queues->max_cq_depth; 2880 2881 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2882 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2883 llq->max_llq_depth); 2884 else 2885 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2886 max_queues->max_sq_depth); 2887 2888 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2889 max_queues->max_packet_tx_descs); 2890 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2891 max_queues->max_packet_rx_descs); 2892 } 2893 2894 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 2895 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 2896 2897 /* When forcing large headers, we multiply the entry size by 2, and therefore divide 2898 * the queue size by 2, leaving the amount of memory used by the queues unchanged. 2899 */ 2900 if (adapter->large_llq_header_enabled) { 2901 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 2902 ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2903 max_tx_queue_size /= 2; 2904 dev_info(&adapter->pdev->dev, 2905 "Forcing large headers and decreasing maximum TX queue size to %d\n", 2906 max_tx_queue_size); 2907 } else { 2908 dev_err(&adapter->pdev->dev, 2909 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n"); 2910 2911 adapter->large_llq_header_enabled = false; 2912 } 2913 } 2914 2915 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 2916 max_tx_queue_size); 2917 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 2918 max_rx_queue_size); 2919 2920 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 2921 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 2922 2923 adapter->max_tx_ring_size = max_tx_queue_size; 2924 adapter->max_rx_ring_size = max_rx_queue_size; 2925 adapter->requested_tx_ring_size = tx_queue_size; 2926 adapter->requested_rx_ring_size = rx_queue_size; 2927 } 2928 2929 static int ena_device_validate_params(struct ena_adapter *adapter, 2930 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2931 { 2932 struct net_device *netdev = adapter->netdev; 2933 int rc; 2934 2935 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 2936 adapter->mac_addr); 2937 if (!rc) { 2938 netif_err(adapter, drv, netdev, 2939 "Error, mac address are different\n"); 2940 return -EINVAL; 2941 } 2942 2943 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 2944 netif_err(adapter, drv, netdev, 2945 "Error, device max mtu is smaller than netdev MTU\n"); 2946 return -EINVAL; 2947 } 2948 2949 return 0; 2950 } 2951 2952 static void set_default_llq_configurations(struct ena_adapter *adapter, 2953 struct ena_llq_configurations *llq_config, 2954 struct ena_admin_feature_llq_desc *llq) 2955 { 2956 struct ena_com_dev *ena_dev = adapter->ena_dev; 2957 2958 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 2959 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 2960 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 2961 2962 adapter->large_llq_header_supported = 2963 !!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ)); 2964 adapter->large_llq_header_supported &= 2965 !!(llq->entry_size_ctrl_supported & 2966 ENA_ADMIN_LIST_ENTRY_SIZE_256B); 2967 2968 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 2969 adapter->large_llq_header_enabled) { 2970 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B; 2971 llq_config->llq_ring_entry_size_value = 256; 2972 } else { 2973 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 2974 llq_config->llq_ring_entry_size_value = 128; 2975 } 2976 } 2977 2978 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 2979 struct ena_com_dev *ena_dev, 2980 struct ena_admin_feature_llq_desc *llq, 2981 struct ena_llq_configurations *llq_default_configurations) 2982 { 2983 int rc; 2984 u32 llq_feature_mask; 2985 2986 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 2987 if (!(ena_dev->supported_features & llq_feature_mask)) { 2988 dev_warn(&pdev->dev, 2989 "LLQ is not supported Fallback to host mode policy.\n"); 2990 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 2991 return 0; 2992 } 2993 2994 if (!ena_dev->mem_bar) { 2995 netdev_err(ena_dev->net_device, 2996 "LLQ is advertised as supported but device doesn't expose mem bar\n"); 2997 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 2998 return 0; 2999 } 3000 3001 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3002 if (unlikely(rc)) { 3003 dev_err(&pdev->dev, 3004 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3005 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3006 } 3007 3008 return 0; 3009 } 3010 3011 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, 3012 int bars) 3013 { 3014 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR)); 3015 3016 if (!has_mem_bar) 3017 return 0; 3018 3019 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3020 pci_resource_start(pdev, ENA_MEM_BAR), 3021 pci_resource_len(pdev, ENA_MEM_BAR)); 3022 3023 if (!ena_dev->mem_bar) 3024 return -EFAULT; 3025 3026 return 0; 3027 } 3028 3029 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev, 3030 struct ena_com_dev_get_features_ctx *get_feat_ctx, 3031 bool *wd_state) 3032 { 3033 struct ena_com_dev *ena_dev = adapter->ena_dev; 3034 struct ena_llq_configurations llq_config; 3035 struct device *dev = &pdev->dev; 3036 bool readless_supported; 3037 u32 aenq_groups; 3038 int dma_width; 3039 int rc; 3040 3041 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3042 if (rc) { 3043 dev_err(dev, "Failed to init mmio read less\n"); 3044 return rc; 3045 } 3046 3047 /* The PCIe configuration space revision id indicate if mmio reg 3048 * read is disabled 3049 */ 3050 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 3051 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3052 3053 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3054 if (rc) { 3055 dev_err(dev, "Can not reset device\n"); 3056 goto err_mmio_read_less; 3057 } 3058 3059 rc = ena_com_validate_version(ena_dev); 3060 if (rc) { 3061 dev_err(dev, "Device version is too low\n"); 3062 goto err_mmio_read_less; 3063 } 3064 3065 dma_width = ena_com_get_dma_width(ena_dev); 3066 if (dma_width < 0) { 3067 dev_err(dev, "Invalid dma width value %d", dma_width); 3068 rc = dma_width; 3069 goto err_mmio_read_less; 3070 } 3071 3072 rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width)); 3073 if (rc) { 3074 dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc); 3075 goto err_mmio_read_less; 3076 } 3077 3078 /* ENA admin level init */ 3079 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 3080 if (rc) { 3081 dev_err(dev, 3082 "Can not initialize ena admin queue with device\n"); 3083 goto err_mmio_read_less; 3084 } 3085 3086 /* To enable the msix interrupts the driver needs to know the number 3087 * of queues. So the driver uses polling mode to retrieve this 3088 * information 3089 */ 3090 ena_com_set_admin_polling_mode(ena_dev, true); 3091 3092 ena_config_host_info(ena_dev, pdev); 3093 3094 /* Get Device Attributes*/ 3095 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3096 if (rc) { 3097 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 3098 goto err_admin_init; 3099 } 3100 3101 /* Try to turn all the available aenq groups */ 3102 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 3103 BIT(ENA_ADMIN_FATAL_ERROR) | 3104 BIT(ENA_ADMIN_WARNING) | 3105 BIT(ENA_ADMIN_NOTIFICATION) | 3106 BIT(ENA_ADMIN_KEEP_ALIVE); 3107 3108 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3109 3110 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3111 if (rc) { 3112 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 3113 goto err_admin_init; 3114 } 3115 3116 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3117 3118 set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq); 3119 3120 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq, 3121 &llq_config); 3122 if (rc) { 3123 dev_err(dev, "ENA device init failed\n"); 3124 goto err_admin_init; 3125 } 3126 3127 ena_calc_io_queue_size(adapter, get_feat_ctx); 3128 3129 return 0; 3130 3131 err_admin_init: 3132 ena_com_delete_host_info(ena_dev); 3133 ena_com_admin_destroy(ena_dev); 3134 err_mmio_read_less: 3135 ena_com_mmio_reg_read_request_destroy(ena_dev); 3136 3137 return rc; 3138 } 3139 3140 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 3141 { 3142 struct ena_com_dev *ena_dev = adapter->ena_dev; 3143 struct device *dev = &adapter->pdev->dev; 3144 int rc; 3145 3146 rc = ena_enable_msix(adapter); 3147 if (rc) { 3148 dev_err(dev, "Can not reserve msix vectors\n"); 3149 return rc; 3150 } 3151 3152 ena_setup_mgmnt_intr(adapter); 3153 3154 rc = ena_request_mgmnt_irq(adapter); 3155 if (rc) { 3156 dev_err(dev, "Can not setup management interrupts\n"); 3157 goto err_disable_msix; 3158 } 3159 3160 ena_com_set_admin_polling_mode(ena_dev, false); 3161 3162 ena_com_admin_aenq_enable(ena_dev); 3163 3164 return 0; 3165 3166 err_disable_msix: 3167 ena_disable_msix(adapter); 3168 3169 return rc; 3170 } 3171 3172 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful) 3173 { 3174 struct net_device *netdev = adapter->netdev; 3175 struct ena_com_dev *ena_dev = adapter->ena_dev; 3176 bool dev_up; 3177 3178 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3179 return; 3180 3181 netif_carrier_off(netdev); 3182 3183 del_timer_sync(&adapter->timer_service); 3184 3185 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 3186 adapter->dev_up_before_reset = dev_up; 3187 if (!graceful) 3188 ena_com_set_admin_running_state(ena_dev, false); 3189 3190 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3191 ena_down(adapter); 3192 3193 /* Stop the device from sending AENQ events (in case reset flag is set 3194 * and device is up, ena_down() already reset the device. 3195 */ 3196 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 3197 ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 3198 3199 ena_free_mgmnt_irq(adapter); 3200 3201 ena_disable_msix(adapter); 3202 3203 ena_com_abort_admin_commands(ena_dev); 3204 3205 ena_com_wait_for_abort_completion(ena_dev); 3206 3207 ena_com_admin_destroy(ena_dev); 3208 3209 ena_com_mmio_reg_read_request_destroy(ena_dev); 3210 3211 /* return reset reason to default value */ 3212 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3213 3214 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3215 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3216 } 3217 3218 static int ena_restore_device(struct ena_adapter *adapter) 3219 { 3220 struct ena_com_dev_get_features_ctx get_feat_ctx; 3221 struct ena_com_dev *ena_dev = adapter->ena_dev; 3222 struct pci_dev *pdev = adapter->pdev; 3223 struct ena_ring *txr; 3224 int rc, count, i; 3225 bool wd_state; 3226 3227 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3228 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state); 3229 if (rc) { 3230 dev_err(&pdev->dev, "Can not initialize device\n"); 3231 goto err; 3232 } 3233 adapter->wd_state = wd_state; 3234 3235 count = adapter->xdp_num_queues + adapter->num_io_queues; 3236 for (i = 0 ; i < count; i++) { 3237 txr = &adapter->tx_ring[i]; 3238 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 3239 txr->tx_max_header_size = ena_dev->tx_max_header_size; 3240 } 3241 3242 rc = ena_device_validate_params(adapter, &get_feat_ctx); 3243 if (rc) { 3244 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 3245 goto err_device_destroy; 3246 } 3247 3248 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3249 if (rc) { 3250 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 3251 goto err_device_destroy; 3252 } 3253 /* If the interface was up before the reset bring it up */ 3254 if (adapter->dev_up_before_reset) { 3255 rc = ena_up(adapter); 3256 if (rc) { 3257 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 3258 goto err_disable_msix; 3259 } 3260 } 3261 3262 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3263 3264 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3265 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 3266 netif_carrier_on(adapter->netdev); 3267 3268 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3269 adapter->last_keep_alive_jiffies = jiffies; 3270 3271 return rc; 3272 err_disable_msix: 3273 ena_free_mgmnt_irq(adapter); 3274 ena_disable_msix(adapter); 3275 err_device_destroy: 3276 ena_com_abort_admin_commands(ena_dev); 3277 ena_com_wait_for_abort_completion(ena_dev); 3278 ena_com_admin_destroy(ena_dev); 3279 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 3280 ena_com_mmio_reg_read_request_destroy(ena_dev); 3281 err: 3282 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3283 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3284 dev_err(&pdev->dev, 3285 "Reset attempt failed. Can not reset the device\n"); 3286 3287 return rc; 3288 } 3289 3290 static void ena_fw_reset_device(struct work_struct *work) 3291 { 3292 struct ena_adapter *adapter = 3293 container_of(work, struct ena_adapter, reset_task); 3294 3295 rtnl_lock(); 3296 3297 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3298 ena_destroy_device(adapter, false); 3299 ena_restore_device(adapter); 3300 3301 dev_err(&adapter->pdev->dev, "Device reset completed successfully\n"); 3302 } 3303 3304 rtnl_unlock(); 3305 } 3306 3307 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 3308 struct ena_ring *rx_ring) 3309 { 3310 struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi); 3311 3312 if (likely(READ_ONCE(ena_napi->first_interrupt))) 3313 return 0; 3314 3315 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 3316 return 0; 3317 3318 rx_ring->no_interrupt_event_cnt++; 3319 3320 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 3321 netif_err(adapter, rx_err, adapter->netdev, 3322 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 3323 rx_ring->qid); 3324 3325 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3326 return -EIO; 3327 } 3328 3329 return 0; 3330 } 3331 3332 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 3333 struct ena_ring *tx_ring) 3334 { 3335 struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi); 3336 unsigned int time_since_last_napi; 3337 unsigned int missing_tx_comp_to; 3338 bool is_tx_comp_time_expired; 3339 struct ena_tx_buffer *tx_buf; 3340 unsigned long last_jiffies; 3341 u32 missed_tx = 0; 3342 int i, rc = 0; 3343 3344 for (i = 0; i < tx_ring->ring_size; i++) { 3345 tx_buf = &tx_ring->tx_buffer_info[i]; 3346 last_jiffies = tx_buf->last_jiffies; 3347 3348 if (last_jiffies == 0) 3349 /* no pending Tx at this location */ 3350 continue; 3351 3352 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3353 2 * adapter->missing_tx_completion_to); 3354 3355 if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) { 3356 /* If after graceful period interrupt is still not 3357 * received, we schedule a reset 3358 */ 3359 netif_err(adapter, tx_err, adapter->netdev, 3360 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 3361 tx_ring->qid); 3362 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3363 return -EIO; 3364 } 3365 3366 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3367 adapter->missing_tx_completion_to); 3368 3369 if (unlikely(is_tx_comp_time_expired)) { 3370 if (!tx_buf->print_once) { 3371 time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 3372 missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to); 3373 netif_notice(adapter, tx_err, adapter->netdev, 3374 "Found a Tx that wasn't completed on time, qid %d, index %d. %u usecs have passed since last napi execution. Missing Tx timeout value %u msecs\n", 3375 tx_ring->qid, i, time_since_last_napi, missing_tx_comp_to); 3376 } 3377 3378 tx_buf->print_once = 1; 3379 missed_tx++; 3380 } 3381 } 3382 3383 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 3384 netif_err(adapter, tx_err, adapter->netdev, 3385 "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n", 3386 missed_tx, 3387 adapter->missing_tx_completion_threshold); 3388 ena_reset_device(adapter, ENA_REGS_RESET_MISS_TX_CMPL); 3389 rc = -EIO; 3390 } 3391 3392 ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx, 3393 &tx_ring->syncp); 3394 3395 return rc; 3396 } 3397 3398 static void check_for_missing_completions(struct ena_adapter *adapter) 3399 { 3400 struct ena_ring *tx_ring; 3401 struct ena_ring *rx_ring; 3402 int qid, budget, rc; 3403 int io_queue_count; 3404 3405 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; 3406 3407 /* Make sure the driver doesn't turn the device in other process */ 3408 smp_rmb(); 3409 3410 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3411 return; 3412 3413 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3414 return; 3415 3416 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 3417 return; 3418 3419 budget = min_t(u32, io_queue_count, ENA_MONITORED_TX_QUEUES); 3420 3421 qid = adapter->last_monitored_tx_qid; 3422 3423 while (budget) { 3424 qid = (qid + 1) % io_queue_count; 3425 3426 tx_ring = &adapter->tx_ring[qid]; 3427 rx_ring = &adapter->rx_ring[qid]; 3428 3429 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 3430 if (unlikely(rc)) 3431 return; 3432 3433 rc = !ENA_IS_XDP_INDEX(adapter, qid) ? 3434 check_for_rx_interrupt_queue(adapter, rx_ring) : 0; 3435 if (unlikely(rc)) 3436 return; 3437 3438 budget--; 3439 } 3440 3441 adapter->last_monitored_tx_qid = qid; 3442 } 3443 3444 /* trigger napi schedule after 2 consecutive detections */ 3445 #define EMPTY_RX_REFILL 2 3446 /* For the rare case where the device runs out of Rx descriptors and the 3447 * napi handler failed to refill new Rx descriptors (due to a lack of memory 3448 * for example). 3449 * This case will lead to a deadlock: 3450 * The device won't send interrupts since all the new Rx packets will be dropped 3451 * The napi handler won't allocate new Rx descriptors so the device will be 3452 * able to send new packets. 3453 * 3454 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 3455 * It is recommended to have at least 512MB, with a minimum of 128MB for 3456 * constrained environment). 3457 * 3458 * When such a situation is detected - Reschedule napi 3459 */ 3460 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3461 { 3462 struct ena_ring *rx_ring; 3463 int i, refill_required; 3464 3465 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3466 return; 3467 3468 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3469 return; 3470 3471 for (i = 0; i < adapter->num_io_queues; i++) { 3472 rx_ring = &adapter->rx_ring[i]; 3473 3474 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 3475 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3476 rx_ring->empty_rx_queue++; 3477 3478 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3479 ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1, 3480 &rx_ring->syncp); 3481 3482 netif_err(adapter, drv, adapter->netdev, 3483 "Trigger refill for ring %d\n", i); 3484 3485 napi_schedule(rx_ring->napi); 3486 rx_ring->empty_rx_queue = 0; 3487 } 3488 } else { 3489 rx_ring->empty_rx_queue = 0; 3490 } 3491 } 3492 } 3493 3494 /* Check for keep alive expiration */ 3495 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3496 { 3497 unsigned long keep_alive_expired; 3498 3499 if (!adapter->wd_state) 3500 return; 3501 3502 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3503 return; 3504 3505 keep_alive_expired = adapter->last_keep_alive_jiffies + 3506 adapter->keep_alive_timeout; 3507 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3508 netif_err(adapter, drv, adapter->netdev, 3509 "Keep alive watchdog timeout.\n"); 3510 ena_increase_stat(&adapter->dev_stats.wd_expired, 1, 3511 &adapter->syncp); 3512 ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO); 3513 } 3514 } 3515 3516 static void check_for_admin_com_state(struct ena_adapter *adapter) 3517 { 3518 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3519 netif_err(adapter, drv, adapter->netdev, 3520 "ENA admin queue is not in running state!\n"); 3521 ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1, 3522 &adapter->syncp); 3523 ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO); 3524 } 3525 } 3526 3527 static void ena_update_hints(struct ena_adapter *adapter, 3528 struct ena_admin_ena_hw_hints *hints) 3529 { 3530 struct net_device *netdev = adapter->netdev; 3531 3532 if (hints->admin_completion_tx_timeout) 3533 adapter->ena_dev->admin_queue.completion_timeout = 3534 hints->admin_completion_tx_timeout * 1000; 3535 3536 if (hints->mmio_read_timeout) 3537 /* convert to usec */ 3538 adapter->ena_dev->mmio_read.reg_read_to = 3539 hints->mmio_read_timeout * 1000; 3540 3541 if (hints->missed_tx_completion_count_threshold_to_reset) 3542 adapter->missing_tx_completion_threshold = 3543 hints->missed_tx_completion_count_threshold_to_reset; 3544 3545 if (hints->missing_tx_completion_timeout) { 3546 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3547 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3548 else 3549 adapter->missing_tx_completion_to = 3550 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3551 } 3552 3553 if (hints->netdev_wd_timeout) 3554 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3555 3556 if (hints->driver_watchdog_timeout) { 3557 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3558 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3559 else 3560 adapter->keep_alive_timeout = 3561 msecs_to_jiffies(hints->driver_watchdog_timeout); 3562 } 3563 } 3564 3565 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3566 struct net_device *netdev) 3567 { 3568 host_info->supported_network_features[0] = 3569 netdev->features & GENMASK_ULL(31, 0); 3570 host_info->supported_network_features[1] = 3571 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3572 } 3573 3574 static void ena_timer_service(struct timer_list *t) 3575 { 3576 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 3577 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3578 struct ena_admin_host_info *host_info = 3579 adapter->ena_dev->host_attr.host_info; 3580 3581 check_for_missing_keep_alive(adapter); 3582 3583 check_for_admin_com_state(adapter); 3584 3585 check_for_missing_completions(adapter); 3586 3587 check_for_empty_rx_ring(adapter); 3588 3589 if (debug_area) 3590 ena_dump_stats_to_buf(adapter, debug_area); 3591 3592 if (host_info) 3593 ena_update_host_info(host_info, adapter->netdev); 3594 3595 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3596 netif_err(adapter, drv, adapter->netdev, 3597 "Trigger reset is on\n"); 3598 ena_dump_stats_to_dmesg(adapter); 3599 queue_work(ena_wq, &adapter->reset_task); 3600 return; 3601 } 3602 3603 /* Reset the timer */ 3604 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3605 } 3606 3607 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev, 3608 struct ena_com_dev *ena_dev, 3609 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3610 { 3611 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3612 3613 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3614 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3615 &get_feat_ctx->max_queue_ext.max_queue_ext; 3616 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3617 max_queue_ext->max_rx_cq_num); 3618 3619 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3620 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3621 } else { 3622 struct ena_admin_queue_feature_desc *max_queues = 3623 &get_feat_ctx->max_queues; 3624 io_tx_sq_num = max_queues->max_sq_num; 3625 io_tx_cq_num = max_queues->max_cq_num; 3626 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3627 } 3628 3629 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3630 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3631 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3632 3633 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3634 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3635 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3636 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3637 /* 1 IRQ for mgmnt and 1 IRQs for each IO direction */ 3638 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3639 3640 return max_num_io_queues; 3641 } 3642 3643 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3644 struct net_device *netdev) 3645 { 3646 netdev_features_t dev_features = 0; 3647 3648 /* Set offload features */ 3649 if (feat->offload.tx & 3650 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3651 dev_features |= NETIF_F_IP_CSUM; 3652 3653 if (feat->offload.tx & 3654 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3655 dev_features |= NETIF_F_IPV6_CSUM; 3656 3657 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3658 dev_features |= NETIF_F_TSO; 3659 3660 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3661 dev_features |= NETIF_F_TSO6; 3662 3663 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3664 dev_features |= NETIF_F_TSO_ECN; 3665 3666 if (feat->offload.rx_supported & 3667 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3668 dev_features |= NETIF_F_RXCSUM; 3669 3670 if (feat->offload.rx_supported & 3671 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3672 dev_features |= NETIF_F_RXCSUM; 3673 3674 netdev->features = 3675 dev_features | 3676 NETIF_F_SG | 3677 NETIF_F_RXHASH | 3678 NETIF_F_HIGHDMA; 3679 3680 netdev->hw_features |= netdev->features; 3681 netdev->vlan_features |= netdev->features; 3682 } 3683 3684 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3685 struct ena_com_dev_get_features_ctx *feat) 3686 { 3687 struct net_device *netdev = adapter->netdev; 3688 3689 /* Copy mac address */ 3690 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 3691 eth_hw_addr_random(netdev); 3692 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 3693 } else { 3694 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 3695 eth_hw_addr_set(netdev, adapter->mac_addr); 3696 } 3697 3698 /* Set offload features */ 3699 ena_set_dev_offloads(feat, netdev); 3700 3701 adapter->max_mtu = feat->dev_attr.max_mtu; 3702 netdev->max_mtu = adapter->max_mtu; 3703 netdev->min_mtu = ENA_MIN_MTU; 3704 } 3705 3706 static int ena_rss_init_default(struct ena_adapter *adapter) 3707 { 3708 struct ena_com_dev *ena_dev = adapter->ena_dev; 3709 struct device *dev = &adapter->pdev->dev; 3710 int rc, i; 3711 u32 val; 3712 3713 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 3714 if (unlikely(rc)) { 3715 dev_err(dev, "Cannot init indirect table\n"); 3716 goto err_rss_init; 3717 } 3718 3719 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 3720 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 3721 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 3722 ENA_IO_RXQ_IDX(val)); 3723 if (unlikely(rc)) { 3724 dev_err(dev, "Cannot fill indirect table\n"); 3725 goto err_fill_indir; 3726 } 3727 } 3728 3729 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, ENA_HASH_KEY_SIZE, 3730 0xFFFFFFFF); 3731 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3732 dev_err(dev, "Cannot fill hash function\n"); 3733 goto err_fill_indir; 3734 } 3735 3736 rc = ena_com_set_default_hash_ctrl(ena_dev); 3737 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3738 dev_err(dev, "Cannot fill hash control\n"); 3739 goto err_fill_indir; 3740 } 3741 3742 return 0; 3743 3744 err_fill_indir: 3745 ena_com_rss_destroy(ena_dev); 3746 err_rss_init: 3747 3748 return rc; 3749 } 3750 3751 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3752 { 3753 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3754 3755 pci_release_selected_regions(pdev, release_bars); 3756 } 3757 3758 /* ena_probe - Device Initialization Routine 3759 * @pdev: PCI device information struct 3760 * @ent: entry in ena_pci_tbl 3761 * 3762 * Returns 0 on success, negative on failure 3763 * 3764 * ena_probe initializes an adapter identified by a pci_dev structure. 3765 * The OS initialization, configuring of the adapter private structure, 3766 * and a hardware reset occur. 3767 */ 3768 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3769 { 3770 struct ena_com_dev_get_features_ctx get_feat_ctx; 3771 struct ena_com_dev *ena_dev = NULL; 3772 struct ena_adapter *adapter; 3773 struct net_device *netdev; 3774 static int adapters_found; 3775 u32 max_num_io_queues; 3776 bool wd_state; 3777 int bars, rc; 3778 3779 dev_dbg(&pdev->dev, "%s\n", __func__); 3780 3781 rc = pci_enable_device_mem(pdev); 3782 if (rc) { 3783 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 3784 return rc; 3785 } 3786 3787 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS)); 3788 if (rc) { 3789 dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc); 3790 goto err_disable_device; 3791 } 3792 3793 pci_set_master(pdev); 3794 3795 ena_dev = vzalloc(sizeof(*ena_dev)); 3796 if (!ena_dev) { 3797 rc = -ENOMEM; 3798 goto err_disable_device; 3799 } 3800 3801 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3802 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 3803 if (rc) { 3804 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 3805 rc); 3806 goto err_free_ena_dev; 3807 } 3808 3809 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 3810 pci_resource_start(pdev, ENA_REG_BAR), 3811 pci_resource_len(pdev, ENA_REG_BAR)); 3812 if (!ena_dev->reg_bar) { 3813 dev_err(&pdev->dev, "Failed to remap regs bar\n"); 3814 rc = -EFAULT; 3815 goto err_free_region; 3816 } 3817 3818 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US; 3819 3820 ena_dev->dmadev = &pdev->dev; 3821 3822 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS); 3823 if (!netdev) { 3824 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 3825 rc = -ENOMEM; 3826 goto err_free_region; 3827 } 3828 3829 SET_NETDEV_DEV(netdev, &pdev->dev); 3830 adapter = netdev_priv(netdev); 3831 adapter->ena_dev = ena_dev; 3832 adapter->netdev = netdev; 3833 adapter->pdev = pdev; 3834 adapter->msg_enable = DEFAULT_MSG_ENABLE; 3835 3836 ena_dev->net_device = netdev; 3837 3838 pci_set_drvdata(pdev, adapter); 3839 3840 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars); 3841 if (rc) { 3842 dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n"); 3843 goto err_netdev_destroy; 3844 } 3845 3846 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state); 3847 if (rc) { 3848 dev_err(&pdev->dev, "ENA device init failed\n"); 3849 if (rc == -ETIME) 3850 rc = -EPROBE_DEFER; 3851 goto err_netdev_destroy; 3852 } 3853 3854 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity. 3855 * Updated during device initialization with the real granularity 3856 */ 3857 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 3858 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 3859 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 3860 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 3861 if (unlikely(!max_num_io_queues)) { 3862 rc = -EFAULT; 3863 goto err_device_destroy; 3864 } 3865 3866 ena_set_conf_feat_params(adapter, &get_feat_ctx); 3867 3868 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3869 3870 adapter->num_io_queues = max_num_io_queues; 3871 adapter->max_num_io_queues = max_num_io_queues; 3872 adapter->last_monitored_tx_qid = 0; 3873 3874 adapter->xdp_first_ring = 0; 3875 adapter->xdp_num_queues = 0; 3876 3877 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 3878 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3879 adapter->disable_meta_caching = 3880 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & 3881 BIT(ENA_ADMIN_DISABLE_META_CACHING)); 3882 3883 adapter->wd_state = wd_state; 3884 3885 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 3886 3887 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 3888 if (rc) { 3889 dev_err(&pdev->dev, 3890 "Failed to query interrupt moderation feature\n"); 3891 goto err_device_destroy; 3892 } 3893 3894 ena_init_io_rings(adapter, 3895 0, 3896 adapter->xdp_num_queues + 3897 adapter->num_io_queues); 3898 3899 netdev->netdev_ops = &ena_netdev_ops; 3900 netdev->watchdog_timeo = TX_TIMEOUT; 3901 ena_set_ethtool_ops(netdev); 3902 3903 netdev->priv_flags |= IFF_UNICAST_FLT; 3904 3905 u64_stats_init(&adapter->syncp); 3906 3907 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3908 if (rc) { 3909 dev_err(&pdev->dev, 3910 "Failed to enable and set the admin interrupts\n"); 3911 goto err_worker_destroy; 3912 } 3913 rc = ena_rss_init_default(adapter); 3914 if (rc && (rc != -EOPNOTSUPP)) { 3915 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 3916 goto err_free_msix; 3917 } 3918 3919 ena_config_debug_area(adapter); 3920 3921 if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues)) 3922 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 3923 NETDEV_XDP_ACT_REDIRECT; 3924 3925 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 3926 3927 netif_carrier_off(netdev); 3928 3929 rc = register_netdev(netdev); 3930 if (rc) { 3931 dev_err(&pdev->dev, "Cannot register net device\n"); 3932 goto err_rss; 3933 } 3934 3935 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 3936 3937 adapter->last_keep_alive_jiffies = jiffies; 3938 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 3939 adapter->missing_tx_completion_to = TX_TIMEOUT; 3940 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 3941 3942 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 3943 3944 timer_setup(&adapter->timer_service, ena_timer_service, 0); 3945 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3946 3947 dev_info(&pdev->dev, 3948 "%s found at mem %lx, mac addr %pM\n", 3949 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 3950 netdev->dev_addr); 3951 3952 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3953 3954 adapters_found++; 3955 3956 return 0; 3957 3958 err_rss: 3959 ena_com_delete_debug_area(ena_dev); 3960 ena_com_rss_destroy(ena_dev); 3961 err_free_msix: 3962 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 3963 /* stop submitting admin commands on a device that was reset */ 3964 ena_com_set_admin_running_state(ena_dev, false); 3965 ena_free_mgmnt_irq(adapter); 3966 ena_disable_msix(adapter); 3967 err_worker_destroy: 3968 del_timer(&adapter->timer_service); 3969 err_device_destroy: 3970 ena_com_delete_host_info(ena_dev); 3971 ena_com_admin_destroy(ena_dev); 3972 err_netdev_destroy: 3973 free_netdev(netdev); 3974 err_free_region: 3975 ena_release_bars(ena_dev, pdev); 3976 err_free_ena_dev: 3977 vfree(ena_dev); 3978 err_disable_device: 3979 pci_disable_device(pdev); 3980 return rc; 3981 } 3982 3983 /*****************************************************************************/ 3984 3985 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines 3986 * @pdev: PCI device information struct 3987 * @shutdown: Is it a shutdown operation? If false, means it is a removal 3988 * 3989 * __ena_shutoff is a helper routine that does the real work on shutdown and 3990 * removal paths; the difference between those paths is with regards to whether 3991 * dettach or unregister the netdevice. 3992 */ 3993 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) 3994 { 3995 struct ena_adapter *adapter = pci_get_drvdata(pdev); 3996 struct ena_com_dev *ena_dev; 3997 struct net_device *netdev; 3998 3999 ena_dev = adapter->ena_dev; 4000 netdev = adapter->netdev; 4001 4002 #ifdef CONFIG_RFS_ACCEL 4003 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 4004 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 4005 netdev->rx_cpu_rmap = NULL; 4006 } 4007 #endif /* CONFIG_RFS_ACCEL */ 4008 4009 /* Make sure timer and reset routine won't be called after 4010 * freeing device resources. 4011 */ 4012 del_timer_sync(&adapter->timer_service); 4013 cancel_work_sync(&adapter->reset_task); 4014 4015 rtnl_lock(); /* lock released inside the below if-else block */ 4016 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN; 4017 ena_destroy_device(adapter, true); 4018 4019 if (shutdown) { 4020 netif_device_detach(netdev); 4021 dev_close(netdev); 4022 rtnl_unlock(); 4023 } else { 4024 rtnl_unlock(); 4025 unregister_netdev(netdev); 4026 free_netdev(netdev); 4027 } 4028 4029 ena_com_rss_destroy(ena_dev); 4030 4031 ena_com_delete_debug_area(ena_dev); 4032 4033 ena_com_delete_host_info(ena_dev); 4034 4035 ena_release_bars(ena_dev, pdev); 4036 4037 pci_disable_device(pdev); 4038 4039 vfree(ena_dev); 4040 } 4041 4042 /* ena_remove - Device Removal Routine 4043 * @pdev: PCI device information struct 4044 * 4045 * ena_remove is called by the PCI subsystem to alert the driver 4046 * that it should release a PCI device. 4047 */ 4048 4049 static void ena_remove(struct pci_dev *pdev) 4050 { 4051 __ena_shutoff(pdev, false); 4052 } 4053 4054 /* ena_shutdown - Device Shutdown Routine 4055 * @pdev: PCI device information struct 4056 * 4057 * ena_shutdown is called by the PCI subsystem to alert the driver that 4058 * a shutdown/reboot (or kexec) is happening and device must be disabled. 4059 */ 4060 4061 static void ena_shutdown(struct pci_dev *pdev) 4062 { 4063 __ena_shutoff(pdev, true); 4064 } 4065 4066 /* ena_suspend - PM suspend callback 4067 * @dev_d: Device information struct 4068 */ 4069 static int __maybe_unused ena_suspend(struct device *dev_d) 4070 { 4071 struct pci_dev *pdev = to_pci_dev(dev_d); 4072 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4073 4074 ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp); 4075 4076 rtnl_lock(); 4077 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4078 dev_err(&pdev->dev, 4079 "Ignoring device reset request as the device is being suspended\n"); 4080 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 4081 } 4082 ena_destroy_device(adapter, true); 4083 rtnl_unlock(); 4084 return 0; 4085 } 4086 4087 /* ena_resume - PM resume callback 4088 * @dev_d: Device information struct 4089 */ 4090 static int __maybe_unused ena_resume(struct device *dev_d) 4091 { 4092 struct ena_adapter *adapter = dev_get_drvdata(dev_d); 4093 int rc; 4094 4095 ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp); 4096 4097 rtnl_lock(); 4098 rc = ena_restore_device(adapter); 4099 rtnl_unlock(); 4100 return rc; 4101 } 4102 4103 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume); 4104 4105 static struct pci_driver ena_pci_driver = { 4106 .name = DRV_MODULE_NAME, 4107 .id_table = ena_pci_tbl, 4108 .probe = ena_probe, 4109 .remove = ena_remove, 4110 .shutdown = ena_shutdown, 4111 .driver.pm = &ena_pm_ops, 4112 .sriov_configure = pci_sriov_configure_simple, 4113 }; 4114 4115 static int __init ena_init(void) 4116 { 4117 int ret; 4118 4119 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 4120 if (!ena_wq) { 4121 pr_err("Failed to create workqueue\n"); 4122 return -ENOMEM; 4123 } 4124 4125 ret = pci_register_driver(&ena_pci_driver); 4126 if (ret) 4127 destroy_workqueue(ena_wq); 4128 4129 return ret; 4130 } 4131 4132 static void __exit ena_cleanup(void) 4133 { 4134 pci_unregister_driver(&ena_pci_driver); 4135 4136 if (ena_wq) { 4137 destroy_workqueue(ena_wq); 4138 ena_wq = NULL; 4139 } 4140 } 4141 4142 /****************************************************************************** 4143 ******************************** AENQ Handlers ******************************* 4144 *****************************************************************************/ 4145 /* ena_update_on_link_change: 4146 * Notify the network interface about the change in link status 4147 */ 4148 static void ena_update_on_link_change(void *adapter_data, 4149 struct ena_admin_aenq_entry *aenq_e) 4150 { 4151 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4152 struct ena_admin_aenq_link_change_desc *aenq_desc = 4153 (struct ena_admin_aenq_link_change_desc *)aenq_e; 4154 int status = aenq_desc->flags & 4155 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 4156 4157 if (status) { 4158 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 4159 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4160 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 4161 netif_carrier_on(adapter->netdev); 4162 } else { 4163 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4164 netif_carrier_off(adapter->netdev); 4165 } 4166 } 4167 4168 static void ena_keep_alive_wd(void *adapter_data, 4169 struct ena_admin_aenq_entry *aenq_e) 4170 { 4171 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4172 struct ena_admin_aenq_keep_alive_desc *desc; 4173 u64 rx_drops; 4174 u64 tx_drops; 4175 4176 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 4177 adapter->last_keep_alive_jiffies = jiffies; 4178 4179 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 4180 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low; 4181 4182 u64_stats_update_begin(&adapter->syncp); 4183 /* These stats are accumulated by the device, so the counters indicate 4184 * all drops since last reset. 4185 */ 4186 adapter->dev_stats.rx_drops = rx_drops; 4187 adapter->dev_stats.tx_drops = tx_drops; 4188 u64_stats_update_end(&adapter->syncp); 4189 } 4190 4191 static void ena_notification(void *adapter_data, 4192 struct ena_admin_aenq_entry *aenq_e) 4193 { 4194 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4195 struct ena_admin_ena_hw_hints *hints; 4196 4197 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 4198 "Invalid group(%x) expected %x\n", 4199 aenq_e->aenq_common_desc.group, 4200 ENA_ADMIN_NOTIFICATION); 4201 4202 switch (aenq_e->aenq_common_desc.syndrome) { 4203 case ENA_ADMIN_UPDATE_HINTS: 4204 hints = (struct ena_admin_ena_hw_hints *) 4205 (&aenq_e->inline_data_w4); 4206 ena_update_hints(adapter, hints); 4207 break; 4208 default: 4209 netif_err(adapter, drv, adapter->netdev, 4210 "Invalid aenq notification link state %d\n", 4211 aenq_e->aenq_common_desc.syndrome); 4212 } 4213 } 4214 4215 /* This handler will called for unknown event group or unimplemented handlers*/ 4216 static void unimplemented_aenq_handler(void *data, 4217 struct ena_admin_aenq_entry *aenq_e) 4218 { 4219 struct ena_adapter *adapter = (struct ena_adapter *)data; 4220 4221 netif_err(adapter, drv, adapter->netdev, 4222 "Unknown event was received or event with unimplemented handler\n"); 4223 } 4224 4225 static struct ena_aenq_handlers aenq_handlers = { 4226 .handlers = { 4227 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 4228 [ENA_ADMIN_NOTIFICATION] = ena_notification, 4229 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 4230 }, 4231 .unimplemented_handler = unimplemented_aenq_handler 4232 }; 4233 4234 module_init(ena_init); 4235 module_exit(ena_cleanup); 4236