1 /* 2 * Copyright 2015 Amazon.com, Inc. or its affiliates. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #ifdef CONFIG_RFS_ACCEL 36 #include <linux/cpu_rmap.h> 37 #endif /* CONFIG_RFS_ACCEL */ 38 #include <linux/ethtool.h> 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/numa.h> 42 #include <linux/pci.h> 43 #include <linux/utsname.h> 44 #include <linux/version.h> 45 #include <linux/vmalloc.h> 46 #include <net/ip.h> 47 48 #include "ena_netdev.h" 49 #include <linux/bpf_trace.h> 50 #include "ena_pci_id_tbl.h" 51 52 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 53 MODULE_DESCRIPTION(DEVICE_NAME); 54 MODULE_LICENSE("GPL"); 55 56 /* Time in jiffies before concluding the transmitter is hung. */ 57 #define TX_TIMEOUT (5 * HZ) 58 59 #define ENA_NAPI_BUDGET 64 60 61 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 62 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 63 static int debug = -1; 64 module_param(debug, int, 0); 65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 66 67 static struct ena_aenq_handlers aenq_handlers; 68 69 static struct workqueue_struct *ena_wq; 70 71 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 72 73 static int ena_rss_init_default(struct ena_adapter *adapter); 74 static void check_for_admin_com_state(struct ena_adapter *adapter); 75 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful); 76 static int ena_restore_device(struct ena_adapter *adapter); 77 78 static void ena_init_io_rings(struct ena_adapter *adapter, 79 int first_index, int count); 80 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index, 81 int count); 82 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index, 83 int count); 84 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid); 85 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 86 int first_index, 87 int count); 88 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid); 89 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid); 90 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget); 91 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter); 92 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter); 93 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 94 int first_index, int count); 95 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 96 int first_index, int count); 97 static int ena_up(struct ena_adapter *adapter); 98 static void ena_down(struct ena_adapter *adapter); 99 static void ena_unmask_interrupt(struct ena_ring *tx_ring, 100 struct ena_ring *rx_ring); 101 static void ena_update_ring_numa_node(struct ena_ring *tx_ring, 102 struct ena_ring *rx_ring); 103 static void ena_unmap_tx_buff(struct ena_ring *tx_ring, 104 struct ena_tx_buffer *tx_info); 105 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 106 int first_index, int count); 107 108 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) 109 { 110 struct ena_adapter *adapter = netdev_priv(dev); 111 112 /* Change the state of the device to trigger reset 113 * Check that we are not in the middle or a trigger already 114 */ 115 116 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 117 return; 118 119 adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD; 120 u64_stats_update_begin(&adapter->syncp); 121 adapter->dev_stats.tx_timeout++; 122 u64_stats_update_end(&adapter->syncp); 123 124 netif_err(adapter, tx_err, dev, "Transmit time out\n"); 125 } 126 127 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 128 { 129 int i; 130 131 for (i = 0; i < adapter->num_io_queues; i++) 132 adapter->rx_ring[i].mtu = mtu; 133 } 134 135 static int ena_change_mtu(struct net_device *dev, int new_mtu) 136 { 137 struct ena_adapter *adapter = netdev_priv(dev); 138 int ret; 139 140 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 141 if (!ret) { 142 netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu); 143 update_rx_ring_mtu(adapter, new_mtu); 144 dev->mtu = new_mtu; 145 } else { 146 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 147 new_mtu); 148 } 149 150 return ret; 151 } 152 153 static int ena_xmit_common(struct net_device *dev, 154 struct ena_ring *ring, 155 struct ena_tx_buffer *tx_info, 156 struct ena_com_tx_ctx *ena_tx_ctx, 157 u16 next_to_use, 158 u32 bytes) 159 { 160 struct ena_adapter *adapter = netdev_priv(dev); 161 int rc, nb_hw_desc; 162 163 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, 164 ena_tx_ctx))) { 165 netif_dbg(adapter, tx_queued, dev, 166 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 167 ring->qid); 168 ena_com_write_sq_doorbell(ring->ena_com_io_sq); 169 } 170 171 /* prepare the packet's descriptors to dma engine */ 172 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, 173 &nb_hw_desc); 174 175 /* In case there isn't enough space in the queue for the packet, 176 * we simply drop it. All other failure reasons of 177 * ena_com_prepare_tx() are fatal and therefore require a device reset. 178 */ 179 if (unlikely(rc)) { 180 netif_err(adapter, tx_queued, dev, 181 "failed to prepare tx bufs\n"); 182 u64_stats_update_begin(&ring->syncp); 183 ring->tx_stats.prepare_ctx_err++; 184 u64_stats_update_end(&ring->syncp); 185 if (rc != -ENOMEM) { 186 adapter->reset_reason = 187 ENA_REGS_RESET_DRIVER_INVALID_STATE; 188 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 189 } 190 return rc; 191 } 192 193 u64_stats_update_begin(&ring->syncp); 194 ring->tx_stats.cnt++; 195 ring->tx_stats.bytes += bytes; 196 u64_stats_update_end(&ring->syncp); 197 198 tx_info->tx_descs = nb_hw_desc; 199 tx_info->last_jiffies = jiffies; 200 tx_info->print_once = 0; 201 202 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 203 ring->ring_size); 204 return 0; 205 } 206 207 /* This is the XDP napi callback. XDP queues use a separate napi callback 208 * than Rx/Tx queues. 209 */ 210 static int ena_xdp_io_poll(struct napi_struct *napi, int budget) 211 { 212 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 213 u32 xdp_work_done, xdp_budget; 214 struct ena_ring *xdp_ring; 215 int napi_comp_call = 0; 216 int ret; 217 218 xdp_ring = ena_napi->xdp_ring; 219 xdp_ring->first_interrupt = ena_napi->first_interrupt; 220 221 xdp_budget = budget; 222 223 if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) || 224 test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) { 225 napi_complete_done(napi, 0); 226 return 0; 227 } 228 229 xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget); 230 231 /* If the device is about to reset or down, avoid unmask 232 * the interrupt and return 0 so NAPI won't reschedule 233 */ 234 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) { 235 napi_complete_done(napi, 0); 236 ret = 0; 237 } else if (xdp_budget > xdp_work_done) { 238 napi_comp_call = 1; 239 if (napi_complete_done(napi, xdp_work_done)) 240 ena_unmask_interrupt(xdp_ring, NULL); 241 ena_update_ring_numa_node(xdp_ring, NULL); 242 ret = xdp_work_done; 243 } else { 244 ret = xdp_budget; 245 } 246 247 u64_stats_update_begin(&xdp_ring->syncp); 248 xdp_ring->tx_stats.napi_comp += napi_comp_call; 249 xdp_ring->tx_stats.tx_poll++; 250 u64_stats_update_end(&xdp_ring->syncp); 251 252 return ret; 253 } 254 255 static int ena_xdp_tx_map_buff(struct ena_ring *xdp_ring, 256 struct ena_tx_buffer *tx_info, 257 struct xdp_buff *xdp, 258 void **push_hdr, 259 u32 *push_len) 260 { 261 struct ena_adapter *adapter = xdp_ring->adapter; 262 struct ena_com_buf *ena_buf; 263 dma_addr_t dma = 0; 264 u32 size; 265 266 tx_info->xdpf = xdp_convert_buff_to_frame(xdp); 267 size = tx_info->xdpf->len; 268 ena_buf = tx_info->bufs; 269 270 /* llq push buffer */ 271 *push_len = min_t(u32, size, xdp_ring->tx_max_header_size); 272 *push_hdr = tx_info->xdpf->data; 273 274 if (size - *push_len > 0) { 275 dma = dma_map_single(xdp_ring->dev, 276 *push_hdr + *push_len, 277 size - *push_len, 278 DMA_TO_DEVICE); 279 if (unlikely(dma_mapping_error(xdp_ring->dev, dma))) 280 goto error_report_dma_error; 281 282 tx_info->map_linear_data = 1; 283 tx_info->num_of_bufs = 1; 284 } 285 286 ena_buf->paddr = dma; 287 ena_buf->len = size; 288 289 return 0; 290 291 error_report_dma_error: 292 u64_stats_update_begin(&xdp_ring->syncp); 293 xdp_ring->tx_stats.dma_mapping_err++; 294 u64_stats_update_end(&xdp_ring->syncp); 295 netdev_warn(adapter->netdev, "failed to map xdp buff\n"); 296 297 xdp_return_frame_rx_napi(tx_info->xdpf); 298 tx_info->xdpf = NULL; 299 tx_info->num_of_bufs = 0; 300 301 return -EINVAL; 302 } 303 304 static int ena_xdp_xmit_buff(struct net_device *dev, 305 struct xdp_buff *xdp, 306 int qid, 307 struct ena_rx_buffer *rx_info) 308 { 309 struct ena_adapter *adapter = netdev_priv(dev); 310 struct ena_com_tx_ctx ena_tx_ctx = {}; 311 struct ena_tx_buffer *tx_info; 312 struct ena_ring *xdp_ring; 313 u16 next_to_use, req_id; 314 int rc; 315 void *push_hdr; 316 u32 push_len; 317 318 xdp_ring = &adapter->tx_ring[qid]; 319 next_to_use = xdp_ring->next_to_use; 320 req_id = xdp_ring->free_ids[next_to_use]; 321 tx_info = &xdp_ring->tx_buffer_info[req_id]; 322 tx_info->num_of_bufs = 0; 323 page_ref_inc(rx_info->page); 324 tx_info->xdp_rx_page = rx_info->page; 325 326 rc = ena_xdp_tx_map_buff(xdp_ring, tx_info, xdp, &push_hdr, &push_len); 327 if (unlikely(rc)) 328 goto error_drop_packet; 329 330 ena_tx_ctx.ena_bufs = tx_info->bufs; 331 ena_tx_ctx.push_header = push_hdr; 332 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 333 ena_tx_ctx.req_id = req_id; 334 ena_tx_ctx.header_len = push_len; 335 336 rc = ena_xmit_common(dev, 337 xdp_ring, 338 tx_info, 339 &ena_tx_ctx, 340 next_to_use, 341 xdp->data_end - xdp->data); 342 if (rc) 343 goto error_unmap_dma; 344 /* trigger the dma engine. ena_com_write_sq_doorbell() 345 * has a mb 346 */ 347 ena_com_write_sq_doorbell(xdp_ring->ena_com_io_sq); 348 u64_stats_update_begin(&xdp_ring->syncp); 349 xdp_ring->tx_stats.doorbells++; 350 u64_stats_update_end(&xdp_ring->syncp); 351 352 return NETDEV_TX_OK; 353 354 error_unmap_dma: 355 ena_unmap_tx_buff(xdp_ring, tx_info); 356 tx_info->xdpf = NULL; 357 error_drop_packet: 358 __free_page(tx_info->xdp_rx_page); 359 return NETDEV_TX_OK; 360 } 361 362 static int ena_xdp_execute(struct ena_ring *rx_ring, 363 struct xdp_buff *xdp, 364 struct ena_rx_buffer *rx_info) 365 { 366 struct bpf_prog *xdp_prog; 367 u32 verdict = XDP_PASS; 368 369 rcu_read_lock(); 370 xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog); 371 372 if (!xdp_prog) 373 goto out; 374 375 verdict = bpf_prog_run_xdp(xdp_prog, xdp); 376 377 if (verdict == XDP_TX) 378 ena_xdp_xmit_buff(rx_ring->netdev, 379 xdp, 380 rx_ring->qid + rx_ring->adapter->num_io_queues, 381 rx_info); 382 else if (unlikely(verdict == XDP_ABORTED)) 383 trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict); 384 else if (unlikely(verdict > XDP_TX)) 385 bpf_warn_invalid_xdp_action(verdict); 386 out: 387 rcu_read_unlock(); 388 return verdict; 389 } 390 391 static void ena_init_all_xdp_queues(struct ena_adapter *adapter) 392 { 393 adapter->xdp_first_ring = adapter->num_io_queues; 394 adapter->xdp_num_queues = adapter->num_io_queues; 395 396 ena_init_io_rings(adapter, 397 adapter->xdp_first_ring, 398 adapter->xdp_num_queues); 399 } 400 401 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter) 402 { 403 int rc = 0; 404 405 rc = ena_setup_tx_resources_in_range(adapter, adapter->xdp_first_ring, 406 adapter->xdp_num_queues); 407 if (rc) 408 goto setup_err; 409 410 rc = ena_create_io_tx_queues_in_range(adapter, 411 adapter->xdp_first_ring, 412 adapter->xdp_num_queues); 413 if (rc) 414 goto create_err; 415 416 return 0; 417 418 create_err: 419 ena_free_all_io_tx_resources(adapter); 420 setup_err: 421 return rc; 422 } 423 424 /* Provides a way for both kernel and bpf-prog to know 425 * more about the RX-queue a given XDP frame arrived on. 426 */ 427 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring) 428 { 429 int rc; 430 431 rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid); 432 433 if (rc) { 434 netif_err(rx_ring->adapter, ifup, rx_ring->netdev, 435 "Failed to register xdp rx queue info. RX queue num %d rc: %d\n", 436 rx_ring->qid, rc); 437 goto err; 438 } 439 440 rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED, 441 NULL); 442 443 if (rc) { 444 netif_err(rx_ring->adapter, ifup, rx_ring->netdev, 445 "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n", 446 rx_ring->qid, rc); 447 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 448 } 449 450 err: 451 return rc; 452 } 453 454 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring) 455 { 456 xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq); 457 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 458 } 459 460 static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter, 461 struct bpf_prog *prog, 462 int first, int count) 463 { 464 struct ena_ring *rx_ring; 465 int i = 0; 466 467 for (i = first; i < count; i++) { 468 rx_ring = &adapter->rx_ring[i]; 469 xchg(&rx_ring->xdp_bpf_prog, prog); 470 if (prog) { 471 ena_xdp_register_rxq_info(rx_ring); 472 rx_ring->rx_headroom = XDP_PACKET_HEADROOM; 473 } else { 474 ena_xdp_unregister_rxq_info(rx_ring); 475 rx_ring->rx_headroom = 0; 476 } 477 } 478 } 479 480 static void ena_xdp_exchange_program(struct ena_adapter *adapter, 481 struct bpf_prog *prog) 482 { 483 struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog); 484 485 ena_xdp_exchange_program_rx_in_range(adapter, 486 prog, 487 0, 488 adapter->num_io_queues); 489 490 if (old_bpf_prog) 491 bpf_prog_put(old_bpf_prog); 492 } 493 494 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter) 495 { 496 bool was_up; 497 int rc; 498 499 was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 500 501 if (was_up) 502 ena_down(adapter); 503 504 adapter->xdp_first_ring = 0; 505 adapter->xdp_num_queues = 0; 506 ena_xdp_exchange_program(adapter, NULL); 507 if (was_up) { 508 rc = ena_up(adapter); 509 if (rc) 510 return rc; 511 } 512 return 0; 513 } 514 515 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf) 516 { 517 struct ena_adapter *adapter = netdev_priv(netdev); 518 struct bpf_prog *prog = bpf->prog; 519 struct bpf_prog *old_bpf_prog; 520 int rc, prev_mtu; 521 bool is_up; 522 523 is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 524 rc = ena_xdp_allowed(adapter); 525 if (rc == ENA_XDP_ALLOWED) { 526 old_bpf_prog = adapter->xdp_bpf_prog; 527 if (prog) { 528 if (!is_up) { 529 ena_init_all_xdp_queues(adapter); 530 } else if (!old_bpf_prog) { 531 ena_down(adapter); 532 ena_init_all_xdp_queues(adapter); 533 } 534 ena_xdp_exchange_program(adapter, prog); 535 536 if (is_up && !old_bpf_prog) { 537 rc = ena_up(adapter); 538 if (rc) 539 return rc; 540 } 541 } else if (old_bpf_prog) { 542 rc = ena_destroy_and_free_all_xdp_queues(adapter); 543 if (rc) 544 return rc; 545 } 546 547 prev_mtu = netdev->max_mtu; 548 netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu; 549 550 if (!old_bpf_prog) 551 netif_info(adapter, drv, adapter->netdev, 552 "xdp program set, changing the max_mtu from %d to %d", 553 prev_mtu, netdev->max_mtu); 554 555 } else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) { 556 netif_err(adapter, drv, adapter->netdev, 557 "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on", 558 netdev->mtu, ENA_XDP_MAX_MTU); 559 NL_SET_ERR_MSG_MOD(bpf->extack, 560 "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info"); 561 return -EINVAL; 562 } else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) { 563 netif_err(adapter, drv, adapter->netdev, 564 "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n", 565 adapter->num_io_queues, adapter->max_num_io_queues); 566 NL_SET_ERR_MSG_MOD(bpf->extack, 567 "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info"); 568 return -EINVAL; 569 } 570 571 return 0; 572 } 573 574 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp 575 * program as well as to query the current xdp program id. 576 */ 577 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf) 578 { 579 switch (bpf->command) { 580 case XDP_SETUP_PROG: 581 return ena_xdp_set(netdev, bpf); 582 default: 583 return -EINVAL; 584 } 585 return 0; 586 } 587 588 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 589 { 590 #ifdef CONFIG_RFS_ACCEL 591 u32 i; 592 int rc; 593 594 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); 595 if (!adapter->netdev->rx_cpu_rmap) 596 return -ENOMEM; 597 for (i = 0; i < adapter->num_io_queues; i++) { 598 int irq_idx = ENA_IO_IRQ_IDX(i); 599 600 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 601 pci_irq_vector(adapter->pdev, irq_idx)); 602 if (rc) { 603 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 604 adapter->netdev->rx_cpu_rmap = NULL; 605 return rc; 606 } 607 } 608 #endif /* CONFIG_RFS_ACCEL */ 609 return 0; 610 } 611 612 static void ena_init_io_rings_common(struct ena_adapter *adapter, 613 struct ena_ring *ring, u16 qid) 614 { 615 ring->qid = qid; 616 ring->pdev = adapter->pdev; 617 ring->dev = &adapter->pdev->dev; 618 ring->netdev = adapter->netdev; 619 ring->napi = &adapter->ena_napi[qid].napi; 620 ring->adapter = adapter; 621 ring->ena_dev = adapter->ena_dev; 622 ring->per_napi_packets = 0; 623 ring->cpu = 0; 624 ring->first_interrupt = false; 625 ring->no_interrupt_event_cnt = 0; 626 u64_stats_init(&ring->syncp); 627 } 628 629 static void ena_init_io_rings(struct ena_adapter *adapter, 630 int first_index, int count) 631 { 632 struct ena_com_dev *ena_dev; 633 struct ena_ring *txr, *rxr; 634 int i; 635 636 ena_dev = adapter->ena_dev; 637 638 for (i = first_index; i < first_index + count; i++) { 639 txr = &adapter->tx_ring[i]; 640 rxr = &adapter->rx_ring[i]; 641 642 /* TX common ring state */ 643 ena_init_io_rings_common(adapter, txr, i); 644 645 /* TX specific ring state */ 646 txr->ring_size = adapter->requested_tx_ring_size; 647 txr->tx_max_header_size = ena_dev->tx_max_header_size; 648 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 649 txr->sgl_size = adapter->max_tx_sgl_size; 650 txr->smoothed_interval = 651 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 652 txr->disable_meta_caching = adapter->disable_meta_caching; 653 654 /* Don't init RX queues for xdp queues */ 655 if (!ENA_IS_XDP_INDEX(adapter, i)) { 656 /* RX common ring state */ 657 ena_init_io_rings_common(adapter, rxr, i); 658 659 /* RX specific ring state */ 660 rxr->ring_size = adapter->requested_rx_ring_size; 661 rxr->rx_copybreak = adapter->rx_copybreak; 662 rxr->sgl_size = adapter->max_rx_sgl_size; 663 rxr->smoothed_interval = 664 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 665 rxr->empty_rx_queue = 0; 666 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 667 } 668 } 669 } 670 671 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 672 * @adapter: network interface device structure 673 * @qid: queue index 674 * 675 * Return 0 on success, negative on failure 676 */ 677 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 678 { 679 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 680 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 681 int size, i, node; 682 683 if (tx_ring->tx_buffer_info) { 684 netif_err(adapter, ifup, 685 adapter->netdev, "tx_buffer_info info is not NULL"); 686 return -EEXIST; 687 } 688 689 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 690 node = cpu_to_node(ena_irq->cpu); 691 692 tx_ring->tx_buffer_info = vzalloc_node(size, node); 693 if (!tx_ring->tx_buffer_info) { 694 tx_ring->tx_buffer_info = vzalloc(size); 695 if (!tx_ring->tx_buffer_info) 696 goto err_tx_buffer_info; 697 } 698 699 size = sizeof(u16) * tx_ring->ring_size; 700 tx_ring->free_ids = vzalloc_node(size, node); 701 if (!tx_ring->free_ids) { 702 tx_ring->free_ids = vzalloc(size); 703 if (!tx_ring->free_ids) 704 goto err_tx_free_ids; 705 } 706 707 size = tx_ring->tx_max_header_size; 708 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 709 if (!tx_ring->push_buf_intermediate_buf) { 710 tx_ring->push_buf_intermediate_buf = vzalloc(size); 711 if (!tx_ring->push_buf_intermediate_buf) 712 goto err_push_buf_intermediate_buf; 713 } 714 715 /* Req id ring for TX out of order completions */ 716 for (i = 0; i < tx_ring->ring_size; i++) 717 tx_ring->free_ids[i] = i; 718 719 /* Reset tx statistics */ 720 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 721 722 tx_ring->next_to_use = 0; 723 tx_ring->next_to_clean = 0; 724 tx_ring->cpu = ena_irq->cpu; 725 return 0; 726 727 err_push_buf_intermediate_buf: 728 vfree(tx_ring->free_ids); 729 tx_ring->free_ids = NULL; 730 err_tx_free_ids: 731 vfree(tx_ring->tx_buffer_info); 732 tx_ring->tx_buffer_info = NULL; 733 err_tx_buffer_info: 734 return -ENOMEM; 735 } 736 737 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 738 * @adapter: network interface device structure 739 * @qid: queue index 740 * 741 * Free all transmit software resources 742 */ 743 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 744 { 745 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 746 747 vfree(tx_ring->tx_buffer_info); 748 tx_ring->tx_buffer_info = NULL; 749 750 vfree(tx_ring->free_ids); 751 tx_ring->free_ids = NULL; 752 753 vfree(tx_ring->push_buf_intermediate_buf); 754 tx_ring->push_buf_intermediate_buf = NULL; 755 } 756 757 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 758 int first_index, 759 int count) 760 { 761 int i, rc = 0; 762 763 for (i = first_index; i < first_index + count; i++) { 764 rc = ena_setup_tx_resources(adapter, i); 765 if (rc) 766 goto err_setup_tx; 767 } 768 769 return 0; 770 771 err_setup_tx: 772 773 netif_err(adapter, ifup, adapter->netdev, 774 "Tx queue %d: allocation failed\n", i); 775 776 /* rewind the index freeing the rings as we go */ 777 while (first_index < i--) 778 ena_free_tx_resources(adapter, i); 779 return rc; 780 } 781 782 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 783 int first_index, int count) 784 { 785 int i; 786 787 for (i = first_index; i < first_index + count; i++) 788 ena_free_tx_resources(adapter, i); 789 } 790 791 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 792 * @adapter: board private structure 793 * 794 * Free all transmit software resources 795 */ 796 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 797 { 798 ena_free_all_io_tx_resources_in_range(adapter, 799 0, 800 adapter->xdp_num_queues + 801 adapter->num_io_queues); 802 } 803 804 static int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id) 805 { 806 if (likely(req_id < rx_ring->ring_size)) 807 return 0; 808 809 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 810 "Invalid rx req_id: %hu\n", req_id); 811 812 u64_stats_update_begin(&rx_ring->syncp); 813 rx_ring->rx_stats.bad_req_id++; 814 u64_stats_update_end(&rx_ring->syncp); 815 816 /* Trigger device reset */ 817 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; 818 set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags); 819 return -EFAULT; 820 } 821 822 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 823 * @adapter: network interface device structure 824 * @qid: queue index 825 * 826 * Returns 0 on success, negative on failure 827 */ 828 static int ena_setup_rx_resources(struct ena_adapter *adapter, 829 u32 qid) 830 { 831 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 832 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 833 int size, node, i; 834 835 if (rx_ring->rx_buffer_info) { 836 netif_err(adapter, ifup, adapter->netdev, 837 "rx_buffer_info is not NULL"); 838 return -EEXIST; 839 } 840 841 /* alloc extra element so in rx path 842 * we can always prefetch rx_info + 1 843 */ 844 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 845 node = cpu_to_node(ena_irq->cpu); 846 847 rx_ring->rx_buffer_info = vzalloc_node(size, node); 848 if (!rx_ring->rx_buffer_info) { 849 rx_ring->rx_buffer_info = vzalloc(size); 850 if (!rx_ring->rx_buffer_info) 851 return -ENOMEM; 852 } 853 854 size = sizeof(u16) * rx_ring->ring_size; 855 rx_ring->free_ids = vzalloc_node(size, node); 856 if (!rx_ring->free_ids) { 857 rx_ring->free_ids = vzalloc(size); 858 if (!rx_ring->free_ids) { 859 vfree(rx_ring->rx_buffer_info); 860 rx_ring->rx_buffer_info = NULL; 861 return -ENOMEM; 862 } 863 } 864 865 /* Req id ring for receiving RX pkts out of order */ 866 for (i = 0; i < rx_ring->ring_size; i++) 867 rx_ring->free_ids[i] = i; 868 869 /* Reset rx statistics */ 870 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 871 872 rx_ring->next_to_clean = 0; 873 rx_ring->next_to_use = 0; 874 rx_ring->cpu = ena_irq->cpu; 875 876 return 0; 877 } 878 879 /* ena_free_rx_resources - Free I/O Rx Resources 880 * @adapter: network interface device structure 881 * @qid: queue index 882 * 883 * Free all receive software resources 884 */ 885 static void ena_free_rx_resources(struct ena_adapter *adapter, 886 u32 qid) 887 { 888 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 889 890 vfree(rx_ring->rx_buffer_info); 891 rx_ring->rx_buffer_info = NULL; 892 893 vfree(rx_ring->free_ids); 894 rx_ring->free_ids = NULL; 895 } 896 897 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 898 * @adapter: board private structure 899 * 900 * Return 0 on success, negative on failure 901 */ 902 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 903 { 904 int i, rc = 0; 905 906 for (i = 0; i < adapter->num_io_queues; i++) { 907 rc = ena_setup_rx_resources(adapter, i); 908 if (rc) 909 goto err_setup_rx; 910 } 911 912 return 0; 913 914 err_setup_rx: 915 916 netif_err(adapter, ifup, adapter->netdev, 917 "Rx queue %d: allocation failed\n", i); 918 919 /* rewind the index freeing the rings as we go */ 920 while (i--) 921 ena_free_rx_resources(adapter, i); 922 return rc; 923 } 924 925 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 926 * @adapter: board private structure 927 * 928 * Free all receive software resources 929 */ 930 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 931 { 932 int i; 933 934 for (i = 0; i < adapter->num_io_queues; i++) 935 ena_free_rx_resources(adapter, i); 936 } 937 938 static int ena_alloc_rx_page(struct ena_ring *rx_ring, 939 struct ena_rx_buffer *rx_info, gfp_t gfp) 940 { 941 struct ena_com_buf *ena_buf; 942 struct page *page; 943 dma_addr_t dma; 944 945 /* if previous allocated page is not used */ 946 if (unlikely(rx_info->page)) 947 return 0; 948 949 page = alloc_page(gfp); 950 if (unlikely(!page)) { 951 u64_stats_update_begin(&rx_ring->syncp); 952 rx_ring->rx_stats.page_alloc_fail++; 953 u64_stats_update_end(&rx_ring->syncp); 954 return -ENOMEM; 955 } 956 957 /* To enable NIC-side port-mirroring, AKA SPAN port, 958 * we make the buffer readable from the nic as well 959 */ 960 dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 961 DMA_BIDIRECTIONAL); 962 if (unlikely(dma_mapping_error(rx_ring->dev, dma))) { 963 u64_stats_update_begin(&rx_ring->syncp); 964 rx_ring->rx_stats.dma_mapping_err++; 965 u64_stats_update_end(&rx_ring->syncp); 966 967 __free_page(page); 968 return -EIO; 969 } 970 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 971 "alloc page %p, rx_info %p\n", page, rx_info); 972 973 rx_info->page = page; 974 rx_info->page_offset = 0; 975 ena_buf = &rx_info->ena_buf; 976 ena_buf->paddr = dma + rx_ring->rx_headroom; 977 ena_buf->len = ENA_PAGE_SIZE - rx_ring->rx_headroom; 978 979 return 0; 980 } 981 982 static void ena_free_rx_page(struct ena_ring *rx_ring, 983 struct ena_rx_buffer *rx_info) 984 { 985 struct page *page = rx_info->page; 986 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 987 988 if (unlikely(!page)) { 989 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 990 "Trying to free unallocated buffer\n"); 991 return; 992 } 993 994 dma_unmap_page(rx_ring->dev, ena_buf->paddr - rx_ring->rx_headroom, 995 ENA_PAGE_SIZE, 996 DMA_BIDIRECTIONAL); 997 998 __free_page(page); 999 rx_info->page = NULL; 1000 } 1001 1002 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 1003 { 1004 u16 next_to_use, req_id; 1005 u32 i; 1006 int rc; 1007 1008 next_to_use = rx_ring->next_to_use; 1009 1010 for (i = 0; i < num; i++) { 1011 struct ena_rx_buffer *rx_info; 1012 1013 req_id = rx_ring->free_ids[next_to_use]; 1014 1015 rx_info = &rx_ring->rx_buffer_info[req_id]; 1016 1017 rc = ena_alloc_rx_page(rx_ring, rx_info, 1018 GFP_ATOMIC | __GFP_COMP); 1019 if (unlikely(rc < 0)) { 1020 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 1021 "failed to alloc buffer for rx queue %d\n", 1022 rx_ring->qid); 1023 break; 1024 } 1025 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 1026 &rx_info->ena_buf, 1027 req_id); 1028 if (unlikely(rc)) { 1029 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 1030 "failed to add buffer for rx queue %d\n", 1031 rx_ring->qid); 1032 break; 1033 } 1034 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 1035 rx_ring->ring_size); 1036 } 1037 1038 if (unlikely(i < num)) { 1039 u64_stats_update_begin(&rx_ring->syncp); 1040 rx_ring->rx_stats.refil_partial++; 1041 u64_stats_update_end(&rx_ring->syncp); 1042 netdev_warn(rx_ring->netdev, 1043 "refilled rx qid %d with only %d buffers (from %d)\n", 1044 rx_ring->qid, i, num); 1045 } 1046 1047 /* ena_com_write_sq_doorbell issues a wmb() */ 1048 if (likely(i)) 1049 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 1050 1051 rx_ring->next_to_use = next_to_use; 1052 1053 return i; 1054 } 1055 1056 static void ena_free_rx_bufs(struct ena_adapter *adapter, 1057 u32 qid) 1058 { 1059 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 1060 u32 i; 1061 1062 for (i = 0; i < rx_ring->ring_size; i++) { 1063 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 1064 1065 if (rx_info->page) 1066 ena_free_rx_page(rx_ring, rx_info); 1067 } 1068 } 1069 1070 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 1071 * @adapter: board private structure 1072 */ 1073 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 1074 { 1075 struct ena_ring *rx_ring; 1076 int i, rc, bufs_num; 1077 1078 for (i = 0; i < adapter->num_io_queues; i++) { 1079 rx_ring = &adapter->rx_ring[i]; 1080 bufs_num = rx_ring->ring_size - 1; 1081 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 1082 1083 if (unlikely(rc != bufs_num)) 1084 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 1085 "refilling Queue %d failed. allocated %d buffers from: %d\n", 1086 i, rc, bufs_num); 1087 } 1088 } 1089 1090 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 1091 { 1092 int i; 1093 1094 for (i = 0; i < adapter->num_io_queues; i++) 1095 ena_free_rx_bufs(adapter, i); 1096 } 1097 1098 static void ena_unmap_tx_buff(struct ena_ring *tx_ring, 1099 struct ena_tx_buffer *tx_info) 1100 { 1101 struct ena_com_buf *ena_buf; 1102 u32 cnt; 1103 int i; 1104 1105 ena_buf = tx_info->bufs; 1106 cnt = tx_info->num_of_bufs; 1107 1108 if (unlikely(!cnt)) 1109 return; 1110 1111 if (tx_info->map_linear_data) { 1112 dma_unmap_single(tx_ring->dev, 1113 dma_unmap_addr(ena_buf, paddr), 1114 dma_unmap_len(ena_buf, len), 1115 DMA_TO_DEVICE); 1116 ena_buf++; 1117 cnt--; 1118 } 1119 1120 /* unmap remaining mapped pages */ 1121 for (i = 0; i < cnt; i++) { 1122 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 1123 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 1124 ena_buf++; 1125 } 1126 } 1127 1128 /* ena_free_tx_bufs - Free Tx Buffers per Queue 1129 * @tx_ring: TX ring for which buffers be freed 1130 */ 1131 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 1132 { 1133 bool print_once = true; 1134 u32 i; 1135 1136 for (i = 0; i < tx_ring->ring_size; i++) { 1137 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 1138 1139 if (!tx_info->skb) 1140 continue; 1141 1142 if (print_once) { 1143 netdev_notice(tx_ring->netdev, 1144 "free uncompleted tx skb qid %d idx 0x%x\n", 1145 tx_ring->qid, i); 1146 print_once = false; 1147 } else { 1148 netdev_dbg(tx_ring->netdev, 1149 "free uncompleted tx skb qid %d idx 0x%x\n", 1150 tx_ring->qid, i); 1151 } 1152 1153 ena_unmap_tx_buff(tx_ring, tx_info); 1154 1155 dev_kfree_skb_any(tx_info->skb); 1156 } 1157 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 1158 tx_ring->qid)); 1159 } 1160 1161 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 1162 { 1163 struct ena_ring *tx_ring; 1164 int i; 1165 1166 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 1167 tx_ring = &adapter->tx_ring[i]; 1168 ena_free_tx_bufs(tx_ring); 1169 } 1170 } 1171 1172 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 1173 { 1174 u16 ena_qid; 1175 int i; 1176 1177 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 1178 ena_qid = ENA_IO_TXQ_IDX(i); 1179 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 1180 } 1181 } 1182 1183 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 1184 { 1185 u16 ena_qid; 1186 int i; 1187 1188 for (i = 0; i < adapter->num_io_queues; i++) { 1189 ena_qid = ENA_IO_RXQ_IDX(i); 1190 cancel_work_sync(&adapter->ena_napi[i].dim.work); 1191 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 1192 } 1193 } 1194 1195 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 1196 { 1197 ena_destroy_all_tx_queues(adapter); 1198 ena_destroy_all_rx_queues(adapter); 1199 } 1200 1201 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, 1202 struct ena_tx_buffer *tx_info, bool is_xdp) 1203 { 1204 if (tx_info) 1205 netif_err(ring->adapter, 1206 tx_done, 1207 ring->netdev, 1208 "tx_info doesn't have valid %s", 1209 is_xdp ? "xdp frame" : "skb"); 1210 else 1211 netif_err(ring->adapter, 1212 tx_done, 1213 ring->netdev, 1214 "Invalid req_id: %hu\n", 1215 req_id); 1216 1217 u64_stats_update_begin(&ring->syncp); 1218 ring->tx_stats.bad_req_id++; 1219 u64_stats_update_end(&ring->syncp); 1220 1221 /* Trigger device reset */ 1222 ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID; 1223 set_bit(ENA_FLAG_TRIGGER_RESET, &ring->adapter->flags); 1224 return -EFAULT; 1225 } 1226 1227 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 1228 { 1229 struct ena_tx_buffer *tx_info = NULL; 1230 1231 if (likely(req_id < tx_ring->ring_size)) { 1232 tx_info = &tx_ring->tx_buffer_info[req_id]; 1233 if (likely(tx_info->skb)) 1234 return 0; 1235 } 1236 1237 return handle_invalid_req_id(tx_ring, req_id, tx_info, false); 1238 } 1239 1240 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id) 1241 { 1242 struct ena_tx_buffer *tx_info = NULL; 1243 1244 if (likely(req_id < xdp_ring->ring_size)) { 1245 tx_info = &xdp_ring->tx_buffer_info[req_id]; 1246 if (likely(tx_info->xdpf)) 1247 return 0; 1248 } 1249 1250 return handle_invalid_req_id(xdp_ring, req_id, tx_info, true); 1251 } 1252 1253 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 1254 { 1255 struct netdev_queue *txq; 1256 bool above_thresh; 1257 u32 tx_bytes = 0; 1258 u32 total_done = 0; 1259 u16 next_to_clean; 1260 u16 req_id; 1261 int tx_pkts = 0; 1262 int rc; 1263 1264 next_to_clean = tx_ring->next_to_clean; 1265 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 1266 1267 while (tx_pkts < budget) { 1268 struct ena_tx_buffer *tx_info; 1269 struct sk_buff *skb; 1270 1271 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 1272 &req_id); 1273 if (rc) 1274 break; 1275 1276 rc = validate_tx_req_id(tx_ring, req_id); 1277 if (rc) 1278 break; 1279 1280 tx_info = &tx_ring->tx_buffer_info[req_id]; 1281 skb = tx_info->skb; 1282 1283 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 1284 prefetch(&skb->end); 1285 1286 tx_info->skb = NULL; 1287 tx_info->last_jiffies = 0; 1288 1289 ena_unmap_tx_buff(tx_ring, tx_info); 1290 1291 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 1292 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 1293 skb); 1294 1295 tx_bytes += skb->len; 1296 dev_kfree_skb(skb); 1297 tx_pkts++; 1298 total_done += tx_info->tx_descs; 1299 1300 tx_ring->free_ids[next_to_clean] = req_id; 1301 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 1302 tx_ring->ring_size); 1303 } 1304 1305 tx_ring->next_to_clean = next_to_clean; 1306 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 1307 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); 1308 1309 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 1310 1311 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 1312 "tx_poll: q %d done. total pkts: %d\n", 1313 tx_ring->qid, tx_pkts); 1314 1315 /* need to make the rings circular update visible to 1316 * ena_start_xmit() before checking for netif_queue_stopped(). 1317 */ 1318 smp_mb(); 1319 1320 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1321 ENA_TX_WAKEUP_THRESH); 1322 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 1323 __netif_tx_lock(txq, smp_processor_id()); 1324 above_thresh = 1325 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1326 ENA_TX_WAKEUP_THRESH); 1327 if (netif_tx_queue_stopped(txq) && above_thresh && 1328 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 1329 netif_tx_wake_queue(txq); 1330 u64_stats_update_begin(&tx_ring->syncp); 1331 tx_ring->tx_stats.queue_wakeup++; 1332 u64_stats_update_end(&tx_ring->syncp); 1333 } 1334 __netif_tx_unlock(txq); 1335 } 1336 1337 return tx_pkts; 1338 } 1339 1340 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags) 1341 { 1342 struct sk_buff *skb; 1343 1344 if (frags) 1345 skb = napi_get_frags(rx_ring->napi); 1346 else 1347 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 1348 rx_ring->rx_copybreak); 1349 1350 if (unlikely(!skb)) { 1351 u64_stats_update_begin(&rx_ring->syncp); 1352 rx_ring->rx_stats.skb_alloc_fail++; 1353 u64_stats_update_end(&rx_ring->syncp); 1354 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1355 "Failed to allocate skb. frags: %d\n", frags); 1356 return NULL; 1357 } 1358 1359 return skb; 1360 } 1361 1362 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 1363 struct ena_com_rx_buf_info *ena_bufs, 1364 u32 descs, 1365 u16 *next_to_clean) 1366 { 1367 struct sk_buff *skb; 1368 struct ena_rx_buffer *rx_info; 1369 u16 len, req_id, buf = 0; 1370 void *va; 1371 int rc; 1372 1373 len = ena_bufs[buf].len; 1374 req_id = ena_bufs[buf].req_id; 1375 1376 rc = validate_rx_req_id(rx_ring, req_id); 1377 if (unlikely(rc < 0)) 1378 return NULL; 1379 1380 rx_info = &rx_ring->rx_buffer_info[req_id]; 1381 1382 if (unlikely(!rx_info->page)) { 1383 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 1384 "Page is NULL\n"); 1385 return NULL; 1386 } 1387 1388 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1389 "rx_info %p page %p\n", 1390 rx_info, rx_info->page); 1391 1392 /* save virt address of first buffer */ 1393 va = page_address(rx_info->page) + rx_info->page_offset; 1394 prefetch(va + NET_IP_ALIGN); 1395 1396 if (len <= rx_ring->rx_copybreak) { 1397 skb = ena_alloc_skb(rx_ring, false); 1398 if (unlikely(!skb)) 1399 return NULL; 1400 1401 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1402 "rx allocated small packet. len %d. data_len %d\n", 1403 skb->len, skb->data_len); 1404 1405 /* sync this buffer for CPU use */ 1406 dma_sync_single_for_cpu(rx_ring->dev, 1407 dma_unmap_addr(&rx_info->ena_buf, paddr), 1408 len, 1409 DMA_FROM_DEVICE); 1410 skb_copy_to_linear_data(skb, va, len); 1411 dma_sync_single_for_device(rx_ring->dev, 1412 dma_unmap_addr(&rx_info->ena_buf, paddr), 1413 len, 1414 DMA_FROM_DEVICE); 1415 1416 skb_put(skb, len); 1417 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1418 rx_ring->free_ids[*next_to_clean] = req_id; 1419 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 1420 rx_ring->ring_size); 1421 return skb; 1422 } 1423 1424 skb = ena_alloc_skb(rx_ring, true); 1425 if (unlikely(!skb)) 1426 return NULL; 1427 1428 do { 1429 dma_unmap_page(rx_ring->dev, 1430 dma_unmap_addr(&rx_info->ena_buf, paddr), 1431 ENA_PAGE_SIZE, DMA_BIDIRECTIONAL); 1432 1433 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 1434 rx_info->page_offset, len, ENA_PAGE_SIZE); 1435 /* The offset is non zero only for the first buffer */ 1436 rx_info->page_offset = 0; 1437 1438 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1439 "rx skb updated. len %d. data_len %d\n", 1440 skb->len, skb->data_len); 1441 1442 rx_info->page = NULL; 1443 1444 rx_ring->free_ids[*next_to_clean] = req_id; 1445 *next_to_clean = 1446 ENA_RX_RING_IDX_NEXT(*next_to_clean, 1447 rx_ring->ring_size); 1448 if (likely(--descs == 0)) 1449 break; 1450 1451 buf++; 1452 len = ena_bufs[buf].len; 1453 req_id = ena_bufs[buf].req_id; 1454 1455 rc = validate_rx_req_id(rx_ring, req_id); 1456 if (unlikely(rc < 0)) 1457 return NULL; 1458 1459 rx_info = &rx_ring->rx_buffer_info[req_id]; 1460 } while (1); 1461 1462 return skb; 1463 } 1464 1465 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 1466 * @adapter: structure containing adapter specific data 1467 * @ena_rx_ctx: received packet context/metadata 1468 * @skb: skb currently being received and modified 1469 */ 1470 static void ena_rx_checksum(struct ena_ring *rx_ring, 1471 struct ena_com_rx_ctx *ena_rx_ctx, 1472 struct sk_buff *skb) 1473 { 1474 /* Rx csum disabled */ 1475 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 1476 skb->ip_summed = CHECKSUM_NONE; 1477 return; 1478 } 1479 1480 /* For fragmented packets the checksum isn't valid */ 1481 if (ena_rx_ctx->frag) { 1482 skb->ip_summed = CHECKSUM_NONE; 1483 return; 1484 } 1485 1486 /* if IP and error */ 1487 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1488 (ena_rx_ctx->l3_csum_err))) { 1489 /* ipv4 checksum error */ 1490 skb->ip_summed = CHECKSUM_NONE; 1491 u64_stats_update_begin(&rx_ring->syncp); 1492 rx_ring->rx_stats.bad_csum++; 1493 u64_stats_update_end(&rx_ring->syncp); 1494 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1495 "RX IPv4 header checksum error\n"); 1496 return; 1497 } 1498 1499 /* if TCP/UDP */ 1500 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1501 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 1502 if (unlikely(ena_rx_ctx->l4_csum_err)) { 1503 /* TCP/UDP checksum error */ 1504 u64_stats_update_begin(&rx_ring->syncp); 1505 rx_ring->rx_stats.bad_csum++; 1506 u64_stats_update_end(&rx_ring->syncp); 1507 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1508 "RX L4 checksum error\n"); 1509 skb->ip_summed = CHECKSUM_NONE; 1510 return; 1511 } 1512 1513 if (likely(ena_rx_ctx->l4_csum_checked)) { 1514 skb->ip_summed = CHECKSUM_UNNECESSARY; 1515 u64_stats_update_begin(&rx_ring->syncp); 1516 rx_ring->rx_stats.csum_good++; 1517 u64_stats_update_end(&rx_ring->syncp); 1518 } else { 1519 u64_stats_update_begin(&rx_ring->syncp); 1520 rx_ring->rx_stats.csum_unchecked++; 1521 u64_stats_update_end(&rx_ring->syncp); 1522 skb->ip_summed = CHECKSUM_NONE; 1523 } 1524 } else { 1525 skb->ip_summed = CHECKSUM_NONE; 1526 return; 1527 } 1528 1529 } 1530 1531 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1532 struct ena_com_rx_ctx *ena_rx_ctx, 1533 struct sk_buff *skb) 1534 { 1535 enum pkt_hash_types hash_type; 1536 1537 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1538 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1539 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1540 1541 hash_type = PKT_HASH_TYPE_L4; 1542 else 1543 hash_type = PKT_HASH_TYPE_NONE; 1544 1545 /* Override hash type if the packet is fragmented */ 1546 if (ena_rx_ctx->frag) 1547 hash_type = PKT_HASH_TYPE_NONE; 1548 1549 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1550 } 1551 } 1552 1553 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp) 1554 { 1555 struct ena_rx_buffer *rx_info; 1556 int ret; 1557 1558 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1559 xdp->data = page_address(rx_info->page) + 1560 rx_info->page_offset + rx_ring->rx_headroom; 1561 xdp_set_data_meta_invalid(xdp); 1562 xdp->data_hard_start = page_address(rx_info->page); 1563 xdp->data_end = xdp->data + rx_ring->ena_bufs[0].len; 1564 /* If for some reason we received a bigger packet than 1565 * we expect, then we simply drop it 1566 */ 1567 if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU)) 1568 return XDP_DROP; 1569 1570 ret = ena_xdp_execute(rx_ring, xdp, rx_info); 1571 1572 /* The xdp program might expand the headers */ 1573 if (ret == XDP_PASS) { 1574 rx_info->page_offset = xdp->data - xdp->data_hard_start; 1575 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; 1576 } 1577 1578 return ret; 1579 } 1580 /* ena_clean_rx_irq - Cleanup RX irq 1581 * @rx_ring: RX ring to clean 1582 * @napi: napi handler 1583 * @budget: how many packets driver is allowed to clean 1584 * 1585 * Returns the number of cleaned buffers. 1586 */ 1587 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1588 u32 budget) 1589 { 1590 u16 next_to_clean = rx_ring->next_to_clean; 1591 struct ena_com_rx_ctx ena_rx_ctx; 1592 struct ena_rx_buffer *rx_info; 1593 struct ena_adapter *adapter; 1594 u32 res_budget, work_done; 1595 int rx_copybreak_pkt = 0; 1596 int refill_threshold; 1597 struct sk_buff *skb; 1598 int refill_required; 1599 struct xdp_buff xdp; 1600 int total_len = 0; 1601 int xdp_verdict; 1602 int rc = 0; 1603 int i; 1604 1605 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1606 "%s qid %d\n", __func__, rx_ring->qid); 1607 res_budget = budget; 1608 xdp.rxq = &rx_ring->xdp_rxq; 1609 xdp.frame_sz = ENA_PAGE_SIZE; 1610 1611 do { 1612 xdp_verdict = XDP_PASS; 1613 skb = NULL; 1614 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1615 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1616 ena_rx_ctx.descs = 0; 1617 ena_rx_ctx.pkt_offset = 0; 1618 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1619 rx_ring->ena_com_io_sq, 1620 &ena_rx_ctx); 1621 if (unlikely(rc)) 1622 goto error; 1623 1624 if (unlikely(ena_rx_ctx.descs == 0)) 1625 break; 1626 1627 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1628 rx_info->page_offset = ena_rx_ctx.pkt_offset; 1629 1630 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1631 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1632 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1633 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1634 1635 if (ena_xdp_present_ring(rx_ring)) 1636 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp); 1637 1638 /* allocate skb and fill it */ 1639 if (xdp_verdict == XDP_PASS) 1640 skb = ena_rx_skb(rx_ring, 1641 rx_ring->ena_bufs, 1642 ena_rx_ctx.descs, 1643 &next_to_clean); 1644 1645 if (unlikely(!skb)) { 1646 if (xdp_verdict == XDP_TX) 1647 ena_free_rx_page(rx_ring, 1648 &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]); 1649 for (i = 0; i < ena_rx_ctx.descs; i++) { 1650 rx_ring->free_ids[next_to_clean] = 1651 rx_ring->ena_bufs[i].req_id; 1652 next_to_clean = 1653 ENA_RX_RING_IDX_NEXT(next_to_clean, 1654 rx_ring->ring_size); 1655 } 1656 if (xdp_verdict != XDP_PASS) { 1657 res_budget--; 1658 continue; 1659 } 1660 break; 1661 } 1662 1663 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1664 1665 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1666 1667 skb_record_rx_queue(skb, rx_ring->qid); 1668 1669 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) { 1670 total_len += rx_ring->ena_bufs[0].len; 1671 rx_copybreak_pkt++; 1672 napi_gro_receive(napi, skb); 1673 } else { 1674 total_len += skb->len; 1675 napi_gro_frags(napi); 1676 } 1677 1678 res_budget--; 1679 } while (likely(res_budget)); 1680 1681 work_done = budget - res_budget; 1682 rx_ring->per_napi_packets += work_done; 1683 u64_stats_update_begin(&rx_ring->syncp); 1684 rx_ring->rx_stats.bytes += total_len; 1685 rx_ring->rx_stats.cnt += work_done; 1686 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1687 u64_stats_update_end(&rx_ring->syncp); 1688 1689 rx_ring->next_to_clean = next_to_clean; 1690 1691 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 1692 refill_threshold = 1693 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1694 ENA_RX_REFILL_THRESH_PACKET); 1695 1696 /* Optimization, try to batch new rx buffers */ 1697 if (refill_required > refill_threshold) { 1698 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 1699 ena_refill_rx_bufs(rx_ring, refill_required); 1700 } 1701 1702 return work_done; 1703 1704 error: 1705 adapter = netdev_priv(rx_ring->netdev); 1706 1707 u64_stats_update_begin(&rx_ring->syncp); 1708 rx_ring->rx_stats.bad_desc_num++; 1709 u64_stats_update_end(&rx_ring->syncp); 1710 1711 /* Too many desc from the device. Trigger reset */ 1712 adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS; 1713 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 1714 1715 return 0; 1716 } 1717 1718 static void ena_dim_work(struct work_struct *w) 1719 { 1720 struct dim *dim = container_of(w, struct dim, work); 1721 struct dim_cq_moder cur_moder = 1722 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1723 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1724 1725 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1726 dim->state = DIM_START_MEASURE; 1727 } 1728 1729 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1730 { 1731 struct dim_sample dim_sample; 1732 struct ena_ring *rx_ring = ena_napi->rx_ring; 1733 1734 if (!rx_ring->per_napi_packets) 1735 return; 1736 1737 rx_ring->non_empty_napi_events++; 1738 1739 dim_update_sample(rx_ring->non_empty_napi_events, 1740 rx_ring->rx_stats.cnt, 1741 rx_ring->rx_stats.bytes, 1742 &dim_sample); 1743 1744 net_dim(&ena_napi->dim, dim_sample); 1745 1746 rx_ring->per_napi_packets = 0; 1747 } 1748 1749 static void ena_unmask_interrupt(struct ena_ring *tx_ring, 1750 struct ena_ring *rx_ring) 1751 { 1752 struct ena_eth_io_intr_reg intr_reg; 1753 u32 rx_interval = 0; 1754 /* Rx ring can be NULL when for XDP tx queues which don't have an 1755 * accompanying rx_ring pair. 1756 */ 1757 if (rx_ring) 1758 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1759 rx_ring->smoothed_interval : 1760 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1761 1762 /* Update intr register: rx intr delay, 1763 * tx intr delay and interrupt unmask 1764 */ 1765 ena_com_update_intr_reg(&intr_reg, 1766 rx_interval, 1767 tx_ring->smoothed_interval, 1768 true); 1769 1770 u64_stats_update_begin(&tx_ring->syncp); 1771 tx_ring->tx_stats.unmask_interrupt++; 1772 u64_stats_update_end(&tx_ring->syncp); 1773 /* It is a shared MSI-X. 1774 * Tx and Rx CQ have pointer to it. 1775 * So we use one of them to reach the intr reg 1776 * The Tx ring is used because the rx_ring is NULL for XDP queues 1777 */ 1778 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); 1779 } 1780 1781 static void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1782 struct ena_ring *rx_ring) 1783 { 1784 int cpu = get_cpu(); 1785 int numa_node; 1786 1787 /* Check only one ring since the 2 rings are running on the same cpu */ 1788 if (likely(tx_ring->cpu == cpu)) 1789 goto out; 1790 1791 numa_node = cpu_to_node(cpu); 1792 put_cpu(); 1793 1794 if (numa_node != NUMA_NO_NODE) { 1795 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1796 if (rx_ring) 1797 ena_com_update_numa_node(rx_ring->ena_com_io_cq, 1798 numa_node); 1799 } 1800 1801 tx_ring->cpu = cpu; 1802 if (rx_ring) 1803 rx_ring->cpu = cpu; 1804 1805 return; 1806 out: 1807 put_cpu(); 1808 } 1809 1810 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget) 1811 { 1812 u32 total_done = 0; 1813 u16 next_to_clean; 1814 u32 tx_bytes = 0; 1815 int tx_pkts = 0; 1816 u16 req_id; 1817 int rc; 1818 1819 if (unlikely(!xdp_ring)) 1820 return 0; 1821 next_to_clean = xdp_ring->next_to_clean; 1822 1823 while (tx_pkts < budget) { 1824 struct ena_tx_buffer *tx_info; 1825 struct xdp_frame *xdpf; 1826 1827 rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq, 1828 &req_id); 1829 if (rc) 1830 break; 1831 1832 rc = validate_xdp_req_id(xdp_ring, req_id); 1833 if (rc) 1834 break; 1835 1836 tx_info = &xdp_ring->tx_buffer_info[req_id]; 1837 xdpf = tx_info->xdpf; 1838 1839 tx_info->xdpf = NULL; 1840 tx_info->last_jiffies = 0; 1841 ena_unmap_tx_buff(xdp_ring, tx_info); 1842 1843 netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev, 1844 "tx_poll: q %d skb %p completed\n", xdp_ring->qid, 1845 xdpf); 1846 1847 tx_bytes += xdpf->len; 1848 tx_pkts++; 1849 total_done += tx_info->tx_descs; 1850 1851 __free_page(tx_info->xdp_rx_page); 1852 xdp_ring->free_ids[next_to_clean] = req_id; 1853 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 1854 xdp_ring->ring_size); 1855 } 1856 1857 xdp_ring->next_to_clean = next_to_clean; 1858 ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done); 1859 ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq); 1860 1861 netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev, 1862 "tx_poll: q %d done. total pkts: %d\n", 1863 xdp_ring->qid, tx_pkts); 1864 1865 return tx_pkts; 1866 } 1867 1868 static int ena_io_poll(struct napi_struct *napi, int budget) 1869 { 1870 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1871 struct ena_ring *tx_ring, *rx_ring; 1872 int tx_work_done; 1873 int rx_work_done = 0; 1874 int tx_budget; 1875 int napi_comp_call = 0; 1876 int ret; 1877 1878 tx_ring = ena_napi->tx_ring; 1879 rx_ring = ena_napi->rx_ring; 1880 1881 tx_ring->first_interrupt = ena_napi->first_interrupt; 1882 rx_ring->first_interrupt = ena_napi->first_interrupt; 1883 1884 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1885 1886 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1887 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1888 napi_complete_done(napi, 0); 1889 return 0; 1890 } 1891 1892 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1893 /* On netpoll the budget is zero and the handler should only clean the 1894 * tx completions. 1895 */ 1896 if (likely(budget)) 1897 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1898 1899 /* If the device is about to reset or down, avoid unmask 1900 * the interrupt and return 0 so NAPI won't reschedule 1901 */ 1902 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1903 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1904 napi_complete_done(napi, 0); 1905 ret = 0; 1906 1907 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1908 napi_comp_call = 1; 1909 1910 /* Update numa and unmask the interrupt only when schedule 1911 * from the interrupt context (vs from sk_busy_loop) 1912 */ 1913 if (napi_complete_done(napi, rx_work_done) && 1914 READ_ONCE(ena_napi->interrupts_masked)) { 1915 smp_rmb(); /* make sure interrupts_masked is read */ 1916 WRITE_ONCE(ena_napi->interrupts_masked, false); 1917 /* We apply adaptive moderation on Rx path only. 1918 * Tx uses static interrupt moderation. 1919 */ 1920 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1921 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1922 1923 ena_unmask_interrupt(tx_ring, rx_ring); 1924 } 1925 1926 ena_update_ring_numa_node(tx_ring, rx_ring); 1927 1928 ret = rx_work_done; 1929 } else { 1930 ret = budget; 1931 } 1932 1933 u64_stats_update_begin(&tx_ring->syncp); 1934 tx_ring->tx_stats.napi_comp += napi_comp_call; 1935 tx_ring->tx_stats.tx_poll++; 1936 u64_stats_update_end(&tx_ring->syncp); 1937 1938 return ret; 1939 } 1940 1941 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1942 { 1943 struct ena_adapter *adapter = (struct ena_adapter *)data; 1944 1945 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1946 1947 /* Don't call the aenq handler before probe is done */ 1948 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1949 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1950 1951 return IRQ_HANDLED; 1952 } 1953 1954 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1955 * @irq: interrupt number 1956 * @data: pointer to a network interface private napi device structure 1957 */ 1958 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1959 { 1960 struct ena_napi *ena_napi = data; 1961 1962 ena_napi->first_interrupt = true; 1963 1964 WRITE_ONCE(ena_napi->interrupts_masked, true); 1965 smp_wmb(); /* write interrupts_masked before calling napi */ 1966 1967 napi_schedule_irqoff(&ena_napi->napi); 1968 1969 return IRQ_HANDLED; 1970 } 1971 1972 /* Reserve a single MSI-X vector for management (admin + aenq). 1973 * plus reserve one vector for each potential io queue. 1974 * the number of potential io queues is the minimum of what the device 1975 * supports and the number of vCPUs. 1976 */ 1977 static int ena_enable_msix(struct ena_adapter *adapter) 1978 { 1979 int msix_vecs, irq_cnt; 1980 1981 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1982 netif_err(adapter, probe, adapter->netdev, 1983 "Error, MSI-X is already enabled\n"); 1984 return -EPERM; 1985 } 1986 1987 /* Reserved the max msix vectors we might need */ 1988 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); 1989 netif_dbg(adapter, probe, adapter->netdev, 1990 "trying to enable MSI-X, vectors %d\n", msix_vecs); 1991 1992 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1993 msix_vecs, PCI_IRQ_MSIX); 1994 1995 if (irq_cnt < 0) { 1996 netif_err(adapter, probe, adapter->netdev, 1997 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1998 return -ENOSPC; 1999 } 2000 2001 if (irq_cnt != msix_vecs) { 2002 netif_notice(adapter, probe, adapter->netdev, 2003 "enable only %d MSI-X (out of %d), reduce the number of queues\n", 2004 irq_cnt, msix_vecs); 2005 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 2006 } 2007 2008 if (ena_init_rx_cpu_rmap(adapter)) 2009 netif_warn(adapter, probe, adapter->netdev, 2010 "Failed to map IRQs to CPUs\n"); 2011 2012 adapter->msix_vecs = irq_cnt; 2013 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 2014 2015 return 0; 2016 } 2017 2018 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 2019 { 2020 u32 cpu; 2021 2022 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 2023 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 2024 pci_name(adapter->pdev)); 2025 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 2026 ena_intr_msix_mgmnt; 2027 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 2028 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 2029 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 2030 cpu = cpumask_first(cpu_online_mask); 2031 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 2032 cpumask_set_cpu(cpu, 2033 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 2034 } 2035 2036 static void ena_setup_io_intr(struct ena_adapter *adapter) 2037 { 2038 struct net_device *netdev; 2039 int irq_idx, i, cpu; 2040 int io_queue_count; 2041 2042 netdev = adapter->netdev; 2043 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2044 2045 for (i = 0; i < io_queue_count; i++) { 2046 irq_idx = ENA_IO_IRQ_IDX(i); 2047 cpu = i % num_online_cpus(); 2048 2049 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 2050 "%s-Tx-Rx-%d", netdev->name, i); 2051 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 2052 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 2053 adapter->irq_tbl[irq_idx].vector = 2054 pci_irq_vector(adapter->pdev, irq_idx); 2055 adapter->irq_tbl[irq_idx].cpu = cpu; 2056 2057 cpumask_set_cpu(cpu, 2058 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 2059 } 2060 } 2061 2062 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 2063 { 2064 unsigned long flags = 0; 2065 struct ena_irq *irq; 2066 int rc; 2067 2068 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 2069 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 2070 irq->data); 2071 if (rc) { 2072 netif_err(adapter, probe, adapter->netdev, 2073 "failed to request admin irq\n"); 2074 return rc; 2075 } 2076 2077 netif_dbg(adapter, probe, adapter->netdev, 2078 "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 2079 irq->affinity_hint_mask.bits[0], irq->vector); 2080 2081 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 2082 2083 return rc; 2084 } 2085 2086 static int ena_request_io_irq(struct ena_adapter *adapter) 2087 { 2088 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2089 unsigned long flags = 0; 2090 struct ena_irq *irq; 2091 int rc = 0, i, k; 2092 2093 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 2094 netif_err(adapter, ifup, adapter->netdev, 2095 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 2096 return -EINVAL; 2097 } 2098 2099 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 2100 irq = &adapter->irq_tbl[i]; 2101 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 2102 irq->data); 2103 if (rc) { 2104 netif_err(adapter, ifup, adapter->netdev, 2105 "Failed to request I/O IRQ. index %d rc %d\n", 2106 i, rc); 2107 goto err; 2108 } 2109 2110 netif_dbg(adapter, ifup, adapter->netdev, 2111 "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 2112 i, irq->affinity_hint_mask.bits[0], irq->vector); 2113 2114 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 2115 } 2116 2117 return rc; 2118 2119 err: 2120 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 2121 irq = &adapter->irq_tbl[k]; 2122 free_irq(irq->vector, irq->data); 2123 } 2124 2125 return rc; 2126 } 2127 2128 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 2129 { 2130 struct ena_irq *irq; 2131 2132 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 2133 synchronize_irq(irq->vector); 2134 irq_set_affinity_hint(irq->vector, NULL); 2135 free_irq(irq->vector, irq->data); 2136 } 2137 2138 static void ena_free_io_irq(struct ena_adapter *adapter) 2139 { 2140 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2141 struct ena_irq *irq; 2142 int i; 2143 2144 #ifdef CONFIG_RFS_ACCEL 2145 if (adapter->msix_vecs >= 1) { 2146 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 2147 adapter->netdev->rx_cpu_rmap = NULL; 2148 } 2149 #endif /* CONFIG_RFS_ACCEL */ 2150 2151 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 2152 irq = &adapter->irq_tbl[i]; 2153 irq_set_affinity_hint(irq->vector, NULL); 2154 free_irq(irq->vector, irq->data); 2155 } 2156 } 2157 2158 static void ena_disable_msix(struct ena_adapter *adapter) 2159 { 2160 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 2161 pci_free_irq_vectors(adapter->pdev); 2162 } 2163 2164 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 2165 { 2166 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2167 int i; 2168 2169 if (!netif_running(adapter->netdev)) 2170 return; 2171 2172 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) 2173 synchronize_irq(adapter->irq_tbl[i].vector); 2174 } 2175 2176 static void ena_del_napi_in_range(struct ena_adapter *adapter, 2177 int first_index, 2178 int count) 2179 { 2180 int i; 2181 2182 for (i = first_index; i < first_index + count; i++) { 2183 /* Check if napi was initialized before */ 2184 if (!ENA_IS_XDP_INDEX(adapter, i) || 2185 adapter->ena_napi[i].xdp_ring) 2186 netif_napi_del(&adapter->ena_napi[i].napi); 2187 else 2188 WARN_ON(ENA_IS_XDP_INDEX(adapter, i) && 2189 adapter->ena_napi[i].xdp_ring); 2190 } 2191 } 2192 2193 static void ena_init_napi_in_range(struct ena_adapter *adapter, 2194 int first_index, int count) 2195 { 2196 int i; 2197 2198 for (i = first_index; i < first_index + count; i++) { 2199 struct ena_napi *napi = &adapter->ena_napi[i]; 2200 2201 netif_napi_add(adapter->netdev, 2202 &napi->napi, 2203 ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll, 2204 ENA_NAPI_BUDGET); 2205 2206 if (!ENA_IS_XDP_INDEX(adapter, i)) { 2207 napi->rx_ring = &adapter->rx_ring[i]; 2208 napi->tx_ring = &adapter->tx_ring[i]; 2209 } else { 2210 napi->xdp_ring = &adapter->tx_ring[i]; 2211 } 2212 napi->qid = i; 2213 } 2214 } 2215 2216 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 2217 int first_index, 2218 int count) 2219 { 2220 int i; 2221 2222 for (i = first_index; i < first_index + count; i++) 2223 napi_disable(&adapter->ena_napi[i].napi); 2224 } 2225 2226 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 2227 int first_index, 2228 int count) 2229 { 2230 int i; 2231 2232 for (i = first_index; i < first_index + count; i++) 2233 napi_enable(&adapter->ena_napi[i].napi); 2234 } 2235 2236 /* Configure the Rx forwarding */ 2237 static int ena_rss_configure(struct ena_adapter *adapter) 2238 { 2239 struct ena_com_dev *ena_dev = adapter->ena_dev; 2240 int rc; 2241 2242 /* In case the RSS table wasn't initialized by probe */ 2243 if (!ena_dev->rss.tbl_log_size) { 2244 rc = ena_rss_init_default(adapter); 2245 if (rc && (rc != -EOPNOTSUPP)) { 2246 netif_err(adapter, ifup, adapter->netdev, 2247 "Failed to init RSS rc: %d\n", rc); 2248 return rc; 2249 } 2250 } 2251 2252 /* Set indirect table */ 2253 rc = ena_com_indirect_table_set(ena_dev); 2254 if (unlikely(rc && rc != -EOPNOTSUPP)) 2255 return rc; 2256 2257 /* Configure hash function (if supported) */ 2258 rc = ena_com_set_hash_function(ena_dev); 2259 if (unlikely(rc && (rc != -EOPNOTSUPP))) 2260 return rc; 2261 2262 /* Configure hash inputs (if supported) */ 2263 rc = ena_com_set_hash_ctrl(ena_dev); 2264 if (unlikely(rc && (rc != -EOPNOTSUPP))) 2265 return rc; 2266 2267 return 0; 2268 } 2269 2270 static int ena_up_complete(struct ena_adapter *adapter) 2271 { 2272 int rc; 2273 2274 rc = ena_rss_configure(adapter); 2275 if (rc) 2276 return rc; 2277 2278 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 2279 2280 ena_refill_all_rx_bufs(adapter); 2281 2282 /* enable transmits */ 2283 netif_tx_start_all_queues(adapter->netdev); 2284 2285 ena_napi_enable_in_range(adapter, 2286 0, 2287 adapter->xdp_num_queues + adapter->num_io_queues); 2288 2289 return 0; 2290 } 2291 2292 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 2293 { 2294 struct ena_com_create_io_ctx ctx; 2295 struct ena_com_dev *ena_dev; 2296 struct ena_ring *tx_ring; 2297 u32 msix_vector; 2298 u16 ena_qid; 2299 int rc; 2300 2301 ena_dev = adapter->ena_dev; 2302 2303 tx_ring = &adapter->tx_ring[qid]; 2304 msix_vector = ENA_IO_IRQ_IDX(qid); 2305 ena_qid = ENA_IO_TXQ_IDX(qid); 2306 2307 memset(&ctx, 0x0, sizeof(ctx)); 2308 2309 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 2310 ctx.qid = ena_qid; 2311 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 2312 ctx.msix_vector = msix_vector; 2313 ctx.queue_size = tx_ring->ring_size; 2314 ctx.numa_node = cpu_to_node(tx_ring->cpu); 2315 2316 rc = ena_com_create_io_queue(ena_dev, &ctx); 2317 if (rc) { 2318 netif_err(adapter, ifup, adapter->netdev, 2319 "Failed to create I/O TX queue num %d rc: %d\n", 2320 qid, rc); 2321 return rc; 2322 } 2323 2324 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 2325 &tx_ring->ena_com_io_sq, 2326 &tx_ring->ena_com_io_cq); 2327 if (rc) { 2328 netif_err(adapter, ifup, adapter->netdev, 2329 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 2330 qid, rc); 2331 ena_com_destroy_io_queue(ena_dev, ena_qid); 2332 return rc; 2333 } 2334 2335 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 2336 return rc; 2337 } 2338 2339 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 2340 int first_index, int count) 2341 { 2342 struct ena_com_dev *ena_dev = adapter->ena_dev; 2343 int rc, i; 2344 2345 for (i = first_index; i < first_index + count; i++) { 2346 rc = ena_create_io_tx_queue(adapter, i); 2347 if (rc) 2348 goto create_err; 2349 } 2350 2351 return 0; 2352 2353 create_err: 2354 while (i-- > first_index) 2355 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 2356 2357 return rc; 2358 } 2359 2360 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 2361 { 2362 struct ena_com_dev *ena_dev; 2363 struct ena_com_create_io_ctx ctx; 2364 struct ena_ring *rx_ring; 2365 u32 msix_vector; 2366 u16 ena_qid; 2367 int rc; 2368 2369 ena_dev = adapter->ena_dev; 2370 2371 rx_ring = &adapter->rx_ring[qid]; 2372 msix_vector = ENA_IO_IRQ_IDX(qid); 2373 ena_qid = ENA_IO_RXQ_IDX(qid); 2374 2375 memset(&ctx, 0x0, sizeof(ctx)); 2376 2377 ctx.qid = ena_qid; 2378 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 2379 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 2380 ctx.msix_vector = msix_vector; 2381 ctx.queue_size = rx_ring->ring_size; 2382 ctx.numa_node = cpu_to_node(rx_ring->cpu); 2383 2384 rc = ena_com_create_io_queue(ena_dev, &ctx); 2385 if (rc) { 2386 netif_err(adapter, ifup, adapter->netdev, 2387 "Failed to create I/O RX queue num %d rc: %d\n", 2388 qid, rc); 2389 return rc; 2390 } 2391 2392 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 2393 &rx_ring->ena_com_io_sq, 2394 &rx_ring->ena_com_io_cq); 2395 if (rc) { 2396 netif_err(adapter, ifup, adapter->netdev, 2397 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 2398 qid, rc); 2399 goto err; 2400 } 2401 2402 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 2403 2404 return rc; 2405 err: 2406 ena_com_destroy_io_queue(ena_dev, ena_qid); 2407 return rc; 2408 } 2409 2410 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 2411 { 2412 struct ena_com_dev *ena_dev = adapter->ena_dev; 2413 int rc, i; 2414 2415 for (i = 0; i < adapter->num_io_queues; i++) { 2416 rc = ena_create_io_rx_queue(adapter, i); 2417 if (rc) 2418 goto create_err; 2419 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 2420 } 2421 2422 return 0; 2423 2424 create_err: 2425 while (i--) { 2426 cancel_work_sync(&adapter->ena_napi[i].dim.work); 2427 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 2428 } 2429 2430 return rc; 2431 } 2432 2433 static void set_io_rings_size(struct ena_adapter *adapter, 2434 int new_tx_size, 2435 int new_rx_size) 2436 { 2437 int i; 2438 2439 for (i = 0; i < adapter->num_io_queues; i++) { 2440 adapter->tx_ring[i].ring_size = new_tx_size; 2441 adapter->rx_ring[i].ring_size = new_rx_size; 2442 } 2443 } 2444 2445 /* This function allows queue allocation to backoff when the system is 2446 * low on memory. If there is not enough memory to allocate io queues 2447 * the driver will try to allocate smaller queues. 2448 * 2449 * The backoff algorithm is as follows: 2450 * 1. Try to allocate TX and RX and if successful. 2451 * 1.1. return success 2452 * 2453 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 2454 * 2455 * 3. If TX or RX is smaller than 256 2456 * 3.1. return failure. 2457 * 4. else 2458 * 4.1. go back to 1. 2459 */ 2460 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 2461 { 2462 int rc, cur_rx_ring_size, cur_tx_ring_size; 2463 int new_rx_ring_size, new_tx_ring_size; 2464 2465 /* current queue sizes might be set to smaller than the requested 2466 * ones due to past queue allocation failures. 2467 */ 2468 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 2469 adapter->requested_rx_ring_size); 2470 2471 while (1) { 2472 if (ena_xdp_present(adapter)) { 2473 rc = ena_setup_and_create_all_xdp_queues(adapter); 2474 2475 if (rc) 2476 goto err_setup_tx; 2477 } 2478 rc = ena_setup_tx_resources_in_range(adapter, 2479 0, 2480 adapter->num_io_queues); 2481 if (rc) 2482 goto err_setup_tx; 2483 2484 rc = ena_create_io_tx_queues_in_range(adapter, 2485 0, 2486 adapter->num_io_queues); 2487 if (rc) 2488 goto err_create_tx_queues; 2489 2490 rc = ena_setup_all_rx_resources(adapter); 2491 if (rc) 2492 goto err_setup_rx; 2493 2494 rc = ena_create_all_io_rx_queues(adapter); 2495 if (rc) 2496 goto err_create_rx_queues; 2497 2498 return 0; 2499 2500 err_create_rx_queues: 2501 ena_free_all_io_rx_resources(adapter); 2502 err_setup_rx: 2503 ena_destroy_all_tx_queues(adapter); 2504 err_create_tx_queues: 2505 ena_free_all_io_tx_resources(adapter); 2506 err_setup_tx: 2507 if (rc != -ENOMEM) { 2508 netif_err(adapter, ifup, adapter->netdev, 2509 "Queue creation failed with error code %d\n", 2510 rc); 2511 return rc; 2512 } 2513 2514 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 2515 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 2516 2517 netif_err(adapter, ifup, adapter->netdev, 2518 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 2519 cur_tx_ring_size, cur_rx_ring_size); 2520 2521 new_tx_ring_size = cur_tx_ring_size; 2522 new_rx_ring_size = cur_rx_ring_size; 2523 2524 /* Decrease the size of the larger queue, or 2525 * decrease both if they are the same size. 2526 */ 2527 if (cur_rx_ring_size <= cur_tx_ring_size) 2528 new_tx_ring_size = cur_tx_ring_size / 2; 2529 if (cur_rx_ring_size >= cur_tx_ring_size) 2530 new_rx_ring_size = cur_rx_ring_size / 2; 2531 2532 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 2533 new_rx_ring_size < ENA_MIN_RING_SIZE) { 2534 netif_err(adapter, ifup, adapter->netdev, 2535 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 2536 ENA_MIN_RING_SIZE); 2537 return rc; 2538 } 2539 2540 netif_err(adapter, ifup, adapter->netdev, 2541 "Retrying queue creation with sizes TX=%d, RX=%d\n", 2542 new_tx_ring_size, 2543 new_rx_ring_size); 2544 2545 set_io_rings_size(adapter, new_tx_ring_size, 2546 new_rx_ring_size); 2547 } 2548 } 2549 2550 static int ena_up(struct ena_adapter *adapter) 2551 { 2552 int io_queue_count, rc, i; 2553 2554 netdev_dbg(adapter->netdev, "%s\n", __func__); 2555 2556 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2557 ena_setup_io_intr(adapter); 2558 2559 /* napi poll functions should be initialized before running 2560 * request_irq(), to handle a rare condition where there is a pending 2561 * interrupt, causing the ISR to fire immediately while the poll 2562 * function wasn't set yet, causing a null dereference 2563 */ 2564 ena_init_napi_in_range(adapter, 0, io_queue_count); 2565 2566 rc = ena_request_io_irq(adapter); 2567 if (rc) 2568 goto err_req_irq; 2569 2570 rc = create_queues_with_size_backoff(adapter); 2571 if (rc) 2572 goto err_create_queues_with_backoff; 2573 2574 rc = ena_up_complete(adapter); 2575 if (rc) 2576 goto err_up; 2577 2578 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2579 netif_carrier_on(adapter->netdev); 2580 2581 u64_stats_update_begin(&adapter->syncp); 2582 adapter->dev_stats.interface_up++; 2583 u64_stats_update_end(&adapter->syncp); 2584 2585 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2586 2587 /* Enable completion queues interrupt */ 2588 for (i = 0; i < adapter->num_io_queues; i++) 2589 ena_unmask_interrupt(&adapter->tx_ring[i], 2590 &adapter->rx_ring[i]); 2591 2592 /* schedule napi in case we had pending packets 2593 * from the last time we disable napi 2594 */ 2595 for (i = 0; i < io_queue_count; i++) 2596 napi_schedule(&adapter->ena_napi[i].napi); 2597 2598 return rc; 2599 2600 err_up: 2601 ena_destroy_all_tx_queues(adapter); 2602 ena_free_all_io_tx_resources(adapter); 2603 ena_destroy_all_rx_queues(adapter); 2604 ena_free_all_io_rx_resources(adapter); 2605 err_create_queues_with_backoff: 2606 ena_free_io_irq(adapter); 2607 err_req_irq: 2608 ena_del_napi_in_range(adapter, 0, io_queue_count); 2609 2610 return rc; 2611 } 2612 2613 static void ena_down(struct ena_adapter *adapter) 2614 { 2615 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2616 2617 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__); 2618 2619 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2620 2621 u64_stats_update_begin(&adapter->syncp); 2622 adapter->dev_stats.interface_down++; 2623 u64_stats_update_end(&adapter->syncp); 2624 2625 netif_carrier_off(adapter->netdev); 2626 netif_tx_disable(adapter->netdev); 2627 2628 /* After this point the napi handler won't enable the tx queue */ 2629 ena_napi_disable_in_range(adapter, 0, io_queue_count); 2630 2631 /* After destroy the queue there won't be any new interrupts */ 2632 2633 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 2634 int rc; 2635 2636 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2637 if (rc) 2638 dev_err(&adapter->pdev->dev, "Device reset failed\n"); 2639 /* stop submitting admin commands on a device that was reset */ 2640 ena_com_set_admin_running_state(adapter->ena_dev, false); 2641 } 2642 2643 ena_destroy_all_io_queues(adapter); 2644 2645 ena_disable_io_intr_sync(adapter); 2646 ena_free_io_irq(adapter); 2647 ena_del_napi_in_range(adapter, 0, io_queue_count); 2648 2649 ena_free_all_tx_bufs(adapter); 2650 ena_free_all_rx_bufs(adapter); 2651 ena_free_all_io_tx_resources(adapter); 2652 ena_free_all_io_rx_resources(adapter); 2653 } 2654 2655 /* ena_open - Called when a network interface is made active 2656 * @netdev: network interface device structure 2657 * 2658 * Returns 0 on success, negative value on failure 2659 * 2660 * The open entry point is called when a network interface is made 2661 * active by the system (IFF_UP). At this point all resources needed 2662 * for transmit and receive operations are allocated, the interrupt 2663 * handler is registered with the OS, the watchdog timer is started, 2664 * and the stack is notified that the interface is ready. 2665 */ 2666 static int ena_open(struct net_device *netdev) 2667 { 2668 struct ena_adapter *adapter = netdev_priv(netdev); 2669 int rc; 2670 2671 /* Notify the stack of the actual queue counts. */ 2672 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 2673 if (rc) { 2674 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 2675 return rc; 2676 } 2677 2678 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 2679 if (rc) { 2680 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2681 return rc; 2682 } 2683 2684 rc = ena_up(adapter); 2685 if (rc) 2686 return rc; 2687 2688 return rc; 2689 } 2690 2691 /* ena_close - Disables a network interface 2692 * @netdev: network interface device structure 2693 * 2694 * Returns 0, this is not allowed to fail 2695 * 2696 * The close entry point is called when an interface is de-activated 2697 * by the OS. The hardware is still under the drivers control, but 2698 * needs to be disabled. A global MAC reset is issued to stop the 2699 * hardware, and all transmit and receive resources are freed. 2700 */ 2701 static int ena_close(struct net_device *netdev) 2702 { 2703 struct ena_adapter *adapter = netdev_priv(netdev); 2704 2705 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2706 2707 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2708 return 0; 2709 2710 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2711 ena_down(adapter); 2712 2713 /* Check for device status and issue reset if needed*/ 2714 check_for_admin_com_state(adapter); 2715 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2716 netif_err(adapter, ifdown, adapter->netdev, 2717 "Destroy failure, restarting device\n"); 2718 ena_dump_stats_to_dmesg(adapter); 2719 /* rtnl lock already obtained in dev_ioctl() layer */ 2720 ena_destroy_device(adapter, false); 2721 ena_restore_device(adapter); 2722 } 2723 2724 return 0; 2725 } 2726 2727 int ena_update_queue_sizes(struct ena_adapter *adapter, 2728 u32 new_tx_size, 2729 u32 new_rx_size) 2730 { 2731 bool dev_was_up; 2732 2733 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2734 ena_close(adapter->netdev); 2735 adapter->requested_tx_ring_size = new_tx_size; 2736 adapter->requested_rx_ring_size = new_rx_size; 2737 ena_init_io_rings(adapter, 2738 0, 2739 adapter->xdp_num_queues + 2740 adapter->num_io_queues); 2741 return dev_was_up ? ena_up(adapter) : 0; 2742 } 2743 2744 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2745 { 2746 struct ena_com_dev *ena_dev = adapter->ena_dev; 2747 int prev_channel_count; 2748 bool dev_was_up; 2749 2750 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2751 ena_close(adapter->netdev); 2752 prev_channel_count = adapter->num_io_queues; 2753 adapter->num_io_queues = new_channel_count; 2754 if (ena_xdp_present(adapter) && 2755 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { 2756 adapter->xdp_first_ring = new_channel_count; 2757 adapter->xdp_num_queues = new_channel_count; 2758 if (prev_channel_count > new_channel_count) 2759 ena_xdp_exchange_program_rx_in_range(adapter, 2760 NULL, 2761 new_channel_count, 2762 prev_channel_count); 2763 else 2764 ena_xdp_exchange_program_rx_in_range(adapter, 2765 adapter->xdp_bpf_prog, 2766 prev_channel_count, 2767 new_channel_count); 2768 } 2769 2770 /* We need to destroy the rss table so that the indirection 2771 * table will be reinitialized by ena_up() 2772 */ 2773 ena_com_rss_destroy(ena_dev); 2774 ena_init_io_rings(adapter, 2775 0, 2776 adapter->xdp_num_queues + 2777 adapter->num_io_queues); 2778 return dev_was_up ? ena_open(adapter->netdev) : 0; 2779 } 2780 2781 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, 2782 struct sk_buff *skb, 2783 bool disable_meta_caching) 2784 { 2785 u32 mss = skb_shinfo(skb)->gso_size; 2786 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2787 u8 l4_protocol = 0; 2788 2789 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2790 ena_tx_ctx->l4_csum_enable = 1; 2791 if (mss) { 2792 ena_tx_ctx->tso_enable = 1; 2793 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2794 ena_tx_ctx->l4_csum_partial = 0; 2795 } else { 2796 ena_tx_ctx->tso_enable = 0; 2797 ena_meta->l4_hdr_len = 0; 2798 ena_tx_ctx->l4_csum_partial = 1; 2799 } 2800 2801 switch (ip_hdr(skb)->version) { 2802 case IPVERSION: 2803 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2804 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2805 ena_tx_ctx->df = 1; 2806 if (mss) 2807 ena_tx_ctx->l3_csum_enable = 1; 2808 l4_protocol = ip_hdr(skb)->protocol; 2809 break; 2810 case 6: 2811 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2812 l4_protocol = ipv6_hdr(skb)->nexthdr; 2813 break; 2814 default: 2815 break; 2816 } 2817 2818 if (l4_protocol == IPPROTO_TCP) 2819 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2820 else 2821 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2822 2823 ena_meta->mss = mss; 2824 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2825 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2826 ena_tx_ctx->meta_valid = 1; 2827 } else if (disable_meta_caching) { 2828 memset(ena_meta, 0, sizeof(*ena_meta)); 2829 ena_tx_ctx->meta_valid = 1; 2830 } else { 2831 ena_tx_ctx->meta_valid = 0; 2832 } 2833 } 2834 2835 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2836 struct sk_buff *skb) 2837 { 2838 int num_frags, header_len, rc; 2839 2840 num_frags = skb_shinfo(skb)->nr_frags; 2841 header_len = skb_headlen(skb); 2842 2843 if (num_frags < tx_ring->sgl_size) 2844 return 0; 2845 2846 if ((num_frags == tx_ring->sgl_size) && 2847 (header_len < tx_ring->tx_max_header_size)) 2848 return 0; 2849 2850 u64_stats_update_begin(&tx_ring->syncp); 2851 tx_ring->tx_stats.linearize++; 2852 u64_stats_update_end(&tx_ring->syncp); 2853 2854 rc = skb_linearize(skb); 2855 if (unlikely(rc)) { 2856 u64_stats_update_begin(&tx_ring->syncp); 2857 tx_ring->tx_stats.linearize_failed++; 2858 u64_stats_update_end(&tx_ring->syncp); 2859 } 2860 2861 return rc; 2862 } 2863 2864 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2865 struct ena_tx_buffer *tx_info, 2866 struct sk_buff *skb, 2867 void **push_hdr, 2868 u16 *header_len) 2869 { 2870 struct ena_adapter *adapter = tx_ring->adapter; 2871 struct ena_com_buf *ena_buf; 2872 dma_addr_t dma; 2873 u32 skb_head_len, frag_len, last_frag; 2874 u16 push_len = 0; 2875 u16 delta = 0; 2876 int i = 0; 2877 2878 skb_head_len = skb_headlen(skb); 2879 tx_info->skb = skb; 2880 ena_buf = tx_info->bufs; 2881 2882 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2883 /* When the device is LLQ mode, the driver will copy 2884 * the header into the device memory space. 2885 * the ena_com layer assume the header is in a linear 2886 * memory space. 2887 * This assumption might be wrong since part of the header 2888 * can be in the fragmented buffers. 2889 * Use skb_header_pointer to make sure the header is in a 2890 * linear memory space. 2891 */ 2892 2893 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2894 *push_hdr = skb_header_pointer(skb, 0, push_len, 2895 tx_ring->push_buf_intermediate_buf); 2896 *header_len = push_len; 2897 if (unlikely(skb->data != *push_hdr)) { 2898 u64_stats_update_begin(&tx_ring->syncp); 2899 tx_ring->tx_stats.llq_buffer_copy++; 2900 u64_stats_update_end(&tx_ring->syncp); 2901 2902 delta = push_len - skb_head_len; 2903 } 2904 } else { 2905 *push_hdr = NULL; 2906 *header_len = min_t(u32, skb_head_len, 2907 tx_ring->tx_max_header_size); 2908 } 2909 2910 netif_dbg(adapter, tx_queued, adapter->netdev, 2911 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2912 *push_hdr, push_len); 2913 2914 if (skb_head_len > push_len) { 2915 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2916 skb_head_len - push_len, DMA_TO_DEVICE); 2917 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2918 goto error_report_dma_error; 2919 2920 ena_buf->paddr = dma; 2921 ena_buf->len = skb_head_len - push_len; 2922 2923 ena_buf++; 2924 tx_info->num_of_bufs++; 2925 tx_info->map_linear_data = 1; 2926 } else { 2927 tx_info->map_linear_data = 0; 2928 } 2929 2930 last_frag = skb_shinfo(skb)->nr_frags; 2931 2932 for (i = 0; i < last_frag; i++) { 2933 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2934 2935 frag_len = skb_frag_size(frag); 2936 2937 if (unlikely(delta >= frag_len)) { 2938 delta -= frag_len; 2939 continue; 2940 } 2941 2942 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2943 frag_len - delta, DMA_TO_DEVICE); 2944 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2945 goto error_report_dma_error; 2946 2947 ena_buf->paddr = dma; 2948 ena_buf->len = frag_len - delta; 2949 ena_buf++; 2950 tx_info->num_of_bufs++; 2951 delta = 0; 2952 } 2953 2954 return 0; 2955 2956 error_report_dma_error: 2957 u64_stats_update_begin(&tx_ring->syncp); 2958 tx_ring->tx_stats.dma_mapping_err++; 2959 u64_stats_update_end(&tx_ring->syncp); 2960 netdev_warn(adapter->netdev, "failed to map skb\n"); 2961 2962 tx_info->skb = NULL; 2963 2964 tx_info->num_of_bufs += i; 2965 ena_unmap_tx_buff(tx_ring, tx_info); 2966 2967 return -EINVAL; 2968 } 2969 2970 /* Called with netif_tx_lock. */ 2971 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2972 { 2973 struct ena_adapter *adapter = netdev_priv(dev); 2974 struct ena_tx_buffer *tx_info; 2975 struct ena_com_tx_ctx ena_tx_ctx; 2976 struct ena_ring *tx_ring; 2977 struct netdev_queue *txq; 2978 void *push_hdr; 2979 u16 next_to_use, req_id, header_len; 2980 int qid, rc; 2981 2982 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2983 /* Determine which tx ring we will be placed on */ 2984 qid = skb_get_queue_mapping(skb); 2985 tx_ring = &adapter->tx_ring[qid]; 2986 txq = netdev_get_tx_queue(dev, qid); 2987 2988 rc = ena_check_and_linearize_skb(tx_ring, skb); 2989 if (unlikely(rc)) 2990 goto error_drop_packet; 2991 2992 skb_tx_timestamp(skb); 2993 2994 next_to_use = tx_ring->next_to_use; 2995 req_id = tx_ring->free_ids[next_to_use]; 2996 tx_info = &tx_ring->tx_buffer_info[req_id]; 2997 tx_info->num_of_bufs = 0; 2998 2999 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 3000 3001 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 3002 if (unlikely(rc)) 3003 goto error_drop_packet; 3004 3005 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 3006 ena_tx_ctx.ena_bufs = tx_info->bufs; 3007 ena_tx_ctx.push_header = push_hdr; 3008 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 3009 ena_tx_ctx.req_id = req_id; 3010 ena_tx_ctx.header_len = header_len; 3011 3012 /* set flags and meta data */ 3013 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching); 3014 3015 rc = ena_xmit_common(dev, 3016 tx_ring, 3017 tx_info, 3018 &ena_tx_ctx, 3019 next_to_use, 3020 skb->len); 3021 if (rc) 3022 goto error_unmap_dma; 3023 3024 netdev_tx_sent_queue(txq, skb->len); 3025 3026 /* stop the queue when no more space available, the packet can have up 3027 * to sgl_size + 2. one for the meta descriptor and one for header 3028 * (if the header is larger than tx_max_header_size). 3029 */ 3030 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3031 tx_ring->sgl_size + 2))) { 3032 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 3033 __func__, qid); 3034 3035 netif_tx_stop_queue(txq); 3036 u64_stats_update_begin(&tx_ring->syncp); 3037 tx_ring->tx_stats.queue_stop++; 3038 u64_stats_update_end(&tx_ring->syncp); 3039 3040 /* There is a rare condition where this function decide to 3041 * stop the queue but meanwhile clean_tx_irq updates 3042 * next_to_completion and terminates. 3043 * The queue will remain stopped forever. 3044 * To solve this issue add a mb() to make sure that 3045 * netif_tx_stop_queue() write is vissible before checking if 3046 * there is additional space in the queue. 3047 */ 3048 smp_mb(); 3049 3050 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3051 ENA_TX_WAKEUP_THRESH)) { 3052 netif_tx_wake_queue(txq); 3053 u64_stats_update_begin(&tx_ring->syncp); 3054 tx_ring->tx_stats.queue_wakeup++; 3055 u64_stats_update_end(&tx_ring->syncp); 3056 } 3057 } 3058 3059 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) { 3060 /* trigger the dma engine. ena_com_write_sq_doorbell() 3061 * has a mb 3062 */ 3063 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 3064 u64_stats_update_begin(&tx_ring->syncp); 3065 tx_ring->tx_stats.doorbells++; 3066 u64_stats_update_end(&tx_ring->syncp); 3067 } 3068 3069 return NETDEV_TX_OK; 3070 3071 error_unmap_dma: 3072 ena_unmap_tx_buff(tx_ring, tx_info); 3073 tx_info->skb = NULL; 3074 3075 error_drop_packet: 3076 dev_kfree_skb(skb); 3077 return NETDEV_TX_OK; 3078 } 3079 3080 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb, 3081 struct net_device *sb_dev) 3082 { 3083 u16 qid; 3084 /* we suspect that this is good for in--kernel network services that 3085 * want to loop incoming skb rx to tx in normal user generated traffic, 3086 * most probably we will not get to this 3087 */ 3088 if (skb_rx_queue_recorded(skb)) 3089 qid = skb_get_rx_queue(skb); 3090 else 3091 qid = netdev_pick_tx(dev, skb, NULL); 3092 3093 return qid; 3094 } 3095 3096 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3097 { 3098 struct ena_admin_host_info *host_info; 3099 int rc; 3100 3101 /* Allocate only the host info */ 3102 rc = ena_com_allocate_host_info(ena_dev); 3103 if (rc) { 3104 pr_err("Cannot allocate host info\n"); 3105 return; 3106 } 3107 3108 host_info = ena_dev->host_attr.host_info; 3109 3110 host_info->bdf = (pdev->bus->number << 8) | pdev->devfn; 3111 host_info->os_type = ENA_ADMIN_OS_LINUX; 3112 host_info->kernel_ver = LINUX_VERSION_CODE; 3113 strlcpy(host_info->kernel_ver_str, utsname()->version, 3114 sizeof(host_info->kernel_ver_str) - 1); 3115 host_info->os_dist = 0; 3116 strncpy(host_info->os_dist_str, utsname()->release, 3117 sizeof(host_info->os_dist_str) - 1); 3118 host_info->driver_version = 3119 (DRV_MODULE_GEN_MAJOR) | 3120 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 3121 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 3122 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 3123 host_info->num_cpus = num_online_cpus(); 3124 3125 host_info->driver_supported_features = 3126 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK | 3127 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK | 3128 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK | 3129 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK; 3130 3131 rc = ena_com_set_host_attributes(ena_dev); 3132 if (rc) { 3133 if (rc == -EOPNOTSUPP) 3134 pr_warn("Cannot set host attributes\n"); 3135 else 3136 pr_err("Cannot set host attributes\n"); 3137 3138 goto err; 3139 } 3140 3141 return; 3142 3143 err: 3144 ena_com_delete_host_info(ena_dev); 3145 } 3146 3147 static void ena_config_debug_area(struct ena_adapter *adapter) 3148 { 3149 u32 debug_area_size; 3150 int rc, ss_count; 3151 3152 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 3153 if (ss_count <= 0) { 3154 netif_err(adapter, drv, adapter->netdev, 3155 "SS count is negative\n"); 3156 return; 3157 } 3158 3159 /* allocate 32 bytes for each string and 64bit for the value */ 3160 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 3161 3162 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 3163 if (rc) { 3164 pr_err("Cannot allocate debug area\n"); 3165 return; 3166 } 3167 3168 rc = ena_com_set_host_attributes(adapter->ena_dev); 3169 if (rc) { 3170 if (rc == -EOPNOTSUPP) 3171 netif_warn(adapter, drv, adapter->netdev, 3172 "Cannot set host attributes\n"); 3173 else 3174 netif_err(adapter, drv, adapter->netdev, 3175 "Cannot set host attributes\n"); 3176 goto err; 3177 } 3178 3179 return; 3180 err: 3181 ena_com_delete_debug_area(adapter->ena_dev); 3182 } 3183 3184 static void ena_get_stats64(struct net_device *netdev, 3185 struct rtnl_link_stats64 *stats) 3186 { 3187 struct ena_adapter *adapter = netdev_priv(netdev); 3188 struct ena_ring *rx_ring, *tx_ring; 3189 unsigned int start; 3190 u64 rx_drops; 3191 u64 tx_drops; 3192 int i; 3193 3194 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3195 return; 3196 3197 for (i = 0; i < adapter->num_io_queues; i++) { 3198 u64 bytes, packets; 3199 3200 tx_ring = &adapter->tx_ring[i]; 3201 3202 do { 3203 start = u64_stats_fetch_begin_irq(&tx_ring->syncp); 3204 packets = tx_ring->tx_stats.cnt; 3205 bytes = tx_ring->tx_stats.bytes; 3206 } while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start)); 3207 3208 stats->tx_packets += packets; 3209 stats->tx_bytes += bytes; 3210 3211 rx_ring = &adapter->rx_ring[i]; 3212 3213 do { 3214 start = u64_stats_fetch_begin_irq(&rx_ring->syncp); 3215 packets = rx_ring->rx_stats.cnt; 3216 bytes = rx_ring->rx_stats.bytes; 3217 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); 3218 3219 stats->rx_packets += packets; 3220 stats->rx_bytes += bytes; 3221 } 3222 3223 do { 3224 start = u64_stats_fetch_begin_irq(&adapter->syncp); 3225 rx_drops = adapter->dev_stats.rx_drops; 3226 tx_drops = adapter->dev_stats.tx_drops; 3227 } while (u64_stats_fetch_retry_irq(&adapter->syncp, start)); 3228 3229 stats->rx_dropped = rx_drops; 3230 stats->tx_dropped = tx_drops; 3231 3232 stats->multicast = 0; 3233 stats->collisions = 0; 3234 3235 stats->rx_length_errors = 0; 3236 stats->rx_crc_errors = 0; 3237 stats->rx_frame_errors = 0; 3238 stats->rx_fifo_errors = 0; 3239 stats->rx_missed_errors = 0; 3240 stats->tx_window_errors = 0; 3241 3242 stats->rx_errors = 0; 3243 stats->tx_errors = 0; 3244 } 3245 3246 static const struct net_device_ops ena_netdev_ops = { 3247 .ndo_open = ena_open, 3248 .ndo_stop = ena_close, 3249 .ndo_start_xmit = ena_start_xmit, 3250 .ndo_select_queue = ena_select_queue, 3251 .ndo_get_stats64 = ena_get_stats64, 3252 .ndo_tx_timeout = ena_tx_timeout, 3253 .ndo_change_mtu = ena_change_mtu, 3254 .ndo_set_mac_address = NULL, 3255 .ndo_validate_addr = eth_validate_addr, 3256 .ndo_bpf = ena_xdp, 3257 }; 3258 3259 static int ena_device_validate_params(struct ena_adapter *adapter, 3260 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3261 { 3262 struct net_device *netdev = adapter->netdev; 3263 int rc; 3264 3265 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 3266 adapter->mac_addr); 3267 if (!rc) { 3268 netif_err(adapter, drv, netdev, 3269 "Error, mac address are different\n"); 3270 return -EINVAL; 3271 } 3272 3273 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 3274 netif_err(adapter, drv, netdev, 3275 "Error, device max mtu is smaller than netdev MTU\n"); 3276 return -EINVAL; 3277 } 3278 3279 return 0; 3280 } 3281 3282 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config) 3283 { 3284 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 3285 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 3286 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 3287 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 3288 llq_config->llq_ring_entry_size_value = 128; 3289 } 3290 3291 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3292 struct ena_com_dev *ena_dev, 3293 struct ena_admin_feature_llq_desc *llq, 3294 struct ena_llq_configurations *llq_default_configurations) 3295 { 3296 int rc; 3297 u32 llq_feature_mask; 3298 3299 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3300 if (!(ena_dev->supported_features & llq_feature_mask)) { 3301 dev_err(&pdev->dev, 3302 "LLQ is not supported Fallback to host mode policy.\n"); 3303 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3304 return 0; 3305 } 3306 3307 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3308 if (unlikely(rc)) { 3309 dev_err(&pdev->dev, 3310 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3311 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3312 } 3313 3314 return 0; 3315 } 3316 3317 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, 3318 int bars) 3319 { 3320 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR)); 3321 3322 if (!has_mem_bar) { 3323 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 3324 dev_err(&pdev->dev, 3325 "ENA device does not expose LLQ bar. Fallback to host mode policy.\n"); 3326 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3327 } 3328 3329 return 0; 3330 } 3331 3332 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3333 pci_resource_start(pdev, ENA_MEM_BAR), 3334 pci_resource_len(pdev, ENA_MEM_BAR)); 3335 3336 if (!ena_dev->mem_bar) 3337 return -EFAULT; 3338 3339 return 0; 3340 } 3341 3342 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev, 3343 struct ena_com_dev_get_features_ctx *get_feat_ctx, 3344 bool *wd_state) 3345 { 3346 struct ena_llq_configurations llq_config; 3347 struct device *dev = &pdev->dev; 3348 bool readless_supported; 3349 u32 aenq_groups; 3350 int dma_width; 3351 int rc; 3352 3353 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3354 if (rc) { 3355 dev_err(dev, "failed to init mmio read less\n"); 3356 return rc; 3357 } 3358 3359 /* The PCIe configuration space revision id indicate if mmio reg 3360 * read is disabled 3361 */ 3362 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 3363 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3364 3365 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3366 if (rc) { 3367 dev_err(dev, "Can not reset device\n"); 3368 goto err_mmio_read_less; 3369 } 3370 3371 rc = ena_com_validate_version(ena_dev); 3372 if (rc) { 3373 dev_err(dev, "device version is too low\n"); 3374 goto err_mmio_read_less; 3375 } 3376 3377 dma_width = ena_com_get_dma_width(ena_dev); 3378 if (dma_width < 0) { 3379 dev_err(dev, "Invalid dma width value %d", dma_width); 3380 rc = dma_width; 3381 goto err_mmio_read_less; 3382 } 3383 3384 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 3385 if (rc) { 3386 dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc); 3387 goto err_mmio_read_less; 3388 } 3389 3390 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 3391 if (rc) { 3392 dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n", 3393 rc); 3394 goto err_mmio_read_less; 3395 } 3396 3397 /* ENA admin level init */ 3398 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 3399 if (rc) { 3400 dev_err(dev, 3401 "Can not initialize ena admin queue with device\n"); 3402 goto err_mmio_read_less; 3403 } 3404 3405 /* To enable the msix interrupts the driver needs to know the number 3406 * of queues. So the driver uses polling mode to retrieve this 3407 * information 3408 */ 3409 ena_com_set_admin_polling_mode(ena_dev, true); 3410 3411 ena_config_host_info(ena_dev, pdev); 3412 3413 /* Get Device Attributes*/ 3414 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3415 if (rc) { 3416 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 3417 goto err_admin_init; 3418 } 3419 3420 /* Try to turn all the available aenq groups */ 3421 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 3422 BIT(ENA_ADMIN_FATAL_ERROR) | 3423 BIT(ENA_ADMIN_WARNING) | 3424 BIT(ENA_ADMIN_NOTIFICATION) | 3425 BIT(ENA_ADMIN_KEEP_ALIVE); 3426 3427 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3428 3429 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3430 if (rc) { 3431 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 3432 goto err_admin_init; 3433 } 3434 3435 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3436 3437 set_default_llq_configurations(&llq_config); 3438 3439 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq, 3440 &llq_config); 3441 if (rc) { 3442 dev_err(&pdev->dev, "ena device init failed\n"); 3443 goto err_admin_init; 3444 } 3445 3446 return 0; 3447 3448 err_admin_init: 3449 ena_com_delete_host_info(ena_dev); 3450 ena_com_admin_destroy(ena_dev); 3451 err_mmio_read_less: 3452 ena_com_mmio_reg_read_request_destroy(ena_dev); 3453 3454 return rc; 3455 } 3456 3457 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 3458 { 3459 struct ena_com_dev *ena_dev = adapter->ena_dev; 3460 struct device *dev = &adapter->pdev->dev; 3461 int rc; 3462 3463 rc = ena_enable_msix(adapter); 3464 if (rc) { 3465 dev_err(dev, "Can not reserve msix vectors\n"); 3466 return rc; 3467 } 3468 3469 ena_setup_mgmnt_intr(adapter); 3470 3471 rc = ena_request_mgmnt_irq(adapter); 3472 if (rc) { 3473 dev_err(dev, "Can not setup management interrupts\n"); 3474 goto err_disable_msix; 3475 } 3476 3477 ena_com_set_admin_polling_mode(ena_dev, false); 3478 3479 ena_com_admin_aenq_enable(ena_dev); 3480 3481 return 0; 3482 3483 err_disable_msix: 3484 ena_disable_msix(adapter); 3485 3486 return rc; 3487 } 3488 3489 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful) 3490 { 3491 struct net_device *netdev = adapter->netdev; 3492 struct ena_com_dev *ena_dev = adapter->ena_dev; 3493 bool dev_up; 3494 3495 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3496 return; 3497 3498 netif_carrier_off(netdev); 3499 3500 del_timer_sync(&adapter->timer_service); 3501 3502 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 3503 adapter->dev_up_before_reset = dev_up; 3504 if (!graceful) 3505 ena_com_set_admin_running_state(ena_dev, false); 3506 3507 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3508 ena_down(adapter); 3509 3510 /* Stop the device from sending AENQ events (in case reset flag is set 3511 * and device is up, ena_down() already reset the device. 3512 */ 3513 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 3514 ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 3515 3516 ena_free_mgmnt_irq(adapter); 3517 3518 ena_disable_msix(adapter); 3519 3520 ena_com_abort_admin_commands(ena_dev); 3521 3522 ena_com_wait_for_abort_completion(ena_dev); 3523 3524 ena_com_admin_destroy(ena_dev); 3525 3526 ena_com_mmio_reg_read_request_destroy(ena_dev); 3527 3528 /* return reset reason to default value */ 3529 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3530 3531 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3532 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3533 } 3534 3535 static int ena_restore_device(struct ena_adapter *adapter) 3536 { 3537 struct ena_com_dev_get_features_ctx get_feat_ctx; 3538 struct ena_com_dev *ena_dev = adapter->ena_dev; 3539 struct pci_dev *pdev = adapter->pdev; 3540 bool wd_state; 3541 int rc; 3542 3543 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3544 rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state); 3545 if (rc) { 3546 dev_err(&pdev->dev, "Can not initialize device\n"); 3547 goto err; 3548 } 3549 adapter->wd_state = wd_state; 3550 3551 rc = ena_device_validate_params(adapter, &get_feat_ctx); 3552 if (rc) { 3553 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 3554 goto err_device_destroy; 3555 } 3556 3557 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3558 if (rc) { 3559 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 3560 goto err_device_destroy; 3561 } 3562 /* If the interface was up before the reset bring it up */ 3563 if (adapter->dev_up_before_reset) { 3564 rc = ena_up(adapter); 3565 if (rc) { 3566 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 3567 goto err_disable_msix; 3568 } 3569 } 3570 3571 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3572 3573 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3574 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 3575 netif_carrier_on(adapter->netdev); 3576 3577 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3578 dev_err(&pdev->dev, "Device reset completed successfully\n"); 3579 adapter->last_keep_alive_jiffies = jiffies; 3580 3581 return rc; 3582 err_disable_msix: 3583 ena_free_mgmnt_irq(adapter); 3584 ena_disable_msix(adapter); 3585 err_device_destroy: 3586 ena_com_abort_admin_commands(ena_dev); 3587 ena_com_wait_for_abort_completion(ena_dev); 3588 ena_com_admin_destroy(ena_dev); 3589 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 3590 ena_com_mmio_reg_read_request_destroy(ena_dev); 3591 err: 3592 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3593 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3594 dev_err(&pdev->dev, 3595 "Reset attempt failed. Can not reset the device\n"); 3596 3597 return rc; 3598 } 3599 3600 static void ena_fw_reset_device(struct work_struct *work) 3601 { 3602 struct ena_adapter *adapter = 3603 container_of(work, struct ena_adapter, reset_task); 3604 struct pci_dev *pdev = adapter->pdev; 3605 3606 if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3607 dev_err(&pdev->dev, 3608 "device reset schedule while reset bit is off\n"); 3609 return; 3610 } 3611 rtnl_lock(); 3612 ena_destroy_device(adapter, false); 3613 ena_restore_device(adapter); 3614 rtnl_unlock(); 3615 } 3616 3617 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 3618 struct ena_ring *rx_ring) 3619 { 3620 if (likely(rx_ring->first_interrupt)) 3621 return 0; 3622 3623 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 3624 return 0; 3625 3626 rx_ring->no_interrupt_event_cnt++; 3627 3628 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 3629 netif_err(adapter, rx_err, adapter->netdev, 3630 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 3631 rx_ring->qid); 3632 adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; 3633 smp_mb__before_atomic(); 3634 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3635 return -EIO; 3636 } 3637 3638 return 0; 3639 } 3640 3641 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 3642 struct ena_ring *tx_ring) 3643 { 3644 struct ena_tx_buffer *tx_buf; 3645 unsigned long last_jiffies; 3646 u32 missed_tx = 0; 3647 int i, rc = 0; 3648 3649 for (i = 0; i < tx_ring->ring_size; i++) { 3650 tx_buf = &tx_ring->tx_buffer_info[i]; 3651 last_jiffies = tx_buf->last_jiffies; 3652 3653 if (last_jiffies == 0) 3654 /* no pending Tx at this location */ 3655 continue; 3656 3657 if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies + 3658 2 * adapter->missing_tx_completion_to))) { 3659 /* If after graceful period interrupt is still not 3660 * received, we schedule a reset 3661 */ 3662 netif_err(adapter, tx_err, adapter->netdev, 3663 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 3664 tx_ring->qid); 3665 adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; 3666 smp_mb__before_atomic(); 3667 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3668 return -EIO; 3669 } 3670 3671 if (unlikely(time_is_before_jiffies(last_jiffies + 3672 adapter->missing_tx_completion_to))) { 3673 if (!tx_buf->print_once) 3674 netif_notice(adapter, tx_err, adapter->netdev, 3675 "Found a Tx that wasn't completed on time, qid %d, index %d.\n", 3676 tx_ring->qid, i); 3677 3678 tx_buf->print_once = 1; 3679 missed_tx++; 3680 } 3681 } 3682 3683 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 3684 netif_err(adapter, tx_err, adapter->netdev, 3685 "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n", 3686 missed_tx, 3687 adapter->missing_tx_completion_threshold); 3688 adapter->reset_reason = 3689 ENA_REGS_RESET_MISS_TX_CMPL; 3690 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3691 rc = -EIO; 3692 } 3693 3694 u64_stats_update_begin(&tx_ring->syncp); 3695 tx_ring->tx_stats.missed_tx = missed_tx; 3696 u64_stats_update_end(&tx_ring->syncp); 3697 3698 return rc; 3699 } 3700 3701 static void check_for_missing_completions(struct ena_adapter *adapter) 3702 { 3703 struct ena_ring *tx_ring; 3704 struct ena_ring *rx_ring; 3705 int i, budget, rc; 3706 int io_queue_count; 3707 3708 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; 3709 /* Make sure the driver doesn't turn the device in other process */ 3710 smp_rmb(); 3711 3712 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3713 return; 3714 3715 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3716 return; 3717 3718 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 3719 return; 3720 3721 budget = ENA_MONITORED_TX_QUEUES; 3722 3723 for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) { 3724 tx_ring = &adapter->tx_ring[i]; 3725 rx_ring = &adapter->rx_ring[i]; 3726 3727 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 3728 if (unlikely(rc)) 3729 return; 3730 3731 rc = !ENA_IS_XDP_INDEX(adapter, i) ? 3732 check_for_rx_interrupt_queue(adapter, rx_ring) : 0; 3733 if (unlikely(rc)) 3734 return; 3735 3736 budget--; 3737 if (!budget) 3738 break; 3739 } 3740 3741 adapter->last_monitored_tx_qid = i % io_queue_count; 3742 } 3743 3744 /* trigger napi schedule after 2 consecutive detections */ 3745 #define EMPTY_RX_REFILL 2 3746 /* For the rare case where the device runs out of Rx descriptors and the 3747 * napi handler failed to refill new Rx descriptors (due to a lack of memory 3748 * for example). 3749 * This case will lead to a deadlock: 3750 * The device won't send interrupts since all the new Rx packets will be dropped 3751 * The napi handler won't allocate new Rx descriptors so the device will be 3752 * able to send new packets. 3753 * 3754 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 3755 * It is recommended to have at least 512MB, with a minimum of 128MB for 3756 * constrained environment). 3757 * 3758 * When such a situation is detected - Reschedule napi 3759 */ 3760 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3761 { 3762 struct ena_ring *rx_ring; 3763 int i, refill_required; 3764 3765 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3766 return; 3767 3768 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3769 return; 3770 3771 for (i = 0; i < adapter->num_io_queues; i++) { 3772 rx_ring = &adapter->rx_ring[i]; 3773 3774 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 3775 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3776 rx_ring->empty_rx_queue++; 3777 3778 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3779 u64_stats_update_begin(&rx_ring->syncp); 3780 rx_ring->rx_stats.empty_rx_ring++; 3781 u64_stats_update_end(&rx_ring->syncp); 3782 3783 netif_err(adapter, drv, adapter->netdev, 3784 "trigger refill for ring %d\n", i); 3785 3786 napi_schedule(rx_ring->napi); 3787 rx_ring->empty_rx_queue = 0; 3788 } 3789 } else { 3790 rx_ring->empty_rx_queue = 0; 3791 } 3792 } 3793 } 3794 3795 /* Check for keep alive expiration */ 3796 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3797 { 3798 unsigned long keep_alive_expired; 3799 3800 if (!adapter->wd_state) 3801 return; 3802 3803 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3804 return; 3805 3806 keep_alive_expired = adapter->last_keep_alive_jiffies + 3807 adapter->keep_alive_timeout; 3808 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3809 netif_err(adapter, drv, adapter->netdev, 3810 "Keep alive watchdog timeout.\n"); 3811 u64_stats_update_begin(&adapter->syncp); 3812 adapter->dev_stats.wd_expired++; 3813 u64_stats_update_end(&adapter->syncp); 3814 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO; 3815 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3816 } 3817 } 3818 3819 static void check_for_admin_com_state(struct ena_adapter *adapter) 3820 { 3821 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3822 netif_err(adapter, drv, adapter->netdev, 3823 "ENA admin queue is not in running state!\n"); 3824 u64_stats_update_begin(&adapter->syncp); 3825 adapter->dev_stats.admin_q_pause++; 3826 u64_stats_update_end(&adapter->syncp); 3827 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO; 3828 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3829 } 3830 } 3831 3832 static void ena_update_hints(struct ena_adapter *adapter, 3833 struct ena_admin_ena_hw_hints *hints) 3834 { 3835 struct net_device *netdev = adapter->netdev; 3836 3837 if (hints->admin_completion_tx_timeout) 3838 adapter->ena_dev->admin_queue.completion_timeout = 3839 hints->admin_completion_tx_timeout * 1000; 3840 3841 if (hints->mmio_read_timeout) 3842 /* convert to usec */ 3843 adapter->ena_dev->mmio_read.reg_read_to = 3844 hints->mmio_read_timeout * 1000; 3845 3846 if (hints->missed_tx_completion_count_threshold_to_reset) 3847 adapter->missing_tx_completion_threshold = 3848 hints->missed_tx_completion_count_threshold_to_reset; 3849 3850 if (hints->missing_tx_completion_timeout) { 3851 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3852 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3853 else 3854 adapter->missing_tx_completion_to = 3855 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3856 } 3857 3858 if (hints->netdev_wd_timeout) 3859 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3860 3861 if (hints->driver_watchdog_timeout) { 3862 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3863 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3864 else 3865 adapter->keep_alive_timeout = 3866 msecs_to_jiffies(hints->driver_watchdog_timeout); 3867 } 3868 } 3869 3870 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3871 struct net_device *netdev) 3872 { 3873 host_info->supported_network_features[0] = 3874 netdev->features & GENMASK_ULL(31, 0); 3875 host_info->supported_network_features[1] = 3876 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3877 } 3878 3879 static void ena_timer_service(struct timer_list *t) 3880 { 3881 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 3882 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3883 struct ena_admin_host_info *host_info = 3884 adapter->ena_dev->host_attr.host_info; 3885 3886 check_for_missing_keep_alive(adapter); 3887 3888 check_for_admin_com_state(adapter); 3889 3890 check_for_missing_completions(adapter); 3891 3892 check_for_empty_rx_ring(adapter); 3893 3894 if (debug_area) 3895 ena_dump_stats_to_buf(adapter, debug_area); 3896 3897 if (host_info) 3898 ena_update_host_info(host_info, adapter->netdev); 3899 3900 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3901 netif_err(adapter, drv, adapter->netdev, 3902 "Trigger reset is on\n"); 3903 ena_dump_stats_to_dmesg(adapter); 3904 queue_work(ena_wq, &adapter->reset_task); 3905 return; 3906 } 3907 3908 /* Reset the timer */ 3909 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3910 } 3911 3912 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev, 3913 struct ena_com_dev *ena_dev, 3914 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3915 { 3916 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3917 3918 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3919 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3920 &get_feat_ctx->max_queue_ext.max_queue_ext; 3921 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3922 max_queue_ext->max_rx_cq_num); 3923 3924 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3925 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3926 } else { 3927 struct ena_admin_queue_feature_desc *max_queues = 3928 &get_feat_ctx->max_queues; 3929 io_tx_sq_num = max_queues->max_sq_num; 3930 io_tx_cq_num = max_queues->max_cq_num; 3931 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3932 } 3933 3934 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3935 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3936 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3937 3938 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3939 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3940 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3941 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3942 /* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */ 3943 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3944 if (unlikely(!max_num_io_queues)) { 3945 dev_err(&pdev->dev, "The device doesn't have io queues\n"); 3946 return -EFAULT; 3947 } 3948 3949 return max_num_io_queues; 3950 } 3951 3952 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3953 struct net_device *netdev) 3954 { 3955 netdev_features_t dev_features = 0; 3956 3957 /* Set offload features */ 3958 if (feat->offload.tx & 3959 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3960 dev_features |= NETIF_F_IP_CSUM; 3961 3962 if (feat->offload.tx & 3963 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3964 dev_features |= NETIF_F_IPV6_CSUM; 3965 3966 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3967 dev_features |= NETIF_F_TSO; 3968 3969 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3970 dev_features |= NETIF_F_TSO6; 3971 3972 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3973 dev_features |= NETIF_F_TSO_ECN; 3974 3975 if (feat->offload.rx_supported & 3976 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3977 dev_features |= NETIF_F_RXCSUM; 3978 3979 if (feat->offload.rx_supported & 3980 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3981 dev_features |= NETIF_F_RXCSUM; 3982 3983 netdev->features = 3984 dev_features | 3985 NETIF_F_SG | 3986 NETIF_F_RXHASH | 3987 NETIF_F_HIGHDMA; 3988 3989 netdev->hw_features |= netdev->features; 3990 netdev->vlan_features |= netdev->features; 3991 } 3992 3993 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3994 struct ena_com_dev_get_features_ctx *feat) 3995 { 3996 struct net_device *netdev = adapter->netdev; 3997 3998 /* Copy mac address */ 3999 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 4000 eth_hw_addr_random(netdev); 4001 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 4002 } else { 4003 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 4004 ether_addr_copy(netdev->dev_addr, adapter->mac_addr); 4005 } 4006 4007 /* Set offload features */ 4008 ena_set_dev_offloads(feat, netdev); 4009 4010 adapter->max_mtu = feat->dev_attr.max_mtu; 4011 netdev->max_mtu = adapter->max_mtu; 4012 netdev->min_mtu = ENA_MIN_MTU; 4013 } 4014 4015 static int ena_rss_init_default(struct ena_adapter *adapter) 4016 { 4017 struct ena_com_dev *ena_dev = adapter->ena_dev; 4018 struct device *dev = &adapter->pdev->dev; 4019 int rc, i; 4020 u32 val; 4021 4022 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 4023 if (unlikely(rc)) { 4024 dev_err(dev, "Cannot init indirect table\n"); 4025 goto err_rss_init; 4026 } 4027 4028 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 4029 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 4030 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 4031 ENA_IO_RXQ_IDX(val)); 4032 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 4033 dev_err(dev, "Cannot fill indirect table\n"); 4034 goto err_fill_indir; 4035 } 4036 } 4037 4038 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, 4039 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 4040 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 4041 dev_err(dev, "Cannot fill hash function\n"); 4042 goto err_fill_indir; 4043 } 4044 4045 rc = ena_com_set_default_hash_ctrl(ena_dev); 4046 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 4047 dev_err(dev, "Cannot fill hash control\n"); 4048 goto err_fill_indir; 4049 } 4050 4051 return 0; 4052 4053 err_fill_indir: 4054 ena_com_rss_destroy(ena_dev); 4055 err_rss_init: 4056 4057 return rc; 4058 } 4059 4060 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 4061 { 4062 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 4063 4064 pci_release_selected_regions(pdev, release_bars); 4065 } 4066 4067 4068 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx) 4069 { 4070 struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq; 4071 struct ena_com_dev *ena_dev = ctx->ena_dev; 4072 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 4073 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 4074 u32 max_tx_queue_size; 4075 u32 max_rx_queue_size; 4076 4077 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 4078 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 4079 &ctx->get_feat_ctx->max_queue_ext.max_queue_ext; 4080 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 4081 max_queue_ext->max_rx_sq_depth); 4082 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 4083 4084 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4085 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4086 llq->max_llq_depth); 4087 else 4088 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4089 max_queue_ext->max_tx_sq_depth); 4090 4091 ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4092 max_queue_ext->max_per_packet_tx_descs); 4093 ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4094 max_queue_ext->max_per_packet_rx_descs); 4095 } else { 4096 struct ena_admin_queue_feature_desc *max_queues = 4097 &ctx->get_feat_ctx->max_queues; 4098 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 4099 max_queues->max_sq_depth); 4100 max_tx_queue_size = max_queues->max_cq_depth; 4101 4102 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4103 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4104 llq->max_llq_depth); 4105 else 4106 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4107 max_queues->max_sq_depth); 4108 4109 ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4110 max_queues->max_packet_tx_descs); 4111 ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4112 max_queues->max_packet_rx_descs); 4113 } 4114 4115 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 4116 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 4117 4118 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 4119 max_tx_queue_size); 4120 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 4121 max_rx_queue_size); 4122 4123 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 4124 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 4125 4126 ctx->max_tx_queue_size = max_tx_queue_size; 4127 ctx->max_rx_queue_size = max_rx_queue_size; 4128 ctx->tx_queue_size = tx_queue_size; 4129 ctx->rx_queue_size = rx_queue_size; 4130 4131 return 0; 4132 } 4133 4134 /* ena_probe - Device Initialization Routine 4135 * @pdev: PCI device information struct 4136 * @ent: entry in ena_pci_tbl 4137 * 4138 * Returns 0 on success, negative on failure 4139 * 4140 * ena_probe initializes an adapter identified by a pci_dev structure. 4141 * The OS initialization, configuring of the adapter private structure, 4142 * and a hardware reset occur. 4143 */ 4144 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4145 { 4146 struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 }; 4147 struct ena_com_dev_get_features_ctx get_feat_ctx; 4148 struct ena_com_dev *ena_dev = NULL; 4149 struct ena_adapter *adapter; 4150 struct net_device *netdev; 4151 static int adapters_found; 4152 u32 max_num_io_queues; 4153 char *queue_type_str; 4154 bool wd_state; 4155 int bars, rc; 4156 4157 dev_dbg(&pdev->dev, "%s\n", __func__); 4158 4159 rc = pci_enable_device_mem(pdev); 4160 if (rc) { 4161 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 4162 return rc; 4163 } 4164 4165 pci_set_master(pdev); 4166 4167 ena_dev = vzalloc(sizeof(*ena_dev)); 4168 if (!ena_dev) { 4169 rc = -ENOMEM; 4170 goto err_disable_device; 4171 } 4172 4173 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 4174 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 4175 if (rc) { 4176 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 4177 rc); 4178 goto err_free_ena_dev; 4179 } 4180 4181 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 4182 pci_resource_start(pdev, ENA_REG_BAR), 4183 pci_resource_len(pdev, ENA_REG_BAR)); 4184 if (!ena_dev->reg_bar) { 4185 dev_err(&pdev->dev, "failed to remap regs bar\n"); 4186 rc = -EFAULT; 4187 goto err_free_region; 4188 } 4189 4190 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US; 4191 4192 ena_dev->dmadev = &pdev->dev; 4193 4194 rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state); 4195 if (rc) { 4196 dev_err(&pdev->dev, "ena device init failed\n"); 4197 if (rc == -ETIME) 4198 rc = -EPROBE_DEFER; 4199 goto err_free_region; 4200 } 4201 4202 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars); 4203 if (rc) { 4204 dev_err(&pdev->dev, "ena llq bar mapping failed\n"); 4205 goto err_free_ena_dev; 4206 } 4207 4208 calc_queue_ctx.ena_dev = ena_dev; 4209 calc_queue_ctx.get_feat_ctx = &get_feat_ctx; 4210 calc_queue_ctx.pdev = pdev; 4211 4212 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity. 4213 * Updated during device initialization with the real granularity 4214 */ 4215 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 4216 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 4217 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 4218 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 4219 rc = ena_calc_io_queue_size(&calc_queue_ctx); 4220 if (rc || !max_num_io_queues) { 4221 rc = -EFAULT; 4222 goto err_device_destroy; 4223 } 4224 4225 /* dev zeroed in init_etherdev */ 4226 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues); 4227 if (!netdev) { 4228 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 4229 rc = -ENOMEM; 4230 goto err_device_destroy; 4231 } 4232 4233 SET_NETDEV_DEV(netdev, &pdev->dev); 4234 4235 adapter = netdev_priv(netdev); 4236 pci_set_drvdata(pdev, adapter); 4237 4238 adapter->ena_dev = ena_dev; 4239 adapter->netdev = netdev; 4240 adapter->pdev = pdev; 4241 4242 ena_set_conf_feat_params(adapter, &get_feat_ctx); 4243 4244 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4245 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 4246 4247 adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size; 4248 adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size; 4249 adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size; 4250 adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size; 4251 adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size; 4252 adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size; 4253 4254 adapter->num_io_queues = max_num_io_queues; 4255 adapter->max_num_io_queues = max_num_io_queues; 4256 adapter->last_monitored_tx_qid = 0; 4257 4258 adapter->xdp_first_ring = 0; 4259 adapter->xdp_num_queues = 0; 4260 4261 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 4262 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4263 adapter->disable_meta_caching = 4264 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & 4265 BIT(ENA_ADMIN_DISABLE_META_CACHING)); 4266 4267 adapter->wd_state = wd_state; 4268 4269 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 4270 4271 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 4272 if (rc) { 4273 dev_err(&pdev->dev, 4274 "Failed to query interrupt moderation feature\n"); 4275 goto err_netdev_destroy; 4276 } 4277 ena_init_io_rings(adapter, 4278 0, 4279 adapter->xdp_num_queues + 4280 adapter->num_io_queues); 4281 4282 netdev->netdev_ops = &ena_netdev_ops; 4283 netdev->watchdog_timeo = TX_TIMEOUT; 4284 ena_set_ethtool_ops(netdev); 4285 4286 netdev->priv_flags |= IFF_UNICAST_FLT; 4287 4288 u64_stats_init(&adapter->syncp); 4289 4290 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 4291 if (rc) { 4292 dev_err(&pdev->dev, 4293 "Failed to enable and set the admin interrupts\n"); 4294 goto err_worker_destroy; 4295 } 4296 rc = ena_rss_init_default(adapter); 4297 if (rc && (rc != -EOPNOTSUPP)) { 4298 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 4299 goto err_free_msix; 4300 } 4301 4302 ena_config_debug_area(adapter); 4303 4304 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 4305 4306 netif_carrier_off(netdev); 4307 4308 rc = register_netdev(netdev); 4309 if (rc) { 4310 dev_err(&pdev->dev, "Cannot register net device\n"); 4311 goto err_rss; 4312 } 4313 4314 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 4315 4316 adapter->last_keep_alive_jiffies = jiffies; 4317 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 4318 adapter->missing_tx_completion_to = TX_TIMEOUT; 4319 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 4320 4321 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 4322 4323 timer_setup(&adapter->timer_service, ena_timer_service, 0); 4324 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 4325 4326 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) 4327 queue_type_str = "Regular"; 4328 else 4329 queue_type_str = "Low Latency"; 4330 4331 dev_info(&pdev->dev, 4332 "%s found at mem %lx, mac addr %pM, Placement policy: %s\n", 4333 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 4334 netdev->dev_addr, queue_type_str); 4335 4336 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 4337 4338 adapters_found++; 4339 4340 return 0; 4341 4342 err_rss: 4343 ena_com_delete_debug_area(ena_dev); 4344 ena_com_rss_destroy(ena_dev); 4345 err_free_msix: 4346 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 4347 /* stop submitting admin commands on a device that was reset */ 4348 ena_com_set_admin_running_state(ena_dev, false); 4349 ena_free_mgmnt_irq(adapter); 4350 ena_disable_msix(adapter); 4351 err_worker_destroy: 4352 del_timer(&adapter->timer_service); 4353 err_netdev_destroy: 4354 free_netdev(netdev); 4355 err_device_destroy: 4356 ena_com_delete_host_info(ena_dev); 4357 ena_com_admin_destroy(ena_dev); 4358 err_free_region: 4359 ena_release_bars(ena_dev, pdev); 4360 err_free_ena_dev: 4361 vfree(ena_dev); 4362 err_disable_device: 4363 pci_disable_device(pdev); 4364 return rc; 4365 } 4366 4367 /*****************************************************************************/ 4368 4369 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines 4370 * @pdev: PCI device information struct 4371 * @shutdown: Is it a shutdown operation? If false, means it is a removal 4372 * 4373 * __ena_shutoff is a helper routine that does the real work on shutdown and 4374 * removal paths; the difference between those paths is with regards to whether 4375 * dettach or unregister the netdevice. 4376 */ 4377 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) 4378 { 4379 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4380 struct ena_com_dev *ena_dev; 4381 struct net_device *netdev; 4382 4383 ena_dev = adapter->ena_dev; 4384 netdev = adapter->netdev; 4385 4386 #ifdef CONFIG_RFS_ACCEL 4387 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 4388 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 4389 netdev->rx_cpu_rmap = NULL; 4390 } 4391 #endif /* CONFIG_RFS_ACCEL */ 4392 del_timer_sync(&adapter->timer_service); 4393 4394 cancel_work_sync(&adapter->reset_task); 4395 4396 rtnl_lock(); /* lock released inside the below if-else block */ 4397 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN; 4398 ena_destroy_device(adapter, true); 4399 if (shutdown) { 4400 netif_device_detach(netdev); 4401 dev_close(netdev); 4402 rtnl_unlock(); 4403 } else { 4404 rtnl_unlock(); 4405 unregister_netdev(netdev); 4406 free_netdev(netdev); 4407 } 4408 4409 ena_com_rss_destroy(ena_dev); 4410 4411 ena_com_delete_debug_area(ena_dev); 4412 4413 ena_com_delete_host_info(ena_dev); 4414 4415 ena_release_bars(ena_dev, pdev); 4416 4417 pci_disable_device(pdev); 4418 4419 vfree(ena_dev); 4420 } 4421 4422 /* ena_remove - Device Removal Routine 4423 * @pdev: PCI device information struct 4424 * 4425 * ena_remove is called by the PCI subsystem to alert the driver 4426 * that it should release a PCI device. 4427 */ 4428 4429 static void ena_remove(struct pci_dev *pdev) 4430 { 4431 __ena_shutoff(pdev, false); 4432 } 4433 4434 /* ena_shutdown - Device Shutdown Routine 4435 * @pdev: PCI device information struct 4436 * 4437 * ena_shutdown is called by the PCI subsystem to alert the driver that 4438 * a shutdown/reboot (or kexec) is happening and device must be disabled. 4439 */ 4440 4441 static void ena_shutdown(struct pci_dev *pdev) 4442 { 4443 __ena_shutoff(pdev, true); 4444 } 4445 4446 /* ena_suspend - PM suspend callback 4447 * @dev_d: Device information struct 4448 */ 4449 static int __maybe_unused ena_suspend(struct device *dev_d) 4450 { 4451 struct pci_dev *pdev = to_pci_dev(dev_d); 4452 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4453 4454 u64_stats_update_begin(&adapter->syncp); 4455 adapter->dev_stats.suspend++; 4456 u64_stats_update_end(&adapter->syncp); 4457 4458 rtnl_lock(); 4459 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4460 dev_err(&pdev->dev, 4461 "ignoring device reset request as the device is being suspended\n"); 4462 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 4463 } 4464 ena_destroy_device(adapter, true); 4465 rtnl_unlock(); 4466 return 0; 4467 } 4468 4469 /* ena_resume - PM resume callback 4470 * @dev_d: Device information struct 4471 */ 4472 static int __maybe_unused ena_resume(struct device *dev_d) 4473 { 4474 struct ena_adapter *adapter = dev_get_drvdata(dev_d); 4475 int rc; 4476 4477 u64_stats_update_begin(&adapter->syncp); 4478 adapter->dev_stats.resume++; 4479 u64_stats_update_end(&adapter->syncp); 4480 4481 rtnl_lock(); 4482 rc = ena_restore_device(adapter); 4483 rtnl_unlock(); 4484 return rc; 4485 } 4486 4487 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume); 4488 4489 static struct pci_driver ena_pci_driver = { 4490 .name = DRV_MODULE_NAME, 4491 .id_table = ena_pci_tbl, 4492 .probe = ena_probe, 4493 .remove = ena_remove, 4494 .shutdown = ena_shutdown, 4495 .driver.pm = &ena_pm_ops, 4496 .sriov_configure = pci_sriov_configure_simple, 4497 }; 4498 4499 static int __init ena_init(void) 4500 { 4501 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 4502 if (!ena_wq) { 4503 pr_err("Failed to create workqueue\n"); 4504 return -ENOMEM; 4505 } 4506 4507 return pci_register_driver(&ena_pci_driver); 4508 } 4509 4510 static void __exit ena_cleanup(void) 4511 { 4512 pci_unregister_driver(&ena_pci_driver); 4513 4514 if (ena_wq) { 4515 destroy_workqueue(ena_wq); 4516 ena_wq = NULL; 4517 } 4518 } 4519 4520 /****************************************************************************** 4521 ******************************** AENQ Handlers ******************************* 4522 *****************************************************************************/ 4523 /* ena_update_on_link_change: 4524 * Notify the network interface about the change in link status 4525 */ 4526 static void ena_update_on_link_change(void *adapter_data, 4527 struct ena_admin_aenq_entry *aenq_e) 4528 { 4529 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4530 struct ena_admin_aenq_link_change_desc *aenq_desc = 4531 (struct ena_admin_aenq_link_change_desc *)aenq_e; 4532 int status = aenq_desc->flags & 4533 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 4534 4535 if (status) { 4536 netdev_dbg(adapter->netdev, "%s\n", __func__); 4537 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4538 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 4539 netif_carrier_on(adapter->netdev); 4540 } else { 4541 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4542 netif_carrier_off(adapter->netdev); 4543 } 4544 } 4545 4546 static void ena_keep_alive_wd(void *adapter_data, 4547 struct ena_admin_aenq_entry *aenq_e) 4548 { 4549 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4550 struct ena_admin_aenq_keep_alive_desc *desc; 4551 u64 rx_drops; 4552 u64 tx_drops; 4553 4554 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 4555 adapter->last_keep_alive_jiffies = jiffies; 4556 4557 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 4558 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low; 4559 4560 u64_stats_update_begin(&adapter->syncp); 4561 adapter->dev_stats.rx_drops = rx_drops; 4562 adapter->dev_stats.tx_drops = tx_drops; 4563 u64_stats_update_end(&adapter->syncp); 4564 } 4565 4566 static void ena_notification(void *adapter_data, 4567 struct ena_admin_aenq_entry *aenq_e) 4568 { 4569 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4570 struct ena_admin_ena_hw_hints *hints; 4571 4572 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 4573 "Invalid group(%x) expected %x\n", 4574 aenq_e->aenq_common_desc.group, 4575 ENA_ADMIN_NOTIFICATION); 4576 4577 switch (aenq_e->aenq_common_desc.syndrom) { 4578 case ENA_ADMIN_UPDATE_HINTS: 4579 hints = (struct ena_admin_ena_hw_hints *) 4580 (&aenq_e->inline_data_w4); 4581 ena_update_hints(adapter, hints); 4582 break; 4583 default: 4584 netif_err(adapter, drv, adapter->netdev, 4585 "Invalid aenq notification link state %d\n", 4586 aenq_e->aenq_common_desc.syndrom); 4587 } 4588 } 4589 4590 /* This handler will called for unknown event group or unimplemented handlers*/ 4591 static void unimplemented_aenq_handler(void *data, 4592 struct ena_admin_aenq_entry *aenq_e) 4593 { 4594 struct ena_adapter *adapter = (struct ena_adapter *)data; 4595 4596 netif_err(adapter, drv, adapter->netdev, 4597 "Unknown event was received or event with unimplemented handler\n"); 4598 } 4599 4600 static struct ena_aenq_handlers aenq_handlers = { 4601 .handlers = { 4602 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 4603 [ENA_ADMIN_NOTIFICATION] = ena_notification, 4604 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 4605 }, 4606 .unimplemented_handler = unimplemented_aenq_handler 4607 }; 4608 4609 module_init(ena_init); 4610 module_exit(ena_cleanup); 4611