1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #ifdef CONFIG_RFS_ACCEL
9 #include <linux/cpu_rmap.h>
10 #endif /* CONFIG_RFS_ACCEL */
11 #include <linux/ethtool.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/numa.h>
15 #include <linux/pci.h>
16 #include <linux/utsname.h>
17 #include <linux/version.h>
18 #include <linux/vmalloc.h>
19 #include <net/ip.h>
20 
21 #include "ena_netdev.h"
22 #include "ena_pci_id_tbl.h"
23 #include "ena_xdp.h"
24 
25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
26 MODULE_DESCRIPTION(DEVICE_NAME);
27 MODULE_LICENSE("GPL");
28 
29 /* Time in jiffies before concluding the transmitter is hung. */
30 #define TX_TIMEOUT  (5 * HZ)
31 
32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus())
33 
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
35 		NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
36 
37 static struct ena_aenq_handlers aenq_handlers;
38 
39 static struct workqueue_struct *ena_wq;
40 
41 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
42 
43 static int ena_rss_init_default(struct ena_adapter *adapter);
44 static void check_for_admin_com_state(struct ena_adapter *adapter);
45 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
46 static int ena_restore_device(struct ena_adapter *adapter);
47 
48 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
49 {
50 	struct ena_adapter *adapter = netdev_priv(dev);
51 
52 	/* Change the state of the device to trigger reset
53 	 * Check that we are not in the middle or a trigger already
54 	 */
55 
56 	if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
57 		return;
58 
59 	ena_reset_device(adapter, ENA_REGS_RESET_OS_NETDEV_WD);
60 	ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp);
61 
62 	netif_err(adapter, tx_err, dev, "Transmit time out\n");
63 }
64 
65 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
66 {
67 	int i;
68 
69 	for (i = 0; i < adapter->num_io_queues; i++)
70 		adapter->rx_ring[i].mtu = mtu;
71 }
72 
73 static int ena_change_mtu(struct net_device *dev, int new_mtu)
74 {
75 	struct ena_adapter *adapter = netdev_priv(dev);
76 	int ret;
77 
78 	ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
79 	if (!ret) {
80 		netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu);
81 		update_rx_ring_mtu(adapter, new_mtu);
82 		dev->mtu = new_mtu;
83 	} else {
84 		netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
85 			  new_mtu);
86 	}
87 
88 	return ret;
89 }
90 
91 int ena_xmit_common(struct ena_adapter *adapter,
92 		    struct ena_ring *ring,
93 		    struct ena_tx_buffer *tx_info,
94 		    struct ena_com_tx_ctx *ena_tx_ctx,
95 		    u16 next_to_use,
96 		    u32 bytes)
97 {
98 	int rc, nb_hw_desc;
99 
100 	if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
101 						ena_tx_ctx))) {
102 		netif_dbg(adapter, tx_queued, adapter->netdev,
103 			  "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
104 			  ring->qid);
105 		ena_ring_tx_doorbell(ring);
106 	}
107 
108 	/* prepare the packet's descriptors to dma engine */
109 	rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
110 				&nb_hw_desc);
111 
112 	/* In case there isn't enough space in the queue for the packet,
113 	 * we simply drop it. All other failure reasons of
114 	 * ena_com_prepare_tx() are fatal and therefore require a device reset.
115 	 */
116 	if (unlikely(rc)) {
117 		netif_err(adapter, tx_queued, adapter->netdev,
118 			  "Failed to prepare tx bufs\n");
119 		ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1,
120 				  &ring->syncp);
121 		if (rc != -ENOMEM)
122 			ena_reset_device(adapter,
123 					 ENA_REGS_RESET_DRIVER_INVALID_STATE);
124 		return rc;
125 	}
126 
127 	u64_stats_update_begin(&ring->syncp);
128 	ring->tx_stats.cnt++;
129 	ring->tx_stats.bytes += bytes;
130 	u64_stats_update_end(&ring->syncp);
131 
132 	tx_info->tx_descs = nb_hw_desc;
133 	tx_info->last_jiffies = jiffies;
134 	tx_info->print_once = 0;
135 
136 	ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
137 						 ring->ring_size);
138 	return 0;
139 }
140 
141 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
142 {
143 #ifdef CONFIG_RFS_ACCEL
144 	u32 i;
145 	int rc;
146 
147 	adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
148 	if (!adapter->netdev->rx_cpu_rmap)
149 		return -ENOMEM;
150 	for (i = 0; i < adapter->num_io_queues; i++) {
151 		int irq_idx = ENA_IO_IRQ_IDX(i);
152 
153 		rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
154 				      pci_irq_vector(adapter->pdev, irq_idx));
155 		if (rc) {
156 			free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
157 			adapter->netdev->rx_cpu_rmap = NULL;
158 			return rc;
159 		}
160 	}
161 #endif /* CONFIG_RFS_ACCEL */
162 	return 0;
163 }
164 
165 static void ena_init_io_rings_common(struct ena_adapter *adapter,
166 				     struct ena_ring *ring, u16 qid)
167 {
168 	ring->qid = qid;
169 	ring->pdev = adapter->pdev;
170 	ring->dev = &adapter->pdev->dev;
171 	ring->netdev = adapter->netdev;
172 	ring->napi = &adapter->ena_napi[qid].napi;
173 	ring->adapter = adapter;
174 	ring->ena_dev = adapter->ena_dev;
175 	ring->per_napi_packets = 0;
176 	ring->cpu = 0;
177 	ring->numa_node = 0;
178 	ring->no_interrupt_event_cnt = 0;
179 	u64_stats_init(&ring->syncp);
180 }
181 
182 void ena_init_io_rings(struct ena_adapter *adapter,
183 		       int first_index, int count)
184 {
185 	struct ena_com_dev *ena_dev;
186 	struct ena_ring *txr, *rxr;
187 	int i;
188 
189 	ena_dev = adapter->ena_dev;
190 
191 	for (i = first_index; i < first_index + count; i++) {
192 		txr = &adapter->tx_ring[i];
193 		rxr = &adapter->rx_ring[i];
194 
195 		/* TX common ring state */
196 		ena_init_io_rings_common(adapter, txr, i);
197 
198 		/* TX specific ring state */
199 		txr->ring_size = adapter->requested_tx_ring_size;
200 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
201 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
202 		txr->sgl_size = adapter->max_tx_sgl_size;
203 		txr->smoothed_interval =
204 			ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
205 		txr->disable_meta_caching = adapter->disable_meta_caching;
206 		spin_lock_init(&txr->xdp_tx_lock);
207 
208 		/* Don't init RX queues for xdp queues */
209 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
210 			/* RX common ring state */
211 			ena_init_io_rings_common(adapter, rxr, i);
212 
213 			/* RX specific ring state */
214 			rxr->ring_size = adapter->requested_rx_ring_size;
215 			rxr->rx_copybreak = adapter->rx_copybreak;
216 			rxr->sgl_size = adapter->max_rx_sgl_size;
217 			rxr->smoothed_interval =
218 				ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
219 			rxr->empty_rx_queue = 0;
220 			rxr->rx_headroom = NET_SKB_PAD;
221 			adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
222 			rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues];
223 		}
224 	}
225 }
226 
227 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
228  * @adapter: network interface device structure
229  * @qid: queue index
230  *
231  * Return 0 on success, negative on failure
232  */
233 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
234 {
235 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
236 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
237 	int size, i, node;
238 
239 	if (tx_ring->tx_buffer_info) {
240 		netif_err(adapter, ifup,
241 			  adapter->netdev, "tx_buffer_info info is not NULL");
242 		return -EEXIST;
243 	}
244 
245 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
246 	node = cpu_to_node(ena_irq->cpu);
247 
248 	tx_ring->tx_buffer_info = vzalloc_node(size, node);
249 	if (!tx_ring->tx_buffer_info) {
250 		tx_ring->tx_buffer_info = vzalloc(size);
251 		if (!tx_ring->tx_buffer_info)
252 			goto err_tx_buffer_info;
253 	}
254 
255 	size = sizeof(u16) * tx_ring->ring_size;
256 	tx_ring->free_ids = vzalloc_node(size, node);
257 	if (!tx_ring->free_ids) {
258 		tx_ring->free_ids = vzalloc(size);
259 		if (!tx_ring->free_ids)
260 			goto err_tx_free_ids;
261 	}
262 
263 	size = tx_ring->tx_max_header_size;
264 	tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
265 	if (!tx_ring->push_buf_intermediate_buf) {
266 		tx_ring->push_buf_intermediate_buf = vzalloc(size);
267 		if (!tx_ring->push_buf_intermediate_buf)
268 			goto err_push_buf_intermediate_buf;
269 	}
270 
271 	/* Req id ring for TX out of order completions */
272 	for (i = 0; i < tx_ring->ring_size; i++)
273 		tx_ring->free_ids[i] = i;
274 
275 	/* Reset tx statistics */
276 	memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
277 
278 	tx_ring->next_to_use = 0;
279 	tx_ring->next_to_clean = 0;
280 	tx_ring->cpu = ena_irq->cpu;
281 	tx_ring->numa_node = node;
282 	return 0;
283 
284 err_push_buf_intermediate_buf:
285 	vfree(tx_ring->free_ids);
286 	tx_ring->free_ids = NULL;
287 err_tx_free_ids:
288 	vfree(tx_ring->tx_buffer_info);
289 	tx_ring->tx_buffer_info = NULL;
290 err_tx_buffer_info:
291 	return -ENOMEM;
292 }
293 
294 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
295  * @adapter: network interface device structure
296  * @qid: queue index
297  *
298  * Free all transmit software resources
299  */
300 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
301 {
302 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
303 
304 	vfree(tx_ring->tx_buffer_info);
305 	tx_ring->tx_buffer_info = NULL;
306 
307 	vfree(tx_ring->free_ids);
308 	tx_ring->free_ids = NULL;
309 
310 	vfree(tx_ring->push_buf_intermediate_buf);
311 	tx_ring->push_buf_intermediate_buf = NULL;
312 }
313 
314 int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
315 				    int first_index, int count)
316 {
317 	int i, rc = 0;
318 
319 	for (i = first_index; i < first_index + count; i++) {
320 		rc = ena_setup_tx_resources(adapter, i);
321 		if (rc)
322 			goto err_setup_tx;
323 	}
324 
325 	return 0;
326 
327 err_setup_tx:
328 
329 	netif_err(adapter, ifup, adapter->netdev,
330 		  "Tx queue %d: allocation failed\n", i);
331 
332 	/* rewind the index freeing the rings as we go */
333 	while (first_index < i--)
334 		ena_free_tx_resources(adapter, i);
335 	return rc;
336 }
337 
338 void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
339 					   int first_index, int count)
340 {
341 	int i;
342 
343 	for (i = first_index; i < first_index + count; i++)
344 		ena_free_tx_resources(adapter, i);
345 }
346 
347 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
348  * @adapter: board private structure
349  *
350  * Free all transmit software resources
351  */
352 void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
353 {
354 	ena_free_all_io_tx_resources_in_range(adapter,
355 					      0,
356 					      adapter->xdp_num_queues +
357 					      adapter->num_io_queues);
358 }
359 
360 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
361  * @adapter: network interface device structure
362  * @qid: queue index
363  *
364  * Returns 0 on success, negative on failure
365  */
366 static int ena_setup_rx_resources(struct ena_adapter *adapter,
367 				  u32 qid)
368 {
369 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
370 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
371 	int size, node, i;
372 
373 	if (rx_ring->rx_buffer_info) {
374 		netif_err(adapter, ifup, adapter->netdev,
375 			  "rx_buffer_info is not NULL");
376 		return -EEXIST;
377 	}
378 
379 	/* alloc extra element so in rx path
380 	 * we can always prefetch rx_info + 1
381 	 */
382 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
383 	node = cpu_to_node(ena_irq->cpu);
384 
385 	rx_ring->rx_buffer_info = vzalloc_node(size, node);
386 	if (!rx_ring->rx_buffer_info) {
387 		rx_ring->rx_buffer_info = vzalloc(size);
388 		if (!rx_ring->rx_buffer_info)
389 			return -ENOMEM;
390 	}
391 
392 	size = sizeof(u16) * rx_ring->ring_size;
393 	rx_ring->free_ids = vzalloc_node(size, node);
394 	if (!rx_ring->free_ids) {
395 		rx_ring->free_ids = vzalloc(size);
396 		if (!rx_ring->free_ids) {
397 			vfree(rx_ring->rx_buffer_info);
398 			rx_ring->rx_buffer_info = NULL;
399 			return -ENOMEM;
400 		}
401 	}
402 
403 	/* Req id ring for receiving RX pkts out of order */
404 	for (i = 0; i < rx_ring->ring_size; i++)
405 		rx_ring->free_ids[i] = i;
406 
407 	/* Reset rx statistics */
408 	memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
409 
410 	rx_ring->next_to_clean = 0;
411 	rx_ring->next_to_use = 0;
412 	rx_ring->cpu = ena_irq->cpu;
413 	rx_ring->numa_node = node;
414 
415 	return 0;
416 }
417 
418 /* ena_free_rx_resources - Free I/O Rx Resources
419  * @adapter: network interface device structure
420  * @qid: queue index
421  *
422  * Free all receive software resources
423  */
424 static void ena_free_rx_resources(struct ena_adapter *adapter,
425 				  u32 qid)
426 {
427 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
428 
429 	vfree(rx_ring->rx_buffer_info);
430 	rx_ring->rx_buffer_info = NULL;
431 
432 	vfree(rx_ring->free_ids);
433 	rx_ring->free_ids = NULL;
434 }
435 
436 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
437  * @adapter: board private structure
438  *
439  * Return 0 on success, negative on failure
440  */
441 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
442 {
443 	int i, rc = 0;
444 
445 	for (i = 0; i < adapter->num_io_queues; i++) {
446 		rc = ena_setup_rx_resources(adapter, i);
447 		if (rc)
448 			goto err_setup_rx;
449 	}
450 
451 	return 0;
452 
453 err_setup_rx:
454 
455 	netif_err(adapter, ifup, adapter->netdev,
456 		  "Rx queue %d: allocation failed\n", i);
457 
458 	/* rewind the index freeing the rings as we go */
459 	while (i--)
460 		ena_free_rx_resources(adapter, i);
461 	return rc;
462 }
463 
464 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
465  * @adapter: board private structure
466  *
467  * Free all receive software resources
468  */
469 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
470 {
471 	int i;
472 
473 	for (i = 0; i < adapter->num_io_queues; i++)
474 		ena_free_rx_resources(adapter, i);
475 }
476 
477 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring,
478 				       dma_addr_t *dma)
479 {
480 	struct page *page;
481 
482 	/* This would allocate the page on the same NUMA node the executing code
483 	 * is running on.
484 	 */
485 	page = dev_alloc_page();
486 	if (!page) {
487 		ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1,
488 				  &rx_ring->syncp);
489 		return ERR_PTR(-ENOSPC);
490 	}
491 
492 	/* To enable NIC-side port-mirroring, AKA SPAN port,
493 	 * we make the buffer readable from the nic as well
494 	 */
495 	*dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
496 			    DMA_BIDIRECTIONAL);
497 	if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) {
498 		ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1,
499 				  &rx_ring->syncp);
500 		__free_page(page);
501 		return ERR_PTR(-EIO);
502 	}
503 
504 	return page;
505 }
506 
507 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring,
508 			       struct ena_rx_buffer *rx_info)
509 {
510 	int headroom = rx_ring->rx_headroom;
511 	struct ena_com_buf *ena_buf;
512 	struct page *page;
513 	dma_addr_t dma;
514 	int tailroom;
515 
516 	/* restore page offset value in case it has been changed by device */
517 	rx_info->buf_offset = headroom;
518 
519 	/* if previous allocated page is not used */
520 	if (unlikely(rx_info->page))
521 		return 0;
522 
523 	/* We handle DMA here */
524 	page = ena_alloc_map_page(rx_ring, &dma);
525 	if (unlikely(IS_ERR(page)))
526 		return PTR_ERR(page);
527 
528 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
529 		  "Allocate page %p, rx_info %p\n", page, rx_info);
530 
531 	tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
532 
533 	rx_info->page = page;
534 	rx_info->dma_addr = dma;
535 	rx_info->page_offset = 0;
536 	ena_buf = &rx_info->ena_buf;
537 	ena_buf->paddr = dma + headroom;
538 	ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom;
539 
540 	return 0;
541 }
542 
543 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring,
544 				    struct ena_rx_buffer *rx_info,
545 				    unsigned long attrs)
546 {
547 	dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE,
548 			     DMA_BIDIRECTIONAL, attrs);
549 }
550 
551 static void ena_free_rx_page(struct ena_ring *rx_ring,
552 			     struct ena_rx_buffer *rx_info)
553 {
554 	struct page *page = rx_info->page;
555 
556 	if (unlikely(!page)) {
557 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
558 			   "Trying to free unallocated buffer\n");
559 		return;
560 	}
561 
562 	ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0);
563 
564 	__free_page(page);
565 	rx_info->page = NULL;
566 }
567 
568 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
569 {
570 	u16 next_to_use, req_id;
571 	u32 i;
572 	int rc;
573 
574 	next_to_use = rx_ring->next_to_use;
575 
576 	for (i = 0; i < num; i++) {
577 		struct ena_rx_buffer *rx_info;
578 
579 		req_id = rx_ring->free_ids[next_to_use];
580 
581 		rx_info = &rx_ring->rx_buffer_info[req_id];
582 
583 		rc = ena_alloc_rx_buffer(rx_ring, rx_info);
584 		if (unlikely(rc < 0)) {
585 			netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
586 				   "Failed to allocate buffer for rx queue %d\n",
587 				   rx_ring->qid);
588 			break;
589 		}
590 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
591 						&rx_info->ena_buf,
592 						req_id);
593 		if (unlikely(rc)) {
594 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
595 				   "Failed to add buffer for rx queue %d\n",
596 				   rx_ring->qid);
597 			break;
598 		}
599 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
600 						   rx_ring->ring_size);
601 	}
602 
603 	if (unlikely(i < num)) {
604 		ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1,
605 				  &rx_ring->syncp);
606 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
607 			   "Refilled rx qid %d with only %d buffers (from %d)\n",
608 			   rx_ring->qid, i, num);
609 	}
610 
611 	/* ena_com_write_sq_doorbell issues a wmb() */
612 	if (likely(i))
613 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
614 
615 	rx_ring->next_to_use = next_to_use;
616 
617 	return i;
618 }
619 
620 static void ena_free_rx_bufs(struct ena_adapter *adapter,
621 			     u32 qid)
622 {
623 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
624 	u32 i;
625 
626 	for (i = 0; i < rx_ring->ring_size; i++) {
627 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
628 
629 		if (rx_info->page)
630 			ena_free_rx_page(rx_ring, rx_info);
631 	}
632 }
633 
634 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
635  * @adapter: board private structure
636  */
637 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
638 {
639 	struct ena_ring *rx_ring;
640 	int i, rc, bufs_num;
641 
642 	for (i = 0; i < adapter->num_io_queues; i++) {
643 		rx_ring = &adapter->rx_ring[i];
644 		bufs_num = rx_ring->ring_size - 1;
645 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
646 
647 		if (unlikely(rc != bufs_num))
648 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
649 				   "Refilling Queue %d failed. allocated %d buffers from: %d\n",
650 				   i, rc, bufs_num);
651 	}
652 }
653 
654 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
655 {
656 	int i;
657 
658 	for (i = 0; i < adapter->num_io_queues; i++)
659 		ena_free_rx_bufs(adapter, i);
660 }
661 
662 void ena_unmap_tx_buff(struct ena_ring *tx_ring,
663 		       struct ena_tx_buffer *tx_info)
664 {
665 	struct ena_com_buf *ena_buf;
666 	u32 cnt;
667 	int i;
668 
669 	ena_buf = tx_info->bufs;
670 	cnt = tx_info->num_of_bufs;
671 
672 	if (unlikely(!cnt))
673 		return;
674 
675 	if (tx_info->map_linear_data) {
676 		dma_unmap_single(tx_ring->dev,
677 				 dma_unmap_addr(ena_buf, paddr),
678 				 dma_unmap_len(ena_buf, len),
679 				 DMA_TO_DEVICE);
680 		ena_buf++;
681 		cnt--;
682 	}
683 
684 	/* unmap remaining mapped pages */
685 	for (i = 0; i < cnt; i++) {
686 		dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
687 			       dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
688 		ena_buf++;
689 	}
690 }
691 
692 /* ena_free_tx_bufs - Free Tx Buffers per Queue
693  * @tx_ring: TX ring for which buffers be freed
694  */
695 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
696 {
697 	bool print_once = true;
698 	bool is_xdp_ring;
699 	u32 i;
700 
701 	is_xdp_ring = ENA_IS_XDP_INDEX(tx_ring->adapter, tx_ring->qid);
702 
703 	for (i = 0; i < tx_ring->ring_size; i++) {
704 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
705 
706 		if (!tx_info->skb)
707 			continue;
708 
709 		if (print_once) {
710 			netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev,
711 				     "Free uncompleted tx skb qid %d idx 0x%x\n",
712 				     tx_ring->qid, i);
713 			print_once = false;
714 		} else {
715 			netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev,
716 				  "Free uncompleted tx skb qid %d idx 0x%x\n",
717 				  tx_ring->qid, i);
718 		}
719 
720 		ena_unmap_tx_buff(tx_ring, tx_info);
721 
722 		if (is_xdp_ring)
723 			xdp_return_frame(tx_info->xdpf);
724 		else
725 			dev_kfree_skb_any(tx_info->skb);
726 	}
727 
728 	if (!is_xdp_ring)
729 		netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
730 							  tx_ring->qid));
731 }
732 
733 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
734 {
735 	struct ena_ring *tx_ring;
736 	int i;
737 
738 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
739 		tx_ring = &adapter->tx_ring[i];
740 		ena_free_tx_bufs(tx_ring);
741 	}
742 }
743 
744 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
745 {
746 	u16 ena_qid;
747 	int i;
748 
749 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
750 		ena_qid = ENA_IO_TXQ_IDX(i);
751 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
752 	}
753 }
754 
755 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
756 {
757 	u16 ena_qid;
758 	int i;
759 
760 	for (i = 0; i < adapter->num_io_queues; i++) {
761 		ena_qid = ENA_IO_RXQ_IDX(i);
762 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
763 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
764 	}
765 }
766 
767 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
768 {
769 	ena_destroy_all_tx_queues(adapter);
770 	ena_destroy_all_rx_queues(adapter);
771 }
772 
773 int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
774 			  struct ena_tx_buffer *tx_info, bool is_xdp)
775 {
776 	if (tx_info)
777 		netif_err(ring->adapter,
778 			  tx_done,
779 			  ring->netdev,
780 			  "tx_info doesn't have valid %s. qid %u req_id %u",
781 			   is_xdp ? "xdp frame" : "skb", ring->qid, req_id);
782 	else
783 		netif_err(ring->adapter,
784 			  tx_done,
785 			  ring->netdev,
786 			  "Invalid req_id %u in qid %u\n",
787 			  req_id, ring->qid);
788 
789 	ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp);
790 	ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
791 
792 	return -EFAULT;
793 }
794 
795 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
796 {
797 	struct ena_tx_buffer *tx_info;
798 
799 	tx_info = &tx_ring->tx_buffer_info[req_id];
800 	if (likely(tx_info->skb))
801 		return 0;
802 
803 	return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
804 }
805 
806 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
807 {
808 	struct netdev_queue *txq;
809 	bool above_thresh;
810 	u32 tx_bytes = 0;
811 	u32 total_done = 0;
812 	u16 next_to_clean;
813 	u16 req_id;
814 	int tx_pkts = 0;
815 	int rc;
816 
817 	next_to_clean = tx_ring->next_to_clean;
818 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
819 
820 	while (tx_pkts < budget) {
821 		struct ena_tx_buffer *tx_info;
822 		struct sk_buff *skb;
823 
824 		rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
825 						&req_id);
826 		if (rc) {
827 			if (unlikely(rc == -EINVAL))
828 				handle_invalid_req_id(tx_ring, req_id, NULL,
829 						      false);
830 			break;
831 		}
832 
833 		/* validate that the request id points to a valid skb */
834 		rc = validate_tx_req_id(tx_ring, req_id);
835 		if (rc)
836 			break;
837 
838 		tx_info = &tx_ring->tx_buffer_info[req_id];
839 		skb = tx_info->skb;
840 
841 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
842 		prefetch(&skb->end);
843 
844 		tx_info->skb = NULL;
845 		tx_info->last_jiffies = 0;
846 
847 		ena_unmap_tx_buff(tx_ring, tx_info);
848 
849 		netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
850 			  "tx_poll: q %d skb %p completed\n", tx_ring->qid,
851 			  skb);
852 
853 		tx_bytes += skb->len;
854 		dev_kfree_skb(skb);
855 		tx_pkts++;
856 		total_done += tx_info->tx_descs;
857 
858 		tx_ring->free_ids[next_to_clean] = req_id;
859 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
860 						     tx_ring->ring_size);
861 	}
862 
863 	tx_ring->next_to_clean = next_to_clean;
864 	ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
865 	ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
866 
867 	netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
868 
869 	netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
870 		  "tx_poll: q %d done. total pkts: %d\n",
871 		  tx_ring->qid, tx_pkts);
872 
873 	/* need to make the rings circular update visible to
874 	 * ena_start_xmit() before checking for netif_queue_stopped().
875 	 */
876 	smp_mb();
877 
878 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
879 						    ENA_TX_WAKEUP_THRESH);
880 	if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
881 		__netif_tx_lock(txq, smp_processor_id());
882 		above_thresh =
883 			ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
884 						     ENA_TX_WAKEUP_THRESH);
885 		if (netif_tx_queue_stopped(txq) && above_thresh &&
886 		    test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
887 			netif_tx_wake_queue(txq);
888 			ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
889 					  &tx_ring->syncp);
890 		}
891 		__netif_tx_unlock(txq);
892 	}
893 
894 	return tx_pkts;
895 }
896 
897 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len)
898 {
899 	struct sk_buff *skb;
900 
901 	if (!first_frag)
902 		skb = napi_alloc_skb(rx_ring->napi, len);
903 	else
904 		skb = napi_build_skb(first_frag, len);
905 
906 	if (unlikely(!skb)) {
907 		ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1,
908 				  &rx_ring->syncp);
909 
910 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
911 			  "Failed to allocate skb. first_frag %s\n",
912 			  first_frag ? "provided" : "not provided");
913 	}
914 
915 	return skb;
916 }
917 
918 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len,
919 				      u16 len, int pkt_offset)
920 {
921 	struct ena_com_buf *ena_buf = &rx_info->ena_buf;
922 
923 	/* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer
924 	 * for data + headroom + tailroom.
925 	 */
926 	if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) {
927 		page_ref_inc(rx_info->page);
928 		rx_info->page_offset += buf_len;
929 		ena_buf->paddr += buf_len;
930 		ena_buf->len -= buf_len;
931 		return true;
932 	}
933 
934 	return false;
935 }
936 
937 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
938 				  struct ena_com_rx_buf_info *ena_bufs,
939 				  u32 descs,
940 				  u16 *next_to_clean)
941 {
942 	int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
943 	bool is_xdp_loaded = ena_xdp_present_ring(rx_ring);
944 	struct ena_rx_buffer *rx_info;
945 	struct ena_adapter *adapter;
946 	int page_offset, pkt_offset;
947 	dma_addr_t pre_reuse_paddr;
948 	u16 len, req_id, buf = 0;
949 	bool reuse_rx_buf_page;
950 	struct sk_buff *skb;
951 	void *buf_addr;
952 	int buf_offset;
953 	u16 buf_len;
954 
955 	len = ena_bufs[buf].len;
956 	req_id = ena_bufs[buf].req_id;
957 
958 	rx_info = &rx_ring->rx_buffer_info[req_id];
959 
960 	if (unlikely(!rx_info->page)) {
961 		adapter = rx_ring->adapter;
962 		netif_err(adapter, rx_err, rx_ring->netdev,
963 			  "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id);
964 		ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp);
965 		ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
966 		return NULL;
967 	}
968 
969 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
970 		  "rx_info %p page %p\n",
971 		  rx_info, rx_info->page);
972 
973 	buf_offset = rx_info->buf_offset;
974 	pkt_offset = buf_offset - rx_ring->rx_headroom;
975 	page_offset = rx_info->page_offset;
976 	buf_addr = page_address(rx_info->page) + page_offset;
977 
978 	if (len <= rx_ring->rx_copybreak) {
979 		skb = ena_alloc_skb(rx_ring, NULL, len);
980 		if (unlikely(!skb))
981 			return NULL;
982 
983 		skb_copy_to_linear_data(skb, buf_addr + buf_offset, len);
984 		dma_sync_single_for_device(rx_ring->dev,
985 					   dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
986 					   len,
987 					   DMA_FROM_DEVICE);
988 
989 		skb_put(skb, len);
990 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
991 			  "RX allocated small packet. len %d.\n", skb->len);
992 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
993 		rx_ring->free_ids[*next_to_clean] = req_id;
994 		*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
995 						     rx_ring->ring_size);
996 		return skb;
997 	}
998 
999 	buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1000 
1001 	/* If XDP isn't loaded try to reuse part of the RX buffer */
1002 	reuse_rx_buf_page = !is_xdp_loaded &&
1003 			    ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1004 
1005 	if (!reuse_rx_buf_page)
1006 		ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC);
1007 
1008 	skb = ena_alloc_skb(rx_ring, buf_addr, buf_len);
1009 	if (unlikely(!skb))
1010 		return NULL;
1011 
1012 	/* Populate skb's linear part */
1013 	skb_reserve(skb, buf_offset);
1014 	skb_put(skb, len);
1015 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1016 
1017 	do {
1018 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1019 			  "RX skb updated. len %d. data_len %d\n",
1020 			  skb->len, skb->data_len);
1021 
1022 		if (!reuse_rx_buf_page)
1023 			rx_info->page = NULL;
1024 
1025 		rx_ring->free_ids[*next_to_clean] = req_id;
1026 		*next_to_clean =
1027 			ENA_RX_RING_IDX_NEXT(*next_to_clean,
1028 					     rx_ring->ring_size);
1029 		if (likely(--descs == 0))
1030 			break;
1031 
1032 		buf++;
1033 		len = ena_bufs[buf].len;
1034 		req_id = ena_bufs[buf].req_id;
1035 
1036 		rx_info = &rx_ring->rx_buffer_info[req_id];
1037 
1038 		/* rx_info->buf_offset includes rx_ring->rx_headroom */
1039 		buf_offset = rx_info->buf_offset;
1040 		pkt_offset = buf_offset - rx_ring->rx_headroom;
1041 		buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1042 		page_offset = rx_info->page_offset;
1043 
1044 		pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr);
1045 
1046 		reuse_rx_buf_page = !is_xdp_loaded &&
1047 				    ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1048 
1049 		dma_sync_single_for_cpu(rx_ring->dev,
1050 					pre_reuse_paddr + pkt_offset,
1051 					len,
1052 					DMA_FROM_DEVICE);
1053 
1054 		if (!reuse_rx_buf_page)
1055 			ena_unmap_rx_buff_attrs(rx_ring, rx_info,
1056 						DMA_ATTR_SKIP_CPU_SYNC);
1057 
1058 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1059 				page_offset + buf_offset, len, buf_len);
1060 
1061 	} while (1);
1062 
1063 	return skb;
1064 }
1065 
1066 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1067  * @adapter: structure containing adapter specific data
1068  * @ena_rx_ctx: received packet context/metadata
1069  * @skb: skb currently being received and modified
1070  */
1071 static void ena_rx_checksum(struct ena_ring *rx_ring,
1072 				   struct ena_com_rx_ctx *ena_rx_ctx,
1073 				   struct sk_buff *skb)
1074 {
1075 	/* Rx csum disabled */
1076 	if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1077 		skb->ip_summed = CHECKSUM_NONE;
1078 		return;
1079 	}
1080 
1081 	/* For fragmented packets the checksum isn't valid */
1082 	if (ena_rx_ctx->frag) {
1083 		skb->ip_summed = CHECKSUM_NONE;
1084 		return;
1085 	}
1086 
1087 	/* if IP and error */
1088 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1089 		     (ena_rx_ctx->l3_csum_err))) {
1090 		/* ipv4 checksum error */
1091 		skb->ip_summed = CHECKSUM_NONE;
1092 		ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1093 				  &rx_ring->syncp);
1094 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1095 			  "RX IPv4 header checksum error\n");
1096 		return;
1097 	}
1098 
1099 	/* if TCP/UDP */
1100 	if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1101 		   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1102 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
1103 			/* TCP/UDP checksum error */
1104 			ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1105 					  &rx_ring->syncp);
1106 			netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1107 				  "RX L4 checksum error\n");
1108 			skb->ip_summed = CHECKSUM_NONE;
1109 			return;
1110 		}
1111 
1112 		if (likely(ena_rx_ctx->l4_csum_checked)) {
1113 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1114 			ena_increase_stat(&rx_ring->rx_stats.csum_good, 1,
1115 					  &rx_ring->syncp);
1116 		} else {
1117 			ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1,
1118 					  &rx_ring->syncp);
1119 			skb->ip_summed = CHECKSUM_NONE;
1120 		}
1121 	} else {
1122 		skb->ip_summed = CHECKSUM_NONE;
1123 		return;
1124 	}
1125 
1126 }
1127 
1128 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1129 			    struct ena_com_rx_ctx *ena_rx_ctx,
1130 			    struct sk_buff *skb)
1131 {
1132 	enum pkt_hash_types hash_type;
1133 
1134 	if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1135 		if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1136 			   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1137 
1138 			hash_type = PKT_HASH_TYPE_L4;
1139 		else
1140 			hash_type = PKT_HASH_TYPE_NONE;
1141 
1142 		/* Override hash type if the packet is fragmented */
1143 		if (ena_rx_ctx->frag)
1144 			hash_type = PKT_HASH_TYPE_NONE;
1145 
1146 		skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1147 	}
1148 }
1149 
1150 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs)
1151 {
1152 	struct ena_rx_buffer *rx_info;
1153 	int ret;
1154 
1155 	/* XDP multi-buffer packets not supported */
1156 	if (unlikely(num_descs > 1)) {
1157 		netdev_err_once(rx_ring->adapter->netdev,
1158 				"xdp: dropped unsupported multi-buffer packets\n");
1159 		ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp);
1160 		return ENA_XDP_DROP;
1161 	}
1162 
1163 	rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1164 	xdp_prepare_buff(xdp, page_address(rx_info->page),
1165 			 rx_info->buf_offset,
1166 			 rx_ring->ena_bufs[0].len, false);
1167 
1168 	ret = ena_xdp_execute(rx_ring, xdp);
1169 
1170 	/* The xdp program might expand the headers */
1171 	if (ret == ENA_XDP_PASS) {
1172 		rx_info->buf_offset = xdp->data - xdp->data_hard_start;
1173 		rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1174 	}
1175 
1176 	return ret;
1177 }
1178 
1179 /* ena_clean_rx_irq - Cleanup RX irq
1180  * @rx_ring: RX ring to clean
1181  * @napi: napi handler
1182  * @budget: how many packets driver is allowed to clean
1183  *
1184  * Returns the number of cleaned buffers.
1185  */
1186 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1187 			    u32 budget)
1188 {
1189 	u16 next_to_clean = rx_ring->next_to_clean;
1190 	struct ena_com_rx_ctx ena_rx_ctx;
1191 	struct ena_rx_buffer *rx_info;
1192 	struct ena_adapter *adapter;
1193 	u32 res_budget, work_done;
1194 	int rx_copybreak_pkt = 0;
1195 	int refill_threshold;
1196 	struct sk_buff *skb;
1197 	int refill_required;
1198 	struct xdp_buff xdp;
1199 	int xdp_flags = 0;
1200 	int total_len = 0;
1201 	int xdp_verdict;
1202 	u8 pkt_offset;
1203 	int rc = 0;
1204 	int i;
1205 
1206 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1207 		  "%s qid %d\n", __func__, rx_ring->qid);
1208 	res_budget = budget;
1209 	xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq);
1210 
1211 	do {
1212 		xdp_verdict = ENA_XDP_PASS;
1213 		skb = NULL;
1214 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1215 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1216 		ena_rx_ctx.descs = 0;
1217 		ena_rx_ctx.pkt_offset = 0;
1218 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1219 				    rx_ring->ena_com_io_sq,
1220 				    &ena_rx_ctx);
1221 		if (unlikely(rc))
1222 			goto error;
1223 
1224 		if (unlikely(ena_rx_ctx.descs == 0))
1225 			break;
1226 
1227 		/* First descriptor might have an offset set by the device */
1228 		rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1229 		pkt_offset = ena_rx_ctx.pkt_offset;
1230 		rx_info->buf_offset += pkt_offset;
1231 
1232 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1233 			  "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1234 			  rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1235 			  ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1236 
1237 		dma_sync_single_for_cpu(rx_ring->dev,
1238 					dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
1239 					rx_ring->ena_bufs[0].len,
1240 					DMA_FROM_DEVICE);
1241 
1242 		if (ena_xdp_present_ring(rx_ring))
1243 			xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs);
1244 
1245 		/* allocate skb and fill it */
1246 		if (xdp_verdict == ENA_XDP_PASS)
1247 			skb = ena_rx_skb(rx_ring,
1248 					 rx_ring->ena_bufs,
1249 					 ena_rx_ctx.descs,
1250 					 &next_to_clean);
1251 
1252 		if (unlikely(!skb)) {
1253 			for (i = 0; i < ena_rx_ctx.descs; i++) {
1254 				int req_id = rx_ring->ena_bufs[i].req_id;
1255 
1256 				rx_ring->free_ids[next_to_clean] = req_id;
1257 				next_to_clean =
1258 					ENA_RX_RING_IDX_NEXT(next_to_clean,
1259 							     rx_ring->ring_size);
1260 
1261 				/* Packets was passed for transmission, unmap it
1262 				 * from RX side.
1263 				 */
1264 				if (xdp_verdict & ENA_XDP_FORWARDED) {
1265 					ena_unmap_rx_buff_attrs(rx_ring,
1266 								&rx_ring->rx_buffer_info[req_id],
1267 								DMA_ATTR_SKIP_CPU_SYNC);
1268 					rx_ring->rx_buffer_info[req_id].page = NULL;
1269 				}
1270 			}
1271 			if (xdp_verdict != ENA_XDP_PASS) {
1272 				xdp_flags |= xdp_verdict;
1273 				total_len += ena_rx_ctx.ena_bufs[0].len;
1274 				res_budget--;
1275 				continue;
1276 			}
1277 			break;
1278 		}
1279 
1280 		ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1281 
1282 		ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1283 
1284 		skb_record_rx_queue(skb, rx_ring->qid);
1285 
1286 		if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak)
1287 			rx_copybreak_pkt++;
1288 
1289 		total_len += skb->len;
1290 
1291 		napi_gro_receive(napi, skb);
1292 
1293 		res_budget--;
1294 	} while (likely(res_budget));
1295 
1296 	work_done = budget - res_budget;
1297 	rx_ring->per_napi_packets += work_done;
1298 	u64_stats_update_begin(&rx_ring->syncp);
1299 	rx_ring->rx_stats.bytes += total_len;
1300 	rx_ring->rx_stats.cnt += work_done;
1301 	rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1302 	u64_stats_update_end(&rx_ring->syncp);
1303 
1304 	rx_ring->next_to_clean = next_to_clean;
1305 
1306 	refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
1307 	refill_threshold =
1308 		min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1309 		      ENA_RX_REFILL_THRESH_PACKET);
1310 
1311 	/* Optimization, try to batch new rx buffers */
1312 	if (refill_required > refill_threshold) {
1313 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1314 		ena_refill_rx_bufs(rx_ring, refill_required);
1315 	}
1316 
1317 	if (xdp_flags & ENA_XDP_REDIRECT)
1318 		xdp_do_flush_map();
1319 
1320 	return work_done;
1321 
1322 error:
1323 	if (xdp_flags & ENA_XDP_REDIRECT)
1324 		xdp_do_flush();
1325 
1326 	adapter = netdev_priv(rx_ring->netdev);
1327 
1328 	if (rc == -ENOSPC) {
1329 		ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1,
1330 				  &rx_ring->syncp);
1331 		ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS);
1332 	} else {
1333 		ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1,
1334 				  &rx_ring->syncp);
1335 		ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
1336 	}
1337 	return 0;
1338 }
1339 
1340 static void ena_dim_work(struct work_struct *w)
1341 {
1342 	struct dim *dim = container_of(w, struct dim, work);
1343 	struct dim_cq_moder cur_moder =
1344 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1345 	struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1346 
1347 	ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1348 	dim->state = DIM_START_MEASURE;
1349 }
1350 
1351 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1352 {
1353 	struct dim_sample dim_sample;
1354 	struct ena_ring *rx_ring = ena_napi->rx_ring;
1355 
1356 	if (!rx_ring->per_napi_packets)
1357 		return;
1358 
1359 	rx_ring->non_empty_napi_events++;
1360 
1361 	dim_update_sample(rx_ring->non_empty_napi_events,
1362 			  rx_ring->rx_stats.cnt,
1363 			  rx_ring->rx_stats.bytes,
1364 			  &dim_sample);
1365 
1366 	net_dim(&ena_napi->dim, dim_sample);
1367 
1368 	rx_ring->per_napi_packets = 0;
1369 }
1370 
1371 void ena_unmask_interrupt(struct ena_ring *tx_ring,
1372 			  struct ena_ring *rx_ring)
1373 {
1374 	u32 rx_interval = tx_ring->smoothed_interval;
1375 	struct ena_eth_io_intr_reg intr_reg;
1376 
1377 	/* Rx ring can be NULL when for XDP tx queues which don't have an
1378 	 * accompanying rx_ring pair.
1379 	 */
1380 	if (rx_ring)
1381 		rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1382 			rx_ring->smoothed_interval :
1383 			ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1384 
1385 	/* Update intr register: rx intr delay,
1386 	 * tx intr delay and interrupt unmask
1387 	 */
1388 	ena_com_update_intr_reg(&intr_reg,
1389 				rx_interval,
1390 				tx_ring->smoothed_interval,
1391 				true);
1392 
1393 	ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1,
1394 			  &tx_ring->syncp);
1395 
1396 	/* It is a shared MSI-X.
1397 	 * Tx and Rx CQ have pointer to it.
1398 	 * So we use one of them to reach the intr reg
1399 	 * The Tx ring is used because the rx_ring is NULL for XDP queues
1400 	 */
1401 	ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1402 }
1403 
1404 void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1405 			       struct ena_ring *rx_ring)
1406 {
1407 	int cpu = get_cpu();
1408 	int numa_node;
1409 
1410 	/* Check only one ring since the 2 rings are running on the same cpu */
1411 	if (likely(tx_ring->cpu == cpu))
1412 		goto out;
1413 
1414 	tx_ring->cpu = cpu;
1415 	if (rx_ring)
1416 		rx_ring->cpu = cpu;
1417 
1418 	numa_node = cpu_to_node(cpu);
1419 
1420 	if (likely(tx_ring->numa_node == numa_node))
1421 		goto out;
1422 
1423 	put_cpu();
1424 
1425 	if (numa_node != NUMA_NO_NODE) {
1426 		ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1427 		tx_ring->numa_node = numa_node;
1428 		if (rx_ring) {
1429 			rx_ring->numa_node = numa_node;
1430 			ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1431 						 numa_node);
1432 		}
1433 	}
1434 
1435 	return;
1436 out:
1437 	put_cpu();
1438 }
1439 
1440 static int ena_io_poll(struct napi_struct *napi, int budget)
1441 {
1442 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1443 	struct ena_ring *tx_ring, *rx_ring;
1444 	int tx_work_done;
1445 	int rx_work_done = 0;
1446 	int tx_budget;
1447 	int napi_comp_call = 0;
1448 	int ret;
1449 
1450 	tx_ring = ena_napi->tx_ring;
1451 	rx_ring = ena_napi->rx_ring;
1452 
1453 	tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1454 
1455 	if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1456 	    test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1457 		napi_complete_done(napi, 0);
1458 		return 0;
1459 	}
1460 
1461 	tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1462 	/* On netpoll the budget is zero and the handler should only clean the
1463 	 * tx completions.
1464 	 */
1465 	if (likely(budget))
1466 		rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1467 
1468 	/* If the device is about to reset or down, avoid unmask
1469 	 * the interrupt and return 0 so NAPI won't reschedule
1470 	 */
1471 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1472 		     test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1473 		napi_complete_done(napi, 0);
1474 		ret = 0;
1475 
1476 	} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1477 		napi_comp_call = 1;
1478 
1479 		/* Update numa and unmask the interrupt only when schedule
1480 		 * from the interrupt context (vs from sk_busy_loop)
1481 		 */
1482 		if (napi_complete_done(napi, rx_work_done) &&
1483 		    READ_ONCE(ena_napi->interrupts_masked)) {
1484 			smp_rmb(); /* make sure interrupts_masked is read */
1485 			WRITE_ONCE(ena_napi->interrupts_masked, false);
1486 			/* We apply adaptive moderation on Rx path only.
1487 			 * Tx uses static interrupt moderation.
1488 			 */
1489 			if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1490 				ena_adjust_adaptive_rx_intr_moderation(ena_napi);
1491 
1492 			ena_update_ring_numa_node(tx_ring, rx_ring);
1493 			ena_unmask_interrupt(tx_ring, rx_ring);
1494 		}
1495 
1496 		ret = rx_work_done;
1497 	} else {
1498 		ret = budget;
1499 	}
1500 
1501 	u64_stats_update_begin(&tx_ring->syncp);
1502 	tx_ring->tx_stats.napi_comp += napi_comp_call;
1503 	tx_ring->tx_stats.tx_poll++;
1504 	u64_stats_update_end(&tx_ring->syncp);
1505 
1506 	tx_ring->tx_stats.last_napi_jiffies = jiffies;
1507 
1508 	return ret;
1509 }
1510 
1511 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1512 {
1513 	struct ena_adapter *adapter = (struct ena_adapter *)data;
1514 
1515 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1516 
1517 	/* Don't call the aenq handler before probe is done */
1518 	if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1519 		ena_com_aenq_intr_handler(adapter->ena_dev, data);
1520 
1521 	return IRQ_HANDLED;
1522 }
1523 
1524 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1525  * @irq: interrupt number
1526  * @data: pointer to a network interface private napi device structure
1527  */
1528 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1529 {
1530 	struct ena_napi *ena_napi = data;
1531 
1532 	/* Used to check HW health */
1533 	WRITE_ONCE(ena_napi->first_interrupt, true);
1534 
1535 	WRITE_ONCE(ena_napi->interrupts_masked, true);
1536 	smp_wmb(); /* write interrupts_masked before calling napi */
1537 
1538 	napi_schedule_irqoff(&ena_napi->napi);
1539 
1540 	return IRQ_HANDLED;
1541 }
1542 
1543 /* Reserve a single MSI-X vector for management (admin + aenq).
1544  * plus reserve one vector for each potential io queue.
1545  * the number of potential io queues is the minimum of what the device
1546  * supports and the number of vCPUs.
1547  */
1548 static int ena_enable_msix(struct ena_adapter *adapter)
1549 {
1550 	int msix_vecs, irq_cnt;
1551 
1552 	if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1553 		netif_err(adapter, probe, adapter->netdev,
1554 			  "Error, MSI-X is already enabled\n");
1555 		return -EPERM;
1556 	}
1557 
1558 	/* Reserved the max msix vectors we might need */
1559 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
1560 	netif_dbg(adapter, probe, adapter->netdev,
1561 		  "Trying to enable MSI-X, vectors %d\n", msix_vecs);
1562 
1563 	irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
1564 					msix_vecs, PCI_IRQ_MSIX);
1565 
1566 	if (irq_cnt < 0) {
1567 		netif_err(adapter, probe, adapter->netdev,
1568 			  "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
1569 		return -ENOSPC;
1570 	}
1571 
1572 	if (irq_cnt != msix_vecs) {
1573 		netif_notice(adapter, probe, adapter->netdev,
1574 			     "Enable only %d MSI-X (out of %d), reduce the number of queues\n",
1575 			     irq_cnt, msix_vecs);
1576 		adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
1577 	}
1578 
1579 	if (ena_init_rx_cpu_rmap(adapter))
1580 		netif_warn(adapter, probe, adapter->netdev,
1581 			   "Failed to map IRQs to CPUs\n");
1582 
1583 	adapter->msix_vecs = irq_cnt;
1584 	set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
1585 
1586 	return 0;
1587 }
1588 
1589 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
1590 {
1591 	u32 cpu;
1592 
1593 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
1594 		 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
1595 		 pci_name(adapter->pdev));
1596 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
1597 		ena_intr_msix_mgmnt;
1598 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
1599 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
1600 		pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
1601 	cpu = cpumask_first(cpu_online_mask);
1602 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
1603 	cpumask_set_cpu(cpu,
1604 			&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
1605 }
1606 
1607 static void ena_setup_io_intr(struct ena_adapter *adapter)
1608 {
1609 	struct net_device *netdev;
1610 	int irq_idx, i, cpu;
1611 	int io_queue_count;
1612 
1613 	netdev = adapter->netdev;
1614 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1615 
1616 	for (i = 0; i < io_queue_count; i++) {
1617 		irq_idx = ENA_IO_IRQ_IDX(i);
1618 		cpu = i % num_online_cpus();
1619 
1620 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1621 			 "%s-Tx-Rx-%d", netdev->name, i);
1622 		adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
1623 		adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
1624 		adapter->irq_tbl[irq_idx].vector =
1625 			pci_irq_vector(adapter->pdev, irq_idx);
1626 		adapter->irq_tbl[irq_idx].cpu = cpu;
1627 
1628 		cpumask_set_cpu(cpu,
1629 				&adapter->irq_tbl[irq_idx].affinity_hint_mask);
1630 	}
1631 }
1632 
1633 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
1634 {
1635 	unsigned long flags = 0;
1636 	struct ena_irq *irq;
1637 	int rc;
1638 
1639 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1640 	rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1641 			 irq->data);
1642 	if (rc) {
1643 		netif_err(adapter, probe, adapter->netdev,
1644 			  "Failed to request admin irq\n");
1645 		return rc;
1646 	}
1647 
1648 	netif_dbg(adapter, probe, adapter->netdev,
1649 		  "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
1650 		  irq->affinity_hint_mask.bits[0], irq->vector);
1651 
1652 	irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1653 
1654 	return rc;
1655 }
1656 
1657 static int ena_request_io_irq(struct ena_adapter *adapter)
1658 {
1659 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1660 	unsigned long flags = 0;
1661 	struct ena_irq *irq;
1662 	int rc = 0, i, k;
1663 
1664 	if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1665 		netif_err(adapter, ifup, adapter->netdev,
1666 			  "Failed to request I/O IRQ: MSI-X is not enabled\n");
1667 		return -EINVAL;
1668 	}
1669 
1670 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
1671 		irq = &adapter->irq_tbl[i];
1672 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1673 				 irq->data);
1674 		if (rc) {
1675 			netif_err(adapter, ifup, adapter->netdev,
1676 				  "Failed to request I/O IRQ. index %d rc %d\n",
1677 				   i, rc);
1678 			goto err;
1679 		}
1680 
1681 		netif_dbg(adapter, ifup, adapter->netdev,
1682 			  "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
1683 			  i, irq->affinity_hint_mask.bits[0], irq->vector);
1684 
1685 		irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1686 	}
1687 
1688 	return rc;
1689 
1690 err:
1691 	for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
1692 		irq = &adapter->irq_tbl[k];
1693 		free_irq(irq->vector, irq->data);
1694 	}
1695 
1696 	return rc;
1697 }
1698 
1699 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
1700 {
1701 	struct ena_irq *irq;
1702 
1703 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1704 	synchronize_irq(irq->vector);
1705 	irq_set_affinity_hint(irq->vector, NULL);
1706 	free_irq(irq->vector, irq->data);
1707 }
1708 
1709 static void ena_free_io_irq(struct ena_adapter *adapter)
1710 {
1711 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1712 	struct ena_irq *irq;
1713 	int i;
1714 
1715 #ifdef CONFIG_RFS_ACCEL
1716 	if (adapter->msix_vecs >= 1) {
1717 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
1718 		adapter->netdev->rx_cpu_rmap = NULL;
1719 	}
1720 #endif /* CONFIG_RFS_ACCEL */
1721 
1722 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
1723 		irq = &adapter->irq_tbl[i];
1724 		irq_set_affinity_hint(irq->vector, NULL);
1725 		free_irq(irq->vector, irq->data);
1726 	}
1727 }
1728 
1729 static void ena_disable_msix(struct ena_adapter *adapter)
1730 {
1731 	if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
1732 		pci_free_irq_vectors(adapter->pdev);
1733 }
1734 
1735 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
1736 {
1737 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1738 	int i;
1739 
1740 	if (!netif_running(adapter->netdev))
1741 		return;
1742 
1743 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++)
1744 		synchronize_irq(adapter->irq_tbl[i].vector);
1745 }
1746 
1747 static void ena_del_napi_in_range(struct ena_adapter *adapter,
1748 				  int first_index,
1749 				  int count)
1750 {
1751 	int i;
1752 
1753 	for (i = first_index; i < first_index + count; i++) {
1754 		netif_napi_del(&adapter->ena_napi[i].napi);
1755 
1756 		WARN_ON(ENA_IS_XDP_INDEX(adapter, i) &&
1757 			adapter->ena_napi[i].rx_ring);
1758 	}
1759 }
1760 
1761 static void ena_init_napi_in_range(struct ena_adapter *adapter,
1762 				   int first_index, int count)
1763 {
1764 	int i;
1765 
1766 	for (i = first_index; i < first_index + count; i++) {
1767 		struct ena_napi *napi = &adapter->ena_napi[i];
1768 
1769 		netif_napi_add(adapter->netdev, &napi->napi,
1770 			       ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll);
1771 
1772 		if (!ENA_IS_XDP_INDEX(adapter, i))
1773 			napi->rx_ring = &adapter->rx_ring[i];
1774 
1775 		napi->tx_ring = &adapter->tx_ring[i];
1776 		napi->qid = i;
1777 	}
1778 }
1779 
1780 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
1781 				      int first_index,
1782 				      int count)
1783 {
1784 	int i;
1785 
1786 	for (i = first_index; i < first_index + count; i++)
1787 		napi_disable(&adapter->ena_napi[i].napi);
1788 }
1789 
1790 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
1791 				     int first_index,
1792 				     int count)
1793 {
1794 	int i;
1795 
1796 	for (i = first_index; i < first_index + count; i++)
1797 		napi_enable(&adapter->ena_napi[i].napi);
1798 }
1799 
1800 /* Configure the Rx forwarding */
1801 static int ena_rss_configure(struct ena_adapter *adapter)
1802 {
1803 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1804 	int rc;
1805 
1806 	/* In case the RSS table wasn't initialized by probe */
1807 	if (!ena_dev->rss.tbl_log_size) {
1808 		rc = ena_rss_init_default(adapter);
1809 		if (rc && (rc != -EOPNOTSUPP)) {
1810 			netif_err(adapter, ifup, adapter->netdev,
1811 				  "Failed to init RSS rc: %d\n", rc);
1812 			return rc;
1813 		}
1814 	}
1815 
1816 	/* Set indirect table */
1817 	rc = ena_com_indirect_table_set(ena_dev);
1818 	if (unlikely(rc && rc != -EOPNOTSUPP))
1819 		return rc;
1820 
1821 	/* Configure hash function (if supported) */
1822 	rc = ena_com_set_hash_function(ena_dev);
1823 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
1824 		return rc;
1825 
1826 	/* Configure hash inputs (if supported) */
1827 	rc = ena_com_set_hash_ctrl(ena_dev);
1828 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
1829 		return rc;
1830 
1831 	return 0;
1832 }
1833 
1834 static int ena_up_complete(struct ena_adapter *adapter)
1835 {
1836 	int rc;
1837 
1838 	rc = ena_rss_configure(adapter);
1839 	if (rc)
1840 		return rc;
1841 
1842 	ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
1843 
1844 	ena_refill_all_rx_bufs(adapter);
1845 
1846 	/* enable transmits */
1847 	netif_tx_start_all_queues(adapter->netdev);
1848 
1849 	ena_napi_enable_in_range(adapter,
1850 				 0,
1851 				 adapter->xdp_num_queues + adapter->num_io_queues);
1852 
1853 	return 0;
1854 }
1855 
1856 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
1857 {
1858 	struct ena_com_create_io_ctx ctx;
1859 	struct ena_com_dev *ena_dev;
1860 	struct ena_ring *tx_ring;
1861 	u32 msix_vector;
1862 	u16 ena_qid;
1863 	int rc;
1864 
1865 	ena_dev = adapter->ena_dev;
1866 
1867 	tx_ring = &adapter->tx_ring[qid];
1868 	msix_vector = ENA_IO_IRQ_IDX(qid);
1869 	ena_qid = ENA_IO_TXQ_IDX(qid);
1870 
1871 	memset(&ctx, 0x0, sizeof(ctx));
1872 
1873 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1874 	ctx.qid = ena_qid;
1875 	ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1876 	ctx.msix_vector = msix_vector;
1877 	ctx.queue_size = tx_ring->ring_size;
1878 	ctx.numa_node = tx_ring->numa_node;
1879 
1880 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1881 	if (rc) {
1882 		netif_err(adapter, ifup, adapter->netdev,
1883 			  "Failed to create I/O TX queue num %d rc: %d\n",
1884 			  qid, rc);
1885 		return rc;
1886 	}
1887 
1888 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1889 				     &tx_ring->ena_com_io_sq,
1890 				     &tx_ring->ena_com_io_cq);
1891 	if (rc) {
1892 		netif_err(adapter, ifup, adapter->netdev,
1893 			  "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
1894 			  qid, rc);
1895 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1896 		return rc;
1897 	}
1898 
1899 	ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
1900 	return rc;
1901 }
1902 
1903 int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
1904 				     int first_index, int count)
1905 {
1906 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1907 	int rc, i;
1908 
1909 	for (i = first_index; i < first_index + count; i++) {
1910 		rc = ena_create_io_tx_queue(adapter, i);
1911 		if (rc)
1912 			goto create_err;
1913 	}
1914 
1915 	return 0;
1916 
1917 create_err:
1918 	while (i-- > first_index)
1919 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1920 
1921 	return rc;
1922 }
1923 
1924 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
1925 {
1926 	struct ena_com_dev *ena_dev;
1927 	struct ena_com_create_io_ctx ctx;
1928 	struct ena_ring *rx_ring;
1929 	u32 msix_vector;
1930 	u16 ena_qid;
1931 	int rc;
1932 
1933 	ena_dev = adapter->ena_dev;
1934 
1935 	rx_ring = &adapter->rx_ring[qid];
1936 	msix_vector = ENA_IO_IRQ_IDX(qid);
1937 	ena_qid = ENA_IO_RXQ_IDX(qid);
1938 
1939 	memset(&ctx, 0x0, sizeof(ctx));
1940 
1941 	ctx.qid = ena_qid;
1942 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1943 	ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1944 	ctx.msix_vector = msix_vector;
1945 	ctx.queue_size = rx_ring->ring_size;
1946 	ctx.numa_node = rx_ring->numa_node;
1947 
1948 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1949 	if (rc) {
1950 		netif_err(adapter, ifup, adapter->netdev,
1951 			  "Failed to create I/O RX queue num %d rc: %d\n",
1952 			  qid, rc);
1953 		return rc;
1954 	}
1955 
1956 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1957 				     &rx_ring->ena_com_io_sq,
1958 				     &rx_ring->ena_com_io_cq);
1959 	if (rc) {
1960 		netif_err(adapter, ifup, adapter->netdev,
1961 			  "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
1962 			  qid, rc);
1963 		goto err;
1964 	}
1965 
1966 	ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
1967 
1968 	return rc;
1969 err:
1970 	ena_com_destroy_io_queue(ena_dev, ena_qid);
1971 	return rc;
1972 }
1973 
1974 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
1975 {
1976 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1977 	int rc, i;
1978 
1979 	for (i = 0; i < adapter->num_io_queues; i++) {
1980 		rc = ena_create_io_rx_queue(adapter, i);
1981 		if (rc)
1982 			goto create_err;
1983 		INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
1984 	}
1985 
1986 	return 0;
1987 
1988 create_err:
1989 	while (i--) {
1990 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
1991 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1992 	}
1993 
1994 	return rc;
1995 }
1996 
1997 static void set_io_rings_size(struct ena_adapter *adapter,
1998 			      int new_tx_size,
1999 			      int new_rx_size)
2000 {
2001 	int i;
2002 
2003 	for (i = 0; i < adapter->num_io_queues; i++) {
2004 		adapter->tx_ring[i].ring_size = new_tx_size;
2005 		adapter->rx_ring[i].ring_size = new_rx_size;
2006 	}
2007 }
2008 
2009 /* This function allows queue allocation to backoff when the system is
2010  * low on memory. If there is not enough memory to allocate io queues
2011  * the driver will try to allocate smaller queues.
2012  *
2013  * The backoff algorithm is as follows:
2014  *  1. Try to allocate TX and RX and if successful.
2015  *  1.1. return success
2016  *
2017  *  2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2018  *
2019  *  3. If TX or RX is smaller than 256
2020  *  3.1. return failure.
2021  *  4. else
2022  *  4.1. go back to 1.
2023  */
2024 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2025 {
2026 	int rc, cur_rx_ring_size, cur_tx_ring_size;
2027 	int new_rx_ring_size, new_tx_ring_size;
2028 
2029 	/* current queue sizes might be set to smaller than the requested
2030 	 * ones due to past queue allocation failures.
2031 	 */
2032 	set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2033 			  adapter->requested_rx_ring_size);
2034 
2035 	while (1) {
2036 		if (ena_xdp_present(adapter)) {
2037 			rc = ena_setup_and_create_all_xdp_queues(adapter);
2038 
2039 			if (rc)
2040 				goto err_setup_tx;
2041 		}
2042 		rc = ena_setup_tx_resources_in_range(adapter,
2043 						     0,
2044 						     adapter->num_io_queues);
2045 		if (rc)
2046 			goto err_setup_tx;
2047 
2048 		rc = ena_create_io_tx_queues_in_range(adapter,
2049 						      0,
2050 						      adapter->num_io_queues);
2051 		if (rc)
2052 			goto err_create_tx_queues;
2053 
2054 		rc = ena_setup_all_rx_resources(adapter);
2055 		if (rc)
2056 			goto err_setup_rx;
2057 
2058 		rc = ena_create_all_io_rx_queues(adapter);
2059 		if (rc)
2060 			goto err_create_rx_queues;
2061 
2062 		return 0;
2063 
2064 err_create_rx_queues:
2065 		ena_free_all_io_rx_resources(adapter);
2066 err_setup_rx:
2067 		ena_destroy_all_tx_queues(adapter);
2068 err_create_tx_queues:
2069 		ena_free_all_io_tx_resources(adapter);
2070 err_setup_tx:
2071 		if (rc != -ENOMEM) {
2072 			netif_err(adapter, ifup, adapter->netdev,
2073 				  "Queue creation failed with error code %d\n",
2074 				  rc);
2075 			return rc;
2076 		}
2077 
2078 		cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2079 		cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2080 
2081 		netif_err(adapter, ifup, adapter->netdev,
2082 			  "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2083 			  cur_tx_ring_size, cur_rx_ring_size);
2084 
2085 		new_tx_ring_size = cur_tx_ring_size;
2086 		new_rx_ring_size = cur_rx_ring_size;
2087 
2088 		/* Decrease the size of the larger queue, or
2089 		 * decrease both if they are the same size.
2090 		 */
2091 		if (cur_rx_ring_size <= cur_tx_ring_size)
2092 			new_tx_ring_size = cur_tx_ring_size / 2;
2093 		if (cur_rx_ring_size >= cur_tx_ring_size)
2094 			new_rx_ring_size = cur_rx_ring_size / 2;
2095 
2096 		if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2097 		    new_rx_ring_size < ENA_MIN_RING_SIZE) {
2098 			netif_err(adapter, ifup, adapter->netdev,
2099 				  "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2100 				  ENA_MIN_RING_SIZE);
2101 			return rc;
2102 		}
2103 
2104 		netif_err(adapter, ifup, adapter->netdev,
2105 			  "Retrying queue creation with sizes TX=%d, RX=%d\n",
2106 			  new_tx_ring_size,
2107 			  new_rx_ring_size);
2108 
2109 		set_io_rings_size(adapter, new_tx_ring_size,
2110 				  new_rx_ring_size);
2111 	}
2112 }
2113 
2114 int ena_up(struct ena_adapter *adapter)
2115 {
2116 	int io_queue_count, rc, i;
2117 
2118 	netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
2119 
2120 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2121 	ena_setup_io_intr(adapter);
2122 
2123 	/* napi poll functions should be initialized before running
2124 	 * request_irq(), to handle a rare condition where there is a pending
2125 	 * interrupt, causing the ISR to fire immediately while the poll
2126 	 * function wasn't set yet, causing a null dereference
2127 	 */
2128 	ena_init_napi_in_range(adapter, 0, io_queue_count);
2129 
2130 	rc = ena_request_io_irq(adapter);
2131 	if (rc)
2132 		goto err_req_irq;
2133 
2134 	rc = create_queues_with_size_backoff(adapter);
2135 	if (rc)
2136 		goto err_create_queues_with_backoff;
2137 
2138 	rc = ena_up_complete(adapter);
2139 	if (rc)
2140 		goto err_up;
2141 
2142 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2143 		netif_carrier_on(adapter->netdev);
2144 
2145 	ena_increase_stat(&adapter->dev_stats.interface_up, 1,
2146 			  &adapter->syncp);
2147 
2148 	set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2149 
2150 	/* Enable completion queues interrupt */
2151 	for (i = 0; i < adapter->num_io_queues; i++)
2152 		ena_unmask_interrupt(&adapter->tx_ring[i],
2153 				     &adapter->rx_ring[i]);
2154 
2155 	/* schedule napi in case we had pending packets
2156 	 * from the last time we disable napi
2157 	 */
2158 	for (i = 0; i < io_queue_count; i++)
2159 		napi_schedule(&adapter->ena_napi[i].napi);
2160 
2161 	return rc;
2162 
2163 err_up:
2164 	ena_destroy_all_tx_queues(adapter);
2165 	ena_free_all_io_tx_resources(adapter);
2166 	ena_destroy_all_rx_queues(adapter);
2167 	ena_free_all_io_rx_resources(adapter);
2168 err_create_queues_with_backoff:
2169 	ena_free_io_irq(adapter);
2170 err_req_irq:
2171 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2172 
2173 	return rc;
2174 }
2175 
2176 void ena_down(struct ena_adapter *adapter)
2177 {
2178 	int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2179 
2180 	netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2181 
2182 	clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2183 
2184 	ena_increase_stat(&adapter->dev_stats.interface_down, 1,
2185 			  &adapter->syncp);
2186 
2187 	netif_carrier_off(adapter->netdev);
2188 	netif_tx_disable(adapter->netdev);
2189 
2190 	/* After this point the napi handler won't enable the tx queue */
2191 	ena_napi_disable_in_range(adapter, 0, io_queue_count);
2192 
2193 	/* After destroy the queue there won't be any new interrupts */
2194 
2195 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2196 		int rc;
2197 
2198 		rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2199 		if (rc)
2200 			netif_err(adapter, ifdown, adapter->netdev,
2201 				  "Device reset failed\n");
2202 		/* stop submitting admin commands on a device that was reset */
2203 		ena_com_set_admin_running_state(adapter->ena_dev, false);
2204 	}
2205 
2206 	ena_destroy_all_io_queues(adapter);
2207 
2208 	ena_disable_io_intr_sync(adapter);
2209 	ena_free_io_irq(adapter);
2210 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2211 
2212 	ena_free_all_tx_bufs(adapter);
2213 	ena_free_all_rx_bufs(adapter);
2214 	ena_free_all_io_tx_resources(adapter);
2215 	ena_free_all_io_rx_resources(adapter);
2216 }
2217 
2218 /* ena_open - Called when a network interface is made active
2219  * @netdev: network interface device structure
2220  *
2221  * Returns 0 on success, negative value on failure
2222  *
2223  * The open entry point is called when a network interface is made
2224  * active by the system (IFF_UP).  At this point all resources needed
2225  * for transmit and receive operations are allocated, the interrupt
2226  * handler is registered with the OS, the watchdog timer is started,
2227  * and the stack is notified that the interface is ready.
2228  */
2229 static int ena_open(struct net_device *netdev)
2230 {
2231 	struct ena_adapter *adapter = netdev_priv(netdev);
2232 	int rc;
2233 
2234 	/* Notify the stack of the actual queue counts. */
2235 	rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2236 	if (rc) {
2237 		netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2238 		return rc;
2239 	}
2240 
2241 	rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2242 	if (rc) {
2243 		netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2244 		return rc;
2245 	}
2246 
2247 	rc = ena_up(adapter);
2248 	if (rc)
2249 		return rc;
2250 
2251 	return rc;
2252 }
2253 
2254 /* ena_close - Disables a network interface
2255  * @netdev: network interface device structure
2256  *
2257  * Returns 0, this is not allowed to fail
2258  *
2259  * The close entry point is called when an interface is de-activated
2260  * by the OS.  The hardware is still under the drivers control, but
2261  * needs to be disabled.  A global MAC reset is issued to stop the
2262  * hardware, and all transmit and receive resources are freed.
2263  */
2264 static int ena_close(struct net_device *netdev)
2265 {
2266 	struct ena_adapter *adapter = netdev_priv(netdev);
2267 
2268 	netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2269 
2270 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2271 		return 0;
2272 
2273 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2274 		ena_down(adapter);
2275 
2276 	/* Check for device status and issue reset if needed*/
2277 	check_for_admin_com_state(adapter);
2278 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2279 		netif_err(adapter, ifdown, adapter->netdev,
2280 			  "Destroy failure, restarting device\n");
2281 		ena_dump_stats_to_dmesg(adapter);
2282 		/* rtnl lock already obtained in dev_ioctl() layer */
2283 		ena_destroy_device(adapter, false);
2284 		ena_restore_device(adapter);
2285 	}
2286 
2287 	return 0;
2288 }
2289 
2290 int ena_update_queue_params(struct ena_adapter *adapter,
2291 			    u32 new_tx_size,
2292 			    u32 new_rx_size,
2293 			    u32 new_llq_header_len)
2294 {
2295 	bool dev_was_up, large_llq_changed = false;
2296 	int rc = 0;
2297 
2298 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2299 	ena_close(adapter->netdev);
2300 	adapter->requested_tx_ring_size = new_tx_size;
2301 	adapter->requested_rx_ring_size = new_rx_size;
2302 	ena_init_io_rings(adapter,
2303 			  0,
2304 			  adapter->xdp_num_queues +
2305 			  adapter->num_io_queues);
2306 
2307 	large_llq_changed = adapter->ena_dev->tx_mem_queue_type ==
2308 			    ENA_ADMIN_PLACEMENT_POLICY_DEV;
2309 	large_llq_changed &=
2310 		new_llq_header_len != adapter->ena_dev->tx_max_header_size;
2311 
2312 	/* a check that the configuration is valid is done by caller */
2313 	if (large_llq_changed) {
2314 		adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled;
2315 
2316 		ena_destroy_device(adapter, false);
2317 		rc = ena_restore_device(adapter);
2318 	}
2319 
2320 	return dev_was_up && !rc ? ena_up(adapter) : rc;
2321 }
2322 
2323 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak)
2324 {
2325 	struct ena_ring *rx_ring;
2326 	int i;
2327 
2328 	if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE))
2329 		return -EINVAL;
2330 
2331 	adapter->rx_copybreak = rx_copybreak;
2332 
2333 	for (i = 0; i < adapter->num_io_queues; i++) {
2334 		rx_ring = &adapter->rx_ring[i];
2335 		rx_ring->rx_copybreak = rx_copybreak;
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2342 {
2343 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2344 	int prev_channel_count;
2345 	bool dev_was_up;
2346 
2347 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2348 	ena_close(adapter->netdev);
2349 	prev_channel_count = adapter->num_io_queues;
2350 	adapter->num_io_queues = new_channel_count;
2351 	if (ena_xdp_present(adapter) &&
2352 	    ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2353 		adapter->xdp_first_ring = new_channel_count;
2354 		adapter->xdp_num_queues = new_channel_count;
2355 		if (prev_channel_count > new_channel_count)
2356 			ena_xdp_exchange_program_rx_in_range(adapter,
2357 							     NULL,
2358 							     new_channel_count,
2359 							     prev_channel_count);
2360 		else
2361 			ena_xdp_exchange_program_rx_in_range(adapter,
2362 							     adapter->xdp_bpf_prog,
2363 							     prev_channel_count,
2364 							     new_channel_count);
2365 	}
2366 
2367 	/* We need to destroy the rss table so that the indirection
2368 	 * table will be reinitialized by ena_up()
2369 	 */
2370 	ena_com_rss_destroy(ena_dev);
2371 	ena_init_io_rings(adapter,
2372 			  0,
2373 			  adapter->xdp_num_queues +
2374 			  adapter->num_io_queues);
2375 	return dev_was_up ? ena_open(adapter->netdev) : 0;
2376 }
2377 
2378 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx,
2379 			struct sk_buff *skb,
2380 			bool disable_meta_caching)
2381 {
2382 	u32 mss = skb_shinfo(skb)->gso_size;
2383 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2384 	u8 l4_protocol = 0;
2385 
2386 	if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2387 		ena_tx_ctx->l4_csum_enable = 1;
2388 		if (mss) {
2389 			ena_tx_ctx->tso_enable = 1;
2390 			ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2391 			ena_tx_ctx->l4_csum_partial = 0;
2392 		} else {
2393 			ena_tx_ctx->tso_enable = 0;
2394 			ena_meta->l4_hdr_len = 0;
2395 			ena_tx_ctx->l4_csum_partial = 1;
2396 		}
2397 
2398 		switch (ip_hdr(skb)->version) {
2399 		case IPVERSION:
2400 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2401 			if (ip_hdr(skb)->frag_off & htons(IP_DF))
2402 				ena_tx_ctx->df = 1;
2403 			if (mss)
2404 				ena_tx_ctx->l3_csum_enable = 1;
2405 			l4_protocol = ip_hdr(skb)->protocol;
2406 			break;
2407 		case 6:
2408 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2409 			l4_protocol = ipv6_hdr(skb)->nexthdr;
2410 			break;
2411 		default:
2412 			break;
2413 		}
2414 
2415 		if (l4_protocol == IPPROTO_TCP)
2416 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2417 		else
2418 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2419 
2420 		ena_meta->mss = mss;
2421 		ena_meta->l3_hdr_len = skb_network_header_len(skb);
2422 		ena_meta->l3_hdr_offset = skb_network_offset(skb);
2423 		ena_tx_ctx->meta_valid = 1;
2424 	} else if (disable_meta_caching) {
2425 		memset(ena_meta, 0, sizeof(*ena_meta));
2426 		ena_tx_ctx->meta_valid = 1;
2427 	} else {
2428 		ena_tx_ctx->meta_valid = 0;
2429 	}
2430 }
2431 
2432 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
2433 				       struct sk_buff *skb)
2434 {
2435 	int num_frags, header_len, rc;
2436 
2437 	num_frags = skb_shinfo(skb)->nr_frags;
2438 	header_len = skb_headlen(skb);
2439 
2440 	if (num_frags < tx_ring->sgl_size)
2441 		return 0;
2442 
2443 	if ((num_frags == tx_ring->sgl_size) &&
2444 	    (header_len < tx_ring->tx_max_header_size))
2445 		return 0;
2446 
2447 	ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp);
2448 
2449 	rc = skb_linearize(skb);
2450 	if (unlikely(rc)) {
2451 		ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1,
2452 				  &tx_ring->syncp);
2453 	}
2454 
2455 	return rc;
2456 }
2457 
2458 static int ena_tx_map_skb(struct ena_ring *tx_ring,
2459 			  struct ena_tx_buffer *tx_info,
2460 			  struct sk_buff *skb,
2461 			  void **push_hdr,
2462 			  u16 *header_len)
2463 {
2464 	struct ena_adapter *adapter = tx_ring->adapter;
2465 	struct ena_com_buf *ena_buf;
2466 	dma_addr_t dma;
2467 	u32 skb_head_len, frag_len, last_frag;
2468 	u16 push_len = 0;
2469 	u16 delta = 0;
2470 	int i = 0;
2471 
2472 	skb_head_len = skb_headlen(skb);
2473 	tx_info->skb = skb;
2474 	ena_buf = tx_info->bufs;
2475 
2476 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2477 		/* When the device is LLQ mode, the driver will copy
2478 		 * the header into the device memory space.
2479 		 * the ena_com layer assume the header is in a linear
2480 		 * memory space.
2481 		 * This assumption might be wrong since part of the header
2482 		 * can be in the fragmented buffers.
2483 		 * Use skb_header_pointer to make sure the header is in a
2484 		 * linear memory space.
2485 		 */
2486 
2487 		push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
2488 		*push_hdr = skb_header_pointer(skb, 0, push_len,
2489 					       tx_ring->push_buf_intermediate_buf);
2490 		*header_len = push_len;
2491 		if (unlikely(skb->data != *push_hdr)) {
2492 			ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1,
2493 					  &tx_ring->syncp);
2494 
2495 			delta = push_len - skb_head_len;
2496 		}
2497 	} else {
2498 		*push_hdr = NULL;
2499 		*header_len = min_t(u32, skb_head_len,
2500 				    tx_ring->tx_max_header_size);
2501 	}
2502 
2503 	netif_dbg(adapter, tx_queued, adapter->netdev,
2504 		  "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
2505 		  *push_hdr, push_len);
2506 
2507 	if (skb_head_len > push_len) {
2508 		dma = dma_map_single(tx_ring->dev, skb->data + push_len,
2509 				     skb_head_len - push_len, DMA_TO_DEVICE);
2510 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2511 			goto error_report_dma_error;
2512 
2513 		ena_buf->paddr = dma;
2514 		ena_buf->len = skb_head_len - push_len;
2515 
2516 		ena_buf++;
2517 		tx_info->num_of_bufs++;
2518 		tx_info->map_linear_data = 1;
2519 	} else {
2520 		tx_info->map_linear_data = 0;
2521 	}
2522 
2523 	last_frag = skb_shinfo(skb)->nr_frags;
2524 
2525 	for (i = 0; i < last_frag; i++) {
2526 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2527 
2528 		frag_len = skb_frag_size(frag);
2529 
2530 		if (unlikely(delta >= frag_len)) {
2531 			delta -= frag_len;
2532 			continue;
2533 		}
2534 
2535 		dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
2536 				       frag_len - delta, DMA_TO_DEVICE);
2537 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2538 			goto error_report_dma_error;
2539 
2540 		ena_buf->paddr = dma;
2541 		ena_buf->len = frag_len - delta;
2542 		ena_buf++;
2543 		tx_info->num_of_bufs++;
2544 		delta = 0;
2545 	}
2546 
2547 	return 0;
2548 
2549 error_report_dma_error:
2550 	ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1,
2551 			  &tx_ring->syncp);
2552 	netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n");
2553 
2554 	tx_info->skb = NULL;
2555 
2556 	tx_info->num_of_bufs += i;
2557 	ena_unmap_tx_buff(tx_ring, tx_info);
2558 
2559 	return -EINVAL;
2560 }
2561 
2562 /* Called with netif_tx_lock. */
2563 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
2564 {
2565 	struct ena_adapter *adapter = netdev_priv(dev);
2566 	struct ena_tx_buffer *tx_info;
2567 	struct ena_com_tx_ctx ena_tx_ctx;
2568 	struct ena_ring *tx_ring;
2569 	struct netdev_queue *txq;
2570 	void *push_hdr;
2571 	u16 next_to_use, req_id, header_len;
2572 	int qid, rc;
2573 
2574 	netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
2575 	/*  Determine which tx ring we will be placed on */
2576 	qid = skb_get_queue_mapping(skb);
2577 	tx_ring = &adapter->tx_ring[qid];
2578 	txq = netdev_get_tx_queue(dev, qid);
2579 
2580 	rc = ena_check_and_linearize_skb(tx_ring, skb);
2581 	if (unlikely(rc))
2582 		goto error_drop_packet;
2583 
2584 	skb_tx_timestamp(skb);
2585 
2586 	next_to_use = tx_ring->next_to_use;
2587 	req_id = tx_ring->free_ids[next_to_use];
2588 	tx_info = &tx_ring->tx_buffer_info[req_id];
2589 	tx_info->num_of_bufs = 0;
2590 
2591 	WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
2592 
2593 	rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
2594 	if (unlikely(rc))
2595 		goto error_drop_packet;
2596 
2597 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2598 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2599 	ena_tx_ctx.push_header = push_hdr;
2600 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2601 	ena_tx_ctx.req_id = req_id;
2602 	ena_tx_ctx.header_len = header_len;
2603 
2604 	/* set flags and meta data */
2605 	ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching);
2606 
2607 	rc = ena_xmit_common(adapter,
2608 			     tx_ring,
2609 			     tx_info,
2610 			     &ena_tx_ctx,
2611 			     next_to_use,
2612 			     skb->len);
2613 	if (rc)
2614 		goto error_unmap_dma;
2615 
2616 	netdev_tx_sent_queue(txq, skb->len);
2617 
2618 	/* stop the queue when no more space available, the packet can have up
2619 	 * to sgl_size + 2. one for the meta descriptor and one for header
2620 	 * (if the header is larger than tx_max_header_size).
2621 	 */
2622 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2623 						   tx_ring->sgl_size + 2))) {
2624 		netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
2625 			  __func__, qid);
2626 
2627 		netif_tx_stop_queue(txq);
2628 		ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1,
2629 				  &tx_ring->syncp);
2630 
2631 		/* There is a rare condition where this function decide to
2632 		 * stop the queue but meanwhile clean_tx_irq updates
2633 		 * next_to_completion and terminates.
2634 		 * The queue will remain stopped forever.
2635 		 * To solve this issue add a mb() to make sure that
2636 		 * netif_tx_stop_queue() write is vissible before checking if
2637 		 * there is additional space in the queue.
2638 		 */
2639 		smp_mb();
2640 
2641 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2642 						 ENA_TX_WAKEUP_THRESH)) {
2643 			netif_tx_wake_queue(txq);
2644 			ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
2645 					  &tx_ring->syncp);
2646 		}
2647 	}
2648 
2649 	if (netif_xmit_stopped(txq) || !netdev_xmit_more())
2650 		/* trigger the dma engine. ena_ring_tx_doorbell()
2651 		 * calls a memory barrier inside it.
2652 		 */
2653 		ena_ring_tx_doorbell(tx_ring);
2654 
2655 	return NETDEV_TX_OK;
2656 
2657 error_unmap_dma:
2658 	ena_unmap_tx_buff(tx_ring, tx_info);
2659 	tx_info->skb = NULL;
2660 
2661 error_drop_packet:
2662 	dev_kfree_skb(skb);
2663 	return NETDEV_TX_OK;
2664 }
2665 
2666 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
2667 {
2668 	struct device *dev = &pdev->dev;
2669 	struct ena_admin_host_info *host_info;
2670 	int rc;
2671 
2672 	/* Allocate only the host info */
2673 	rc = ena_com_allocate_host_info(ena_dev);
2674 	if (rc) {
2675 		dev_err(dev, "Cannot allocate host info\n");
2676 		return;
2677 	}
2678 
2679 	host_info = ena_dev->host_attr.host_info;
2680 
2681 	host_info->bdf = pci_dev_id(pdev);
2682 	host_info->os_type = ENA_ADMIN_OS_LINUX;
2683 	host_info->kernel_ver = LINUX_VERSION_CODE;
2684 	strscpy(host_info->kernel_ver_str, utsname()->version,
2685 		sizeof(host_info->kernel_ver_str) - 1);
2686 	host_info->os_dist = 0;
2687 	strncpy(host_info->os_dist_str, utsname()->release,
2688 		sizeof(host_info->os_dist_str) - 1);
2689 	host_info->driver_version =
2690 		(DRV_MODULE_GEN_MAJOR) |
2691 		(DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
2692 		(DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
2693 		("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
2694 	host_info->num_cpus = num_online_cpus();
2695 
2696 	host_info->driver_supported_features =
2697 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
2698 		ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK |
2699 		ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK |
2700 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK |
2701 		ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK;
2702 
2703 	rc = ena_com_set_host_attributes(ena_dev);
2704 	if (rc) {
2705 		if (rc == -EOPNOTSUPP)
2706 			dev_warn(dev, "Cannot set host attributes\n");
2707 		else
2708 			dev_err(dev, "Cannot set host attributes\n");
2709 
2710 		goto err;
2711 	}
2712 
2713 	return;
2714 
2715 err:
2716 	ena_com_delete_host_info(ena_dev);
2717 }
2718 
2719 static void ena_config_debug_area(struct ena_adapter *adapter)
2720 {
2721 	u32 debug_area_size;
2722 	int rc, ss_count;
2723 
2724 	ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
2725 	if (ss_count <= 0) {
2726 		netif_err(adapter, drv, adapter->netdev,
2727 			  "SS count is negative\n");
2728 		return;
2729 	}
2730 
2731 	/* allocate 32 bytes for each string and 64bit for the value */
2732 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
2733 
2734 	rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
2735 	if (rc) {
2736 		netif_err(adapter, drv, adapter->netdev,
2737 			  "Cannot allocate debug area\n");
2738 		return;
2739 	}
2740 
2741 	rc = ena_com_set_host_attributes(adapter->ena_dev);
2742 	if (rc) {
2743 		if (rc == -EOPNOTSUPP)
2744 			netif_warn(adapter, drv, adapter->netdev,
2745 				   "Cannot set host attributes\n");
2746 		else
2747 			netif_err(adapter, drv, adapter->netdev,
2748 				  "Cannot set host attributes\n");
2749 		goto err;
2750 	}
2751 
2752 	return;
2753 err:
2754 	ena_com_delete_debug_area(adapter->ena_dev);
2755 }
2756 
2757 int ena_update_hw_stats(struct ena_adapter *adapter)
2758 {
2759 	int rc;
2760 
2761 	rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats);
2762 	if (rc) {
2763 		netdev_err(adapter->netdev, "Failed to get ENI stats\n");
2764 		return rc;
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 static void ena_get_stats64(struct net_device *netdev,
2771 			    struct rtnl_link_stats64 *stats)
2772 {
2773 	struct ena_adapter *adapter = netdev_priv(netdev);
2774 	struct ena_ring *rx_ring, *tx_ring;
2775 	unsigned int start;
2776 	u64 rx_drops;
2777 	u64 tx_drops;
2778 	int i;
2779 
2780 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2781 		return;
2782 
2783 	for (i = 0; i < adapter->num_io_queues; i++) {
2784 		u64 bytes, packets;
2785 
2786 		tx_ring = &adapter->tx_ring[i];
2787 
2788 		do {
2789 			start = u64_stats_fetch_begin(&tx_ring->syncp);
2790 			packets = tx_ring->tx_stats.cnt;
2791 			bytes = tx_ring->tx_stats.bytes;
2792 		} while (u64_stats_fetch_retry(&tx_ring->syncp, start));
2793 
2794 		stats->tx_packets += packets;
2795 		stats->tx_bytes += bytes;
2796 
2797 		rx_ring = &adapter->rx_ring[i];
2798 
2799 		do {
2800 			start = u64_stats_fetch_begin(&rx_ring->syncp);
2801 			packets = rx_ring->rx_stats.cnt;
2802 			bytes = rx_ring->rx_stats.bytes;
2803 		} while (u64_stats_fetch_retry(&rx_ring->syncp, start));
2804 
2805 		stats->rx_packets += packets;
2806 		stats->rx_bytes += bytes;
2807 	}
2808 
2809 	do {
2810 		start = u64_stats_fetch_begin(&adapter->syncp);
2811 		rx_drops = adapter->dev_stats.rx_drops;
2812 		tx_drops = adapter->dev_stats.tx_drops;
2813 	} while (u64_stats_fetch_retry(&adapter->syncp, start));
2814 
2815 	stats->rx_dropped = rx_drops;
2816 	stats->tx_dropped = tx_drops;
2817 
2818 	stats->multicast = 0;
2819 	stats->collisions = 0;
2820 
2821 	stats->rx_length_errors = 0;
2822 	stats->rx_crc_errors = 0;
2823 	stats->rx_frame_errors = 0;
2824 	stats->rx_fifo_errors = 0;
2825 	stats->rx_missed_errors = 0;
2826 	stats->tx_window_errors = 0;
2827 
2828 	stats->rx_errors = 0;
2829 	stats->tx_errors = 0;
2830 }
2831 
2832 static const struct net_device_ops ena_netdev_ops = {
2833 	.ndo_open		= ena_open,
2834 	.ndo_stop		= ena_close,
2835 	.ndo_start_xmit		= ena_start_xmit,
2836 	.ndo_get_stats64	= ena_get_stats64,
2837 	.ndo_tx_timeout		= ena_tx_timeout,
2838 	.ndo_change_mtu		= ena_change_mtu,
2839 	.ndo_set_mac_address	= NULL,
2840 	.ndo_validate_addr	= eth_validate_addr,
2841 	.ndo_bpf		= ena_xdp,
2842 	.ndo_xdp_xmit		= ena_xdp_xmit,
2843 };
2844 
2845 static void ena_calc_io_queue_size(struct ena_adapter *adapter,
2846 				   struct ena_com_dev_get_features_ctx *get_feat_ctx)
2847 {
2848 	struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq;
2849 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2850 	u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
2851 	u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
2852 	u32 max_tx_queue_size;
2853 	u32 max_rx_queue_size;
2854 
2855 	/* If this function is called after driver load, the ring sizes have already
2856 	 * been configured. Take it into account when recalculating ring size.
2857 	 */
2858 	if (adapter->tx_ring->ring_size)
2859 		tx_queue_size = adapter->tx_ring->ring_size;
2860 
2861 	if (adapter->rx_ring->ring_size)
2862 		rx_queue_size = adapter->rx_ring->ring_size;
2863 
2864 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2865 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2866 			&get_feat_ctx->max_queue_ext.max_queue_ext;
2867 		max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
2868 					  max_queue_ext->max_rx_sq_depth);
2869 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
2870 
2871 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2872 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
2873 						  llq->max_llq_depth);
2874 		else
2875 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
2876 						  max_queue_ext->max_tx_sq_depth);
2877 
2878 		adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2879 						 max_queue_ext->max_per_packet_tx_descs);
2880 		adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2881 						 max_queue_ext->max_per_packet_rx_descs);
2882 	} else {
2883 		struct ena_admin_queue_feature_desc *max_queues =
2884 			&get_feat_ctx->max_queues;
2885 		max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
2886 					  max_queues->max_sq_depth);
2887 		max_tx_queue_size = max_queues->max_cq_depth;
2888 
2889 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2890 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
2891 						  llq->max_llq_depth);
2892 		else
2893 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
2894 						  max_queues->max_sq_depth);
2895 
2896 		adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2897 						 max_queues->max_packet_tx_descs);
2898 		adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2899 						 max_queues->max_packet_rx_descs);
2900 	}
2901 
2902 	max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
2903 	max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
2904 
2905 	/* When forcing large headers, we multiply the entry size by 2, and therefore divide
2906 	 * the queue size by 2, leaving the amount of memory used by the queues unchanged.
2907 	 */
2908 	if (adapter->large_llq_header_enabled) {
2909 		if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
2910 		    ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2911 			max_tx_queue_size /= 2;
2912 			dev_info(&adapter->pdev->dev,
2913 				 "Forcing large headers and decreasing maximum TX queue size to %d\n",
2914 				 max_tx_queue_size);
2915 		} else {
2916 			dev_err(&adapter->pdev->dev,
2917 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
2918 
2919 			adapter->large_llq_header_enabled = false;
2920 		}
2921 	}
2922 
2923 	tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
2924 				  max_tx_queue_size);
2925 	rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
2926 				  max_rx_queue_size);
2927 
2928 	tx_queue_size = rounddown_pow_of_two(tx_queue_size);
2929 	rx_queue_size = rounddown_pow_of_two(rx_queue_size);
2930 
2931 	adapter->max_tx_ring_size  = max_tx_queue_size;
2932 	adapter->max_rx_ring_size = max_rx_queue_size;
2933 	adapter->requested_tx_ring_size = tx_queue_size;
2934 	adapter->requested_rx_ring_size = rx_queue_size;
2935 }
2936 
2937 static int ena_device_validate_params(struct ena_adapter *adapter,
2938 				      struct ena_com_dev_get_features_ctx *get_feat_ctx)
2939 {
2940 	struct net_device *netdev = adapter->netdev;
2941 	int rc;
2942 
2943 	rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
2944 			      adapter->mac_addr);
2945 	if (!rc) {
2946 		netif_err(adapter, drv, netdev,
2947 			  "Error, mac address are different\n");
2948 		return -EINVAL;
2949 	}
2950 
2951 	if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
2952 		netif_err(adapter, drv, netdev,
2953 			  "Error, device max mtu is smaller than netdev MTU\n");
2954 		return -EINVAL;
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 static void set_default_llq_configurations(struct ena_adapter *adapter,
2961 					   struct ena_llq_configurations *llq_config,
2962 					   struct ena_admin_feature_llq_desc *llq)
2963 {
2964 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2965 
2966 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
2967 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
2968 	llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
2969 
2970 	adapter->large_llq_header_supported =
2971 		!!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ));
2972 	adapter->large_llq_header_supported &=
2973 		!!(llq->entry_size_ctrl_supported &
2974 			ENA_ADMIN_LIST_ENTRY_SIZE_256B);
2975 
2976 	if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
2977 	    adapter->large_llq_header_enabled) {
2978 		llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B;
2979 		llq_config->llq_ring_entry_size_value = 256;
2980 	} else {
2981 		llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
2982 		llq_config->llq_ring_entry_size_value = 128;
2983 	}
2984 }
2985 
2986 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
2987 					   struct ena_com_dev *ena_dev,
2988 					   struct ena_admin_feature_llq_desc *llq,
2989 					   struct ena_llq_configurations *llq_default_configurations)
2990 {
2991 	int rc;
2992 	u32 llq_feature_mask;
2993 
2994 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
2995 	if (!(ena_dev->supported_features & llq_feature_mask)) {
2996 		dev_warn(&pdev->dev,
2997 			"LLQ is not supported Fallback to host mode policy.\n");
2998 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2999 		return 0;
3000 	}
3001 
3002 	if (!ena_dev->mem_bar) {
3003 		netdev_err(ena_dev->net_device,
3004 			   "LLQ is advertised as supported but device doesn't expose mem bar\n");
3005 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3006 		return 0;
3007 	}
3008 
3009 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3010 	if (unlikely(rc)) {
3011 		dev_err(&pdev->dev,
3012 			"Failed to configure the device mode.  Fallback to host mode policy.\n");
3013 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
3020 			       int bars)
3021 {
3022 	bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR));
3023 
3024 	if (!has_mem_bar)
3025 		return 0;
3026 
3027 	ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3028 					   pci_resource_start(pdev, ENA_MEM_BAR),
3029 					   pci_resource_len(pdev, ENA_MEM_BAR));
3030 
3031 	if (!ena_dev->mem_bar)
3032 		return -EFAULT;
3033 
3034 	return 0;
3035 }
3036 
3037 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev,
3038 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
3039 			   bool *wd_state)
3040 {
3041 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3042 	struct ena_llq_configurations llq_config;
3043 	struct device *dev = &pdev->dev;
3044 	bool readless_supported;
3045 	u32 aenq_groups;
3046 	int dma_width;
3047 	int rc;
3048 
3049 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3050 	if (rc) {
3051 		dev_err(dev, "Failed to init mmio read less\n");
3052 		return rc;
3053 	}
3054 
3055 	/* The PCIe configuration space revision id indicate if mmio reg
3056 	 * read is disabled
3057 	 */
3058 	readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3059 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3060 
3061 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3062 	if (rc) {
3063 		dev_err(dev, "Can not reset device\n");
3064 		goto err_mmio_read_less;
3065 	}
3066 
3067 	rc = ena_com_validate_version(ena_dev);
3068 	if (rc) {
3069 		dev_err(dev, "Device version is too low\n");
3070 		goto err_mmio_read_less;
3071 	}
3072 
3073 	dma_width = ena_com_get_dma_width(ena_dev);
3074 	if (dma_width < 0) {
3075 		dev_err(dev, "Invalid dma width value %d", dma_width);
3076 		rc = dma_width;
3077 		goto err_mmio_read_less;
3078 	}
3079 
3080 	rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width));
3081 	if (rc) {
3082 		dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc);
3083 		goto err_mmio_read_less;
3084 	}
3085 
3086 	/* ENA admin level init */
3087 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3088 	if (rc) {
3089 		dev_err(dev,
3090 			"Can not initialize ena admin queue with device\n");
3091 		goto err_mmio_read_less;
3092 	}
3093 
3094 	/* To enable the msix interrupts the driver needs to know the number
3095 	 * of queues. So the driver uses polling mode to retrieve this
3096 	 * information
3097 	 */
3098 	ena_com_set_admin_polling_mode(ena_dev, true);
3099 
3100 	ena_config_host_info(ena_dev, pdev);
3101 
3102 	/* Get Device Attributes*/
3103 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3104 	if (rc) {
3105 		dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3106 		goto err_admin_init;
3107 	}
3108 
3109 	/* Try to turn all the available aenq groups */
3110 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3111 		BIT(ENA_ADMIN_FATAL_ERROR) |
3112 		BIT(ENA_ADMIN_WARNING) |
3113 		BIT(ENA_ADMIN_NOTIFICATION) |
3114 		BIT(ENA_ADMIN_KEEP_ALIVE);
3115 
3116 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3117 
3118 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3119 	if (rc) {
3120 		dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3121 		goto err_admin_init;
3122 	}
3123 
3124 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3125 
3126 	set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq);
3127 
3128 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq,
3129 					     &llq_config);
3130 	if (rc) {
3131 		dev_err(dev, "ENA device init failed\n");
3132 		goto err_admin_init;
3133 	}
3134 
3135 	ena_calc_io_queue_size(adapter, get_feat_ctx);
3136 
3137 	return 0;
3138 
3139 err_admin_init:
3140 	ena_com_delete_host_info(ena_dev);
3141 	ena_com_admin_destroy(ena_dev);
3142 err_mmio_read_less:
3143 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3144 
3145 	return rc;
3146 }
3147 
3148 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3149 {
3150 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3151 	struct device *dev = &adapter->pdev->dev;
3152 	int rc;
3153 
3154 	rc = ena_enable_msix(adapter);
3155 	if (rc) {
3156 		dev_err(dev, "Can not reserve msix vectors\n");
3157 		return rc;
3158 	}
3159 
3160 	ena_setup_mgmnt_intr(adapter);
3161 
3162 	rc = ena_request_mgmnt_irq(adapter);
3163 	if (rc) {
3164 		dev_err(dev, "Can not setup management interrupts\n");
3165 		goto err_disable_msix;
3166 	}
3167 
3168 	ena_com_set_admin_polling_mode(ena_dev, false);
3169 
3170 	ena_com_admin_aenq_enable(ena_dev);
3171 
3172 	return 0;
3173 
3174 err_disable_msix:
3175 	ena_disable_msix(adapter);
3176 
3177 	return rc;
3178 }
3179 
3180 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3181 {
3182 	struct net_device *netdev = adapter->netdev;
3183 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3184 	bool dev_up;
3185 
3186 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3187 		return;
3188 
3189 	netif_carrier_off(netdev);
3190 
3191 	del_timer_sync(&adapter->timer_service);
3192 
3193 	dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3194 	adapter->dev_up_before_reset = dev_up;
3195 	if (!graceful)
3196 		ena_com_set_admin_running_state(ena_dev, false);
3197 
3198 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3199 		ena_down(adapter);
3200 
3201 	/* Stop the device from sending AENQ events (in case reset flag is set
3202 	 *  and device is up, ena_down() already reset the device.
3203 	 */
3204 	if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3205 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3206 
3207 	ena_free_mgmnt_irq(adapter);
3208 
3209 	ena_disable_msix(adapter);
3210 
3211 	ena_com_abort_admin_commands(ena_dev);
3212 
3213 	ena_com_wait_for_abort_completion(ena_dev);
3214 
3215 	ena_com_admin_destroy(ena_dev);
3216 
3217 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3218 
3219 	/* return reset reason to default value */
3220 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3221 
3222 	clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3223 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3224 }
3225 
3226 static int ena_restore_device(struct ena_adapter *adapter)
3227 {
3228 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3229 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3230 	struct pci_dev *pdev = adapter->pdev;
3231 	struct ena_ring *txr;
3232 	int rc, count, i;
3233 	bool wd_state;
3234 
3235 	set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3236 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state);
3237 	if (rc) {
3238 		dev_err(&pdev->dev, "Can not initialize device\n");
3239 		goto err;
3240 	}
3241 	adapter->wd_state = wd_state;
3242 
3243 	count =  adapter->xdp_num_queues + adapter->num_io_queues;
3244 	for (i = 0 ; i < count; i++) {
3245 		txr = &adapter->tx_ring[i];
3246 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
3247 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
3248 	}
3249 
3250 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
3251 	if (rc) {
3252 		dev_err(&pdev->dev, "Validation of device parameters failed\n");
3253 		goto err_device_destroy;
3254 	}
3255 
3256 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3257 	if (rc) {
3258 		dev_err(&pdev->dev, "Enable MSI-X failed\n");
3259 		goto err_device_destroy;
3260 	}
3261 	/* If the interface was up before the reset bring it up */
3262 	if (adapter->dev_up_before_reset) {
3263 		rc = ena_up(adapter);
3264 		if (rc) {
3265 			dev_err(&pdev->dev, "Failed to create I/O queues\n");
3266 			goto err_disable_msix;
3267 		}
3268 	}
3269 
3270 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3271 
3272 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3273 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3274 		netif_carrier_on(adapter->netdev);
3275 
3276 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3277 	adapter->last_keep_alive_jiffies = jiffies;
3278 
3279 	return rc;
3280 err_disable_msix:
3281 	ena_free_mgmnt_irq(adapter);
3282 	ena_disable_msix(adapter);
3283 err_device_destroy:
3284 	ena_com_abort_admin_commands(ena_dev);
3285 	ena_com_wait_for_abort_completion(ena_dev);
3286 	ena_com_admin_destroy(ena_dev);
3287 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3288 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3289 err:
3290 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3291 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3292 	dev_err(&pdev->dev,
3293 		"Reset attempt failed. Can not reset the device\n");
3294 
3295 	return rc;
3296 }
3297 
3298 static void ena_fw_reset_device(struct work_struct *work)
3299 {
3300 	struct ena_adapter *adapter =
3301 		container_of(work, struct ena_adapter, reset_task);
3302 
3303 	rtnl_lock();
3304 
3305 	if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3306 		ena_destroy_device(adapter, false);
3307 		ena_restore_device(adapter);
3308 
3309 		dev_err(&adapter->pdev->dev, "Device reset completed successfully\n");
3310 	}
3311 
3312 	rtnl_unlock();
3313 }
3314 
3315 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3316 					struct ena_ring *rx_ring)
3317 {
3318 	struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi);
3319 
3320 	if (likely(READ_ONCE(ena_napi->first_interrupt)))
3321 		return 0;
3322 
3323 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3324 		return 0;
3325 
3326 	rx_ring->no_interrupt_event_cnt++;
3327 
3328 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3329 		netif_err(adapter, rx_err, adapter->netdev,
3330 			  "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3331 			  rx_ring->qid);
3332 
3333 		ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3334 		return -EIO;
3335 	}
3336 
3337 	return 0;
3338 }
3339 
3340 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3341 					  struct ena_ring *tx_ring)
3342 {
3343 	struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi);
3344 	unsigned int time_since_last_napi;
3345 	unsigned int missing_tx_comp_to;
3346 	bool is_tx_comp_time_expired;
3347 	struct ena_tx_buffer *tx_buf;
3348 	unsigned long last_jiffies;
3349 	u32 missed_tx = 0;
3350 	int i, rc = 0;
3351 
3352 	for (i = 0; i < tx_ring->ring_size; i++) {
3353 		tx_buf = &tx_ring->tx_buffer_info[i];
3354 		last_jiffies = tx_buf->last_jiffies;
3355 
3356 		if (last_jiffies == 0)
3357 			/* no pending Tx at this location */
3358 			continue;
3359 
3360 		is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3361 			 2 * adapter->missing_tx_completion_to);
3362 
3363 		if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) {
3364 			/* If after graceful period interrupt is still not
3365 			 * received, we schedule a reset
3366 			 */
3367 			netif_err(adapter, tx_err, adapter->netdev,
3368 				  "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3369 				  tx_ring->qid);
3370 			ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3371 			return -EIO;
3372 		}
3373 
3374 		is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3375 			adapter->missing_tx_completion_to);
3376 
3377 		if (unlikely(is_tx_comp_time_expired)) {
3378 			if (!tx_buf->print_once) {
3379 				time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies);
3380 				missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to);
3381 				netif_notice(adapter, tx_err, adapter->netdev,
3382 					     "Found a Tx that wasn't completed on time, qid %d, index %d. %u usecs have passed since last napi execution. Missing Tx timeout value %u msecs\n",
3383 					     tx_ring->qid, i, time_since_last_napi, missing_tx_comp_to);
3384 			}
3385 
3386 			tx_buf->print_once = 1;
3387 			missed_tx++;
3388 		}
3389 	}
3390 
3391 	if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3392 		netif_err(adapter, tx_err, adapter->netdev,
3393 			  "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
3394 			  missed_tx,
3395 			  adapter->missing_tx_completion_threshold);
3396 		ena_reset_device(adapter, ENA_REGS_RESET_MISS_TX_CMPL);
3397 		rc = -EIO;
3398 	}
3399 
3400 	ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx,
3401 			  &tx_ring->syncp);
3402 
3403 	return rc;
3404 }
3405 
3406 static void check_for_missing_completions(struct ena_adapter *adapter)
3407 {
3408 	struct ena_ring *tx_ring;
3409 	struct ena_ring *rx_ring;
3410 	int qid, budget, rc;
3411 	int io_queue_count;
3412 
3413 	io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
3414 
3415 	/* Make sure the driver doesn't turn the device in other process */
3416 	smp_rmb();
3417 
3418 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3419 		return;
3420 
3421 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3422 		return;
3423 
3424 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
3425 		return;
3426 
3427 	budget = min_t(u32, io_queue_count, ENA_MONITORED_TX_QUEUES);
3428 
3429 	qid = adapter->last_monitored_tx_qid;
3430 
3431 	while (budget) {
3432 		qid = (qid + 1) % io_queue_count;
3433 
3434 		tx_ring = &adapter->tx_ring[qid];
3435 		rx_ring = &adapter->rx_ring[qid];
3436 
3437 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
3438 		if (unlikely(rc))
3439 			return;
3440 
3441 		rc =  !ENA_IS_XDP_INDEX(adapter, qid) ?
3442 			check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
3443 		if (unlikely(rc))
3444 			return;
3445 
3446 		budget--;
3447 	}
3448 
3449 	adapter->last_monitored_tx_qid = qid;
3450 }
3451 
3452 /* trigger napi schedule after 2 consecutive detections */
3453 #define EMPTY_RX_REFILL 2
3454 /* For the rare case where the device runs out of Rx descriptors and the
3455  * napi handler failed to refill new Rx descriptors (due to a lack of memory
3456  * for example).
3457  * This case will lead to a deadlock:
3458  * The device won't send interrupts since all the new Rx packets will be dropped
3459  * The napi handler won't allocate new Rx descriptors so the device will be
3460  * able to send new packets.
3461  *
3462  * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
3463  * It is recommended to have at least 512MB, with a minimum of 128MB for
3464  * constrained environment).
3465  *
3466  * When such a situation is detected - Reschedule napi
3467  */
3468 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
3469 {
3470 	struct ena_ring *rx_ring;
3471 	int i, refill_required;
3472 
3473 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3474 		return;
3475 
3476 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3477 		return;
3478 
3479 	for (i = 0; i < adapter->num_io_queues; i++) {
3480 		rx_ring = &adapter->rx_ring[i];
3481 
3482 		refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
3483 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3484 			rx_ring->empty_rx_queue++;
3485 
3486 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3487 				ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1,
3488 						  &rx_ring->syncp);
3489 
3490 				netif_err(adapter, drv, adapter->netdev,
3491 					  "Trigger refill for ring %d\n", i);
3492 
3493 				napi_schedule(rx_ring->napi);
3494 				rx_ring->empty_rx_queue = 0;
3495 			}
3496 		} else {
3497 			rx_ring->empty_rx_queue = 0;
3498 		}
3499 	}
3500 }
3501 
3502 /* Check for keep alive expiration */
3503 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3504 {
3505 	unsigned long keep_alive_expired;
3506 
3507 	if (!adapter->wd_state)
3508 		return;
3509 
3510 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3511 		return;
3512 
3513 	keep_alive_expired = adapter->last_keep_alive_jiffies +
3514 			     adapter->keep_alive_timeout;
3515 	if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
3516 		netif_err(adapter, drv, adapter->netdev,
3517 			  "Keep alive watchdog timeout.\n");
3518 		ena_increase_stat(&adapter->dev_stats.wd_expired, 1,
3519 				  &adapter->syncp);
3520 		ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
3521 	}
3522 }
3523 
3524 static void check_for_admin_com_state(struct ena_adapter *adapter)
3525 {
3526 	if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
3527 		netif_err(adapter, drv, adapter->netdev,
3528 			  "ENA admin queue is not in running state!\n");
3529 		ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1,
3530 				  &adapter->syncp);
3531 		ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO);
3532 	}
3533 }
3534 
3535 static void ena_update_hints(struct ena_adapter *adapter,
3536 			     struct ena_admin_ena_hw_hints *hints)
3537 {
3538 	struct net_device *netdev = adapter->netdev;
3539 
3540 	if (hints->admin_completion_tx_timeout)
3541 		adapter->ena_dev->admin_queue.completion_timeout =
3542 			hints->admin_completion_tx_timeout * 1000;
3543 
3544 	if (hints->mmio_read_timeout)
3545 		/* convert to usec */
3546 		adapter->ena_dev->mmio_read.reg_read_to =
3547 			hints->mmio_read_timeout * 1000;
3548 
3549 	if (hints->missed_tx_completion_count_threshold_to_reset)
3550 		adapter->missing_tx_completion_threshold =
3551 			hints->missed_tx_completion_count_threshold_to_reset;
3552 
3553 	if (hints->missing_tx_completion_timeout) {
3554 		if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3555 			adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
3556 		else
3557 			adapter->missing_tx_completion_to =
3558 				msecs_to_jiffies(hints->missing_tx_completion_timeout);
3559 	}
3560 
3561 	if (hints->netdev_wd_timeout)
3562 		netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
3563 
3564 	if (hints->driver_watchdog_timeout) {
3565 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3566 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3567 		else
3568 			adapter->keep_alive_timeout =
3569 				msecs_to_jiffies(hints->driver_watchdog_timeout);
3570 	}
3571 }
3572 
3573 static void ena_update_host_info(struct ena_admin_host_info *host_info,
3574 				 struct net_device *netdev)
3575 {
3576 	host_info->supported_network_features[0] =
3577 		netdev->features & GENMASK_ULL(31, 0);
3578 	host_info->supported_network_features[1] =
3579 		(netdev->features & GENMASK_ULL(63, 32)) >> 32;
3580 }
3581 
3582 static void ena_timer_service(struct timer_list *t)
3583 {
3584 	struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
3585 	u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
3586 	struct ena_admin_host_info *host_info =
3587 		adapter->ena_dev->host_attr.host_info;
3588 
3589 	check_for_missing_keep_alive(adapter);
3590 
3591 	check_for_admin_com_state(adapter);
3592 
3593 	check_for_missing_completions(adapter);
3594 
3595 	check_for_empty_rx_ring(adapter);
3596 
3597 	if (debug_area)
3598 		ena_dump_stats_to_buf(adapter, debug_area);
3599 
3600 	if (host_info)
3601 		ena_update_host_info(host_info, adapter->netdev);
3602 
3603 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3604 		netif_err(adapter, drv, adapter->netdev,
3605 			  "Trigger reset is on\n");
3606 		ena_dump_stats_to_dmesg(adapter);
3607 		queue_work(ena_wq, &adapter->reset_task);
3608 		return;
3609 	}
3610 
3611 	/* Reset the timer */
3612 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3613 }
3614 
3615 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev,
3616 				     struct ena_com_dev *ena_dev,
3617 				     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3618 {
3619 	u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
3620 
3621 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3622 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3623 			&get_feat_ctx->max_queue_ext.max_queue_ext;
3624 		io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
3625 				  max_queue_ext->max_rx_cq_num);
3626 
3627 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
3628 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
3629 	} else {
3630 		struct ena_admin_queue_feature_desc *max_queues =
3631 			&get_feat_ctx->max_queues;
3632 		io_tx_sq_num = max_queues->max_sq_num;
3633 		io_tx_cq_num = max_queues->max_cq_num;
3634 		io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
3635 	}
3636 
3637 	/* In case of LLQ use the llq fields for the tx SQ/CQ */
3638 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3639 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
3640 
3641 	max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
3642 	max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
3643 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
3644 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
3645 	/* 1 IRQ for mgmnt and 1 IRQs for each IO direction */
3646 	max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
3647 
3648 	return max_num_io_queues;
3649 }
3650 
3651 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
3652 				 struct net_device *netdev)
3653 {
3654 	netdev_features_t dev_features = 0;
3655 
3656 	/* Set offload features */
3657 	if (feat->offload.tx &
3658 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
3659 		dev_features |= NETIF_F_IP_CSUM;
3660 
3661 	if (feat->offload.tx &
3662 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
3663 		dev_features |= NETIF_F_IPV6_CSUM;
3664 
3665 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
3666 		dev_features |= NETIF_F_TSO;
3667 
3668 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
3669 		dev_features |= NETIF_F_TSO6;
3670 
3671 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
3672 		dev_features |= NETIF_F_TSO_ECN;
3673 
3674 	if (feat->offload.rx_supported &
3675 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
3676 		dev_features |= NETIF_F_RXCSUM;
3677 
3678 	if (feat->offload.rx_supported &
3679 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
3680 		dev_features |= NETIF_F_RXCSUM;
3681 
3682 	netdev->features =
3683 		dev_features |
3684 		NETIF_F_SG |
3685 		NETIF_F_RXHASH |
3686 		NETIF_F_HIGHDMA;
3687 
3688 	netdev->hw_features |= netdev->features;
3689 	netdev->vlan_features |= netdev->features;
3690 }
3691 
3692 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
3693 				     struct ena_com_dev_get_features_ctx *feat)
3694 {
3695 	struct net_device *netdev = adapter->netdev;
3696 
3697 	/* Copy mac address */
3698 	if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
3699 		eth_hw_addr_random(netdev);
3700 		ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
3701 	} else {
3702 		ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
3703 		eth_hw_addr_set(netdev, adapter->mac_addr);
3704 	}
3705 
3706 	/* Set offload features */
3707 	ena_set_dev_offloads(feat, netdev);
3708 
3709 	adapter->max_mtu = feat->dev_attr.max_mtu;
3710 	netdev->max_mtu = adapter->max_mtu;
3711 	netdev->min_mtu = ENA_MIN_MTU;
3712 }
3713 
3714 static int ena_rss_init_default(struct ena_adapter *adapter)
3715 {
3716 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3717 	struct device *dev = &adapter->pdev->dev;
3718 	int rc, i;
3719 	u32 val;
3720 
3721 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3722 	if (unlikely(rc)) {
3723 		dev_err(dev, "Cannot init indirect table\n");
3724 		goto err_rss_init;
3725 	}
3726 
3727 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3728 		val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
3729 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3730 						       ENA_IO_RXQ_IDX(val));
3731 		if (unlikely(rc)) {
3732 			dev_err(dev, "Cannot fill indirect table\n");
3733 			goto err_fill_indir;
3734 		}
3735 	}
3736 
3737 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL,
3738 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3739 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3740 		dev_err(dev, "Cannot fill hash function\n");
3741 		goto err_fill_indir;
3742 	}
3743 
3744 	rc = ena_com_set_default_hash_ctrl(ena_dev);
3745 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3746 		dev_err(dev, "Cannot fill hash control\n");
3747 		goto err_fill_indir;
3748 	}
3749 
3750 	return 0;
3751 
3752 err_fill_indir:
3753 	ena_com_rss_destroy(ena_dev);
3754 err_rss_init:
3755 
3756 	return rc;
3757 }
3758 
3759 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3760 {
3761 	int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
3762 
3763 	pci_release_selected_regions(pdev, release_bars);
3764 }
3765 
3766 /* ena_probe - Device Initialization Routine
3767  * @pdev: PCI device information struct
3768  * @ent: entry in ena_pci_tbl
3769  *
3770  * Returns 0 on success, negative on failure
3771  *
3772  * ena_probe initializes an adapter identified by a pci_dev structure.
3773  * The OS initialization, configuring of the adapter private structure,
3774  * and a hardware reset occur.
3775  */
3776 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3777 {
3778 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3779 	struct ena_com_dev *ena_dev = NULL;
3780 	struct ena_adapter *adapter;
3781 	struct net_device *netdev;
3782 	static int adapters_found;
3783 	u32 max_num_io_queues;
3784 	bool wd_state;
3785 	int bars, rc;
3786 
3787 	dev_dbg(&pdev->dev, "%s\n", __func__);
3788 
3789 	rc = pci_enable_device_mem(pdev);
3790 	if (rc) {
3791 		dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
3792 		return rc;
3793 	}
3794 
3795 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS));
3796 	if (rc) {
3797 		dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc);
3798 		goto err_disable_device;
3799 	}
3800 
3801 	pci_set_master(pdev);
3802 
3803 	ena_dev = vzalloc(sizeof(*ena_dev));
3804 	if (!ena_dev) {
3805 		rc = -ENOMEM;
3806 		goto err_disable_device;
3807 	}
3808 
3809 	bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
3810 	rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
3811 	if (rc) {
3812 		dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
3813 			rc);
3814 		goto err_free_ena_dev;
3815 	}
3816 
3817 	ena_dev->reg_bar = devm_ioremap(&pdev->dev,
3818 					pci_resource_start(pdev, ENA_REG_BAR),
3819 					pci_resource_len(pdev, ENA_REG_BAR));
3820 	if (!ena_dev->reg_bar) {
3821 		dev_err(&pdev->dev, "Failed to remap regs bar\n");
3822 		rc = -EFAULT;
3823 		goto err_free_region;
3824 	}
3825 
3826 	ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US;
3827 
3828 	ena_dev->dmadev = &pdev->dev;
3829 
3830 	netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS);
3831 	if (!netdev) {
3832 		dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
3833 		rc = -ENOMEM;
3834 		goto err_free_region;
3835 	}
3836 
3837 	SET_NETDEV_DEV(netdev, &pdev->dev);
3838 	adapter = netdev_priv(netdev);
3839 	adapter->ena_dev = ena_dev;
3840 	adapter->netdev = netdev;
3841 	adapter->pdev = pdev;
3842 	adapter->msg_enable = DEFAULT_MSG_ENABLE;
3843 
3844 	ena_dev->net_device = netdev;
3845 
3846 	pci_set_drvdata(pdev, adapter);
3847 
3848 	rc = ena_map_llq_mem_bar(pdev, ena_dev, bars);
3849 	if (rc) {
3850 		dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n");
3851 		goto err_netdev_destroy;
3852 	}
3853 
3854 	rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state);
3855 	if (rc) {
3856 		dev_err(&pdev->dev, "ENA device init failed\n");
3857 		if (rc == -ETIME)
3858 			rc = -EPROBE_DEFER;
3859 		goto err_netdev_destroy;
3860 	}
3861 
3862 	/* Initial TX and RX interrupt delay. Assumes 1 usec granularity.
3863 	 * Updated during device initialization with the real granularity
3864 	 */
3865 	ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
3866 	ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
3867 	ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
3868 	max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
3869 	if (unlikely(!max_num_io_queues)) {
3870 		rc = -EFAULT;
3871 		goto err_device_destroy;
3872 	}
3873 
3874 	ena_set_conf_feat_params(adapter, &get_feat_ctx);
3875 
3876 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3877 
3878 	adapter->num_io_queues = max_num_io_queues;
3879 	adapter->max_num_io_queues = max_num_io_queues;
3880 	adapter->last_monitored_tx_qid = 0;
3881 
3882 	adapter->xdp_first_ring = 0;
3883 	adapter->xdp_num_queues = 0;
3884 
3885 	adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
3886 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3887 		adapter->disable_meta_caching =
3888 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
3889 			   BIT(ENA_ADMIN_DISABLE_META_CACHING));
3890 
3891 	adapter->wd_state = wd_state;
3892 
3893 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
3894 
3895 	rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
3896 	if (rc) {
3897 		dev_err(&pdev->dev,
3898 			"Failed to query interrupt moderation feature\n");
3899 		goto err_device_destroy;
3900 	}
3901 
3902 	ena_init_io_rings(adapter,
3903 			  0,
3904 			  adapter->xdp_num_queues +
3905 			  adapter->num_io_queues);
3906 
3907 	netdev->netdev_ops = &ena_netdev_ops;
3908 	netdev->watchdog_timeo = TX_TIMEOUT;
3909 	ena_set_ethtool_ops(netdev);
3910 
3911 	netdev->priv_flags |= IFF_UNICAST_FLT;
3912 
3913 	u64_stats_init(&adapter->syncp);
3914 
3915 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3916 	if (rc) {
3917 		dev_err(&pdev->dev,
3918 			"Failed to enable and set the admin interrupts\n");
3919 		goto err_worker_destroy;
3920 	}
3921 	rc = ena_rss_init_default(adapter);
3922 	if (rc && (rc != -EOPNOTSUPP)) {
3923 		dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
3924 		goto err_free_msix;
3925 	}
3926 
3927 	ena_config_debug_area(adapter);
3928 
3929 	if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues))
3930 		netdev->xdp_features = NETDEV_XDP_ACT_BASIC |
3931 				       NETDEV_XDP_ACT_REDIRECT;
3932 
3933 	memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
3934 
3935 	netif_carrier_off(netdev);
3936 
3937 	rc = register_netdev(netdev);
3938 	if (rc) {
3939 		dev_err(&pdev->dev, "Cannot register net device\n");
3940 		goto err_rss;
3941 	}
3942 
3943 	INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
3944 
3945 	adapter->last_keep_alive_jiffies = jiffies;
3946 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
3947 	adapter->missing_tx_completion_to = TX_TIMEOUT;
3948 	adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
3949 
3950 	ena_update_hints(adapter, &get_feat_ctx.hw_hints);
3951 
3952 	timer_setup(&adapter->timer_service, ena_timer_service, 0);
3953 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3954 
3955 	dev_info(&pdev->dev,
3956 		 "%s found at mem %lx, mac addr %pM\n",
3957 		 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
3958 		 netdev->dev_addr);
3959 
3960 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3961 
3962 	adapters_found++;
3963 
3964 	return 0;
3965 
3966 err_rss:
3967 	ena_com_delete_debug_area(ena_dev);
3968 	ena_com_rss_destroy(ena_dev);
3969 err_free_msix:
3970 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
3971 	/* stop submitting admin commands on a device that was reset */
3972 	ena_com_set_admin_running_state(ena_dev, false);
3973 	ena_free_mgmnt_irq(adapter);
3974 	ena_disable_msix(adapter);
3975 err_worker_destroy:
3976 	del_timer(&adapter->timer_service);
3977 err_device_destroy:
3978 	ena_com_delete_host_info(ena_dev);
3979 	ena_com_admin_destroy(ena_dev);
3980 err_netdev_destroy:
3981 	free_netdev(netdev);
3982 err_free_region:
3983 	ena_release_bars(ena_dev, pdev);
3984 err_free_ena_dev:
3985 	vfree(ena_dev);
3986 err_disable_device:
3987 	pci_disable_device(pdev);
3988 	return rc;
3989 }
3990 
3991 /*****************************************************************************/
3992 
3993 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines
3994  * @pdev: PCI device information struct
3995  * @shutdown: Is it a shutdown operation? If false, means it is a removal
3996  *
3997  * __ena_shutoff is a helper routine that does the real work on shutdown and
3998  * removal paths; the difference between those paths is with regards to whether
3999  * dettach or unregister the netdevice.
4000  */
4001 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown)
4002 {
4003 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4004 	struct ena_com_dev *ena_dev;
4005 	struct net_device *netdev;
4006 
4007 	ena_dev = adapter->ena_dev;
4008 	netdev = adapter->netdev;
4009 
4010 #ifdef CONFIG_RFS_ACCEL
4011 	if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
4012 		free_irq_cpu_rmap(netdev->rx_cpu_rmap);
4013 		netdev->rx_cpu_rmap = NULL;
4014 	}
4015 #endif /* CONFIG_RFS_ACCEL */
4016 
4017 	/* Make sure timer and reset routine won't be called after
4018 	 * freeing device resources.
4019 	 */
4020 	del_timer_sync(&adapter->timer_service);
4021 	cancel_work_sync(&adapter->reset_task);
4022 
4023 	rtnl_lock(); /* lock released inside the below if-else block */
4024 	adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN;
4025 	ena_destroy_device(adapter, true);
4026 
4027 	if (shutdown) {
4028 		netif_device_detach(netdev);
4029 		dev_close(netdev);
4030 		rtnl_unlock();
4031 	} else {
4032 		rtnl_unlock();
4033 		unregister_netdev(netdev);
4034 		free_netdev(netdev);
4035 	}
4036 
4037 	ena_com_rss_destroy(ena_dev);
4038 
4039 	ena_com_delete_debug_area(ena_dev);
4040 
4041 	ena_com_delete_host_info(ena_dev);
4042 
4043 	ena_release_bars(ena_dev, pdev);
4044 
4045 	pci_disable_device(pdev);
4046 
4047 	vfree(ena_dev);
4048 }
4049 
4050 /* ena_remove - Device Removal Routine
4051  * @pdev: PCI device information struct
4052  *
4053  * ena_remove is called by the PCI subsystem to alert the driver
4054  * that it should release a PCI device.
4055  */
4056 
4057 static void ena_remove(struct pci_dev *pdev)
4058 {
4059 	__ena_shutoff(pdev, false);
4060 }
4061 
4062 /* ena_shutdown - Device Shutdown Routine
4063  * @pdev: PCI device information struct
4064  *
4065  * ena_shutdown is called by the PCI subsystem to alert the driver that
4066  * a shutdown/reboot (or kexec) is happening and device must be disabled.
4067  */
4068 
4069 static void ena_shutdown(struct pci_dev *pdev)
4070 {
4071 	__ena_shutoff(pdev, true);
4072 }
4073 
4074 /* ena_suspend - PM suspend callback
4075  * @dev_d: Device information struct
4076  */
4077 static int __maybe_unused ena_suspend(struct device *dev_d)
4078 {
4079 	struct pci_dev *pdev = to_pci_dev(dev_d);
4080 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4081 
4082 	ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp);
4083 
4084 	rtnl_lock();
4085 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4086 		dev_err(&pdev->dev,
4087 			"Ignoring device reset request as the device is being suspended\n");
4088 		clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4089 	}
4090 	ena_destroy_device(adapter, true);
4091 	rtnl_unlock();
4092 	return 0;
4093 }
4094 
4095 /* ena_resume - PM resume callback
4096  * @dev_d: Device information struct
4097  */
4098 static int __maybe_unused ena_resume(struct device *dev_d)
4099 {
4100 	struct ena_adapter *adapter = dev_get_drvdata(dev_d);
4101 	int rc;
4102 
4103 	ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp);
4104 
4105 	rtnl_lock();
4106 	rc = ena_restore_device(adapter);
4107 	rtnl_unlock();
4108 	return rc;
4109 }
4110 
4111 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume);
4112 
4113 static struct pci_driver ena_pci_driver = {
4114 	.name		= DRV_MODULE_NAME,
4115 	.id_table	= ena_pci_tbl,
4116 	.probe		= ena_probe,
4117 	.remove		= ena_remove,
4118 	.shutdown	= ena_shutdown,
4119 	.driver.pm	= &ena_pm_ops,
4120 	.sriov_configure = pci_sriov_configure_simple,
4121 };
4122 
4123 static int __init ena_init(void)
4124 {
4125 	int ret;
4126 
4127 	ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4128 	if (!ena_wq) {
4129 		pr_err("Failed to create workqueue\n");
4130 		return -ENOMEM;
4131 	}
4132 
4133 	ret = pci_register_driver(&ena_pci_driver);
4134 	if (ret)
4135 		destroy_workqueue(ena_wq);
4136 
4137 	return ret;
4138 }
4139 
4140 static void __exit ena_cleanup(void)
4141 {
4142 	pci_unregister_driver(&ena_pci_driver);
4143 
4144 	if (ena_wq) {
4145 		destroy_workqueue(ena_wq);
4146 		ena_wq = NULL;
4147 	}
4148 }
4149 
4150 /******************************************************************************
4151  ******************************** AENQ Handlers *******************************
4152  *****************************************************************************/
4153 /* ena_update_on_link_change:
4154  * Notify the network interface about the change in link status
4155  */
4156 static void ena_update_on_link_change(void *adapter_data,
4157 				      struct ena_admin_aenq_entry *aenq_e)
4158 {
4159 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4160 	struct ena_admin_aenq_link_change_desc *aenq_desc =
4161 		(struct ena_admin_aenq_link_change_desc *)aenq_e;
4162 	int status = aenq_desc->flags &
4163 		ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4164 
4165 	if (status) {
4166 		netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
4167 		set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4168 		if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4169 			netif_carrier_on(adapter->netdev);
4170 	} else {
4171 		clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4172 		netif_carrier_off(adapter->netdev);
4173 	}
4174 }
4175 
4176 static void ena_keep_alive_wd(void *adapter_data,
4177 			      struct ena_admin_aenq_entry *aenq_e)
4178 {
4179 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4180 	struct ena_admin_aenq_keep_alive_desc *desc;
4181 	u64 rx_drops;
4182 	u64 tx_drops;
4183 
4184 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4185 	adapter->last_keep_alive_jiffies = jiffies;
4186 
4187 	rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4188 	tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low;
4189 
4190 	u64_stats_update_begin(&adapter->syncp);
4191 	/* These stats are accumulated by the device, so the counters indicate
4192 	 * all drops since last reset.
4193 	 */
4194 	adapter->dev_stats.rx_drops = rx_drops;
4195 	adapter->dev_stats.tx_drops = tx_drops;
4196 	u64_stats_update_end(&adapter->syncp);
4197 }
4198 
4199 static void ena_notification(void *adapter_data,
4200 			     struct ena_admin_aenq_entry *aenq_e)
4201 {
4202 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4203 	struct ena_admin_ena_hw_hints *hints;
4204 
4205 	WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4206 	     "Invalid group(%x) expected %x\n",
4207 	     aenq_e->aenq_common_desc.group,
4208 	     ENA_ADMIN_NOTIFICATION);
4209 
4210 	switch (aenq_e->aenq_common_desc.syndrome) {
4211 	case ENA_ADMIN_UPDATE_HINTS:
4212 		hints = (struct ena_admin_ena_hw_hints *)
4213 			(&aenq_e->inline_data_w4);
4214 		ena_update_hints(adapter, hints);
4215 		break;
4216 	default:
4217 		netif_err(adapter, drv, adapter->netdev,
4218 			  "Invalid aenq notification link state %d\n",
4219 			  aenq_e->aenq_common_desc.syndrome);
4220 	}
4221 }
4222 
4223 /* This handler will called for unknown event group or unimplemented handlers*/
4224 static void unimplemented_aenq_handler(void *data,
4225 				       struct ena_admin_aenq_entry *aenq_e)
4226 {
4227 	struct ena_adapter *adapter = (struct ena_adapter *)data;
4228 
4229 	netif_err(adapter, drv, adapter->netdev,
4230 		  "Unknown event was received or event with unimplemented handler\n");
4231 }
4232 
4233 static struct ena_aenq_handlers aenq_handlers = {
4234 	.handlers = {
4235 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4236 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4237 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4238 	},
4239 	.unimplemented_handler = unimplemented_aenq_handler
4240 };
4241 
4242 module_init(ena_init);
4243 module_exit(ena_cleanup);
4244